
To the editor: 
 
Please find our point-by-point responses to the reviewer comments below. We have 
addressed all major comments in the updated manuscript. A latex-diff generated file is 
also included at the end of this document. Unfortunately, the resulting document 
produced some errors and does not highlight the changes very well. Therefore, we list 
the major changes to the manuscript below for your reference: 
 

- Following the suggestion of Reviewer 1, we added a new section describing the 
timestepping methodology of the model (Section 4). We have also included a 
new figure demonstrating the capability of the adaptive timestepping scheme 
(Figure 4), which is discussed in the model validation section. 

- To address Reviewer 1’s comments on the Antarctica simulations, more 
information has been provided on the simluations in the Antarctica section, 
including a new figure showing the error in ice thickness and a scatterplot of 
modeled versus observed surface velocity (Figure 11). 

- Following the suggestion of Ed Bueler, we have included a new figure showing 
Yelmo’s performance for the Halfar dome benchmark test (Figure 3), which is 
discussed in the model validation section. 

- To address Ed Bueler’s concerns regarding the thermodynamics solver, we have 
included two new figures that show Yelmo’s performance for the enthalpy 
benchmark experiments of Kleiner et al. (2015) (Figs. 5 & 6), which are 
discussed in the model validation section. 

- Since first submitting the manuscript, we have included the local evolution of 
the basal water layer as a prognostic variable in the model, including a new 
equation (Eq. 29).  

 
These changes, as well as all additional modifications, are discussed below. Thank you 
for your consideration. 
 
========== Short comment 1 (Matthew Hoffman) ==================== 

 
Panel b of Figure 2 is very similar to panel b of Figure 1 in Hoffman, et al. (GMD, 
2018, https://www.geosci-model-dev.net/11/3747/2018/gmd-11-3747-
2018.html), see attached image. The authors may want to consider referencing 
the previous paper in the figure caption. 
 

Thank you very much for the comment. Indeed Fig. 1 from Hoffman et al. (2018) 
inspired our own figure. We are happy to make the reference more explicit, and have 
done so in the caption of the figure revised manuscript. 

 
========== Reviewer comment 1 (anonymous) ====================== 

 
We thank the reviewer for bringing up several key points that will serve to improve the 
manuscript. We have addressed these concerns below.  

 
General comments 



 
Robinson et al. present a new ice sheet model. Using a zero-order hybrid 
SIA/SSA scheme, it is computationally inexpensive compared to higher-order 
and full-Stokes models. The manuscript is nicely written and provides a 
thorough description of the physics and its implementation in the model. In 
addition, the Yelmo model is available on a git repository with sufficient 
information to run it for a few standard configurations. The paper is worth 
publishing although I have a few comments and suggestions that could be 
considered. 
 

Thank you for the very positive evaluation.  
 
Main specific comments 
 
- Most readers would probably like to see a more in-depth discussion on how 
the model perform for a real ice sheet configuration. While I applaud the 
authors for performing the EISMINT and MISMIP experiments since they are 
very informative on the model behaviour, I also think that the Antarctic ice 
sheet experiments are a bit weak and are briefly described (e.g. length of the 
simulation?). First, it could be nice to have more diagnostics in addition to the 
sole map of surface velocities (topography error but also other fields such as 
basal temperature / hydrology?). It is not necessary to show a perfect match 
with observations (which is most of the time achievable with a dedicated 
tuning), but it is interesting to see the bias structure to see if it is similar to 
other models with a similar complexity. Second, and more importantly, it could 
be very nice if you could discuss transient simulations. Since the model is suited 
for long integrations, some glacial-interglacial simulations (even with an 
idealised forcing) would be very interesting. If this is not possible, alternatively, 
you could maybe do the InitMIP experiments, since they are relatively easy to 
set up, and discuss your model results with respect to what is shown in 
Seroussi et al. (2019)? 

 
We believe that more complex simulations fall outside the scope of this manuscript, as 
we would like to limit this model description paper to the ice-sheet model itself, and 
we expect more realistic simulations to be forthcoming soon in future studies. But we 
agree with the reviewer that more information about the Antarctica simulations could 
be provided. The present-day simulation is indeed comparable to the InitMIP 
experiment and the relevant metrics (rmse[H], rmse[vel], rmse[logvel]) already appear 
in the text. Nonetheless, we have added an additional plot explicitly showing the ice 
thickness bias and comparison of modeled velocity with observations, with relevant 
discussion.  
 

- Unless I am mistaken, the model does not contain an isostasy model. This is 
certainly a limitation and might prevent its use for glacial-interglacial 
applications. Do you plan to account for this in the future? 
 



Yelmo itself was designed specifically as a modular ice-sheet model (ice flow and 
thermodynamics). Consequently, it does not include an isostasy model, and we believe 
this is actually one of its important characteristics. Classically, ice-sheet models have 
been packaged as full system tools that contain several components performing 
isostatic, surface mass balance and shelf-melt calculations, among other things. Here 
we would rather like to publish an ice-sheet model in its minimal form. Numerous GIA 
models are available that can easily be coupled to Yelmo.  

 
- Since you use an adaptive time step, a dedicated section could be very useful. 
 

This is a good point. We have added a section to discuss the time stepping method and 
have added an additional figure for demonstration. 

 
- Running Yelmo on my computer, I was not able to reproduce the results you 
show for the Antarctic ice sheet with the standard configuration file provided 
at the zenodo link. It is minor since I was simply digging for more info (basal 
drag coefficient value, trends, basal temperature etc.). Consider updating the 
configuration files for consistency with the results shown in the manuscript. 
 

Thank you, this feedback is appreciated. The code archived at Zenodo for the 
published paper has been confirmed to work in all documented cases.  

 
Other specific comments 
 
- P11L22-25 Since beta=f(ub) for non-linear friction laws, does this mean that 
you have to do iterative loops (relaxation) to estimate beta for a given time 
step? 
 

Yes, we iterate over beta and viscosity in a typical way. This is discussed in detail for 
beta when the SSA equations are introduced (P10L1). 

 
- P14L13-20 The reader should be reminded that these experiments are SIA 
only. 
 

Yes, this has been added. 
 
- P15L8-10 Why is the motivation behind this choice of model parameters. You 
did the Antarctic experiments with a linear friction law, it would have been 
more useful to use the same model configuration for the two examples shown, 
wouldn’t it? 
 

The MISMIP benchmark experiments used these basal friction parameter values, so 
they are used here. In the Antarctica experiments, we wanted to keep the setup 
simple, so it was unnecessary to prescribe the particular values from MISMIP. We 
hope, as well, that it shows that it is easy to change from one law and parameter 
values to another.  

 



Technical corrections 
 
- P2L7 Typo (millenial). 
 

Ok, this has been fixed. 
 
- P2L7 Not only for palaeo, future multi-millenial change of ice sheets is also of 
interest  
 

Yes, indeed, this has been changed. 
 
- P7L9 n=3? 
 

Correct, this has been fixed. 
 

 
========== Short comment 2 (Ed Bueler) =========================== 

 
We are grateful to Ed Bueler for providing critical comments regarding our work.  We 
have considered all comments, and provide a point-by-point response below.  

 
The paper under review is a model description of Yelmo, a new ice sheet model 
written in Fortran. The model is open source, and this reviewer successfully 
examined and downloaded the source from github, and compiled and ran the 
model, with unimportant technical difficulties only. 
 
Yelmo has a very conservative design, with essentially no new physical features 
or submodels, at least as described here. If the publication standard at GMD is 
that the model is geophysical and is described by the submitted paper then this 
standard is unequivocably met. However, a basic description of a model, as 
part of its (evolving) documentation, should be part of its source code release. 
It is not clear that such model documentation is a publishable document; 
indeed a user’s or developer’s manual should match the changing versions of a 
code and address how specific capabilities are exploited.  
 

It is true that the physics contained within Yelmo are rather conservative. However, 
the model design is rather unique, compared to many other models, and we believe 
this to be an added value to the community. A large section of the manuscript has 
been dedicated to explaining the model design from a technical point of view (not just 
numerics), which we believe is an important part of any model description paper and is 
often overlooked.  
 

Because I suppose that the publication standard here is beyond that of such 
documentation, I have the following major concerns. 
 
Concern 1. A new model should be justified by new directions for research, 
new ideas, and new capabilities. The most important concern: what is the 



direction of this work? Substantial effort has been expended on Yelmo but it is 
not actually clear for what purpose. Open source ice sheet models exist with its 
capabilities, or with substantially greater capability (e.g. BiSCLES, CISM, ISSM, 
OGGM, PISM, Sicopolis), and all of these are forkable and to varying degrees 
modular. The authors of Yelmo chose to develop a new model, and not to add 
new capabilities to an existing model, despite some ideas coming from 
Sicopolis. So, where is this new one going? 
 

One key phrase in this comment is “to varying degrees modular”. It is not just 
modularity that is important (which is very important!), but also encapsulation. We 
built Yelmo explicitly to have a simple API that is intuitive and encapsulated (requires 
minimum definition of objects in external programs). Most notably, Yelmo should be 
quite capable for coupling with intermediate complexity climate models. We have 
tried to explain this motivation in the Introduction and Model design sections, but this 
has been further clarified in the revised manuscript. Nonetheless, we would point out 
that Yelmo has already proven extremely useful to us and we have noted interest from 
others, which indicates the demand for such a model, despite alternatives being 
available.  

 
Concern 2. The "intended for collaborative development" and "flexible and 
user-friendly infrastructure ..." claims in the abstract, and repeated in various 
ways in the paper, are not demonstrated in any substantial way. For example, 
there is no demonstration that only minimal code extensions are needed to 
add a new capability. (Presumably this would be a great deal easier in e.g. 
Python than in Fortran anyway.) Does the model actually represent improved 
infrastructure for adding new capabilities? Noting that modularity does not, by 
itself, imply extensibility, if the model is extensible then the paper should 
demonstrate it. 
 

This is a good point. However, it was difficult to find a simple example that wouldn’t 
overly complicate the text. The proof of these statements, we believe, is nonetheless 
contained in the available source code.  

 
Concern 3. The model verification mistakes of the past are recapitulated here. 
The EISMINT1 moving margin (MM) "benchmark" represented a failure of the 
community to read the literature 25 years ago, but there is no excuse now. As 
clear from textbooks (van der Veen, 2013, 2nd ed.) and well-known paper 
papers (Bueler et al, 2005), the Halfar (1983) exact solution is a full 
replacement for the MM experiment, which offers exact knowledge of what an 
SIA model should do. Regarding the EISMINT2 and MISMIP stuff, there is some 
excuse for using the benchmarks (though no evidence is given that the Yelmo 
runs offer more than the most common capabilities). The age- model testing 
via a (divide) analytic solution is applauded. 
 

We agree that the EISMINT1/2 benchmarks are not true verification tests. However, 
they do serve as historical benchmarks and we believe can provide perspective on the 
performance of the model. Nonetheless, we have also implemented the Halfar/Bueler 



exact test cases. Verification Test B in the Halfar configuration has been added in the 
revised manuscript. 

 
Concern 4. Does the model run in parallel? The paper does not demonstrate or 
consider this but the tools seem to be suitable for it. In particular the Lis linear 
algebra library (ssisc.org/lis/), and the biconjugate gradient method, are used 
for the membrane stress solver component (SSA), and the library claims parallel 
performance. The concern here is that a lack of parallelism is exactly one of the 
limitations of many previous ice sheet models, thus limiting their attainable 
resolution. 
 

The model has been built with parallelization in mind, however its capabilities have not 
been tested or fully implemented. The Lis library already supports parallel solving. The 
thermodynamics/enthalpy solver has been designed to be solved column-by-column, 
facilitating parallelization (as mentioned in the text). Additional smaller routines will 
also be easy to parallelize. Thus, this will not be a limitation of the model, but at this 
stage, it was not the first priority. 

 
Now we turn from concerns to suggestions and questions. 
 
The disadvantage of the GMD paradigm, of peer-reviewed publication of 
snapshot model descriptions, even users’ manuals, is clear in this paper. Author 
and reviewer effort is devoted to a rapidly-out-of-date paper instead of (for 
example) devoting that effort to improving the software itself, or its evolving 
online documentation. Please see the mission statement of a different 
publication model: https://joss.theoj.org/about. The idea of the Journal of 
Open Source Software is to treat the software itself, and its evolving online 
infrastructure, as the reviewable object. 
 

The raised discussion on publication paradigms is interesting and may be taken up at a 
different level. However, it seems rather outside the scope of this review to debate 
whether the GMD paradigm is better or worse than another journal. Having submitted 
to GMD, we do believe there is great value in a static and citable model description, 
which can serve as a common reference point for future work. 

 
A surprise about the design of Yelmo was the decision to use only a 
temperature variable in the energy conservation equation. To a significant 
degree this means energy is not actually conserved. The alternatives, of course, 
include the replacement of temperature by an enthalpy variable, or the 
addition of a field to make a temperature/water-content pair; either makes 
possible energy conservation in polythermal ice. On the one hand there is no 
question that near-base polythermal ice is a concern for all ice sheet 
simulations; I would not want to see any serious treatment of ice sheet time 
scales without it. On the other hand, one would want the model to also be 
flexible enough to work for temperate mountain glaciers or Greenland outlet 
glaciers. The authors seem aware of this issue, but to have simply not 



bothered. To the extent that there is a question here it is: what was gained by 
this choice? 
 

Several models still choose to use temperature as the prognostic variable (CISM, 
GRISLI, IMAU-ICE, among others). Despite the lack of full energy conservation when 
water is present, this may not be a first-order issue for lower-resolution, long 
timescale simulations, given a number of other large uncertainties. In addition, the 
impact of water content on the rate factor is deeply uncertain. While an enthalpy 
solver would add a further degree of energy conservation, accurately mapping the 
transition from temperate to cold ice can only be achieved with very high vertical 
resolution, or potentially a two-layer scheme as in SICOPOLIS. In either case, this 
results in significant computational overhead and potentially numerical artifacts. We 
felt it was important now to have a fast, capable model that can run ensembles of long 
timescale simulations. In the revised manuscript we have added discussion of the 
energy scheme, and also show to what extent the temperature scheme can pass 
enthalpy benchmarks (Kleiner et al., 2015).  
 

The above paragraph deliberately ignores the second-to-last sentence of the 
paper reporting a "plan to transition to" enthalpy, which only begs the 
question. Why not build the model based on the current state of the art from 
the beginning? This reviewer would be delighted to see a failed-or-not attempt 
to build a highly-principled and highly- conserving new model instead of a 
recapitulation of prior deficiencies. 
 

See above. This is mainly a question of resources during the model development 
phase. As stated above, incorporating an enthalpy solver only brings added value when 
the transition from temperate to cold ice is well resolved. To do so in a 
computationally efficient manner requires careful consideration of the numerical 
treatment, which is reserved for future work. This is now discussed in the revised 
manuscript. 

 
This reviewer had understood that Sicopolis (Greve) and GRISLI (Ritz) were 
models under active development which had capabilities roughly a superset of 
Yelmo. Is this true or not? Is this a fork of either model? (It seems not.) Is Yelmo 
already justified by its modularity and API design, somehow lacking in Sicopolis 
and/or GRISLI? It would help readers to expose these aspects of the design. 
 

Both SICOPOLIS and GRISLI have active user bases and are undergoing development. 
The capabilities with respect to physics in all three models are rather comparable, but 
the model designs are quite different. We have extended the discussion of the model 
design choices made here that differentiate Yelmo from the others. 

 
The Antarctica validation results are acceptable but suggest no capability which 
would draw-in researchers to use this model. To compare rather directly, a 
just-published paper suggests the power of many modern ice sheet models to 
account for the dynamics of the Antarctic ice sheet, namely the initMIP-
Antarctica paper Seroussi et al 2019 (https://www.the-



cryosphere.net/13/1441/2019/). It lists 16 models of Antarctica (and 33 
researchers), almost all of which would seem to have capabilities equal to or 
exceeding that of Yelmo. So where is this model going that is different, and why 
should we hope for new knowledge from it? 
 

The goal of the Antarctica validation is simply to show that Yelmo can produce 
reasonable results for a realistic domain and for very different boundary conditions. 
Our results are in line with the models that appear in the initMIP-Antarctica study. 
Despite its similar physics to other models, it is sure that were Yelmo to be included in 
the ensemble, its results would not be identical. So there is potentially value in 
contributing to model diversity. However, Yelmo’s main value at the current release is 
in its usability and transparency, as discussed above.  

 
In summary, a new model like Yelmo, containing no significant new physics or 
model mechanisms, could in theory be useful. It could be a better piece of 
software than other offerings, it might have better performance, or it might be 
able to process input data faster or more flexibly, or it might just be 
implemented better and have better documentation. This paper does not 
convince me of any of it. 
 

This conclusion is arguably subjective, and Yelmo will not be useful for everyone. 
However, we have made a concerted effort in the revised manuscript to make the 
advantages of Yelmo clearer. 

 
Line-by-line, generally minor comments: 
 
p 2 line 1: Lipscomb et al 2019 does not solve Stokes. 
 

The phrasing here is ambiguous, and now has been corrected. 
 
p 9 line 23: Hard-coding BCG for the SSA solve is a bad idea. Have there been 
experiments with AMG in Lis? Can a performance comparison be reported?  
 

We have not performed additional sensitivity tests with variations on the Lis solver 
options. Through experience with SICOPOLIS, the BCG solver was recommended to 
balance speed and accuracy. We take the reviewer’s point that the settings should not 
be hard coded, and the option has been added to the model parameters. 

 
p 11 section 2.4: I am surprised by the temperature variable. If the claim is that 
converting to/from the enthalpy variable is too costly, then this should be 
stated. 
 

We do not make that claim here. See above comments on enthalpy. 
 
p 14 line 13: The EISMINT1 moving margin experiment has no justification 
*whatsoever*. Please use the Halfar (1983) solution so that you know the 



exactly-correct prediction of the SIA. See "Test B" in Bueler et al (2005), and 
add "Test C" from that source if you want variety. 
 

While we understand the reviewer’s point, one justification we see of EISMINT1 
experiments is that they serve as a historical reference. As mentioned above we have 
now added results from Test B to the revised manuscript. 

 
p 14 line 16: "and thermodynamic": I hope not! EISMINT1 results depend on 
constant temperature (isothermal) ice, so energy will not be conserved. 
 

The phrasing has been modified. While the feedback between temperature and 
dynamics was disabled in the EISMINT1 experiments, the temperature field was 
nonetheless diagnosed and can be used for comparison. 

 
p 14 line 17: ""Type-I" discretization models": The fact that Yelmo agrees with 
other particular numerics is not relevant; EISMINT1 reported groups of results 
that way so as to expose a flaw not propose a standard. Instead, please take 
the opportunity to compare model results to exact predictions (a.k.a. analytical 
solutions) of the continuum model when available, *which they are in this 
case*. Beyond Halfar (1983) and Bueler et al (2005) for the SIA, there are exact 
solutions of the SSA, including results in van der Veen 1983), Schoof (2006), and 
Bueler (2014). 
 

When comparing with EISMINT1 reported results, it is important to distinguish the 
numerical discretization, since as mentioned by the reviewer, there is no analytical 
solution to compare with. Again, we have added a comparison with Test B to compare 
with an analytical result.  

 
p 14 line 29: This idea of smoothing is described in the reference Bueler et al 
(2007)as "non-physically ‘smeared’". Whatever the meaning of this fiddle, it is 
not physics and the reference says that. (I think the point was that if *only* the 
temperature variable is symmetrized then the instability goes away, which 
modelers probably knew at the time but none had reported concretely. That is, 
the instability does not occur in a variable-softness model unless the softness 
variation is transported in 3D.) Supposing the EISMINT2 nonsense is valuable at 
all, please don’t offer model users this smoothing, which hides physics. 
 

We have removed this comment. 
 
========== Reviewer comments 2 & 3 (Fuyuki Saito) ================= 
 
We thank Fuyuki Saito for the careful review and interesting code suggestions. Please 
find our response below. 

 
This paper describes the numerical ice-sheet model Yelmo version1.0. The 
Yelmo model is available on a git repository with sufficient information to run, 
and this manuscript contains mostly enough description of the model physics 



and example application. I think this paper is fairly well written with some 
exception below, and can be accepted with minor revision. 
 
(1) One point is about symmetry of the model (P14, L21 and after). Figure 3 is 

the simulated basal temperature of the experiments A and F of EISMINT2 
configuration, and the paper states ‘Yelmo produces symmetrical 
temperature patterns in both experiments,’ First, minor one, I suggest to 
describe white kind of symmetry is the topic in this section. The 
configuration of EISMINT2 is ‘radially’ symmetric, but we all failed to 
simulate true radially symmetric pattern in particular for experiment F. 
 

This is a good point. We are now more precise when discussing symmetry with respect 
to these tests.  

 
Second, major one: what is the degree of symmetry in the argument of this 
section? Actually, taking a closer look, some breaks of symmetries are already 
visible in the figure 3. The result of experiment A looks symmetric both along X 
and Y axis, but not along x=y diagonal. The result of F, even worse, shows 
breaks of symmetry both along X and Y axis (I attached a copy of figure 3 with 
marks to show the breaks of symmetry). So, even under the figure resolution, 
Yelmo already failed to produce symmetrical temperature patterns. 
In my opinion, preservation of model symmetries requires full control on the 
source and compilation, because even single change of arithmetic orders (e.g., 
(A+B)+C vs A+(B+C)) in a model can trigger and amplify breaks of symmetries. 
Yelmo depends on an external library in order to solve SSA equations, which is 
hardly controlled from outside, therefore Yelmo may find such symmetry 
breaking under an idealized configuration with ice shelves, even the SIA part is 
perfect. On the other hand, although preservation of the symmetries in the 
model is desired, it is not a top priority of a model, especially for one to 
simulate realistic worlds. We believe that such minor points have little 
influence on the simulation under realistic, highly asymmetric configuration for 
most of the application. So, I suggest the authors to keep the argument of 
Yelmo symmetries, and also state clearly the standpoint and/or main targets of 
Yelmo. 
 

It is an important validation of the model to show that on a domain like that of 
EISMINT1/2, numerical artifacts do not arise leading to blatant asymmetry in the 
result. However, in any realistic cases, topographic and boundary forcing will likely 
dominate over minor asymmetries. So, it is indeed not a critical priority, given that 
Yelmo performs well in this regard. This has been clarified in the revised work.  

 
It may not be a reviewer’s work, I check the Yelmo source code to find the 
source of symmetry breaking. I attached some suggestion for Yelmo to 
preserve the numerical symmetries as a series of patch files since revision 
ed94c608516e2c46c7985ea98eea94fce47b37d8 (you can run git-am to apply 
them). It may be not complete and, honestly speaking, it may have bugs 
because I did not check in detail. The author can import if they like them, but 



hope them to check the revision and results in detail before inclusion. If 
fortunate, SIA results will be more symmetric than before. 
 

We kindly thank the reviewer for the extra effort of patching the code with these fixes. 
Independently, we also realized that the time stepping scheme with respect to the 
different components needed improvement for stability (moving from a simple Euler 
step to a predictor-corrector approach). This also resulted in significant improvement 
in the symmetry of the test. While applying your patches did improve the symmetry 
compared to the original model, in the updated version, the patches made no changes 
to an already satisfying result (see figure below, which shows the basal temperature 
field compared with itself mirrored along the y-axis; purely zero-error are white 
points). 
 

 
 
(2) Another point is about precision (P4, L2). (See also minor points below for 
terminology of floating-point types). 
The paper states that single and double precision give equivalent results, 
because the units of all time variables in Yelmo are cast in years instead of 
seconds and thus very small numbers are avoided. I do not understand this 
statement. I do not claim for the result but for the reasoning. 
As far as all the quantities are larger than the smallest limit of floating-point 
number representation, same precision (significant digits) is kept either for the 
case with unit seconds and with unit years, because it differs not in precision 
but in the order of magnitude. The smallest number of a typical ‘single’ 
precision is around 1.18e−38. What variables do have possibility to show 
smaller value than this? The rate factor can be small, but even ice temperature 
is -100 degree Celsius, its magnitude is 1e-31 /s/Paˆ3, which is large enough to 
be represented by single precision. 

  
I agree that, a typical number of significant decimal digits of single precision is 
7, which is actually smaller than the digits of the factor from year to second 
(31556926, 8 digits). If all the quantities in the model is originally defined with 
unit year, then it is possible to meet such situation, where unit-second version 
shows different results in the final digit. However, many parameters are 
originally defined in unit second and converted into unit year in the model, 



thus round-off happens in some parameters themselves instead, which are 
almost the same situation as the unit-second case. (By the way, fortunately 
31556926 can be fully represented by single floating-point number while 
3155692[57] are not). 
If there is a variable to be smaller than the limit in the case of unit-second, my 
question is solved. So, please give me an example. 

 
Again but from a different point of view: this argument should depend on the 
model spatial resolution. As I mentioned, difference between single and double 
precision is merely the number of significant digits, if order of magnitude of all 
the quantities can be represented enough by the single. For a coarse 
resolution, difference in values at two adjacent grids of a field (e.g., surface 
elevation) is large enough to keep precision in their differences, However, for a 
higher resolution where the values at two become closer, so-called cancellation 
effects become large enough to reduce the precision of their difference. 
Relative error of the difference can be large enough for single precision to 
deviate from that by double precision. Generally speaking, a higher resolution 
experiment require high-precision computation to avoid such cancellation 
effects. 
 

The concern here is primarily with avoiding extreme value divisions (large divided by 
small or small divided by large numbers), as well as so-called cancelation effects. This is 
particularly a concern in ice sheet modeling, where velocities, basal friction 
coefficients, effective pressure and rate factors can vary over several orders of 
magnitude. The statement in the manuscript was informed by experience. However, it 
is not critical to the manuscript, and so has been removed. 

 
Minor points: 
 
About precision (P4, L2) ‘Single’ and ‘double’ precision are in principle machine 
dependent characteristics although there are few exceptions. There is some 
definition of typical floating-point representation in IEEE754. 
 

We note that in this sentence we equate single precision with 32 bits and double 
precision with 64 bits. This appears to be consistent with the definition in IEEE754, so 
we have left it as it is.  

 
2.3, around Eq.(14). ub is defined as basal sliding above Eq.(14) while a depth- 
averaged velocity below (14). I am confused. Possibly typo? 
 

In regions of plug flow that treated by the SSA solution, basal sliding and depth-
averaged velocity should be identical. 

 
2.4, below Eq. (27). Better to write as ‘Horizontal diffusion is assumed 
negligible.’  
 

Ok, this has been changed. 



 
Table 1 last column. No degree mark. 
 

Ok, this has been added. 
 

There are two additional things to my first review. 
 
First one, minor. There are contour lines in the figure 3, but what are they? I 
suppose they are surface elevation field. Anyway please explicitly describe 
them. I am sorry not to point out this in the first report. I just realized this now. 

 
These are indeed contour lines. This will be added to the caption. 

 
[Reviewer comment 3] Second one, also minor. I prepare two more patches in 
order to preserve symmetries. I confirmed symmetries of basal temperature 
field in X-axis Y-axis and diagonals at least for experiment F which was executed 
on my PC (compilation is by gfortran). Attached is a series of patches from 
revision ed94c608516e2c46c7985ea98eea94fce47b37d8, which includes all the 
patches I previously posted, so you can discard the previous one. 
 

Thank you again. Please see the comments on symmetry above. 
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Abstract. We describe the physics and features of the ice-sheet model Yelmo, an open-source project intended for collabo-

rative development. Yelmo is a thermomechanical model, solving for the coupled velocity and temperature solutions of an

ice sheet simultaneously. The ice dynamics are currently treated via a “hybrid” approach combining the shallow-ice and

shallow-shelf/shelfy-stream approximations, which makes Yelmo an apt choice for studying a wide variety of problems.

Yelmo1000
::::::
Yelmo’s main innovations lie in its flexible and user-friendly infrastructure, which promotes portability and fa-5

cilitates long-term development. In particular, all physics subroutines have been designed to be self-contained, so that they can

be easily ported from Yelmo to other models, or easily replaced by improved or alternate methods in the future. Furthermore,

hard-coded model choices are eschewed, replaced instead with convenient parameter options that allow the model to be adapted

easily to different contexts. We show results for different ice-sheet benchmark tests, and we illustrate Yelmo’s performance for

the Antarctic ice sheet.10

1 Introduction

The field of continental-scale, ice-sheet modeling started with a handful of pioneering models (e.g., Huybrechts et al., 1988;

Ritz et al., 1997; Greve, 1997a). These models were computationally efficient for the resources available at the time. Typical

grid resolutions were on the order of 20-40 km and generally the shallow ice approximation (SIA) was used to solve the ice

dynamics. These classic models have been most useful for long time-scale paleo simulations in part because they are fast, but15

also because they are relatively simple in design, usually relying on low-tech solutions to numerical problems. Most of these

models were designed before the era of the high-performance computing cluster, which made it challenging to build models

otherwise.

Nowadays, a large number of ice-sheet models exist, supported by a growing and active community of developers. Models

today represent a broad spectrum of approaches that incorporate different levels of physical complexity and computational inge-20

nuity. These models include hybrid approaches that heuristically combine the SIA with the shallow shelf approximation (SSA)
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(e.g., Bueler and Brown, 2009; Winkelmann et al., 2011; Goldberg, 2011; Pollard and DeConto, 2012; Pattyn, 2017; Quiquet et al., 2018)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Bueler and Brown, 2009; Winkelmann et al., 2011; Pollard and DeConto, 2012; Pattyn, 2017; Quiquet et al., 2018) and

higher-order approximations
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Goldberg, 2011; Cornford et al., 2013; Hoffman et al., 2018; Lipscomb et al., 2019),

:
includ-

ing full Stokes solutions (e.g., Larour et al., 2012; Gagliardini et al., 2013; Hoffman et al., 2018; Lipscomb et al., 2019)
::::::::::::::::::::::::::::::::::::::::
(e.g., Larour et al., 2012; Gagliardini et al., 2013).

Newer models often feature finite-element/finite-volume methods (e.g., Larour et al., 2012; Gagliardini et al., 2013; Hoffman

et al., 2018) or adaptive mesh refinement (Cornford et al., 2013), which allows simulation of complex terrain and very high5

resolution where it is needed (e.g., at the grounding line in Antarctica). While more complex models are driving advances

in our understanding of the physics and relevant processes of ice sheets over a range of time scales, simpler and thus faster

methods are still required to understand the evolution of the ice sheets on multi-milllennial, paleo
:::::::::::::
multi-millennial time scales.

Here we introduce the ice-sheet model Yelmo1, which is intended to provide access to complex and robust model physics

through an intuitive model design. It is a hybrid ice-dynamics model that is easy to use and configure. We expect that Yelmo will10

be useful for long time-scale paleo simulations of the continental ice sheets, coupled climate – ice-sheet modeling, ensemble

simulations and uncertainty studies, as well as for teaching. Below, we first describe the model structure, physics
:::::
design

:::::::
(Section

::
2),

::::::::
followed

:::
by

:::
the

:::::::
physics

:::::::
(Section

:::
3),

:::::::::::
timestepping

::::::::
approach

:::::::
(Section

::
4)

:
and application programming interface

(API, Section 2
:
5). Then, we present results for several benchmark experiments to validate the model performance (Section

3
:
6), and a simulation

:::::::::
simulations of the present-day and glacial Antarctic ice sheet (Section 4

:
7), followed by the conclusions15

(Section 5
:
8).

2 Model design

Yelmo has been inspired and largely derived from classical ice-sheet models that have been used successfully for many years
::

– with the most in common with GRISLI (Ritz et al., 1997; Quiquet et al., 2018) and SICOPOLIS (Greve, 1997a, 2019).
::

However, in contrast to many models, Yelmo was designed from scratch to run as a modular library that can be called by other
::
40

::

programs rather than as a stand-alone executable. The strict application of this philosophy drove many design choices and
::

allowed us to develop a robust ice-sheet model library with a clear API that would be difficult to develop in an ad-hoc way
::

later.
:::::
Thus,

:::::::::
developing

::::
this

:::::::::
framework

::::
was

:
a
:::::::
primary

::::::
reason

::
to

::::
build

::
a
::::
new

::::::
model,

:::::
rather

::::
than

:::::::::
continuing

:::
the

:::::::::::
development

::
of

::

::::
other

:::::
active

:::::::
projects

::::
such

::
as
:::::::
GRISLI

::::
and

:::::::::::
SICOPOLIS.

::

Yelmo is written in Fortran90
::::::
Fortran

::::
2003, which provides continuity from previous code bases and supports the fact that

::
45

::

clarity and readability of the code are important features. Like SICOPOLIS and other models, we have opted for “low tech”
::

solutions whenever possible, meaning that internally coded routines are preferred and, thus, the external dependencies of the
::

model are kept to a minimum. This ensures that the algorithms used remain accessible and easily changeable. Nonetheless,
::

Yelmo has two key dependencies: the NetCDF library for convenient, community-standard input/output capability and the
::

Library of Iterative Solvers for linear systems2 (Lis, Nishida, 2010), which is used for solving the elliptical SSA equations.
::
50

::

:::
The

:::::
latter

:::
can

::
be

::::::::
compiled

::::
with

::::::::
OpenMP

::::::::::::
parallelization

::::::
active,

:::::
which

:::
can

:::::
speed

:::
up

:::
this

::::::::::::::
computationally

:::::::
intensive

:::::
step.

::

1The name Yelmo refers to a semi-domed, rocky mountain in the Guadarrama Mountains outside of Madrid, Spain.
2https://www.ssisc.org/lis/
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Yelmo has been designed to be user friendly (i.e., straightforward to understand), accessible, portable and adaptable. These

features were facilitated by the design choice to separate what we call the “model accounting” from the model physics itself, and

by following an object-oriented approach. There are no global variables in Yelmo (except for a few global constants related to

the general physics of the planet being simulated), which means that variables and parameters are saved together in containers

(called derived types in Fortran) specific to each of the main Yelmo components, such as dynamics or thermodynamics, as5

described in the sections below. These containers make up the individual components of the overall Yelmo object (itself a

container) that contains all of the variables, parameters and information needed to simulate a given domain of the ice sheet.

Multiple instances of the Yelmo object can therefore be defined in a program (e.g., one Yelmo-object instance for Greenland

and one for Antarctica), and each one will operate fully in isolation from the others. This is the model accounting, which is of

a specific design built into Yelmo and is thus the only part not easily portable to other models.10

The model physics, meanwhile, consists of subroutines that are fully portable and, whenever possible, only rely on native

data types (e.g., scalar, vector, arrays
::::
array). In other words, the specific, non-portable design structure of the Yelmo object

does not contaminate the physics subroutines, since the necessary variables and parameters are always passed as arguments.

In general,
::::
This

::::::::
approach

::::::
requires

::::
that

:
all input and output to subroutines must be defined as arguments. Each argument must

further always be given an intent characteristic (in Fortran, the intent of an argument can be one of IN, OUT or INOUT),15

which ensures that only the variables destined for output from the routine can be modified inside it. This approach not only

aides debugging and provides programmatic safety, but provides a clear blueprint to users of what each subroutine does. Most

importantly, the subroutines are thus fully self-contained and can be used in other programs and contexts, as long as the correct

arguments can be provided.

Concerning the model accounting, the Yelmo object contains all parameters and variables needed to run a given domain.20

For clarity and convenience, it has been divided into four components: topography, dynamics, material properties and thermo-

dynamics (Fig. 1). Each component has an associated set of functions to load parameters, allocate and initialize the variables,

update the variables (i.e., the actual physics calculation step), and finally to terminate the instance of the component at the end

of the program. This pattern is followed for all four components and represents the component-level API.

Each component contains variables and parameters necessary for the calculation of its specific physics, however each com-25

ponent also relies on the variables defined in other components since the ice sheet is a highly-coupled and nonlinear system.

The benefit of the somewhat artificial division of components made here is that the use of INTENT statements ensures that

variables of a given component can only be modified in the corresponding module. For example, when the update subroutine

of the topography module is called, only the object containing topography variables is defined as INTENT=INOUT, while the

objects containing dynamics, material and thermodynamics variables are all defined as INTENT=IN. Analogous to the design30

of the physics subroutines, the use of intent statements here makes the model blueprint clear, but also enforces consistency

with the overall design of the Yelmo structure. The hope is that this will not only make the model more user friendly, but it will

also naturally lead to more disciplined model development in the future.

In addition to the four components that contain prognostic and diagnostic model variables, the Yelmo object includes a85

boundary component, which defines all fields that Yelmo requires as input from external sources (Fig. 1). These fields can
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be obtained from other coupled models, or simply by loading data, however Yelmo does not make any assumptions about

their source. The boundary component is defined as INTENT=IN in all modules, so that Yelmo does not have the right to

modify them internally. This conceptual isolation of the ice-sheet model serves to ensure that coupling with other models is as

straightforward as possible.90

:
,
::::::
because

::
it
::
is

::::
clear

:::
by

:::::
design

::::::
which

::::::::
variables

:::::
should

:::
be

:::::::
provided

::
to
::::::
Yelmo

::
as

::::::::
boundary

::::::::::
conditions.

::::
This

::
is

:
a
:::
key

:::::::
feature

::
of

::

:::::
Yelmo

::
in

::::::::::
comparison

::::
with

:::::
many

:::::
other

::::::
models.

:::

Yelmo also makes use of a working precision variable, which allows for the model to be compiled with any real precision.

For most applications, single precision (32 bits) is sufficient. Double precision (64 bits) gives equivalent results for the tests we

have made. This is in part due to the fact that the units of all time variables in Yelmo are cast in years instead of seconds and

thus very small numbers are avoided. Nonetheless, this choice is left open to the user.10

In terms of model physics, each component of Yelmo was built to work independently, in the sense that a given component

is agnostic to the methods used to calculate variables from other components. For example, the temperature and velocity fields

, which are taken as input to calculate the viscosity and rate factor in the material component , are used
::
are

::::
used

:::
by

:::
the

:::::::
material

:::::::::
component without any knowledge about the physics and numerical approximations used to calculate

:::::
behind

:
them. This means

that sometimes simplifying assumptions cannot be used, even though they may be valid in some cases (such as assuming that15

the strain rate is only due to SIA terms where the ice sheet is frozen to the bed). However, the benefit is that typically the most

general solutions possible have been implemented for each component. Thus, when the physics of one component is changed

or upgraded, it is likely that the other modules will not require any modification.

Grid information is also stored in the main Yelmo object, and a single grid is defined for use with all components. Like many

ice-sheet models, Yelmo uses the Arakawa-C grid staggering approach (Arakawa and Lamb, 1977) extended to 3D, as shown20

in Fig. 2. Scalar variables, such as temperature, are defined at the cell centers, which in Yelmo are designated as “aa-nodes”.

Velocity components and gradients are calculated on cell edges (“ac-nodes”) and scalar coefficients, like diffusivity in the SIA

approach, are calculated on cell corners (“ab-nodes"). The specific numerical discretization of the finite difference equations

largely follows the approach of Macayeal (1997). The advantage of this approach is that it benefits from the natural staggering

that occurs when calculating gradients (e.g., the surface slope is naturally defined on the ac-nodes), but it also results in greater25

numerical stability of the model (Macayeal, 1997).

Yelmo requires an evenly-spaced, Cartesian grid in the horizontal direction, while the vertical component follows a classic

sigma-coordinate system (Greve and Blatter, 2009). The vertical axis ⇣ represents the relative height within the ice sheet,

running from ⇣ = 0 at the ice-sheet base to ⇣ = 1 at the ice-sheet surface:

⇣(z) =Hz(z)/H (1)30

where z is the elevation relative to present-day sea level, Hz(z) is the ice thickness up to the elevation z within the ice sheet

and H is the total ice thickness. Yelmo can be defined with any specified number of vertical grid points, which can be unevenly

spaced. Typically, we have set nz = 20 and the ⇣axis
::::
-axis

:
is defined with higher resolution near the base and surface of the ice

sheet, which is important for resolving thermodynamics and ages accurately. Use of the sigma-coordinate system simplifies the

4



numerics of an evolving domain in the vertical direction and inherently results in higher resolution for grid points with less ice

thickness (Greve and Blatter, 2009). Vertical velocities are calculated on ac-nodes in the vertical and aa-nodes in the horizontal,

while horizontal velocities are calculated on ac-nodes in the horizontal and aa-nodes in the vertical. Boundary conditions in a

vertical column are applied directly at the ice base and ice surface, which correspond to ac-nodes (see Fig. 2).5

3
:::::
Model

:::::::
physics

Yelmo solves for two prognostic variables using coupled equations of mass and energy conservation: the ice thickness (2D

field) and ice temperature (3D field). Velocity (3D vector field) is diagnosed from approximations of ice flow assuming a

nonlinear flow law. These equations are described in the subsections below, along with additional considerations related to

each component. For more details on the derivation of the equations, thorough explanations can be found in various references10

(Greve and Blatter, 2009; Cuffey and Paterson, 2010), and thus are not repeated here.

3.1 Topography

The evolution of the ice thickness in the model is determined from mass conservation:

@H

@t
=�O ·Hū+ ȧ+ ḃg + ḃf � ċ (2)

where H is the ice thickness, ū= (ū, v̄) is the depth-averaged horizontal velocity, ȧ is the surface mass balance, ḃg and ḃf15

are the basal mass balance for grounded and floating ice, respectively, and ċ is the calving rate at floating ice margins. In

Yelmo, in order to obtain more accurate mass balance accounting, the advection of ice and source contributions are treated

separately as follows. First, a forward Euler explicit method (or optionally an upwind implicit method) is used to solve for

the ice thickness at each timestep without accounting for ȧ, ḃg , ḃf or ċ. The depth-averaged horizontal velocity is obtained

from the dynamics component from the previous timestep. Note that dynamics is normally updated with the same timestep20

frequency as the topography component (see timestepping
:::::::
iteration

:::
(see

::::::::::::
Timestepping below). Next the mass balance terms ȧ,

ḃg and ḃf are applied. It should be noted that the basal mass balance of floating ice is a boundary variable for Yelmo (i.e., it is

obtained externally and passed to Yelmo), while the basal mass balance of the grounded ice is calculated internally as part of

the thermodynamics solver (see Thermodynamics section below).

Yelmo also includes special treatment of grid points at the
::::::
floating

:
margin of the ice sheet, by making a distinction between25

ice-covered grid points that are totally and partially filled following Albrecht et al. (2011) and Lipscomb et al. (2019). This

is done in a relatively simple, yet effective way to avoid artificially thin ice thickness at the ice margin. For each
::::::
floating

ice-covered grid point that has an ice-free neighbor, the reference ice thickness of the margin point (Href ) is defined as the

minimum thickness of the
:::::
direct, ice-covered neighbors, or half of that in the case of grounded ice. This represents the min-

imum ice thickness for which the cell can be considered completely ice covered. The fraction of ice cover is then defined as30

fice =min(H/Href ,1). Whenever fice < 1, the grid cell is considered dynamically inactiveand the ice thickness is stored in a

buffer field during dynamic and thermodynamic calculations (i.e., these modules see the ice thickness as zero at these points).
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Since the horizontal velocity components are calculated on ac-nodes, this method
:
,
:::::
which

:
ensures zero ice flux through the

downstream edge of a partially filled margin cell. During mass conservation, however, this buffer is added to the ice thickness

field and the steps outlined above are applied. In this way, the ice cell can be filled with ice from upstream and when the

threshold of fice = 1
:
is
:::::::
reached, the ice sheet

::::
shelf

:
can advance.

In the final mass conservation step, calving ċ is treated at the floating ice margins. Currently, a simple threshold method has5

been implemented, as well as a threshold+flux method (Peyaud et al., 2007). In both methods, the calving rate applied to the

ice sheet is defined following Lipscomb et al. (2019):

ċ=
Href �H

⌧c
(3)

where ⌧c is the characteristic calving time, usually set to 1-10 years, and Href is the margin ice thickness as defined above.

Setting ⌧c to higher values facilitates ice-shelf growth and thus grounding-line advance in transient, glacial simulations, but10

has little impact on the steady-state distribution of ice shelves for present day. This calving rate is applied only when the ice

thickness of totally-filled ice margin points is below a threshold value (simple threshold method), or when the ice thickness is

below a threshold value and the upstream flux is not sufficient to return the ice thickness to above the threshold (threshold+flux

method). For paleo simulations the latter is our preferred method, as it allows for more robust ice shelf advance (Peyaud et al.,

2007).15

As mentioned above, calving is only applied to floating margin points with fice = 1. However, a final check is also applied

to both floating and grounded margin buffer points. If no neighbors are fully ice covered with fice = 1, then this buffer ice will

also be calved and ice-margin retreat happens in a natural way.

Once the ice thickness has been completely updated, Yelmo diagnoses whether the ice should be grounded or floating. To

facilitate this step, the distance from
:::::
height

:::::
above

:
flotation as measured in ice thickness, i.e., how close a grid point is to the20

Archimedes flotation criterion, is calculated on each aa-node:

Hg =H � ⇢sw

⇢
(max
:::

✓
zsl � zb),0

:

◆
(4)

where ⇢ is the ice density and ⇢sw the seawater density, and zsl and zb are the boundary fields of sea level and bedrock elevation,

respectively. Hg can thus be positive, zero or negative. When Hg is positive, the ice thickness exceeds the flotation criterion,

and is considered grounded, while when Hg is zero or negative, the ice is considered floating.25

Yelmo also calculates the grounded fraction of each grid point, fg. On aa-nodes, fg is only assigned binary values to maintain

consistency with the overall grid definition: zero when Hg  0 or one when Hg > 0. However, on cell edges
:::::::
ac-nodes, the values

of fg,acx and fg,acy are determined by linearly interpolating Hg from the two bounding aa-nodes. When both bounding aa-

nodes are positive fg,ac = 1, and when both are negative fg,ac = 0. When one aa-node is positive (Hg,pos::::
Hg+ ) and one aa-node

is negative (Hg,neg::::
Hg� ), the grounded fraction on the ac-node is determined from linear interpolation:30

(Hg,negg+
::

�Hg,posg�
::

)
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(5)

Alternatively, it is possible to calculate fg via subgrid bilinear interpolation of Hg to intermediate points to determine the5

grounded area fraction. However, this operation is more computationally intensive, and we find that in practice, the simple

linear interpolation method is sufficient.

The surface elevation (zs) is calculated following Pattyn (2017) as

zs =max


zb +H,zsl +(1� ⇢

⇢sw
)H

�
, (6)

This approach ensures that the surface elevation solution is consistent with the Archimedes flotation criterion on aa-nodes.10

The remaining tasks of the topography component are to diagnose other useful topographic characteristics, such as surface

and ice thickness gradients (on ac-nodes) and topographic masks.

3.2 Material

The material component of Yelmo handles the calculation of the rate factor, the strain rate tensor and effective strain rate, the

effective viscosity and, optionally, the age of the ice. Essentially, the material variables make the link between thermodynamics15

and dynamics, since the rate factor depends on temperature and the strain rate depends on velocity. No distinction is made be-

tween the type of approximation used to solve the dynamics here, rather all equations follow from the more general hydrostatic

approximation (Greve and Blatter, 2009).

The effective viscosity, used to determine strain heating in the thermodynamics component, is calculated as

⌘ =
1

2

�
"̇
2
� 1�n

2n

⇣
A

�1/n
⌘
, (7)20

where "̇ is the effective strain rate, n is the Glen’s Flow law exponent (Glen, 1955; Greve and Blatter, 2009),
:::::::
typically

:::
set

::
to

:::::
n= 3,

:
and A is the rate factor. The effective strain rate is given by the second invariant of the strain rate tensor ("̇ij):

"̇=

✓
1

2
"̇ij"̇ij

◆ 1
2

(8)

and the strain rate tensor itself, following index notation, is

"̇ij =
1

2

✓
@ui

@xj

+
@uj

@xi

◆
, i, j = 1,2,3. (9)25

The rate factor, A(x,y,z), can be prescribed to a constant value, or calculated as a function of ice temperature following an

Arrhenius equation:

A(T 0) = EfA0e
�Qa/RT

0
(10)
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Here R is the ideal gas constant, A0 and Qa are the temperature-dependent rate factor coefficient and activation energy,

respectively (see Greve and Blatter, 2009). Ef is a so-called enhancement factor, which is used to approximate the effect of

anisotropic flow. In Yelmo, it is possible to specify different values of the enhancement factor for different flow regimes (shear,

stream and shelf). The shelf value is prescribed anywhere ice is floating, while the inland value of Ef is a weighted average5

between the shear and stream value with the weighting given by a diagnosis of the vertical shearing fraction at any given point:

f shearz =

�
"̇
2
xz + "̇

2
yz

�

"̇2
. (11)

Typical values of the enhancement factor for the shearing, streaming and shelf regime are Ef = (3.0,1.0,0.7),
:::::::::
Eshr = 3.0,

::::::::::
Estrm = 1.0

:::
and

::::::::::
Eshlf = 0.7,

:
respectively (Ma et al., 2010).10

In addition, it is possible to track the deposition time (i.e., age)
:
or

:::::
other

:::::::::::
conservative

::::::
tracers of the ice using the online

::
an

Eulerian tracer advection model. The general 3D advection equation of a conservative variable X ,

@X

@t
=�u

@X

@x
� v

@X

@y
�w

@X

@z
, (12)

is solved with a second-order, upwind explicit method.
:::
The

:::
ice

:::::::
surface

::::::::
boundary

::::::::
condition

:::::
must

::
be

::::::::
imposed.

:
When tracing

the ice deposition time, the ice surface boundary condition is X(t) = t. At the ice base, an initial deposition time is prescribed15

to be several thousand years before the start of the simulation, however this plays little role in the resulting vertical profile

of deposition times. When ice is melting at the base
⇣
ḃ < 0

⌘
, the following flux boundary condition is defined (Rybak and

Huybrechts, 2003):

@X

@t
=�ub

@X

@x
� vb

@X

@y
�

::::::::::::::

ḃ
@X

@z
. (13)

Basal freeze-on is assumed to be negligible. It is well known that Eulerian solvers lose accuracy towards the base of the ice20

sheet, and therefore this method can only be considered to give a first-order estimate of age
:
a
:::::::::::
conservative

:::::
tracer (Greve et al.,

2002; Rybak and Huybrechts, 2003). It can nonetheless be useful for diagnosing the age of ice, in order to know the timescale

of different dynamic properties or to, e.g., impose an age-dependent enhancement factor (Greve, 1997b).

3.3 Dynamics

The Yelmo dynamics component is currently representative of a “hybrid” class of ice-sheet model, treating different modes25

of ice deformation via a combination of the simplifying shallow-ice and shallow-shelf approximations (SIA and SSA, respec-

tively). In the following, the description of the dynamics equations follows closely the notation and definitions of Greve and

Blatter (2009) and Pollard and DeConto (2012).

Yelmo treats the horizontal velocity u(x,y,z) and v (x,y,z) as the sum of transport via internal shear (ui, vi) and basal

sliding (ub, vb):

u= ui +ub

v = vi + vb.

(14)5
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Here, and analogously for v, ub (x,y) represents a depth-averaged velocity, so it is vertically constant, and ui (x,y,zb) = 0,

where the subindex “b" here represents the basal boundary of the ice sheet. It also holds that in the vertical average (denoted

by a bar), ū= ūi +ub. To calculate ui and vi, Yelmo uses zero-order SIA equations:

ui(z) =�

2

42|O⌧d|(n�1)

zZ

zb

A(zs � z
0)
n
dz

0

3

5⌧d,x

vi(z) =�

2

42|O⌧d|(n�1)

zZ

zb

A(zs � z
0)
n
dz

0

3

5⌧d,y,

(15)

where ui(z) and vi(z) are the horizontal components of the SIA velocity as a function of depth at a given location, A is the10

material rate factor of the ice, which is obtained from the material component , and
::::
(Eq.

:::
10),

:
n is the Glen’s Flow law exponent

(Glen, 1955; Greve and Blatter, 2009)
:::
and

:::::::::::::::::::::::
⌧d = (⌧d,x,⌧d,y) = ⇢gHOzs :

is
:::
the

::::::
driving

:::::
stress. In the horizontal plane, the term in

brackets is calculated on the ab-nodes for stability and mass conservation (Type-I discretization)
:::::::
improved

:::::
mass

:::::::::::
conservation

::::::::::::::::::::
(Huybrechts et al., 1996), and then it is staggered onto the ac-nodes where it is multiplied with the surface gradient

::::::
driving

::::
stress. In the vertical plane, the horizontal velocities are calculated at the vertical center of each grid point (aa-nodes). Following15

Bueler and Brown (2009), we use the SSA solution to calculate the transport implied by sliding at the base (i.e., in regions of

ice streams and floating ice shelves):

@

@x


⌘d

✓
4
@ub

@x
+2

@vb

@y

◆�
+

@

@y


⌘d

✓
@ub

@y
+

@vb

@x

◆�
= ⌧d,x � ⌧b,x

@

@y


⌘d

✓
4
@vb

@y
+2

@ub

@x

◆�
+

@

@x


⌘d

✓
@ub

@y
+

@vb

@x

◆�
= ⌧d,y � ⌧b,y.

(16)

where (⌧b,x,⌧b,y) =�� (ub,vb) (or in vector notation ⌧b =��ub) is the basal stress due to friction. The basal friction co-

efficient � is set to zero for floating ice shelves, and can otherwise be set to a constant value or follow another user-defined20

formulation (power law, regularized Coulomb, etc.), depending on the context . See the subsection on basal friction
:::
(see

:::::
basal

::::::
friction

:::::::::
description

:
below for details). The depth-integrated (2D) effective viscosity, which is only used for solving the SSA

dynamics, is defined as

⌘d =


1

2

⇣
Ā

�1/n
⌘�

"̇
2
d
+ "̇

2
0

� 1�n
2n

�
H (17)

where Ā is the vertically-averaged rate factor, "̇d is the 2D effective strain rate and "̇
2
0 is a small regularization factor for25

avoiding a potential singularity when velocity gradients are zero. The 2D effective strain rate is calculated as a reduced form

of the second invariant of the strain rate tensor (Eq. 9) that does not include vertical shear terms:

"̇
2
d
=

✓
@ub

@x

◆2

+

✓
@vb

@y

◆2

+
@ub

@x

@vb

@y
+

1

4

✓
@ub

@y
+

@vb

@x

◆2

. (18)

In Yelmo, "̇d is only used for calculating ⌘d, while the 3D effective strain rate is calculated from the full strain rate tensor in the

material component (see Material section above). Calculating the full tensor during the iterative SSA solution procedure would
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be much more computationally expensive, while the 2D effective strain rate is already sufficient for the vertically integrated

SSA equations (Pollard and DeConto, 2012).5

The stress boundary condition imposed at the floating ice front, following Winkelmann et al. (2011) and Greve and Blatter

(2009), is

⌘d

✓
4
@u

@x
+2

@v

@y

◆
nx + ⌘d

✓
@u

@y
+

@v

@x

◆
ny =

✓
1

2
⇢gH

2 � 1

2
⇢swgH

2
o

◆
nx

⌘d

✓
4
@v

@y
+2

@u

@x

◆
ny + ⌘d

✓
@v

@x
+

@u

@y

◆
nx =

✓
1

2
⇢gH

2 � 1

2
⇢swgH

2
o

◆
ny.

(19)

The depth of the seawater up to the flotation depth, Ho, is defined as: Ho =min
⇣
zsl � zb,

⇢

⇢sw
H

⌘
::::::::::::::::::::::::::::::
Ho =min

⇣
max(zsl � zb,0) ,

⇢

⇢sw
H

⌘
.

This is the depth of the ocean directly adjacent to the ice sheet, which acts to reduce the outward pressure at the floating ice10

margin. In constrast to Winkelmann et al. (2011), this boundary condition is not currently used in Yelmo for grounded ice,

where Eq. 16 applies.

The SSA equations are nonlinear, elliptical, partial differential equations with non-local solutions. Yelmo uses Lis for the

numerical solution using the biconjugate gradient method. The subroutine to discretize the equations and to call Lis was ported

from the latest SICOPOLIS version 5-dev (Greve, 2019; Rückamp et al., 2019) and subsequently modified for model design15

choices in Yelmo. We use a Picard iteration method to account for the nonlinear dependence of the effective viscosity (⌘d), and

potentially the basal friction coefficient (�), on velocity. Convergence of the SSA solution is tested using the L
2 relative error

norm (Gagliardini et al., 2013):

�u,v =
2
qP

(u1 �u0)
2 +

P
(v1 � v0)

2

qP
(u1 +u0)

2 +
P

(v1 + v0)
2
, (20)

where (u1,v1) and (u0,v0) are the velocity solutions for the current and previous iterations, respectively, and the sum is made20

over all grid points with non-zero velocity
:::::
being

:::::::::
considered

::
by

:::
the

::::
SSA

::::::
solver. By default, we consider a convergence limit of

�u,v = 10�2, which is typically achieved within 1-10 iterations, depending on the context. This limit can be specified by the

user.

The result of solving the above equations is the hybrid, 3D horizontal velocity field (u, v). The vertical velocity w can then be

diagnosed by applying a kinematic boundary condition at the base, and integrating the continuity equation for incompressible25

flow (Greve and Blatter, 2009), from zb to z,

w(z) = ḃ�
✓
ub

@zb

@x
+ vb

@zb

@y

◆
�

zZ

zb

✓
@u

@x
+

@v

@y

◆
dz

0
. (21)

The vertical velocity is naturally defined on the ac-nodes in the vertical plane, analogous to the horizontal velocity in the

horizontal plane. The above dynamics update results in a 3D hybrid velocity field (u, v, w)that is consistent with the current

state of the topography.
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3.3.1 Basal friction

Basal frictional stress, as it appears in the SSA elliptical equations, is defined as

⌧b =��ub (22)5

where � represents the basal friction coefficient, with units of [Pa yr m�1], which can be defined in several ways. � is prescribed

to be zero for floating ice, and otherwise can be set to a constant or a spatially varying field and, depending on the formulation

used, it can depend on velocity itself. For this reason, we also define cb as the bed friction coefficient, which we consider to

only provide information about conditions at the physical bed (e.g., the nature of basal sediments, basal hydrology, effective

pressure, etc.), independent of velocity. In the model, therefore, � is defined as:10

� = cbf (ub) . (23)

Thus in all formulations implemented in Yelmo, the term f (ub) has units of [yr m�1] and the coefficient cb has units of [Pa],

which helps to facilitate its physical interpretation.

Most commonly, � is defined using a linear (e.g. Quiquet et al., 2018), power-law (e.g. Pattyn, 2017), pseudo-plastic power-

law (e.g. Aschwanden et al., 2013) or regularized-Coulomb (Joughin et al., 2019) formulation. The linear and power-law15

formulations are contained within the pseudo-plastic power-law formulation, so only the latter and the regularized-Coulomb

formulation are needed to represent all four cases.

The pseudo-plastic power-law formulation (Schoof, 2010; Aschwanden et al., 2013) is

⌧b =�cb

✓
|ub|
u0

◆q ub

|ub|
(24)

and thus � = cbu0
�q|ub|q�1, with the pseudo-plastic exponent q 2 (0,1) and threshold speed u0. This expression results20

in purely plastic friction for q = 0, linear friction for q = 1 and power-law friction for 0< q < 1. With q = 1 and u0 = 1,

for example, � = cb and friction scales linearly with velocity. To obtain the power-law formulation used in the original

MISMIP experiments (Pattyn et al., 2012), the following parameter values can be prescribed: q = 1/3, u0 = 1m yr�1 and

cb = 3.165176⇥ 104 Pa.

Alternatively, the regularized Coulomb law (Schoof, 2005; Brondex et al., 2019; Joughin et al., 2019) is defined as25

⌧b =�cb

✓
|ub|

|ub|+u0

◆q ub

|ub|
(25)

and thus � = cb(|ub|+u0)
�q|ub|q�1. Again q is the non-linear exponent and u0 is an empirical threshold speed that dictates

the transition from Coulomb friction when cavitation effects dominate at the base (typically for a hard bed) to Coulomb-plastic

friction, when friction saturates (typically for weak till). When u0 = 0 or q = 0, purely plastic friction is recovered.

The merits and physical basis of the different possible friction formulations and non-linear exponents are still part of
:::::
under30

active debate (Aschwanden et al., 2013; Stearns and van der Veen, 2018; Brondex et al., 2019; Joughin et al., 2019), and all

of the above formulations are used in ice-sheet modeling today. However, given the large uncertainty in boundary conditions
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provided to an ice-sheet model, which include bedrock topography, sediment composition and distribution, basal hydrology

and its temporal evolution, etc., it is clear that the use of any formulation will rely on empirical tuning. Also, as noted above,

different choices for the friction exponents or threshold values can reduce a given formulation to another. Although modeling

studies have shown that all four cases above can produce realistic velocity fields of the present-day ice sheets (e.g. Goelzer

et al., 2018; Joughin et al., 2019), it remains to be seen how the choice of friction formulation may impact transient changes in5

the ice sheet.

For these reasons, we have chosen to implement the friction formulations in the most general way possible in the code, with
::

essentially two free parameters: q as a non-linear exponent and u0 as a threshold speed. Meanwhile, cb is a 2D field that can
::

be set to a constant value, or a spatially and/or temporally varying field based on e.g., whether the ice is frozen to the bed or
:::
330

::

temperate, on till strength (Bueler and van Pelt, 2015), effective pressure, or other user-defined criteria.
::
As

:::::::::
mentioned

::::::
above,

::

:
a
::::::
Picard

:::::::
iteration

::::::
method

::
is

::::
used

::
to

:::::
solve

:::
for

::::
basal

:::::::
friction,

:::
⌘d :::

and
:::
the

::::
SSA

:::::::
velocity

:::::::
solution

::::
until

:::::::::::
convergence

::
of

:::
the

:::::::
velocity

::

::::::
solution

::
is
:::::::
reached.

:::

� and cb are initially defined on aa-nodes. cb is naturally defined on the grid center, but
::::
while

:
when � = f (ub), the velocity

components that are defined on ac-nodes must be staggered to the grid center. Once � has been calculated using one of the

above formulations, it must be staggered to the ac-nodes for use in the elliptical solver. For purely floating points (i.e., fg = 015

at both bounding aa-nodes) �ac = 0, and for purely grounded points, �ac is the average of the two neighbors. At the grounding

line, Yelmo allows several options to handle staggering. These include simple averaging, taking the upstream value of �, taking

the downstream value of � or taking the weighted average based on the grounded fraction of the ac-node.

3.4 Thermodynamics

Thermodynamics in Yelmo is treated in the classical way by solving the following energy conservation equation:20

@T

@t
=

k

⇢c

@
2
T

@z2
�u

@T

@x
� v

@T

@y
�w

@T

@z
+

�

⇢c
(26)

where k and c are the ice thermal conductivity and specific heat capacity, respectively. The
::::::::
evolution

::
of

:::
the ice temperature T

evolution is driven by vertical diffusion, horizontal and vertical advection, and internal strain heating due to ice shearing, �,

where

�= 4⌘"̇2. (27)25

Horizontal diffusion is considered
:::::::
assumed

:::
to

::
be

:
negligible (Greve and Blatter, 2009). At the air-ice interface (i.e., the ice

surface), the ice temperature is prescribed via the input boundary temperature field Ts, limited to a maximum value of T0 =

273.15K. At the base of floating ice, the ice temperature is prescribed to the expected freezing temperature of seawater as a

function of depth (Jenkins, 1991),
::::::
except

::::
near

:::
the

:::::::::
grounding

::::
line,

:::::
where

:::
the

::::::::::
temperature

::
is

:::::::::
prescribed

::
to

:::
the

:::::::
pressure

:::::::
melting

::::
point

::
of

:::
ice. At the base of grounded ice, when the ice temperature is below the pressure melting point, the vertical gradient

of temperature is prescribed as @T/@z =�Qgeo/k, where the geothermal heat flux (Qgeo) is provided as a boundary field

to Yelmo. If the temperature at the ice base reaches the pressure melting point, then the temperature is prescribed
::
set

:
to the
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pressure melting point, and the basal mass balance is diagnosed as (Cuffey and Paterson, 2010):

ḃg =� 1

⇢L

✓
Qb + k

@T

@z

����
b

+Qgeo

◆
(28)5

where ḃg is the basal mass balance of grounded ice (negative for melting), L is the latent heat of fusion for ice, Qb is the

basal heat production to due sliding and @T

@z

����
b

is the ice temperature gradient at the base. Yelmo provides
::::::::
calculates ḃgas

:
,
:::::
which

::
is
:
a model output, and does not update the basal water layer thickness Hw internally, which can be achieved via

external coupling with a basal hydrology model
::
in

:::::::
contrast

::
to

::
ḃf:::::

(basal
:::::

mass
:::::::
balance

::
of

:::::::
floating

::::
ice),

::::::
which

::
is

:::::::::
prescribed

::
in

:::::
Yelmo

::
as

::
a
::::::::
boundary

::::::::
condition. Once the ice base is temperate (i.e., at the pressure melting point), it will remain so as long as10

Hw �
⇣

⇢w

⇢
ḃg

⌘
dt > 0

:::::::::::::::::::
Wtil �

⇣
⇢w

⇢
ḃg

⌘
�t > 0, where ḃg is used from the previous timestep

:::
and

::::
Wtil ::

is
::
the

:::::
water

:::::
layer

::::::::
thickness

::
in

::
the

:::
till

:::::::
beneath

:::
the

::
ice

:::::
sheet. In other words, if it is expected that an energy deficit will result in freeze-on of the total available

liquid water at the ice base, then the point is treated as a non-temperate ice point.

:::::
Yelmo

::::::::
simulates

:::
the

::::::::
evolution

::
of

:::
the

:::::
basal

:::::
water

::::
layer

::::::::
thickness

::
in

:::
the

:::
till

::::::::
following

:::::::::::::::::::::::
Bueler and van Pelt (2015):

@Wtil

@t
=� ⇢

⇢w
ḃg �Cd,

::::::::::::::::::

(29)15

:::::
where

:::
Cd :

is
:::
the

:::::::::
prescribed

:::
till

:::::::
drainage

::::
rate,

::::::
usually

:::
set

::
to

::::::::::::::::
Cd = 0.001m yr�1.

::::
Wtil::

is
::::::
limited

::
to

:::
the

:::::
range

:::::::::::::::::
0Wtil Wtil,max::

:::::
where

::::::::
maximum

::
is

::::::
usually

:::
set

::
to

:::::::::::::
Wtil,max = 2m.

::::
This

::::::::
approach

:::::
allows

:::
for

::::
Wtil ::

to
:::::::
maintain

::::::::::
consistency

::::
with

:::
the

::::::::::::
thermodynamic

::

::::
state

::
of

:::
the

:::
ice

:::::
sheet

::
at

::
all

::::::
times.

::
It

::::
does

:::
not

:::::::
include

:::::::::
horizontal

::::::::
transport,

::
as

::::
this

:::::
could

:::::::::
potentially

::
be

:::::::
treated

::
by

:::
an

:::::::
external

::

::::
basal

:::::::::
hydrology

::::::
model.

::
It

:
is
::::
also

:::::::
possible

::
to

::::::
disable

::::::::::
calculation

::
of

::::
Wtil:::::

inside
::
of

:::::::
Yelmo,

:::
and

::::::
instead

:::::::
consider

::
it
::
as

::
a

::::::::
boundary

::

:::::::
variable.

::::::::
However,

:::::
given

:::
the

:::::::
adaptive

:::::::::::
timestepping

::::::::
approach

:::::
used

::
by

:::::::
Yelmo,

::
we

:::::
have

:::::
found

::::
that

:::::::
updating

::::
Wtil:::::::::

internally
::
at

:::
370

::

::::
each

:::::::
timestep

:::::
helps

::
to

:::::
avoid

:::::::
artificial

:::::::::
oscillations

::::
that

::::
may

:::::::
develop

::::::::
otherwise

:::::
when

:::
the

:::::::::::::
thermodynamics

::::
and

::::
basal

:::::::
friction

:::
are

::

:::::::
coupled.
::

Eq. 26 is solved with an implicit method in the vertical direction, while the horizontal advection is solved separately applying

an explicit, second-order upwind forward Euler method. This separation allows the energy conservation in the vertical to be

solved as a 1D column model. The discretization of vertical diffusion follows the form presented by Hoffman et al. (2018),25

while the discretization of vertical advection follows a second-order central difference scheme. A given column of grid points

consists of temperatures defined on the grid-centers (aa-nodes) and boundary values defined directly at the surface and base of

the ice sheet.

3.5 Model interface

4
::::::::::::
Timestepping30

The Yelmo model
::::::
Yelmo

:::::
makes

::::
use

::
of

::
a

:::::::::::::::
predictor-corrector

:::::
(PC)

:::::::
method

::::::::
combined

::::
with

::::::::
adaptive

:::::::::::
timestepping

::
to

:::::::
balance

:::::
speed

:::
and

:::::::
stability,

::::::::
following

:::
the

::::::
method

:::::::::
developed

::
by

:::::::::::::::::
Cheng et al. (2017).

::::
This

:::::::
approach

:::::::
requires

:::::::::
calculating

:::
the

:::
ice

::::::::
thickness

::::
twice

::::
per

::::::::
timestep,

:::::
while

::
all

:::::
other

::::::::
variables

:::
can

:::
be

:::::::::
calculated

::::
only

::::
once

::::
per

::::::::
timestep.

::::::::
Applying

:
a
:::

PC
:::::::

method
:::::::::::
significantly
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:::::::
improves

:::
the

::::::::
accuracy

::
of

:::
the

:::::::
solution

::::::::
compared

::
to

::
a
::::::
simple

::::::
forward

:::::
Euler

:::::::::::
timestepping

:::::::
method.

:::::::::::
Furthermore,

::
it

::::::::
facilitates

:::
the

:::::::::
calculation

::
of

:
a
:::::::
stability

::::::
metric

::
at

::::
each

:::::::
timestep

:::
that

::::
can

::
be

::::
used

::
to

:::::::
evaluate

::::::
model

::::::::::
performance

:::
and

::::::
forms

::
the

:::::
basis

::
of

:
a
::::::
robust5

:::::::
adaptive

:::::::::::
timestepping

:::::::
approach

:::::::::::::::::
(Cheng et al., 2017).

::
A
:::::
given

:::::::
timestep

::::::::
therefore

:::::::
consists

::
of

:::::
three

:::::
parts:

1.
::::::::
Predictor

::::
step

:
:
::::
The

:::::::::
topography

::::::::::
component

:::::::
(namely

:::
the

:::
ice

:::::::::
thickness)

::
is

::::::::
predicted

:::::
using

:::
the

:::::::::
dynamics,

:::::::
material

::::
and

:::::::::::::
thermodynamics

::::::::
solutions

::::
from

::::::::
previous

::::::::
timesteps.

:

2.
::::::
Update

::::
step

:
:
:::::
Using

:::
the

::::::::
predicted

:::::::::
topography

:::::::
solution,

:::
the

:::::::::
dynamics,

:::::::
material

:::
and

::::::::::::::
thermodynamics

::::::::::
components

:::
are

::::
then

:::
also

::::::::
updated.10

3.
:::::::::
Corrector

:::
step

:
:
:::::
Using

:::
the

:::::::
updated

::::::::
dynamics,

:::::::
material

:::
and

::::::::::::::
thermodynamics

:::::::::
component

::::::::
solutions,

:::
the

::::::::::
topography

:::::::::
component

:
is
::::::
finally

:::::::::
calculated

:::::
again,

::::::
starting

:::::
from

:::
the

:::
ice

:::::::
thickness

:::::::
solution

:::
of

:::
the

:::::::
previous

::::::::
timestep.

::
In

::::::
Yelmo,

:::
the

::::::::
predictor

:::
step

::
is

:::::::::
calculated

:::
via

:::
the

:::::::::::
second-order

::::::::::::::
Adams-Bashforth

:::::
(AB)

::::::
method

:::::::::::::::::
(Cheng et al., 2017),

:

H
?

n+1 =Hn+
:::::::::::

�t
::n [�1f (Hn, ūn)+�2f (Hn�1, ūn�1)] ,

:::::::::::::::::::::::::::::::
(30)

:::::
where

:::
H

?

::
is

:::
the

::::::::
predicted

:::
ice

:::::::::
thickness,

:::
�t

:
is
:::
the

::::::::
timestep,

::::
and

::::::::::
�1 = 1+ ⇣t

2 ,
:::::::::
�2 =� ⇣t

2 :::
and

:::::::::::
⇣t =

�tn
�tn�1

.
:::
The

:::::
labels

:::
n,

:::::
n� 115

:::
and

:::::
n+1

:::::::
indicate

:::
the

:::::::
current,

:::::::
previous

::::
and

::::
next

::::::::
timestep,

::::::::::
respectively.

:::::
Here,

::::::::
f (H, ū)

:
is
:::::::::

shorthand
:::
for

:::

@H

@t:::
as

:
a
:::::::
function

:::
of

::
the

:::
ice

::::::::
thickness

::::
and

::::::::::::
depth-averaged

:::::::::
horizontal

:::::::
velocity

::::
field,

::::::
noting

:::
that

::̄
u

::
is

::::
also

:
a
:::::::
function

::
of

:::
the

:::
ice

::::::::
thickness,

:::::::
material

::::
and

:::::::::
potentially

:::::::::::::
thermodynamic

::::
state

::
of

:::
the

:::
ice

:::::
sheet.

:::
For

::::
this

:::::::::
algorithm,

:::
�1,

::
�2::::

and
::
⇣t :::

are
:::::::
timestep

:::::::::
dependent,

:::
but

:::
the

::::::::
subscript

::
n

:::
has

::::
been

:::::::
dropped

:::
for

::::::
clarity.

:::::
Once

:::::
H

?

n+1:::
has

::::
been

:::::::::
calculated,

:::
the

:::::
other

::::::::::
components

:::
are

:::::::
updated,

::::
and

:::::
finally

:::
the

::::::::
corrector

::::
step

:
is
::::
then

:::::::::
calculated

:::
via

:::
the

:::::::::::
Semi-implicit

::::::::::::::
Adams-Moulton

::::::
(SAM)

:::::::
method

:::::::::::::::::
(Cheng et al., 2017),20

Hn+1 =Hn +
�tn

2

⇥
f
�
H

?

n+1, ūn+1

�
+ f (Hn, ūn)

⇤
,

:::::::::::::::::::::::::::::::::::::::::::

(31)

:::::
where

:::::
Hn+1::

is
:::
the

::::::::
corrected

:::
ice

::::::::
thickness

::
for

:::
the

::::
next

::::::::
timestep.

:::

:::
For

:::
the

::::::::
AB-SAM

:::::::::::
timestepping

:::::::
method,

:::::::::::::::::::::
Cheng et al. (2017) have

::::::
derived

:::
the

::::::::
following

::::::::::
expression

:::
for

:::
the

::::::
leading

::::
term

:::
of

::
the

:::::
local

::::::::
truncation

:::::
error:

:

⌧n+1 =
⇣t

�
Hn+1 �H

?

n+1

�

(3⇣t +3)�tn
::::::::::::::::::::::

(32)25

:::
The

::::
local

:::::::::
truncation

::::
error

::
is

:::::::
valuable

:::
for

:::::::::
diagnosing

:::
the

:::::::::::
performance

::
of

::
the

::::::
model,

::::
and

:::
can

::
be

::::
used

::
as

:::
an

:::::::
indicator

::
of

:::::::::
numerical

::

:::::::
stability.

:::
For

::
a

:::::
small

::::::
enough

::::::::
timestep,

:::::
H

?

n+1::::
and

:::::
Hn+1::::::

should
::
be

:::::::::::::::
indistinguishable

:::
and

:::::::::
⌧
n+1 ⇠ 0.

::::::::
However,

::
as

:::
the

::::::::
timestep

::

::::::::
increases,

:::
the

::::
local

:::::::::
truncation

::::
error

::::
will

:::
also

::::::::
increase.

:::

::
An

::::::::
adaptive

::::::::::
timestepping

::::::::
approach

:::::
based

::
on

::
a
:::::::::::::::::
proportional-integral

:::
(PI)

:::::::::
controller

::::::
method

::
is

:::::::
therefore

:::::
used

::
to

::::::::
maximize

:::
the

:::::::
timestep

:::::
while

::::::::::
maintaining

:::
the

:::::::::
truncation

::::
error

::::::
below

:
a
::::::::

specified
::::::::
threshold

::::::::::::::::::::::::::::::::::::::::
(Cheng et al., 2017; Söderlind and Wang, 2006).

:::::::
Defining

:::
the

:::::::::
maximum

::::::::
truncation

:::::
error

::::
over

::
all

::::::::
grounded

::::
grid

:::::
points

:::
as

::::::::::
⌘ =max |⌧ |,

:::
the

::::
next

:::::::
timestep

::
is
:::::::::
calculated

:::::
using

:::
the
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:::::::
so-called

:::::
PI4.2

::::::::
controller

:::::::::::::::
Söderlind (2002):

�tn+1 =

✓
✏

⌘n+1

◆(kI+kp)✓
✏

⌘n

◆�kp

�tn,

::::::::::::::::::::::::::::::::::

(33)

:::::
where

:
✏
::
is

:::
the

:::::
target

::::::::
tolerance

:::
and

:::::::::
kI = 2/10

:::
and

:::::::::
kp = 1/10

:::
are

:::::::::
reasonable

::::::
control

::::::::::
parameters

:::
for

:::
the

::::::::::
second-order

:::::::::
AB-SAM

::

::::::::::
timestepping

:::::::
method

::::
used

::::
here

::::::::::::::::::::::::
(Söderlind and Wang, 2006).

::::
This

:::::::::
algorithm

::::::
ensures

::::
that

:::
the

::::
time

::::
step

::::::::
increases

:::::
when

:::::
⌘ < ✏

:::
415

::

:::
and

::::::::
decreases

:::::
when

::::::
⌘ > ✏.

::::
The

:::
use

::
of

::::
both

:::::
⌘
n+1

::::
and

:::
⌘
n

:::::
helps

::
to

:::::
avoid

:::::
rapid

::::::::::
fluctuations

::
in

:::
the

::::::::
timestep,

::::::
which

::::::::
improves

::

:::::
model

::::::::
stability

:::
and

::::::
results

::
in

:
a
::::::::::
predictable

:::::::
timestep

::::
size

::
as

:
a
:::::::
function

:::
of

:::
the

:::::
target

::::::::
tolerance.

::

:::
For

:::::::
practical

::::::::
purposes,

:::
the

:::::::
timestep

::
is

::::::
further

:::::
treated

:::
as

::::::
follows.

::::
The

:::::::
timestep

::::
must

:::
be

:::::
larger

::::
than

:
a
:::::::::::::
user-prescribed

::::::::
minimum

:::::
value,

:::
but

::::::
smaller

::::
than

:::
the

::::::::::::::::::::::
Courant–Friedrichs–Lewy

:::::
(CFL)

:::
2D

::::::::
advective

:::::
limit:10

�tcfl = Ccfl max

����
ū

�x
+

v̄

�y

����
�1

::::::::::::::::::::::::::

(34)

:::::
where

:::
the

::::::::
maximum

::
is

:::::
taken

::::
over

::
all

::::
grid

:::::
points

:::
and

:::::::::
Ccfl = 1.0.

:::::::::::
Furthermore,

:::
the

:::::::
adaptive

:::::::
timestep

::
is

:::::::
adjusted

::
to

:::::
ensure

::::
that

:::
the

::

:::::
model

:::::
stays

:::::::::::
synchronized

::::
with

:::
the

::::::::
frequency

::::
that

::::::
Yelmo

:
is
:::::
being

::::::
called

::::::::
externally.

::::
We

:::::
found

:::
that

:::
the

:::::
latter

::::::::::
requirement

:::::
often

::

:::::
results

::
in

::::::
highly

::::::
uneven

::::::::::::
timestepping;

:::
e.g.,

::
if
::::::
Yelmo

::
is

:::::
called

::::
with

::
a

:::::::
timestep

::
of

::::::::::::
�ttot = 2.0 yr

::::
and

:::
the

:::
first

:::::::
adaptive

::::::::
timestep

::

:
is
::::::::::
determined

::
to

::
be

:::::::::::
�t1 = 1.9 yr,

::::
then

:::
the

::::::
second

::::::::
timestep

:::::
would

:::::
likely

:::
be

:::::::::::
�t2 = 0.1 yr.

::
To

:::::
avoid

:::
this

:::::::::
possibility

::::
and

:::::::
increase

::

:::::::
stability,

:::
the

::::::::
condition

::
is

:::::::
imposed

:::
that

::
if
::::
any

::::
given

::::::::
adaptive

:::::::
timestep

::
is

::::::::
predicted

::
in

:::
the

:::::
range

::
of

::::::::::::::::::::
0.5�ttot <�t <�ttot,::::

then
:::
425

::

::::::::::::
�t= 0.5�ttot.:::

In
:::
this

::::::::
example,

::::
this

::::::::
condition

::::::
would

::::::
ensure

:::
that

:::::::::::::::::
�t1 =�t2 = 1.0 yr,

::::::
unless

::::
�t2::::::

needed
:::

to
::
be

:::::::
smaller

:::
for

::

:::::::
stability.

::::::
Finally,

::
if
:::
the

:::::::::
maximum

::::
local

:::::::::
truncation

::::
error

:
⌘
::
is
:::::
larger

::::
than

::
a
:::::::
specified

::::::::
threshold

:::
for

:::
any

:::::
given

::::::::::
integration,

::::
then

:::
the

::

:::::::::
integration

::
is

::::::::
discarded

:::
and

::::::::
repeated

::::
with

:
a
::::::::::::
progressively

::::::
smaller

:::::::
timestep

:::::
until

:
⌘
::::::::::
diminishes

:::
and

:::::::
stability

::
is

:::::::
restored,

:::
or

:::
the

::

:::::::
timestep

::::::
reaches

:::
the

::::::::
minimum

:::::::
allowed

::::::
value.

::

5
:::::
Model

::::::::
interface

:::
The

::::::
Yelmo

::::::
model interface is designed to be clear and simple, but also flexible. In its essence, there are three main model

functions: yelmo_init to initialize the model variables, yelmo_update to perform the ice-sheet model calculations for a

given timestep and yelmo_end to terminate the Yelmo object (free it from memory).

The first subroutine, yelmo_init, is used to load parameters,
:
initialize variables in memory (i.e., allocate arrays) and,25

optionally, to initialize the topographic state variables (ice thickness, masks, etc.). No other variables are initialized here

in the sense of being populated with data values, which is left to the user. An additional, optional helper function can be

used, yelmo_init_state, which populates the remaining model variables in the material, thermodynamics and dynamics

components. This initialization step is separated from that of topography because in practice, sometimes boundary variables

(e.g., surface temperature) need the surface elevation as input in order to be determined. In contrast, the remaining variables,30

namely dynamics and thermodynamics, often rely on boundary variables to be initialized. Thus, a typical initialization sequence

for a stand-alone ice-sheet model simulation could first call yelmo_init, then load or calculate boundary variables and then
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call yelmo_init_state to finalize the initialization of all Yelmo variables. After this sequence, the Yelmo state should

be consistent with running the model for one timestep with the prescribed boundary conditions and a fixed topography. If the

model will be initialized from a restart file, then these data are loaded in each case based on parameter choices.

The next subroutine, yelmo_update, is used to advance the model state to a new timestep. Any modifications to bound-

ary variables are left to the user externally, and Yelmo expects that the boundary conditions are valid for this timestep. The

subroutine does not take any arguments to modify the model behavior – rather, all model configuration choices are specified5

in the parameters of the Yelmo object itself. These are initially loaded from a parameter file in the call to yelmo_init, how-

ever, it is possible to modify any parameter values during simulations, allowing for changing model configuration
::
the

::::::
model

:::::::::::
configuration

:::::::::
transiently depending on the experimental setup. An additional optional subroutine, yelmo_update_equil,

is available to facilitate equilibration. This routine effectively calls yelmo_update for a specified time window with un-

changing boundary conditions, and allowing for the temporary modification of some key model parameters (such as the maxi-10

mum allowed adaptive time step and the maximum allowed SSA velocity).

The last subroutine, yelmo_end, simply removes the Yelmo object from memory (i.e., all domain variables are deallo-

cated). After calling yelmo_end, it is possible to reinitialize the Yelmo object via yelmo_init, for example, in order to

test a different grid resolution or other configuration.

There are several input/output routines defined for Yelmo. yelmo_write_init can be used to initialize a NetCDF model15

output file with the axes of model dimensions defined from the Yelmo object and writing of static fields like domain masks. The

writing of model output for inidividual timesteps is left to the user to maintain flexibility, as most programs require specific

fields to be written (examples can be found in the test programs included with the code - see further below). In addition,

yelmo_restart_write will create a NetCDF file and write all Yelmo fields as a snapshot, which can be used to restart

the model (loading of a restart file can be activated with parameter choices).20

As mentioned above, given the object-oriented approach, it is possible to run multiple Yelmo domains in one program. Each

domain must be initialized separately via yelmo_init, and the variable fields populated with initial values, then separate

calls to yelmo_update are needed during timestepping, and finally each object should be terminated at the end of the

program via yelmo_end. With this structure, minimum modification of another model, like a global climate model is needed,

to incorporate online ice-sheet evolution, or to simulate an ensemble of ice sheets in one program. Furthermore, all fields25

are directly accessible within the main program to facilitate coupling. For example, the 2D array of surface elevation of the

topography component of the Yelmo Antarctica domain could be referenced as yelmo_ant%tpo%now%z_srf. While it is

clear that the nesting of several containers (derived types) results in a rather long variable reference, it is unambiguous and

straightforward to use.

6 Model validation and benchmarks30

Yelmo has been tested against several ice-sheet model validation tests and benchmarks in wide use today. These include the

:::::
Halfar

:::::
dome

::::::::::
experiment

::::::::::::::::::::::::::::
(Halfar, 1983; Bueler et al., 2005),

:::
the

:
EISMINT1 (Huybrechts et al., 1996) and EISMINT2 (Payne
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et al., 2000) model intercomparison experiments that test uncoupled and coupled dynamics-thermodynamics, respectively, and

MISMIP (Pattyn et al., 2012) for ice-shelf dynamics, among others. By design, many of these experiments allow isolation

of specific model features for testing. When the model passes more complex benchmark tests, the simpler experiments are

somewhat redundant (if the model passes a coupled thermodynamics-dynamics benchmark, the model should necessarily also

be able to pass a dynamics-only benchmark). However, it should be noted that in the process of model development, all tests5

prove to be extremely useful. The results of all tests will not be reported here, but several are highlighted below to demonstrate

that Yelmo performs well.

The
:::::
Halfar

:::::
dome

::::::::::
experiment,

::
a

::::::
specific

::::
case

:::
of

:::
the

:::::
more

::::::
general

::::
Test

::
B

::
of

:::::::::::::::::
Bueler et al. (2005),

::::
tests

:::
the

::::::::
ice-sheet

::::::
model

::

::::::::
dynamics

:::::
using

:::
the

:::
SIA

::::::
solver

:::::
alone.

:::::
This

:::
test

:::::::
consists

::
of

:::::::::
simulating

::
a

:::::::::::::::
radially-symmetric

::::::::
ice-sheet

::::
with

::::
zero

:::::
mass

:::::::
balance

::

:::
and

::::::
resting

::
on

::
a

:::
flat

::::
bed,

::::::::
deforming

:::::
under

:::::::::::
gravitational

:::::
stress.

::::
The

::::::::
analytical

:::::::
solution

::
is

::::::
known

::
at

::::
every

:::::
time,

:::::::
allowing

::
a
:::::
direct

::

:::::::::
comparison

::
of
:::
the

:::::::::
simulation

::
to

:::
the

:::::::
desired

:::::
result.

::::
The

::::::::
simulation

::::::::::
parameters

::::::
consist

::
of

:::
the

::::::
margin

:::::
radius

::::
and

:::::
dome

::::::::
elevation,

:::
485

::

::
in

:::
this

::::
case

:::
set

::
to
::::

the
:::::
values

::::::::
suggsted

:::
by

::::::::::::
Halfar (1983):

:::::::::::::::
R0 = 21.2132 km

::::
and

::::::::::::
H0 = 707.1m

:
–
::::

see
:::::::::::::::::::
Bueler et al. (2005) for

::

:::::
further

:::::::
details.

:::::
Figure

::
3
::::::
shows

::
the

::::
root

:::::
mean

::::::
square

::::
error

::::::::
(RMSE)

::
of

:::
the

:::::::::
simulation

::::
with

:::
the

::::::::
analytical

:::::
result

::::
after

::::
200

:::::
years

::

::
for

::
a

:::::
range

::
of

:::::
model

::::::::::
resolutions.

::::::
Yelmo

:::::::::::
demonstrates

::::::::
first-order

:::::::::
(p= 1.01)

::::::::
numerical

:::::::::::
convergence

::::
with

::::::::
resolution

:::::::
towards

:::
the

::

::::::::
analytical

:::::
result.

:::

:::
The

:
EISMINT1 moving margin experiment

::::
also tests the ice-sheet model dynamics

:::::
using

:::
the

::::
SIA

:::::
solver

::::::
alone,

:
with an

imposed constant rate factor and diagnosed thermodynamics (i.e., thermodynamics do not impact the ice-sheet configuration).

Radial steady-state surface mass balance and background surface temperature fields are imposed as boundary conditions.

Starting from ice-free conditions, the ice sheet simulated by Yelmo grows to dynamic and thermodynamic equilibrium within

25 kyr and 100 kyr, respectively. The steady-state summit elevation of Yelmo is 2992.4
::::::
3006.6 m compared to the reported range20

of 2997.5±7.4 m for
:::::::
so-called “Type-I” discretization models like Yelmo (where diffusivity is staggered to the ab-nodes). The

basal temperature relative to the pressure melting point (i.e., homologous temperature) at the summit simulated by Yelmo is

-12.85
:::::
-13.37 �C, which lies within the EISMINT1 range of -13.40±0.56 �C. Other

:::::
These

:::
and

:::::
other relevant statistics are given

in Table 1.

:::
We

:::
also

:::
use

:::
the

::::::::::
EISMINT1

:::::::
moving

::::::
margin

:::::::::
experiment

::
to

::::::::::
demonstrate

:::
the

:::::::::
capability

::
of

:::
the

:::::::
adaptive

:::::::::::
timestepping

::::::::
approach

::

::
in

::::::
Yelmo.

:::
By

::::::
setting

:::
the

::::::::
tolerance

:::::::::
parameter

::
✏,
::::::

Yelmo
::::::::::::

automatically
::::::
adjusts

:::
the

::::::::
timestep

::
to

::::::::
maintain

:::
the

:::::::::
truncation

:::::
error

:::
500

::

::
in

:::
ice

::::::::
thickness

::
⌘

::::::
around

:::
this

::::::
value.

::::::
Figure

::
4a

::::::
shows

:::
the

:::::
time

:::::
series

::
of

:::
the

::::::::
adaptive

:::::::
timestep

:::::
used

::
by

::::::
Yelmo

:::
for

::
a
::::::
25 kyr

::

::::::::
simulation

:::
for

::::::::
different

::::::::::
resolutions.

:::
The

::::::::
timestep

:::::::
exhibits

::::::::::
oscillations

::::::
around

:
a
:::::
mean

::::::
value,

:::::
which

::
is

::::::
typical

:::
for

::::
such

::
a
::::
PID

::

:::::::
approach

:::::::::::::::::
(Cheng et al., 2017).

::::::
When

:::
the

:::::::
timestep

:::::
grows

::::::
larger,

:::
the

:::::::::
truncation

::::
error

::::::::
increases.

::::
This

:::::
leads

::
to

::
a

::::::::
reduction

::
in

:::
the

::

:::::::
timestep

:::
and

:::
the

:::::
error

:::::::::
decreases.

::::::
Figure

::
4b

::::::
shows

:::
the

:::::
mean

::::::::
timestep

::::
used

:::
by

::::::
Yelmo

::::
over

:::
the

:::
last

::::::
10 kyr

::
of

::::
the

:::::::::
simulation

::

:::::
versus

::::::
model

:::::::::
resolution.

:::::
Given

::
a
::::::::
tolerance

::
of

::::::::
✏= 10�2,

::::::::
Yelmo’s

:::::
mean

:::::::
timestep

::
is

:::::::::::
�t= 6.96 yr,

::::::::::::
�t= 1.59 yr,

:::::::::::
�t= 0.24 yr

:::
505

::

:::
and

:::::::::::
�t= 0.06 yr

:::
for

:::::::::
resolutions

::
of

::::::
50 km,

::::::
25 km,

:::::
10 km

:::
and

:::::
5 km,

:::::::::::
respectively.

::
As

::::::::
expected,

:::
the

:::::::
timestep

:::::
must

::
be

:::::::
reduced

:::
for

::

:::::
higher

::::::::::
resolutions.

:::::
These

::::::
results

:::
are

::
in

:::
line

::::
with

:::::
those

::
of

:::::::::::::::::::
Cheng et al. (2017) for

:::
the

:::::
same

:::::::::
experiment

::::::::::::
(�t= 12.4 yr

::
for

::::::
60 km

::

:::::::::
resolution).

::
It

::::::
should

::
be

:::::
noted

::::
that

:::
the

::::::::
truncation

:::::
error

::::::::
increases

::::::::::
non-linearly

::
as

:
a
::::::::
function

::
of

:::
the

::::::::
timestep,

::
so

::::::
setting

:
a
::::::
higher

::

:::::::
tolerance

::::
does

::::
not

:::::::
translate

::::::
directly

::::
into

:
a
::::::
larger

:::::::
timestep.

:::
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::::
Next

:::
we

:::::::
validate

:::
the

::::::::::::::
thermodynamics

::::::::::
component

::::
first

::
by

::::::::::
performing

:::
the

::::::::::
benchmark

::::::::::
experiments

::::
Test

:::
A

:::
and

::::
Test

::
B
:::

of
:::
510

::

:::::::::::::::::
Kleiner et al. (2015).

::
In

:::::::
contrast

::
to

::
an

::::::::
enthalpy

:::::
solver,

::::::
Yelmo

::::
uses

:
a
::::::::::
temperature

::::::
solver

:::
that

:::::::
assumes

:::
all

:::::
water

::::::::
produced

::
in

:::
the

::

::
ice

:::::::
column

:::::
drains

:::::::
directly

::
to

:::
the

::::
bed

:::
and

:::
so

::::::::
temperate

:::
ice

::
in

:::
the

:::::::
vertical

::::::
column

::::
has

::
no

:::::
water

:::::::
content.

::
In

:::::
cases

::::::
where

:::::
water

::

::::::
content

::
of

:::
up

::
to

:::
3 %

:::::
could

:::
be

::::::
present

::
in

:::
the

:::::
basal

:::::
layers

::
of

:::
the

:::::::
column,

:::::::
Yelmo’s

::::::
solver

:::::
would

:::
be

:::::::::
inaccurate.

:::::::::::
Nonetheless,

:::
we

::

:::::
expect

::::
that

:::
the

::::::::::
temperature

::::::
solver

::::::
should

::
be

::::::::::
sufficiently

:::::::
accurate

::
to

::::::::
simulate

::
ice

::::::
sheets

:::
on

::::
long

:::::::::
timescales

:::
and

:::::
large

::::::
spatial

::

:::::::
domains.

::::::
Figure

:
5
::::::
shows

:::
the

::::::::::
performance

:::
of

:::::::
Yelmo’s

::::::::::
temperature

:::::
solver

:::
for

::::
Test

::
A

::
of

:::::::::::::::::
Kleiner et al. (2015),

:::::
which

::::::::
simulates

::
a

:::
515

::

::::::
column

::
of

:::
ice

::
in

::
a

:::::::::::
parallel-sided

::::
slab

::::
with

::
no

:::::::::
horizontal

::::::::
advection

::::
and

::
no

:::::::
internal

:::::
strain

::::::
heating

::::
that

:::::::::
undergoes

:::::::
warming

::::
and

::

:::::::::
subsequent

::::::
cooling

:::
at

:::
the

::::::
surface.

:::
In

:::
this

:::::
case,

::
no

:::::
water

:::::::
content

::::::
should

::::::
develop

:::
in

:::
the

::::::
vertical

:::::::
column,

:::
so

:
a
::::::::::
temperature

::::
and

::

:::::::
enthalpy

:::::
solver

::::::
should

::::
give

:::::::
identical,

::::::::::::::::
energy-conserving

::::::
results.

:::::::
Yelmo’s

::::
basal

::::
melt

::::
rate

::
is

::::::::
essentially

::::::::
identical

::
to

:::
the

::::::::
analytical

::

::::::
solution

:::
for

::::
this

:::::::
problem

:::
and

:::
its

:::::::
transient

::::::::
behaviour

::
is
::::::
robust.

:::

::
In

:::::::
contrast,

::::
Fig.

::
6

:::::
shows

:::
the

::::::
results

::
of
::::::::

Yelmo’s
::::::::::
temperature

:::::
solver

:::
for

::::
Test

:::
B,

:::::
which

:::::::::
simulates

:
a
::::::::::::
parallel-sided

::::
slab

::
on

::
a

:::
520

::

::::::
sloping

:::
bed

::::
with

::
a

::::::::
prescribed

:::::::::
horizontal

:::::::
velocity

:::
and

:::::
strain

::::::
heating

::::::
profile

::
in

::::::
steady

::::
state.

::
In

::::
this

::::
case,

:::::
water

::
is

::::::::
generated

::
in

:::
the

::

::::
basal

:::::
layers

:::
of

:::
the

::
ice

:::::::
column

::::
(see

:::
Fig.

::::
6c),

:::::::
however

::::::
Yelmo

::::::
cannot

::::::::
reproduce

::::
this

:::::::
solution.

:::::::::::
Nonetheless,

:::::::
because

::::::::::
temperature

::

:
is
:::::::
limited

::
to

:::
the

::::::::::::::
pressure-melting

:::::
point,

:::
the

::::::::
simulated

:::
ice

:::::::::::
temperature

:::::
profile

::
is
:::
in

:::
full

:::::::::
agreement

::::
with

:::
the

::::::::
analytical

:::::::
profile.

::

::::
This

::
is

:::
true

::::
both

:::
for

::
a
::::
very

::::
high

:::::::::
resolution

::::
case

:::::::::::
(�z = 0.5m)

::::
and

::
a

:::::
lower

::::::::
resolution

::::
case

::::::::::::
(�z = 10m),

:::::
which

::::::
allows

:::
us

::
to

::

:::::::
conclude

::::
that

:::
the

::::::::::
performance

::
of

:::
the

::::::::::
temperature

::::::
solver

::
is

::::::
robust.

:::
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::

The EISMINT2 benchmark experiments A and F are useful for testing the thermodynamically coupled ice-sheet model

::::
with

:::
SIA

:::::::::
dynamics

:::
like

:::
in

:::::::::
EISMINT1. The experiments are identical to the EISMINT1 moving margin experiment, except

the resolution is doubled (25 km) and the surface temperature is prescribed to be independent of ice thickness. Experiment

A prescribes a summit temperature of 238.15 K, while experiment F is 15
::::
15.00 K colder, which promotes an increase in the20

region of ice frozen to the bedrock. The statistics for these experiments are listed in Table 1 as well. Figure 3
:
7
:
shows the

basal homologous temperature distribution for experiments A and F. Yelmo produces symmetrical temperature patterns in

both experiments, which are consistent with both the benchmark results (Payne et al., 2000) and other more recent models

(e.g., Bueler et al., 2007; Hoffman et al., 2018). Yelmo also
::::
Axial

:::::::::
symmetry,

::::::::
assessed

::
by

::::::::::
comparing

:::
the

:::::
basal

::::::::::
temperature

::::
field

::::
with

:
a
::::::

mirror
:::
of

::::
itself

:::::
along

:::
the

:::
x-

::
or

::::::
y-axis,

::
is
::::::::::
maintained

::
to

::
a

::::::::
precision

::
of

:::::::
10�2 K.

::::
This

:::::::::
symmetry

::
is

:::
not

::::::
critical

:::
to25

::::::
realistic

:::::::::::
applications,

:::
but

:
a
::::
lack

::
of

::
at

::::
least

:::::
axial

::::::::
symmetry

::
in

:::
this

::::
test

:
is
:::::
often

::::::::
indicative

::
of

:::::::::
numerical

:::::::
artifacts.

::
In

::::::::::
experiment

::
F,

:::::
Yelmo

:
produces the so-called “cold spokes”, which have been shown to be related to internal strain heating in regions of steep

gradients in ice thickness, and largely numerical in nature (Bueler et al., 2007).

Yelmo includes an option for smoothing the strain heating field as suggested by Bueler et al. (2007), however its effectiveness

has not been tested yet in detail.

We also test the capability of the SSA solver and grounding-line treatment by running the MISMIP protocol experiments

(Pattyn et al., 2012). Particularly, MISMIP EXP 1 (advance) and EXP 2 (retreat) are useful for testing the reversibility of

grounding line advance, given the bedrock is defined as a linear downward sloping bed. The rate factor is prescribed according

to steps that first decrease, allowing grounding line advance, then increase back to the original value. According to theory

(Weertman, 1974; Schoof, 2007), only one steady-state grounding line position should exist for each step 1000
:
-
:
i.e., the ice35
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sheet should advance and retreat symmetrically without showing hysteresis. It is now well known, however, that ice-sheet

models at coarse resolutions (1 km and greater) are unable to capture proper grounding-line migration, even when subgrid

parameterizations to mimic higher resolution are applied (Seroussi et al., 2014; Gladstone et al., 2017).

In the MISMIP experiment performed here, the linear, downward sloping bedrock is defined in the x-direction as zb = 720� 778.5(x/750) km

::::::::::::::::::::::::
zb = 720.0� 778.5(x/750.0)

::::
with

::
x

::
in

:::
km

:::
and

:::
zb ::

in
::
m. The bedrock elevation does not change in the y-direction, which ex-5

tends to ±50 km to allow the simulation of a symmetric ice stream flowing in the positive x-direction. The power-law formula-

tion of Eq. 24 is used with the parameter values q = 1/3, u0 = 1m yr�1 and cb = 3.165176⇥104 Pa. The rate factor is initially

prescribed to A= 1⇥10�16 Pa�3 yr�1 and the simulation is run for 25 kyr to equilibrate. Next, the rate factor is stepped evenly

in log-space every 10 kyr until reaching A= 1⇥ 10�19 Pa�3 yr�1, and then the rate factor is increased in the same way until

returning to the original value.10

Figure 4
:
8
:

shows results for this MISMIP experiment with Yelmo at different grid resolutions, ranging from 20 km down

to 2.5 km, and with different treatments of basal friction near the grounding line. When the default model setup is used, with

no special treatment at the grounding line, the grounding line advance is consistent for all resolutions. However, none of the

lowest resolution simulations show grounding line retreat as the rate factor increases again. At a resolution of 5.0
:
5 km, some

minor grounding line retreat can be seen, and for 2.5 km, the model is more successful at retreating though it remains 400 km15

from the target. In contrast, when the basal friction � is scaled at the grounding line by the grounded fraction of the ac-node

(fg,ac), the hysteresis is greatly reduced. The 5 km simulation retreats to within 200 km of the original position and the 2.5 km

simulation retreats to within 100 km of the original position, thus showing convergence to the correct solution with resolution.

With this setup, even the 10 km and 20 km simulations retreat significantly. In a third case, the basal friction is also linearly

scaled to zero as the ice sheet approaches flotation (Leguy et al., 2014; Gladstone et al., 2017). In this case, the hysteresis and20

differences between different resolution simulations are further reduced, however, the system also tends to advance much less

given all other conditions are the same.

Yelmo’s Eulerian ice-age
::::::::::
conservative

:::::
tracer

:
model is validated

:::
with

::
a
:::::::::
simulation

::
of

:::
ice

::::
age

::
in

::
an

::::::::
idealized

:::::::::::
cofiguration

against the analytical solution at the summit presented by Rybak and Huybrechts (2003). In this case,
::::::::::
summit-like

:::::::::
conditions

::
are

::::::::
imposed,

:::
in

:::
that

:
horizontal advection is neglected, and the vertical velocity is assumed to decrease linearly with depth.25

Fig.
:::::
Figure 5

:
9
:
shows the solution with Yelmo as compared to the analytical result. For a nominal vertical resolution of nz = 30

points and single or double precision, the age tracer gives errors of around
::
in

:::
the

:::::
range

::
of

:
0.2% over the entire depth

:::::
-0.5%

:::
over

:::::
most

::
of

:::
the

:::::::
column

:
of the ice sheet

:
,
::::
with

:::::
higher

::::::
errors

::
at

:::
the

::::
base. Increasing the vertical resolution to nz = 50 points

decreases the error by an order of magnitudeand reducing the vertical resolution to nz = 10 points increases the error to

about 1%,
:::::

while
::::::

using
:::::::
nz = 30

::::
with

::::::
higher

:::::::::
resolution

::
at

:::
the

::::
base

:::
of

:::
the

:::
ice

:::::
sheet

:::::
allows

::
a
::::::
similar

:::::::::
reduction

::
in

::::
error

:::::
with30

::::::::
significant

::::::::::::
computational

:::::::
savings. For Eemian-age ice in such simplified conditions, this

:::
the

::::
latter

::::
case

:
gives an uncertainty of

about
:::
less

::::
than 1 kyr. It is expected that the error would increase for more realistic domains (Rybak and Huybrechts, 2003)

:::
3D

:::::::
domains, however the Eulerian age solver can be used for a first-order estimate of the age-depth profile in the ice sheet

:::::::::::::::::::::::::
(Rybak and Huybrechts, 2003).
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7 Antarctica

As further validation of the model’s performance, we ran steady-state simulations of the present-day and glacial Antarctic
:::
580

::

ice sheet. These simulations, run at 32 km resolution, have been deliberately simplified to include the minimum complexity
::

necessary to simulate the ice sheet without additional external components. There was no active isostasy model and geothermal
::

heat flux was set to 50 mW m�2 everywhere. The bedrock topography and initial ice thickness were prescribed from the
::

RTOPO2.1 dataset (Schaffer et al., 2016). Basal friction followed a linear law, where � = cf�b (⇢gH)
::::::::::::::::::
� = (cf�b/u0)(⇢gH)

::

::::
with

::::::::::::::
u0 = 100m yr�1

::::
used

::
as

::
a
::::::
scaling

:::::::
constant. We prescribed cf = 2⇥ 10�3

::::::::
cf = 0.15

::::::::
(unitless) for most of the domain,

:::
585

::

except for ad hoc
::::::
ad-hoc adjustments in specific regions to improve the match with observations. This was additionally scaled

::

by an exponential function of bedrock elevation: �b =min[1.0,exp((zb � z1)/(z1 � z0))], where z0 =�200
::::::::
analogous

::
to

:::
the

::

:::::::
approach

:::
of

:::::::::::::::::
(Martin et al., 2011).

:::
We

:::
set

:::::::
z1 = 250m and z1 = 0

:::::::::
everywhere

:::
and

:::::::::::
z0 =�2000m , which ensures that the basal

::

friction decays to low values for marine-based sectors of the ice sheet (Martin et al., 2011)
::
for

:::::
WAIS

:::::::
regions

::::::
feeding

:::
the

::::::
Ronne

::

::
ice

:::::
shelf

:::
and

::::::::::::
z1 =�200m

::::::::
elsewhere. Friction was scaled by the grounded fraction at the grounding line, but no additional

:::
590

::

scaling is applied.
:::
The

:::::::::::
enhancement

:::::
factor

:::::::::
parameters

:::
set

:::
for

::::
these

::::::::::
simulations

::::
were

::::::::::
Eshr = 2.5,

::::::::::
Estrm = 0.7

::::
and

::::::::::
Eshlf = 0.5.

::

:::
The

:::::::
bedrock

::::::::::
topography

::::
and

:::::
initial

:::
ice

::::::::
thickness

:::::
were

:::::::::
prescribed

:::::
from

:::
the

:::::::::
RTOPO2.1

:::::::
dataset

::::::::::::::::::
(Schaffer et al., 2016),

:::::
after

::

:::::
which

:::
the

:::::
model

:::
ran

:::
for

::::::
50 kyr,

:::::::
reaching

::
a
::::::::::
steady-state

:::::::
modeled

:::
ice

::::::::::
distribution.

:::

For the simulation of the present-day state, surface mass balance (SMB) and surface temperature boundary fields were pre-
::

scribed from a RACMO2.3 simulation driven by ERA-INTERIM data and averaged over 1981-2010 (van Wessem et al., 2018).
:::
595

::

The ice-shelf basal mass balance was set to a spatially constant value of -0.1
:::
-0.2 m a�1 . Figure 7 shows

:::::
where

:::::::
floating

:::
ice

::

:::::
exists

:::::
today

:::
and

::
to

::::::
-2.0 m a

::
�1

:::::::::
elsewhere.

:::::::
Figures

::
10

::::
and

:::
11

::::
show

::
a comparison of the simulations with the observed topog-

::

raphy (RTOPO2.1) and the present-day observed velocity (Rignot et al., 2011). With this relatively simple model setup, it is
::

nonetheless possible to obtain reasonable agreement with observations. The root mean square errors (RMSEs) in ice thick-
::

ness, velocity and log(velocity) are 290
:::
320 m, 230

:::
270 m yr�1 and 1.8

::
1.9 log[m yr�1], respectively, which fall in the range

:::
600

::

of other models in the initMIP-Antarctica intercomparison project (Seroussi et al., 2019). The dome configuration, slow
::

deformational speeds and even most ice streams as they penetrate inland are well represented by the model.
::::::::
simulated

:::
ice

::

::::
sheet

::
is

::::::
thinner

::::
than

:::
the

::::::::
observed

:::
ice

:::::
sheet

::::
over

::::
large

:::::
parts

::
of

::::
East

:::::::::
Antarctica,

::::
with

::
a
:::::
broad

:::::::
positive

:::
bias

::::
near

:::
the

::::::
South

::::
Pole

::

::::
(Fig.

::::
11). The margins of the ice sheet are the most difficult to match and, in particular, the

:::::::::::
grounding-line

::::::::
positions

:::
of

:::
the

::

large ice shelves. This is likely due in large part to the use of a spatially constant value for ice-shelf basal mass balance, but
:::
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::

also reflects the simple approach used to represent �. Nonetheless, the results are ,
:::::::

leading
::
to

:::::
larger

::::::
biases

::
in

:::::
these

:::::::
regions.

::

::::
This

::::::
pattern

:
is
:
quite consistent with other models (e.g., Martin et al., 2011; Quiquet et al., 2018; Seroussi et al., 2019).

::::::
studies

::

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Martin et al., 2011; Quiquet et al., 2018; Albrecht et al., 2020).

:::::::
Overall,

:::
the

::::
dome

::::::::::::
configuration,

::::
slow

::::::::::::
deformational

:::::
speeds

::

:::
and

::::
even

::::
most

:::
ice

:::::::
streams

::
as

::::
they

::::::::
penetrate

:::::
inland

:::
are

::::
well

::::::::::
represented

::
by

:::
the

::::::
model

:::::
(Figs.

::
10

::::
and

::::
11).

::

We use the same setup with modified boundary conditions to simulate a configuration resembling that of a deep glacial period

like the Last Glacial Maximum. The surface temperature was set to 10� C colder and the present-day SMB was maintained,

except for points with a low or negative SMB were prescribed with a minimum value of 0.1 m a�1. The ice shelf basal mass

20



balance was set to a spatially constant value of 0.0
:
0 m a�1 and sea level was lowered by 120 m. In this case, the grounded ice5

sheet advances until the continental shelf break and thickens inland (Fig. 7
::
10). A similar structure of ice streams can be seen,

due to the topographic dependence of �, but their speed is greatly reduced
::::::::
compared

::
to

:::::
those

::
of

:::
the

:::::::::
present-day

:::::::::
simulation. We

do not expect this configuration to be realistic, given that isostasy plays no role and a present-day-like SMB has been imposed.

However, this test demonstrates that Yelmo is capable of resolving continental-scale changes in the ice sheet configuration in a

plausible way.10

8 Conclusions and future work

We have described the features and physics of the hybrid ice-sheet–shelf model Yelmo. Yelmo includes the physics to simulate

continental-scale ice sheets and floating ice shelves using “shallow” approximations of the ice dynamics. The fully coupled

thermomechanical ice-sheet model has been validated against several benchmark tests, and has been shown to simulate the

dynamic configuration of the Antarctic ice sheet well.15

Yelmo is expected to be useful for long-time scale simulations and/or ensembles. It is particularly suited for easy coupling

with other models. For example, the simulation of multiple ice-sheet domains with independent parameter configurations

coupled to a global climate model can be achieved in a simple and straightforward way. Also, given that the subroutines

representing the physics of the model have been isolated from the “model accounting”, it is possible to test individual model

components in different contexts easily. This should facilitate future model development and comparison of different methods.

The model framework has been designed to facilitate the incorporation of new and different physics. Thus, this initial release

of Yelmo lays the foundation for several future developments. These may include more advanced calving and basal friction5

schemes, as well as improved treatment of the grounding line. We also plan to transition to an enthalpy-based thermodynamics

solver, and
::::::
however

::::
this

::::
will

::::::
require

::
an

::::::::
adaptive

::::::
vertical

::::
axis

:::
to

::
be

::::
able

::
to
::::

map
::::

the
:::::
height

:::
of

::::::::
transition

:::::::
between

:::::::::
temperate

:::
and

::::
cold

:::
ice

:::::::::
accurately.

:::
We

::::
also

::::
plan

:
to implement a variationally-derived “depth-integrated-viscosity approximation" solver

(following e.g., Goldberg, 2011; Pollard and DeConto, 2012; Lipscomb et al., 2019) in the near future.

Code availability. Yelmo is maintained as a git repository hosted at https://github.com/palma-ice/yelmo under the licence GPL-3.0. Model10

documentation can be found at https://palma-ice.github.io/yelmo-docs/. The exact version of the model, along with the necessary input data,

used to produce the results used in this paper is archived on Zenodo (https://www.doi.org/10.5281/zenodo.3782650) and has been tagged in

the repository as v1.02.

Author contributions. A.R., J.A.S. and M.M. conceived the model design and features. A.R. wrote the model code with contributions from

the remaining authors. All authors contributed to the model testing and writing the manuscript.15

21



Competing interests. Heiko Goelzer is a member of the editorial board of the journal.

Acknowledgements. We would like to thank Mahé Perrette, Christophe Dumas, Gunter Leguy and Bill Lipscomb for valuable discussions
::

about model design that improved Yelmo,
::::

Akira
::::::
Nishida

::
for

::::
help

:::
with

:::
Lis

:
and Ilaria Tabone and Javier Blasco for extensive model testing at

::

intermediate development points.
:::
We

::
are

::::
also

::::::
grateful

::
to

::
the

::::::::
reviewers

::
for

::::::
helpful

::::::::
comments.

:::

This research has been supported by the Spanish Ministry of Science and Innovation project RIMA (grant no. CGL2017-85975-R).20

Alexander Robinson was funded by the Ramón y Cajal Programme of the Spanish Ministry for Science, Innovation and Universities (grant

no. RYC-2016-20587). Heiko Goelzer has received funding from the program of the Netherlands Earth System Science Centre (NESSC),

financially supported by the Dutch Ministry of Education, Culture and Science (OCW) under grant no. 024.002.001. Ralf Greve was sup-

ported by
:::
the Japan Society for the Promotion of Science (JSPS) KAKENHI grant nos. JP16H02224, JP17H06104 and JP17H06323, and

by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) through the Arctic Challenge for Sustainability25

(ArCS) project
:::
and

::::::
through

::
the

:::::
Arctic

::::::::
Challenge

:::
for

::::::::::
Sustainability

::::::
(ArCS)

:::::
project

::::::::
(Program

::::
Grant

::::::
Number

::::::::::::::::
JPMXD1300000000).

22



References

Albrecht, T., Martin, M., Haseloff, M., Winkelmann, R., and Levermann, a.: Parameterization for subgrid-scale motion of ice-shelf calving

fronts, The Cryosphere, 5, 35–44, https://doi.org/10.5194/tc-5-35-2011, 2011.

Albrecht, T., Winkelmann, R., and Levermann, A.: Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model30

(PISM) – Part 2: Parameter ensemble analysis, The Cryosphere, 14, 633–656, https://doi.org/10.5194/tc-14-633-2020, 2020.

Arakawa, A. and Lamb, V. R.: Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model, in: General

Circulation Models of the Atmosphere, edited by CHANG, J., vol. 17 of Methods in Computational Physics: Advances in Research and

Applications, pp. 173–265, Elsevier, https://doi.org/10.1016/B978-0-12-460817-7.50009-4, 1977.

Aschwanden, A., Aðalgeirsdóttir, G., and Khroulev, C.: Hindcasting to measure ice sheet model sensitivity to initial states, The Cryosphere,35

7, 1083–1093, https://doi.org/10.5194/tc-7-1083-2013, 2013.

Brondex, J., Gillet-Chaulet, F., and Gagliardini, O.: Sensitivity of centennial mass loss projections of the Amundsen basin to the friction law,

The Cryosphere, 13, 177–195, https://doi.org/10.5194/tc-13-177-2019, 2019.

Bueler, E. and Brown, J.: Shallow shelf approximation as a ’sliding law’ in a thermomechanically coupled ice sheet model, J. Geophys. Res.,

114, F03 008, https://doi.org/10.1029/2008JF001179, http://dx.doi.org/10.1029/2008JF001179, 2009.

Bueler, E. and van Pelt, W.: Mass-conserving subglacial hydrology in the Parallel Ice Sheet Model version 0.6, Geoscientific Model Devel-5

opment, 8, 1613–1635, https://doi.org/10.5194/gmd-8-1613-2015, 2015.

Bueler, E., Lingle, C. S., ad D. N. Covey, J. a. K.-B., and Bowman, L. N.: Exact solutions and verification of numerical model for isothermal

ice sheets, Journal of Glaciology, 51, 291–306, https://doi.org/10.3189/172756505781829449, 2005.

Bueler, E., Brown, J., and Lingle, C.: Exact solutions to the thermocoupled shallow ice approximation: effective tools for verification, Journal

Of Glaciology, 53, 499–516, https://doi.org/10.3189/002214307783258396, 2007.10

Cheng, G., Lötstedt, P., and von Sydow, L.: Accurate and stable time stepping in ice sheet modeling, Journal of Computational Physics, 329,

29–47, https://doi.org/10.1016/j.jcp.2016.10.060, 2017.

Cornford, S. L., Martin, D. F., Graves, D. T., Ranken, D. F., Le Brocq, A. M., Gladstone, R. M., Payne, A. J., Ng, E. G., and

Lipscomb, W. H.: Adaptive mesh, finite volume modeling of marine ice sheets, Journal of Computational Physics, 232, 529–549,

https://doi.org/10.1016/j.jcp.2012.08.037, 2013.15

Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Academic Press, 2010.

Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P.,

Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.: Capabilities and performance of Elmer/Ice, a new-generation ice

sheet model, Geoscientific Model Development, 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, 2013.

Gladstone, R. M., Warner, R. C., Galton-Fenzi, B. K., Gagliardini, O., Zwinger, T., and Greve, R.: Marine ice sheet model performance20

depends on basal sliding physics and sub-shelf melting, The Cryosphere, 11, 319–329, https://doi.org/10.5194/tc-11-319-2017, 2017.

Glen, J. W.: The creep of polycrystalline ice, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,

228, 519–538, http://www.jstor.org/stable/99642, 1955.

Goelzer, H., Nowicki, S., Edwards, T., Beckley, M., Abe-Ouchi, A., Aschwanden, A., Calov, R., Gagliardini, O., Gillet-Chaulet, F., Golledge,

N. R., Gregory, J., Greve, R., Humbert, A., Huybrechts, P., Kennedy, J. H., Larour, E., Lipscomb, W. H., Leclech, S., Lee, V., Morlighem,25

M., Pattyn, F., Payne, A. J., Rodehacke, C., Rückamp, M., Saito, F., Schlegel, N., Seroussi, H., Shepherd, A., Sun, S., Van De Wal, R.,

23

https://doi.org/10.5194/tc-5-35-2011
https://doi.org/10.5194/tc-14-633-2020
https://doi.org/10.1016/B978-0-12-460817-7.50009-4
https://doi.org/10.5194/tc-7-1083-2013
https://doi.org/10.5194/tc-13-177-2019
https://doi.org/10.1029/2008JF001179
http://dx.doi.org/10.1029/2008JF001179
https://doi.org/10.5194/gmd-8-1613-2015
https://doi.org/10.3189/172756505781829449
https://doi.org/10.3189/002214307783258396
https://doi.org/10.1016/j.jcp.2016.10.060
https://doi.org/10.1016/j.jcp.2012.08.037
https://doi.org/10.5194/gmd-6-1299-2013
https://doi.org/10.5194/tc-11-319-2017
http://www.jstor.org/stable/99642


and Ziemen, F. A.: Design and results of the ice sheet model initialisation initMIP-Greenland: An ISMIP6 intercomparison, Cryosphere,

12, 1433–1460, https://doi.org/10.5194/tc-12-1433-2018, 2018.

Goldberg, D. N.: A variationally derived and depth-integrated approximation to a and higher-order glaciological flow model, Journal of

Glaciology, 57, 157–169, https://doi.org/10.3189/002214311795306763, 2011.30

Greve, R.: A continuum–mechanical formulation for shallow polythermal ice sheets, Philosophical Transactions of the Royal Society of

London. Series A:Mathematical, Physical and Engineering Sciences, 355, 921–974, https://doi.org/10.1098/rsta.1997.0050, 1997a.

Greve, R.: Application of a Polythermal Three-Dimensional Ice Sheet Model to the Greenland Ice Sheet: Response to Steady-State and

Transient Climate Scenarios, Journal of Climate, 10, 901–918, https://doi.org/10.1175/1520-0442(1997)010<0901:AOAPTD>2.0.CO;2,

1997b.35

Greve, R.: Geothermal heat flux distribution for the Greenland ice sheet, derived by combining a global representation and information from

deep ice cores, Polar Data Journal, 3, 22–36, https://doi.org/10.20575/00000006, 2019.

Greve, R. and Blatter, H.: Dynamics of Ice Sheets and Glaciers, Springer-Verlag, Berlin, 2009.

Greve, R., Wang, Y., and Mügge, B.: Comparison of numerical schemes for the solution of the advective age equation in ice sheets, Annals

of Glaciology, 35, 487–494, https://doi.org/10.3189/172756402781817112, 2002.

Halfar, P.: On the Dynamics and of the Ice and Sheets 2, Journal of Geophysical Research, 88, 6043–6051,

https://doi.org/10.1029/JC088iC10p06043, 1983.5

Hoffman, M. J., Perego, M., Price, S. F., Lipscomb, W. H., Zhang, T., Jacobsen, D., Tezaur, I., Salinger, A. G., Tuminaro, R., and Bertagna,

L.: MPAS-Albany Land Ice (MALI): a variable-resolution ice sheet model for Earth system modeling using Voronoi grids, Geoscientific

Model Development, 11, 3747–3780, https://doi.org/10.5194/gmd-11-3747-2018, 2018.

Huybrechts, P., Instituut, G., and Oerlemans, J.: Evolution of the East Antarctic Ice Sheet: A Numerical Study of Thermo-Mechanical

Response Patterns With Changing Climate, Annals Of Glaciology, 11, 52–59, https://doi.org/10.3189/S0260305500006327, 1988.10

Huybrechts, P., Payne, T., Abe-Ouchi, A., Calov, R., Fabre, A., Fastook, J. L., Greve, R., Hindmarsh, R. C., Hoydal, O., Jóhannesson,

T., MacAyeal, D. R., Marsiat, I., Ritz, C., Verbitsky, M. Y., Waddington, E. D., and Warner, R.: The EISMINT benchmarks for testing

ice-sheet models, https://doi.org/10.3189/S0260305500013197, 1996.

Jenkins, A.: A One-Dimensional and Model of Ice and Shelf-Ocean Interaction, Journal of Geophysical Research, 96, 20 671–20 677,

https://doi.org/10.1029/91JC01842, 1991.15

Joughin, I., Smith, B. E., and Schoof, C. G.: Regularized Coulomb Friction Laws for Ice Sheet Sliding: Application to Pine Island Glacier,

Antarctica, Geophysical Research Letters, 46, 4764–4771, https://doi.org/10.1029/2019gl082526, 2019.

Kleiner, T., Rückamp, M., Bondzio, J. H., and Humbert, A.: Enthalpy benchmark experiments for numerical ice sheet models, The

Cryosphere, 9, 217–228, https://doi.org/10.5194/tc-9-217-2015, 2015.

Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.: Continental scale, high order, high spatial resolution, ice sheet modeling using the20

Ice Sheet System Model (ISSM), Journal of Geophysical Research, 117, https://doi.org/10.1029/2011JF002140, 2012.

Leguy, G. R., Asay-Davis, X. S., and Lipscomb, W. H.: Parameterization of basal friction near grounding lines in a one-dimensional ice sheet

model, Cryosphere, 8, 1239–1259, https://doi.org/10.5194/tc-8-1239-2014, 2014.

Lipscomb, W. H., Price, S. F., Hoffman, M. J., Leguy, G. R., Bennett, A. R., Bradley, S. L., Evans, K. J., Fyke, J. G., Kennedy, J. H., Perego,

M., Ranken, D. M., Sacks, W. J., Salinger, A. G., Vargo, L. J., and Worley, P. H.: Description and evaluation of the Community Ice Sheet25

Model (CISM) v2.1, Geoscientific Model Development, 12, 387–424, https://doi.org/10.5194/gmd-12-387-2019, 2019.

24

https://doi.org/10.5194/tc-12-1433-2018
https://doi.org/10.3189/002214311795306763
https://doi.org/10.1098/rsta.1997.0050
https://doi.org/10.1175/1520-0442(1997)010%3C0901:AOAPTD%3E2.0.CO;2
https://doi.org/10.20575/00000006
https://doi.org/10.3189/172756402781817112
https://doi.org/10.1029/JC088iC10p06043
https://doi.org/10.5194/gmd-11-3747-2018
https://doi.org/10.3189/S0260305500006327
https://doi.org/10.3189/S0260305500013197
https://doi.org/10.1029/91JC01842
https://doi.org/10.1029/2019gl082526
https://doi.org/10.5194/tc-9-217-2015
https://doi.org/10.1029/2011JF002140
https://doi.org/10.5194/tc-8-1239-2014
https://doi.org/10.5194/gmd-12-387-2019


Ma, Y., Gagliardini, O., Ritz, C., Gillet-Chaulet, F., Durand, G., and Montagnat, M.: Enhancement factors for grounded ice and ice-shelf both

inferred from an anisotropic ice flow model, Journal of Glaciology, 56, 805–812, https://doi.org/10.3189/002214310794457209, 2010.

Macayeal, D.: EISMINT: Lessons in Ice-Sheet Modeling, 1997.

Martin, M. a., Winkelmann, R., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C., and Levermann, a.: The Potsdam Parallel Ice Sheet Model30

(PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet, Cryosphere, 5, 727–740, https://doi.org/10.5194/tc-5-

727-2011, 2011.

Nishida, A.: Experience in Developing an Open Source Scalable Software Infrastructure in Japan, in: Computational Science and Its Appli-

cations – ICCSA 2010, edited by Taniar, D., Gervasi, O., Murgante, B., Pardede, E., and Apduhan, B. O., pp. 448–462, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2010.35

Pattyn, F.: Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical

Ice Sheet model (f.ETISh v1.0), The Cryosphere, 11, 1851–1878, https://doi.org/10.5194/tc-11-1851-2017, 2017.

Pattyn, F., Schoof, C., Perichon, L., Hindmarsh, R. C. A., Bueler, E., de Fleurian, B., Durand, G., Gagliardini, O., Gladstone, R., Goldberg,

D., Gudmundsson, G. H., Huybrechts, P., Lee, V., Nick, F. M., Payne, A. J., Pollard, D., Rybak, O., Saito, F., and Vieli, A.: Results of the

Marine Ice Sheet Model Intercomparison Project, MISMIP, The Cryosphere, 6, 573–588, https://doi.org/10.5194/tc-6-573-2012, 2012.

Payne, A. J., Huybrechts, P., Abe-Ouchi, A., Calov, R., Fastook, J. L., Greve, R., Marshall, S. J., Marsiat, I., Ritz, C., Tarasov, L., and

Thomassen, M. P.: Results from the EISMINT model intercomparison: The effects of thermomechanical coupling, Journal of Glaciology,5

46, 227–238, https://doi.org/10.3189/172756500781832891, 2000.

Peyaud, V., Ritz, C., and Krinner, G.: Modelling the Early and Weichselian Eurasian and Ice Sheets and role of ice and shelves and influence

of ice-dammed lakes, Climate of the Past, 3, 375–386, https://doi.org/10.5194/cp-3-375-2007, 2007.

Pollard, D. and DeConto, R. M.: Description of a hybrid ice sheet-shelf model, and application to Antarctica, Geoscientific Model Develop-

ment, 5, 1273–1295, https://doi.org/10.5194/gmd-5-1273-2012, 2012.10

Quiquet, A., Dumas, C., Ritz, C., Peyaud, V., and Roche, D. M.: The GRISLI ice sheet model (version 2.0): calibration and validation for

multi-millennial changes of the Antarctic ice sheet, Geoscientific Model Development, 11, 5003–5025, https://doi.org/10.5194/gmd-11-

5003-2018, 2018.

Rignot, E., Mouginot, J., and Scheuchl, B.: Ice Flow of the Antarctic Ice Sheet, Science, 333, 1427–1430,

https://doi.org/10.1126/science.1208336, 2011.15

Ritz, C., Fabre, A., and Letréguilly, A.: Sensitivity of a Greenland ice sheet model to ice flow and ablation parameters: consequences for the

evolution through the last climatic cycle, Climate Dynamics, 13, 11–23, https://doi.org/10.1007/s003820050149, 1997.

Rybak, O. and Huybrechts, P.: A comparison of Eulerian and Lagrangian methods for dating in numerical ice-sheet models, Annals of

Glaciology, 37, 150–158, https://doi.org/10.3189/172756403781815393, 2003.

Rückamp, M., Greve, R., and Humbert, A.: Comparative simulations of the evolution of the Greenland ice sheet under simplified Paris20

Agreement scenarios with the models SICOPOLIS and ISSM, Polar Science, 21, https://doi.org/10.1016/j.polar.2018.12.003, 2019.

Schaffer, J., Timmermann, R., Erik Arndt, J., Savstrup Kristensen, S., Mayer, C., Morlighem, M., and Steinhage, D.: A global,

high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry, Earth System Science Data, 8, 543–557,

https://doi.org/10.5194/essd-8-543-2016, 2016.

Schoof, C.: The effect of cavitation on glacier sliding, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,25

461, 609–627, https://doi.org/10.1098/rspa.2004.1350, 2005.

25

https://doi.org/10.3189/002214310794457209
https://doi.org/10.5194/tc-5-727-2011
https://doi.org/10.5194/tc-5-727-2011
https://doi.org/10.5194/tc-5-727-2011
https://doi.org/10.5194/tc-11-1851-2017
https://doi.org/10.5194/tc-6-573-2012
https://doi.org/10.3189/172756500781832891
https://doi.org/10.5194/cp-3-375-2007
https://doi.org/10.5194/gmd-5-1273-2012
https://doi.org/10.5194/gmd-11-5003-2018
https://doi.org/10.5194/gmd-11-5003-2018
https://doi.org/10.5194/gmd-11-5003-2018
https://doi.org/10.1126/science.1208336
https://doi.org/10.1007/s003820050149
https://doi.org/10.3189/172756403781815393
https://doi.org/10.1016/j.polar.2018.12.003
https://doi.org/10.5194/essd-8-543-2016
https://doi.org/10.1098/rspa.2004.1350


Schoof, C.: Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, Journal of Geophysical Research, 112,

https://doi.org/10.1029/2006JF000664, 2007.

Schoof, C.: Ice-sheet acceleration driven by melt supply variability, Nature, 468, 803–806, https://doi.org/10.1038/nature09618, 2010.765

Seroussi, H., Morlighem, M., Larour, E., Rignot, E., and Khazendar, a.: Hydrostatic grounding line parameterization in ice sheet models,

Cryosphere, 8, 2075–2087, https://doi.org/10.5194/tc-8-2075-2014, 2014.

Seroussi, H., Nowicki, S., Simon, E., Abe-Ouchi, A., Albrecht, T., Brondex, J., Cornford, S., Dumas, C., Gillet-Chaulet, F., Goelzer, H.,

Golledge, N. R., Gregory, J. M., Greve, R., Hoffman, M. J., Humbert, A., Huybrechts, P., Kleiner, T., Larour, E., Leguy, G., Lipscomb,

W. H., Lowry, D., Mengel, M., Morlighem, M., Pattyn, F., Payne, A. J., Pollard, D., Price, S. F., Quiquet, A., Reerink, T. J., Reese, R.,770

Rodehacke, C. B., Schlegel, N.-J., Shepherd, A., Sun, S., Sutter, J., Breedam, J. V., van de Wal, R. S. W., Winkelmann, R., and Zhang, T.:

initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6, The Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-

13-1441-2019, 2019.

Söderlind, G.: Automatic Control and Adaptive Time-Stepping, Numerical Algorithms, 31, 281–310,

https://doi.org/10.1023/A:1021160023092, 2002.775

Söderlind, G. and Wang, L.: Adaptive time-stepping and computational stability, Journal of Computational and Applied Mathematics, 185,

225–243, https://doi.org/10.1016/j.cam.2005.03.008, 2006.

Stearns, L. A. and van der Veen, C. J.: Friction at the bed does not control fast glacier flow, Science, 361, 273–277,

https://doi.org/10.1126/science.aat2217, 2018.

van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J.780

T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite,

J., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica

(1979–2016), The Cryosphere, 12, 1479–1498, https://doi.org/10.5194/tc-12-1479-2018, 2018.

Weertman, J.: Stability of the junction of an ice sheet and an ice shelf, Journal of Glaciology, 13, 3–11, https://doi.org/10.3198/1974JoG13-

67-3-11, 1974.785

Winkelmann, R., Martin, M. a., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C., and Levermann, a.: The Potsdam Parallel Ice Sheet

Model (PISM-PIK) - Part 1: Model description, Cryosphere, 5, 715–726, https://doi.org/10.5194/tc-5-715-2011, 2011.

26

https://doi.org/10.1029/2006JF000664
https://doi.org/10.1038/nature09618
https://doi.org/10.5194/tc-8-2075-2014
https://doi.org/10.5194/tc-13-1441-2019
https://doi.org/10.5194/tc-13-1441-2019
https://doi.org/10.5194/tc-13-1441-2019
https://doi.org/10.1023/A:1021160023092
https://doi.org/10.1016/j.cam.2005.03.008
https://doi.org/10.1126/science.aat2217
https://doi.org/10.5194/tc-12-1479-2018
https://doi.org/10.3198/1974JoG13-67-3-11
https://doi.org/10.3198/1974JoG13-67-3-11
https://doi.org/10.3198/1974JoG13-67-3-11
https://doi.org/10.5194/tc-5-715-2011


Boundary conditions
• Bedrock elevation
• Sea level
• Sediment thickness
• Surface mass balance
• Surface ice temperature
• Basal mass balance (marine)
• Basal ice-shelf temperature
• Geothermal heat flux

Topography
• Ice thickness
• Calving
• Surface elevation
• Masks

Dynamics
• 3D velocity
• 2D depth-averaged velocity
• 2D effective viscosity 
• Basal and driving stresses

Thermodynamics
• 3D ice temperature
• Basal mass balance 

(grounded ice)
• Basal water-layer thickness

Material
• 3D strain rate
• 3D enhancement factor 
• 3D viscosity
• 3D rate factor

Yelmo state variables

Figure 1. Overview of the Yelmo model structure highlighting state variables in the four components: topography, dynamics, material and

thermodynamics, as well as the boundary conditions required to run the model. The thick black border for boundary variables indicates that

these fields are never modified internally by Yelmo, while the components with a thin black border or dashed line are allowed to be modified

depending on the context. When, for example, the topography is updated (dashed line), no other components are allowed to be modified

(solid lines).
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x

y aa-nodes
ac-nodes
ab-nodes

z

Figure 2. Yelmo staggered grid definition and nomenclature. The horizontal grid (left) assumes constant resolution in the x- and y-directions,

while in the vertical (right) variable resolution is allowed. With any given cell defined as a 3D box, scalar variables are calculated on cell

centers (aa-nodes), velocities are calculated on cell faces (ac-nodes, edges in 2D), and scalar coefficients are calculated on cell edges (ab-

nodes, corners in 2D).
:::::
Figure

:::::
design

::::::
adapted

::::
from

:::::::::::::::::
Hoffman et al. (2018).
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Figure 3. Steady-state, basal homologous temperature
:::
Root

:::::
mean

:::::
square

::::
error (� C

:::::
RMSE) distribution

:
of

:::
the

:::::
Halfar

::::
dome

:::::::::
experiment after

100
::
200 kyr obtained

::
yr

:::::::
simulated

:
by Yelmo in EISMINT2 test A (left) and test F (right)

:::::::
compared

::
to

:::
the

:::::::
analytical

:::::::
solution

:::::
versus

:::::
model

:::::::
resolution. Areas that have reached

:::
The

::::
value

::
of

:::::::
p= 1.01

:::::::
indicates

:
the pressure-melting point have been shaded grey

::::
order

::
of

::::::::::
convergence

:
as
:::

the
::::::::
resolution

:::::::
increases.
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Figure 4.
::::::
Adaptive

:::::::::::
timestepping

::
for

:::
the

:::::::::
EISMINT1

:::::::
moving

:::::
margin

::::::::::
experiment.

::::
Time

:::::
series

::
of

:::
the

:::::::
timestep

::::
used

:::
by

:::::
Yelmo

:::
for

::::
grid

::::::::
resolutions

::
of

:::::
50 km,

:::::
25 km

::::
and

:::::
10 km

:::
and

:
a
:::::::
tolerance

::
of
::::::::
✏= 10�2

::::
(left),

::::
and

::
the

:::::
mean

::::::
adaptive

:::::::
timestep

::
in

:::
the

::::
time

::::
range

::
of

::::::::
15-25 kyr

:::::
versus

:::::
model

:::::::
resolution

::::::
(right).

::::::
Separate

::::
lines

::
in

:::
the

::::
right

::::
panel

::::
show

:::::
results

:::
for

::::::
different

:::::
values

::
of
:::
the

:::::::
tolerance

::::::::
parameter

:
✏.
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Figure 5.
::::
Time

:::::
series

::
of

:::
the

:::::
basal

:::::::::
temperature

:::::
(top),

::::
basal

::::
melt

::::
rate

:::::::
(middle)

:::
and

:::::
basal

:::::
water

::::
layer

:::::::
(bottom)

:::::::::::
corresponding

:::
to

:::
the

:::::::::::
thermodynamic

:::::::::
benchmark

:::::::::
experiment

::::
Exp.

:
A
:::::::::::::::::

(Kleiner et al., 2015).
:::
The

:::::::
analytical

:::::::
solution

:::::
(thick,

:::::::
light-red

::::
line)

:::
for

::
the

:::::
basal

:::
melt

::::
rate

:
is
::::::::
compared

::
to

:::::
Yelmo

:::::
results

:::::
(black

:::::
lines).

:::
Not

:::
that

:::::
where

:::
the

:::::
Yelmo

:::::
results

:::
are

::
not

::::::
visible,

::::
they

:::::
overlap

::::
with

:::
the

:::::::
analytical

:::::::
solution.
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Figure 6.
:::::::::
Steady-state

::::::
vertical

::::::
profiles

::
of

:::::::
enthalpy

::::
(left),

:::::::::
temperature

:::::::
(middle)

:::
and

::::
water

::::::
content

:::::
(right)

:::
for

::
the

::::::::::::
thermodynamic

:::::::::
benchmark

::::::::
experiment

::::
Exp.

:
B
::::::::::::::::
(Kleiner et al., 2015).

::::
The

:::::::
analytical

::::::
solution

:::::
(thick,

:::::::
light-red

::::
lines)

::
is

:::::::
compared

::
to
:::::
Yelmo

::::::
results

::
for

:
a
::::::
vertical

::::::::
resolution

:
of
::::::::::
�z = 0.5m

::::::::
(nz = 400,

:::::
black

::::
lines)

::::
and

::::::::
�z = 10m

::::::::
(nz = 20,

::::
light

:::::
green

:::::
lines).

:::
The

::::::
vertical,

::::
grey

:::
line

::
in
:::
the

::::::
middle

::::
panel

:::::
shows

:::
the

::::::::::::
pressure-melting

::::
point

::
as
:::::::::

prescribed
::
in

:::
this

:::::::::
experiment.

::::
Note

:::
that

:::::
where

:::
the

::::::::
analytical

::::::
solution

::
is

:::
not

::::::
visible,

:
it
:::::::
overlaps

::::
with

::
the

::::::
Yelmo

:::::
results.
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Figure 7.
:::::::::
Steady-state,

::::
basal

::::::::::
homologous

:::::::::
temperature

::::
(� C)

:::::::::
distribution

::::
after

::::::
100 kyr

:::::::
obtained

::
by

:::::
Yelmo

::
in
:::::::::

EISMINT2
:::
test

::
A
:::::

(left)
:::
and

:::
test

:
F
::::::
(right).

::::
Areas

:::
that

::::
have

::::::
reached

:::
the

:::::::::::::
pressure-melting

::::
point

::::
have

::::
been

:::::
shaded

::::
grey.

:::
The

::::::
contour

::::
lines

:::::::
represent

:::
ice

:::::::
thickness

::
at

:::::
500 m

::::::
intervals

::
up

::
to
::::::
3500 m.
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Figure 8. Yelmo performance in the MISMIP bedrock advance and retreat simulations on a linear sloping bed. The top panel shows the

imposed rate factor A, with 10 kyr steps of decreasing and then increasing values. The three lower panels show the grounding line position

evolution for each of three model configurations, respectively: “Default" is the standard model setup, with no special treatment of friction at

or near the grounding line, “Subgrid” uses the grounded fraction at the grounding line to scale the basal friction, “Scaling” applies both the

grounded fraction, and imposes a linear reduction in basal friction as the ice sheet approaches flotation. Separate simulations were run for

resolutions ranging from 20 km down to 2.5 km.
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Figure 9. Age-depth
:::::::
Analytical

::::::::
age-depth

:
profile for idealized summit

:::::::
compared

::
to

:::::
Yelmo

:::::::
Eulerian

:::
age

::::::
tracing.

::::
The

:::
ice

:::
age

::::::
relative

::
to

:::::
present

:::
day

:
(left) with an

:
is

:::::
shown

:::
for

::
the

:
analytical solution (thickgrey

:
,
::::::
light-red

:
line) and Yelmo (black line) with a vertical resolution of

nz = 30
:::
with

:
a
:::::
linear

::::::
vertical

:::
axis

:
and

::::::
compiled

::
at
:
double precision , and the associated error (right, %

::::
black

::::
line). The

::::::::
associated

::::::
relative

error
:::::
(right)

::
is

::::
given

:
for additional resolutions

::
this

::::
case

:::::
(black

:::::
line),

::
as

:::
well

::
as
:::

for
::
a
:::::
higher

::::::::
resolution of nz = 10 and nz = 50 are also

shown
:::
and for comparison

::::::
nz = 30

::::::::
compiled

:
at
:::::
single

:::::::
precision (thin dark grey lines, smaller points)

:
, and

:::::
finally for the same

:
a
:
resolution

::
of

::::::
nz = 30

:::::::
compiled

::
at

:::::
double

:::::::
precision, but single precision

:::
with

::::::::::
exponentially

::::::::
increasing

::::::::
resolution

:
at
:::

the
::::
base

:::::
instead

::
of

::
a

::::
linear

:::
axis

:
(thin,

light grey
::::
green

:
line, smaller points).
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Figure 10. Antarctica present-day ice sheet configuration and surface velocities from observations (left), compared to a steady-state sim-

ulation with Yelmo (middle). In contrast, Antarctica glacial configuration and surface velocities simulated by Yelmo (right). Simulations

were performed at 32 km resolution. The colors show surface velocity in m yr�1 and the dark grey contours show surface elevation in 500 m

intervals (thick lines correspond to 0, 1000, 2000 and 3000 m above sea level). The black line shows the grounding line position.
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Figure 11.
:::::::

Simulated
:::::::::
present-day

::::::::::
ice-thickness

:::::
minus

::::::::::
observations

::::
(left)

:::
and

::::::::
simulated

:::::
versus

:::::::
observed

::
ice

::::::
surface

:::::::
velocity

:::::
(right).

::::
The

::::
colors

::
in
:::

the
:::
left

::::
panel

:::::
show

:::
the

::
ice

:::::::
thickness

::::::::
difference

::
in
::
m

:::
and

:::
the

::::
dark

::::
grey

::::::
contours

:::::
show

:::::
surface

:::::::
elevation

::
in
:::::
500 m

:::::::
intervals

:::::
(thick

:::
lines

:::::::::
correspond

::
to

::::
1000,

:::::
2000

:::
and

::::::
3000 m

::::
above

:::
sea

:::::
level).

:::
The

:::::
black

:::
line

:::::
shows

:::
the

::::::::
grounding

:::
line

:::::::
position.

::
In

::
the

::::
right

:::::
panel,

:::
the

::::
dark

::
red

:::
line

:::::::
indicates

::
a

:::::
perfect

::::::::
correlation

:::::::
between

:::::
model

:::
and

::::::::::
observations.
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Table 1. Yelmo performance in the EISMINT1 moving margin experiment (“Moving”), as well as in the EISMINT2 experiments A and F.

Where available, metrics with the ensemble mean and standard deviation from the original benchmark experiments are also provided for

comparison.

Experiment Model Volume

[106 km3]

Area

[106 km2]

Melt fraction Divide thick-

ness [m]

Divide basal

temperature [K]

Divide homologous

basal temperature

[�C]

Moving EISMINT1 – – – 2997.5± 7.4 – -13.40± 0.56

Yelmo
1.939

:::::
1.980

1.003 0.58
:::
0.66

2992.6
:::::
3006.6 256.9

::::
257.2 -13.61

:::::
-13.37

A EISMINT2 2.128± 0.073 1.034± 0.043 0.72± 0.15 3688± 48 255.6± 1.4 –

Yelmo
2.205

:::::
2.170

1.031 0.71
:::
0.75

3736
::::
3678 254.9

::::
254.7 -15.03

:::::
-15.26

F EISMINT2 – – – – – –

Yelmo
2.458

:::::
2.373 1.040

:::::
1.031

0.36
:::
0.55

4374
::::
4266 240.9

::::
240.7 -28.50

:::::
-28.80
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