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Abstract. We present a new, open source viscoelastic solid Earth-deformation model, Elmer/Earth. Using the multi-physics

finite element package Elmer, a model to compute viscoelastic material deformation has been implemented into the existing

linear elasticity solver routine. Unlike approaches often implemented in engineering codes, our solver accounts for the restoring

force of buoyancy within a system of layers with depth-varying density. It does this by directly integrating the solution of the

system rather than by applying stress-jump conditions in the form of Winkler foundations on inter-layer boundaries, as is5

usually needed when solving the minimisation problem given by the stress-divergence in commercial codes. We benchmarked

the new model with results from a commercial finite element engineering package (ABAQUS, v2018) and another open-source

code that uses viscoelastic Normal Mode theory, TABOO, using a flat-earth setup loaded by a cylindrical disc of 100 km

diameter and 100 m height of ice density. Evaluating the differences of predicted surface deformation at the centre of the load

and two distinctive distances (100 km and 200 km), average deviations of 7 cm and 2.7 cm of Elmer/Earth results to ABAQUS10

and TABOO, respectively, were observed. In view of more than 100 cm maximum vertical deformation and the different

numerical methods and parameters, these are very encouraging results. Elmer is set up as a highly scalable parallel code and

distributed under the (L)GPL license, meaning that large scale computations can be made without any licensing restrictions.

Scaling figures presented in this paper show good parallel performance of the new model. Additionally, the high fidelity ice

sheet code Elmer/Ice utilises the same source-base of Elmer and thereby the new model opens the way to undertaking high-15

resolution coupled ice-flow - solid Earth deformation simulations, which are required for robust projections of future sea-level

rise and glacial isostatic adjustment.

1 Introduction

Reconstructing ice sheet history and predicting ice sheet response to changes in climate is imperative for accurately predicting

future ice-mass loss and hence sea-level rise. An important component of ice-sheet evolution is the isostatic response of the20

solid earth that occurs as a result of changes in the mass of the ice sheet. Over glacial cycles the waxing and waning of ice

sheets causes the underlying earth to deform as the ice loading at the surface grows and shrinks. This deformation occurs both

instantaneously as an elastic response and over longer timescales as the viscous mantle flows back to previously glaciated

regions in order to regain gravitational equilibrium. How fast or slow the earth deforms depends on the underlying mantle
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viscosity, and, although typically thought to occur over several thousands of years (Whitehouse, 2018, and references therein),25

recent studies have shown regions undergoing much more rapid (decadal) rebound in response to present-day changes (Nield

et al., 2014; Barletta et al., 2018).

This isostatic response of the bedrock can strongly influence ice-sheet dynamics. Deformation of the earth changes the

elevation of the ice sheet which in turn affects the surface temperature and the rate of accumulation or ablation. Solid earth

deformation also alters the gradient of the bedrock on which the ice sheet rests, particularly at the periphery, altering the30

internal forces as well as the driving stress and therefore the flow of the ice sheet (Le Meur and Huybrechts, 1996; Adhikari

et al., 2014) . In marine-grounded ice sheets lying on a reverse slope bed (e.g. West Antarctica) these effects can be critical. As

the grounding line retreats further along the reverse slope into deeper water, ice flux across the grounding line increases leading

to increased loss (Schoof, 2007). However, bedrock uplift can have a stabilising effect by reducing the slope of the reverse bed

and thereby slowing the retreat of the grounding line (Gomez et al., 2010, 2013).35

Including the isostatic response of bedrock in an ice-sheet model is therefore crucial to obtaining accurate predictions of ice-

sheet mass balance, and there are several methods which can be used. Computing the isostatic response with a self-gravitating

viscoelastic spherical earth is the most accurate, but most computationally expensive, method. Several simple approximations

are often made using models with a combinations of local lithosphere or elastic lithosphere with diffusive asthenosphere or

relaxing asthenosphere (Le Meur and Huybrechts, 1996; Rutt et al., 2009). Of these, Le Meur and Huybrechts (1996) found40

the best performing is the “ELRA” (e.g., Greve, 2001) model (elastic lithosphere with relaxing asthenosphere) which is widely

used in ice-sheet modelling , mainly due to its simplicity and fast computations. However, Bueler et al. (2007) found significant

differences in resulting bed elevation and ice-sheet thickness when using a model with ELRA compared to a spherical self-

gravitating model due to the shortcomings of using a constant relaxation time for the mantle as opposed to mode-dependent

relaxations times (Peltier, 1974).45

A further improvement to an ice-sheet model can be made by coupling a model of solid earth deformation to the ice-sheet

model. Studies have demonstrated that the feedback between the two systems can have large impacts on ice sheet evolution

(Gomez et al., 2013; de Boer et al., 2014). Using a coupled model Gomez et al. (2015) showed a reduced estimate of Antarctic

ice-mass loss compared with a model without solid earth effects included. However, due to the large computational expense

of these models, they remain at a relatively low resolution both spatially and temporally therefore omitting short wavelength50

and short timescale deformations. A recent study by Larour et al. (2019) showed that models need kilometre-scale resolution

in the horizontal components to accurately predict ice-sheet evolution in the region of ice sheet mass change, particularly for

the short wavelength elastic component of solid earth deformation. This demonstrates the clear need for a full Stokes ice-sheet

model capable of computing high resolution solid Earth rebound.

Wu (2004) presented a recipe to adapt existing commercial finite element codes to compute earth deformation as a response55

to ice loads, both for flat-earth as well as spherical self-gravitating setups. Finite elements have the advantage that they in

general can use unstructured meshes in order to provide the needed resolution in regions where either physics or geometry

demand it while keeping the model size limited. Many finite element packages also include versatile solution methods that often

also work in parallel computing environments – an essential feature to address continental-size problems at high resolution.
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2 Mathematical and numerical model60

The implementation of the viscoelastic rheology and additional force terms to a large extent follows the one suggested by Wu

(2004). Adopting their notation, we start from the viscoelastic stress tensor, τ defined by the differential equation

∂τ

∂t
=
∂τ 0

∂t
+
µ

ν
(τ −Π1) , (1)

with the stress τ 0 in case of incompressibility given by

τ 0 = Π1+ 2µε, (2)65

where Π denotes the isotropic part of the Cauchy stress, i.e., the pressure. In the derivatives of (1) and (2), t stands for time, 1

denotes the unit-tensor, µ the shear modulus and ν is the viscosity. The strain-tensor ε written in terms of the displacement d

denotes as

ε= sym(∇d) =
1

2

(
∇d+ (∇d)T) . (3)

The linearised equation of motion for solid earth deformation (Wu, 2004) is given by70

∇ · τ −∇(ρ0g0ḋ)− ρ1g0− g0∇φ1 = 0. (4)

Where ρ0 and g0 are hydrostatic background density and gravity, respectively, and ρ1 is the perturbed density. The direction of

g0 is in negative radial direction. According to Wu (2004, section 3) (2004, , a flat-earth model is derived from (4) by assuming

incompressibility and ignoring self-gravitational effects (i.e., redistribution of mass), making the third and fourth terms vanish.

Further, sphericity is ignored, leading to changes aligned with the unit vector of a Cartesian system in vertical direction, ez .75

This leads to the equation of motion for a non-self-gravitating flat-earth model with layer-wise constant material. It reduces to

a balance between the divergence of the stress (first term) and a restoring force due to the advection of pre-stress of the material

(Wu, 2004)

∇ · τ − ρg∇(ez ·d) = 0. (5)

Here, ρ= ρ0 and g = ||g0|| is the magnitude of the local acceleration by gravity, which points into the negative direction of ez .80

2.1 Implementation in Elmer/Earth

Elmer/Earth is based on the open-source finite element package Elmer (Råback et al., 2019). In order to build a flat-earth model

as described in the previous section, equation (1) has been added to the already existing linear elasticity solver of Elmer. In

case of incompressibility, the additional variable of pressure, Π , has been introduced to the solver. This avoids the singularity

of the compressible formulation in the case of the Poisson ratio approaching 1/2.85

Many commercial codes lack an implementation of the second term in (5), which implies a transformation of the stress to

reduce the formulation to only the first term. As a consequence of this stress transformation, additional jump-conditions in the
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form of Winkler foundations (Wu, 2004) have to be imposed on internal boundaries that mark a jump in either the gravity or

the density. This can be inconvenient in building the model, as a detailed description of the setup may contain boundaries for

more than 10 layers.90

Here we take advantage of the accessibility of the source code of Elmer by including this term in the weak formulation that

uses the viscoelastic stress. The second term in (5) thereby contributes to the stiffness matrix. Naturally, the formulation still

needs a layered structure of the model, i.e., material parameters are kept constant for certain layers. This can be easily achieved

as Elmer allows material parameters to be prescribed as well as body forces (in our case gravity), on the basis of elements or

even integration-points (in addition to nodal values). This means that we are able to impose discontinuities in parameters over95

elements anywhere in the discretized computing domain without placing Winkler foundation boundaries at layer interfaces. In

other words, no boundary conditions have to be set at internal layer boundaries. By including this term in the weak formulation

of the problem, the method then automatically applies the needed restoring force on element boundaries with jumps in material

properties or gravity, without the need to place boundaries in the mesh.

Discretization of the time derivatives for stress and pressure (in case of incompressible material) is implemented by the100

first-order implicit difference,

∂τ

∂t
≈ τ

i+1− τ i

∆t
,

∂Π

∂t
≈ Πi+1−Πi

∆t
. (6)

Here, i is the current, and i + 1 the implicit time-step as well as ∆t= ti+1− ti the time-step size between. The solution of the

time-evolution problem reads then as

−1Πi+1 + 2µΦεi+1 =−ΦΠi + 2µΦεi−Φτ i, (7)105

with φ= 1/(1 + (µ/ν)∆t). The balance (5) of linear momentum is then solved for the new time step

∇ · τ i+1(d)− ρg∇
(
ez ·di+1

)
= 0. (8)

The weak formulation then results from the integral over the whole domain Ω (with its confining surface ∂Ω) using the test

and weighting function vectors u, v ∈ H1∫
Ω

τ(u) · (∇v)dV −
∮
∂Ω

(τ(u) ·n) ·vdA−
∫
Ω

ρg∇(ez ·u) ·vdV = 0. (9)110

Mind that the divergence of the stress tensor has been partially integrated, leading – after Green’s theorem – to a term that

integrates the stress vector, t= τ(u) ·n over ∂Ω with its surface normal n. Taking additionally into account that τ(u) is

a symmetric tensor, only the symmetric part of sym(∇v) = ε(v) contributes to the first integral, leading to the symmetric

stiffness matrix in the weak formulation∫
Ω

τ(u) · ε(v)dV −
∮
∂Ω

(τ(u) ·n) ·vdA−
∫
Ω

ρg∇(ez ·u) ·vdV = 0. (10)115
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The system is completed by boundary conditions that are either provided by a value for any component of the stress-vector,

t= τ ·n , in the second integral (Neumann condition) of equation (10) or by imposing a value for any component of the

deformation vector, d (Dirichlet condition).

Equation (10) is solved using the standard Galerkin method with – in the case of the benchmark described in section 3 – first

order basis functions. Apart from this particular choice, Elmer provides a variety of possible basis functions left to the choice of120

the user. The iteration for the viscous contribution is computed on the Gaussian integration points. In case of incompressibility,

stabilisation has to be applied by the residual free bubble method.

3 Benchmark tests

Benchmark tests are performed in order to validate the new implementation of Elmer/Earth in comparison to two other codes,

ABAQUS and TABOO. We force the models with changing surface load, representing an idealised ice loading experiment.125

Specific geometry, earth structure and ice loading for the benchmarking case are described in Section 3.3. The two other codes

are briefly introduced in the following sections.

3.1 Reference model ABAQUS

We use the finite element software package ABAQUS (Hibbitt et al., 2016, software version 2018) to construct a model to

verify the results of the new viscoelastic solver implemented in Elmer. We choose this approach to replicate as fully as possible130

the geometry and equations implemented in the Elmer/Earth model. The model is a 3-D flat-earth model which computes

the solid Earth deformation in response to a changing surface load using the approach of (Wu, 2004). Buoyancy forces are

accounted for by applying Winkler foundations to layer boundaries within the model where a density contrast occurs between

two layers, and at the surface (Wu, 2004). The model has a large lateral extent to prevent boundary effects in the area of interest

(Steffen et al., 2006) and has zero displacement imposed on its lateral and bottom boundaries. The model includes layers from135

the surface of the Earth to the core-mantle boundary with parameters shown in Table 1.

3.2 Reference model TABOO

TABOO is an open source post-glacial rebound calculator (Spada et al., 2003; Spada, 2003) that computes the deformation of

the Earth in response to a changing surface (glacial) load. The TABOO model assumes a spherically symmetric, incompressible

earth with a Maxwell viscoelastic rheology (non-rotating, self-gravitational). TABOO implements the classical viscoelastic140

normal mode method commonly used in studies of glacial isostatic adjustment (Peltier, 1974). There are several inbuilt solid

Earth models available in TABOO with specific earth structure and parameters and we use one of these for our synthetic

benchmarking case study (Table 1, Section 3.3). Deformation is computed up to a user-specified spherical harmonic degree,

and we chose 2048 (equivalent to approximately 10km).
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Figure 1. Top and side view of the reference run Elmer/Earth mesh (mesh1). The different layers corresponding to varying material param-

eters shown in the right panel are given in Tab, 1. Annotated coordinates are in kilometres

3.3 Test model setup145

In order to test and compare the newly built Elmer/Earth model, a simple benchmark case has been set up for each of the models

presented in Sections 3.1 and 3.2. The benchmark case consists of a simple one-dimensional earth structure with parameters

varying in the radial direction only, loaded and unloaded with a disc of ice. The models in Elmer/Earth and ABAQUS both use

a flat-earth approximation whereas TABOO is a fully spherical model. The effects of sphericity are negligible for the size of

load we use for our benchmarking case. None of the models solve the "sea-level equation" (Farrell and Clark, 1976).150

For the flat-earth approximation, the three-dimensional model domain stretches 4000 km in each horizontal direction from

the centre of the ice load. This distance is 80 times the diameter of the test load which is more than sufficient to allow mantle

deformation below the ice load (Steffen et al., 2006). With depth, the model extends from the Earth’s surface at a radius of

6371 km to the core-mantle boundary with a total depth of 2891 km.

Geometry construction and meshing for Elmer/Earth simulations was achieved using the open source software Gmsh155

(Geuzaine and Remacle, 2009). The lateral mesh resolution for ABAQUS model is constant 10 km, whereas it varies for

Elmer/Earth from 10 km for the area over which the load is applied, increasing linearly to 200 km at the lateral domain bound-

aries (see left panel of Fig. 1). The vertical resolution increases with depth as shown in the right panel of Fig. 1. The TABOO

model has a spectral resolution equivalent to 10 km.

The earth structure used for the benchmarking case is one that is included as part of the TABOO package and is summarised160

in Table 1. The solid Earth model consists of an elastic lithosphere, a viscoelastic upper mantle divided into three layers, and a

viscoelastic lower mantle. Elmer/Earth applies incompressibility throughout the whole column and an extremely high viscosity

of ν = 1×1044 Pa s in the Lithosphere, thereby enforcing an approximately elastic behaviour on the timescale of the load. This
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Figure 2. Cross section of the reference run with Elmer/Earth (mesh1) showing the vertical deformation at 99 years into the simulation at

maximum deformation. Deformation is shown as colour texture as well as iso-line (white in 0.1 m spacing). The boundaries between the

lithosphere, upper and lower mantle (as given in Tab, 1) are annotated as grey lines . Annotated coordinates are in kilometres

can be justified by the Maxwell-time tM = ν/µ being of the order of 1033s, which indicates that viscous effects only would be

significant at timescales several order of magnitudes larger than the timing of the load signal.165

The viscosity of the upper and lower mantle is set to 1× 1018 and 1× 1022 Pa s, respectively, and the elastic and density

parameters are depth-averaged values from the Preliminary Reference Earth Model (Dziewonski and Anderson, 1981, PREM).

These parameters can easily be assigned to layers in both ABAQUS and Elmer. The relatively low value for the upper mantle

helps to shorten the timescales for the benchmark test.

For the benchmark case we compute the deformation caused by an instantaneously imposed ice load at t= 0. Starting from170

an equilibrium bedrock with zero deformation, an ice load is instantaneously applied at the centre of the domain at the very

beginning of the simulation. It is a 100 km diameter disc of 100 m height with a prescribed constant density of 917 kg m−3.

The load is maintained for 100 years after which it is instantaneously removed and the rebound computed for a further 100

years. The result on the vertical plane of symmetry from the reference run described in Sect. 5 is shown in Fig. 2. The temporal

evolution of the vertical displacement of the reference Elmer/Earth run (mesh1) over a line at the surface from centre to the175

margin (0-200 km) is depicted in Fig.3.

3.4 Numerical settings in Elmer/Earth

For all runs of Elmer/Earth presented in sections 4 and 5, the same numerical methods and parameters have been applied.

A time-step size for the implicit backward differentiation formula (BDF) of the equivalent of one year has been chosen – in

Section 5 we discuss the impact in accuracy by halving this time-step size. The resulting system matrix of the linear elasticity180
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Figure 3. Temporal evolution of vertical displacement of the reference Elmer/Earth run (mesh1) over a line at the surface from centre to the

margin

Table 1. Properties of the different layers in the flat-Earth model benchmark. Vertical distances are with respect to Earth’s centre. The

ABAQUS reference model uses a material model with a constant Poisson’s ratio of 0.49 throughout the whole domain.

Layer vertical range [km] thickness [km] % [kgm−3] g [ms−2] ν[Pa s] E [Pa]

Lithosphere: 6371-6251 120 3233 9.87852 0 or 1×1044 1.8388×1011

Upper mantle: 6251-6151 100 3367.12 9.939356456 1×1018 1.9941×1011

6151-5971 180 3475.58 9.875562964 1×1018 2.2948×1011

5971-5701 270 3857.75 9.839990347 1×1018 3.1943×1011

Lower mantle: 5701-3480 2221 4877.91 9.792107051 1× 1022 6.5844×1011

solver was first pre-conditioned using an ILU (Incomplete Lower-Upper) factorisation of first order degree (ILU1, in Elmer

terminology). To obtain a solution, its inverse was approximated using the GCR (Generalized Conjugate Residual) Krylov-

subspace method (see e.g. Eisenstat et al., 1983; Barrett et al., 1993). A convergence criterion was applied for the relative norm

of the solution vector between two iteration steps of εd = 1× 10−7 .

4 Comparison of results185

Comparing the results of the benchmarking exercise with two models that use different methods gives us confidence in the

implementation of the new Elmer code. Figure 4 shows displacement with time at three locations - the centre of the disc

(indicated by 0 km) and at 100 km and 200 km distance from the centre of the disc. The displacement curves for all three
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Figure 4. Comparison of results for deformation at load-centre (0 km), 100 and 200 km for Elmer/Earth, ABAQUS and TABOO.

models over major parts of the simulation agree to within an order of 10 cm (see Fig. 5) in relation to a maximum deformation

of 1.1 m by ABAQUS at the centre. The largest difference is observed at the centre of the disc where the Elmer/Earth model190

deforms slightly less than ABAQUS and almost insignificantly more as TABOO, but reaches this deformation more quickly

than the other codes (i.e. has a faster relaxation time). As a consequence, Fig. 5 shows differences in vertical displacement

between models (also between ABAQUS and Taboo) to be largest in the very beginning, when applying the load) and around

the time of sudden deloading.
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Figure 5. Difference of deformation at load-centre (0 km), 100 and 200 km of Elmer/Earth relative to ABAQUS and TABOO.

The small differences between the results could be caused by several factors. Mesh differences between Elmer/Earth and195

ABAQUS are the likely cause of some small differences with ABAQUS having a regular grid mesh and Elmer having a finer

mesh at the centre of the disc. There seems to be a correlation of the resolution in the centre with the displacement in both

FEM based models. It seems that the ABAQUS model setup does not provide enough horizontal mesh resolution at the centre,

where the load is applied. This is confirmed by results obtained with mesh 2 (half mesh size) in Elmer/Earth, which produced

displacements even larger than the one with the constant 25 km mesh from ABAQUS (see Section 5).200
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Table 2. Parameters of the meshes and their partitions used for Elmer/Earth test runs

Mesh name no. nodes no. elements no. partitions

mesh1 (reference) 87745 82676 16 and 32

mesh2 (half size) 44198 41328 16 and 32

mesh3 (double size) 160747 152152 64

The deformation calculated by TABOO is less than Elmer/Earth and ABAQUS at each location. This may be due to the fun-

damental differences in the computation methods employed by the TABOO code, implementing normal mode methods rather

than finite element methods. Furthermore, TABOO computes deformation on a self-gravitating solid Earth whereas ABAQUS

and Elmer do not include self-gravitation, which would result in some differences between these models. Nevertheless, the

differences observed in the displacement curves are still within an acceptable tolerance.205

5 Performance and accuracy of the Elmer/Earth deformation model

In order to obtain some insight into parallel performance as well as the dependency on mesh resolution of Elmer/Earth, three

meshes with different resolutions and mesh partitions (4, 16 and 32) have been created (see Table 2). Partitioning of the meshes

has been performed by the mesh-conversion program ElmerGrid (part of the Elmer installation) using the METIS k-way

partitioning scheme (Karypis and Kumar, 1998). Identical numerical parameters and methods, as described in Sect. 2, were210

applied throughout all runs.

5.1 Strong and weak scaling

Tests were performed on the Linux cluster raijin (Australian National Computational Infrastructure, 2017), utilising com-

pute nodes, each equipped with two Intel Xeon Sandy Bridge (E5-2670, 2.6 GHz) processors summing up to 16 cores per

compute node. The code was compiled using the Intel compiler suite (version 2019.2.187) with Open MP (OMP) enabled,215

mainly to activate utilisation of OMP-SIMD instructions within the code (Byckling et al., 2017). CPU specific optimisation

was enabled by compiler flags -O2 -march=sandybridge. Basic linear algebra libraries (Lapack, BLAS, ScaLapack)

were linked in from the Intel MKL library. Message passing was enabled by linking to the Intel MPI library (version 5.1.0.097)

provided on the system.

We want to emphasise that we only studied a limited set of problem sizes/computing resource configurations and only single220

runs (no statistics) were performed. Results presented in the following thus have to be interpreted in view of the limitations.

All runs performed are summarised in Table 3.

A comparison of a simulation performed with 16 cores (single compute node) with mesh2 (half size) and with 32 cores

(two compute nodes) on mesh1 (reference) reveals a drop to 64% of an ideal, linear weak scaling (increasing core numbers
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Table 3. Timings of different scalability test runs. All timings are given in seconds

Mesh (case) partitions CPU time [s] wall-clock time [s]

mesh1 (single node) 16 19702 21288

mesh1 (reference) 32 9016 9639

mesh1 (half time-step size) 32 14319 16351

mesh2 (half size, 1 node) 16 5035 6122

mesh2 (half size, 2 nodes) 32 3271 3683

mesh3 (double size) 64 14817 15800

while maintaining the load/core) performance. This can be explained by adding additional latency to that part of the MPI225

communication that in the 32 core run has to be routed over the inter-nodal connection (Infiniband), whereas the 16 core

run solely uses faster communication provided within a single compute node. Reassuringly, a similar value, namely 61%,

was obtained between runs on the double-size mesh (mesh3) with 64 cores on 4 compute nodes in relation to the reference

problem (mesh1) run on 32 cores on 2 compute nodes. Studying the log-files of the runs, it also comes clear that the chosen

GCR algorithm takes longer to converge with respect to the same convergence criteria if increasing the amount of mesh-230

partitions. Another comparison with slightly less strict convergence criteria of the linear solution iteration algorithm led to a

value of 84%.

On the other hand, if looking at strong scalability (i.e., increasing core numbers while reducing load/core), doubling compu-

tational resources from 16 cores (single compute node) to 32 cores (inter-nodal) for the fixed-size smaller problem (mesh2)

revealed a speedup of 1.66, which is below the ideal value of 2 (half wall-clock time by doubling of cores). For the larger ref-235

erence problem (mesh1), we achieve a speedup of 2.2 if increasing from 16 (single node) to a 32 core utilising two compute

nodes of the reference run. We have not further investigated the particular cause of this super-linear scaling, but can speculate

on it: Reducing the needed memory/core improves the possibility to fit more data into the cache and thereby enable faster

memory access (i.e., avoiding cache misses) and hence – despite the added latency from inter-nodal communication– allowing

for a general acceleration.240

Despite applying the same solution method, it is not really possible to compare performance of Elmer/Earth to ABAQUS,

since the latter was run on a different platform using a regular mesh of 25 km constant horizontal mesh size. Computational

performance was not the main motivation behind using ABAQUS for the benchmarking exercise, rather we wanted to use a

model that could best replicate the geometry and equations used. Nevertheless, it is interesting to note that the run-time of

ABAQUS was in the range of 6 h using 32 cores on an high-end workstation, hence about twice the time of Elmer/Earth refer-245

ence run on the same amount of cores of a larger Linux cluster. These run-times should not be used in a direct comparison for

computational performance, since ABAQUS was run on a mesh significantly larger (600k nodes) than the one of Elmer/Earth.

However, TABOO is using a completely different model approach, such that any comparison would be obsolete.
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5.2 Accuracy with respect to mesh and time-step size

We further studied accuracy and consistency of Elmer/Earth results with respect to spatial and temporal discretization sizes.250

To that end, we ran the same numerical setup on all three meshes given in Tab. 2. Results are depicted in Fig. 6 and reveal

reference run (mesh1) 0km
half time−step (mesh1) 0km

half horiz./vert. resolution (mesh2) 0km
double horiz. resolution (mesh3) 0km−1.4
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Figure 6. Vertical deformation at the centre (0 km) of Elmer/Earth simulations using different spatial and temporal resolutions.

that too low spatial resolution (i.e., mesh2) – in that particular case in horizontal as well as vertical direction – yields too

large deformations. That might simply be because of too little resolution of the induced viscous deformation in under-resolved

layers. The finer resolved meshes (mesh1 and mesh3) show very little deviations in results, thus indicating consistency of

the model beyond a resolution of about 5 km mesh-size at the centre of the geometry and the vertical structure depicted in the255

right panel of Fig. 1. On the other hand, increasing temporal accuracy by reducing the time-step size from one year to half a

year did not reveal any significant difference in result for similar setups to the reference run (mesh1).

6 Conclusions

We presented a newly implemented viscoelastic addition to the linear elasticity solver of the open-source finite element package

Elmer and its application to a flat-earth model. Robust projection of future ice sheet change depends on coupled solid Earth and260

ice dynamic processes at high spatial resolution, and Elmer/Earth provides a new open source capability in conjunction with

the existing ice-sheet model Elmer/Ice (Gagliardini et al., 2013). Elmer/Earth, on its own, provides a new tool for modelling

viscoelastic solid Earth deformation due to surface loading changes.

Elmer/Earth for the time being is a so-called flat-earth model (Wu, 2004). In its current state it ignores sphericity and self-

gravitational effects as well as neglects to account for the deformation induced by redistribution of ocean water masses. This265

introduces certain limitations on its applicability (Wu and Johnston, 1998). Consequently, future applications of this particular

model version should be confined to regional studies of ice-sheets or highly localised loads, such as glaciers and ice-caps.
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We benchmarked Elmer/Earth with another FEM code, ABAQUS, as well as a spherical viscoelastic normal mode code,

TABOO, and these comparisons show good agreement in the range of deviation in solution method as well as numerical

approaches.270

Scaling figures presented in Sect. 5 are what one would expect from other parallel performance tests of Elmer. A good

performance tuning strategy will have to make sure that a good ratio between partition size (i.e., computation mainly bounded

by memory access) and communication between the different MPI tasks is obtained. OpenMP multi-threading in principle is

available for certain modules in Elmer, yet, not implemented for the linear elasticity solver, but might give some potential to

boost performance within a single node (Byckling et al., 2017).275

Code availability. Elmer (version 8.4) is available for download under GitHub. The revision (SHA-1 14c19b6) used in this study can be re-

trieved from https://github.com/ElmerCSC/elmerfem/archive/14c19b681beb12df3a1d88fed9cd56a694b0cc92.zip (last visited 2019-11-06).

TABOO is an open source code available for download under GitHub. In this study we used version v1.1 (SHA-1 6163bec), which can be

downloaded from https://github.com/danielemelini/TABOO/archive/v1.1.zip (last visited 2019-11-06). ABAQUS is proprietary software and

needs a purchased license. We used ABAQUS 2018 release in this study. Information on how to obtain the software can be found under280

https://www.3ds.com/products-services/simulia/products/abaqus/ (last visited 2019-11-06).

Video supplement. https://doi.org/10.5446/44086
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