Supplementary Material for A computationally efficient model for probabilistic local warming projections constrained by history matching and pattern scaling

A manuscript submitted to Geoscientific Model Development Discussions

Philip Goodwin1,*, Martin Leduc2, Antti-Ilari Partanen3, H. Damon Matthews4 and Alex Rogers5

1 Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, SO14 3ZH, UK

² Ouranos, Montreal, Canada

3 Climate System Research, Finnish Meteorological Institute, Helsinki, Finland

4 Department of Geography, Planning and Environment, Concordia University, Montreal, Canada

5 Department of Computer Science, University of Oxford, Oxford, UK

* Corresponding author, email: p.a.goodwin@soton.ac.uk

This file contains Supplementary Tables S1 and S2.

Model name	Institution			
bcc-csm1-1	Beijing Climate Center, China Meteorological Administration			
BNU-ESM	College of Global Change and Earth System Science, Beijing Normal			
	University			
CanESM2	Canadian Centre for Climate Modelling and Analysis			
CCSM4	National Center for Atmospheric Research			
CESM1-BGC	Community Earth System Model Contributors			
CNRM-CM5	Centre National de Recherches Meteorologiques / Centre Europeen de			
	Recherche et Formation Avancees en Calcul Scientifique			
CSIRO-Mk3-6-0	Commonwealth Scientific and Industrial Research Organisation in			
	collaboration with the Queensland Climate Change Centre of Excellence			
GFDL-ESM2G	Geophysical Fluid Dynamics Laboratory			
GFDL-ESM2M	Geophysical Fluid Dynamics Laboratory			
GISS-E2-R	NASA Goddard Institute for Space Studies			
HadGEM2-ES	Met Office Hadley Centre (additional HadGEM2-ES realizations contributed			
	by Instituto Nacional de PesquisasEspaciais)			
INM-CM4	Institute for Numerical Mathematics			
IPSL-CM5A-LR	Institut Pierre-Simon Laplace			
IPSL-CM5A-MR	Institut Pierre-Simon Laplace			
IPSL-CM5B-LR	Institut Pierre-Simon Laplace			
MIROC-ESM	Japan Agency for Marine-Earth Science and Technology, Atmosphere and			
	Ocean Research Institute (The University of Tokyo), and National Institute for			
	Environmental Studies			
MIROC5	Atmosphere and Ocean Research Institute (The University of Tokyo),			
	National Institute for Environmental Studies, and Japan Agency for Marine-			
	Earth Science and Technology			
MPI-ESM-LR	Max-Planck-InstitutfürMeteorologie (Max Planck Institute for Meteorology)			
MPI-ESM-MR	Max-Planck-InstitutfürMeteorologie (Max Planck Institute for Meteorology)			
MRI-CGCM3	Meteorological Research Institute			
NorESM1-M	Norwegian Climate Centre			
NorESM1-ME	Norwegian Climate Centre			

Supplementary Table S1. CMIP5 models and the institutions that provided the model data used in this study.

Observational constraint	Observation- consistent range	Comment/References	Posterior model ensemble, 95 % range
Global mean temperature anomaly, 1986-2005 relative to 1850-1900	0.55 to 0.67 °C	Constraint amended from 2003- 2012 period in Goodwin et al. (2018b) to 1986-2005 period here, so that the final time- average includes a significant volcanic eruption. Range based on 90% observational range from IPCC (2013).	0.55 to 0.67 °C
Global mean temperature anomaly, 2007-2016 relative to 1971-1980	0.56 to 0.69 °C	Constraints and ranges as used in Goodwin et al. (2018b). Based on: (Morice et al. 2012;	0.56 to 0.68 °C
Global mean temperature anomaly, 2007-2016 relative to 1951-1960	0.54 to 0.78 °C	GISTEMP, 2018; Hansen et al., 2010; Smith et al., 2008; Vose et al., 2012)	0.61 to 0.78 °C
Global mean sea-surface temperature anomaly, 2003-2012 relative to 1850-1900	0.56 to 0.68 °C	Constraint and range as used in Goodwin et al. (2018b). Based on (Kennedy et al., 2011; Huang et al., 2015)	0.56 to 0.68 °C
Whole ocean heat content anomaly, 2010 relative to 1971	117 to 332 ZJ	Constraints and ranges as used in Goodwin et al. (2018b). Based on (Levitus et al., 2012;	128 to 325 ZJ
Upper 700m ocean heat content anomaly, 2010 relative to 1971	98 to 170 ZJ	Giese et al., 2011; Balmaseda et al., 2013; Good et al., 2013; Smith et al., 2018; Cheng et al., 2017)	98 to 170 ZJ
Terrestrial carbon uptake, 2011 relative to preindustrial	70 to 250 PgC	Constraint and range as used in Goodwin et al. (2018). Based on IPCC (2013)	97 to 254 PgC
Rate of terrestrial carbon uptake, 2000 to 2009	1.4 to 3.8 PgC yr-1	Constraint and range as used in Goodwin et al. (2018b). Based on IPCC (2013)	1.4 to 3.7 PgC yr-1
Ocean carbon uptake, 2011 relative to preindustrial	125 to 185 PgC	Constraint and range as used in Goodwin et al. (2018b). Based on IPCC (2013)	125 to 182 PgC

Supplementary Table S2: The observational consistency tests used to extract WASP simulations, and 95 % range of simulated values in the final WASP ensemble. Following the method outlined in Goodwin et al. (2018b) a simulation is deemed observation consistent provided that: (1) all simulated quantities lie within 90 to 95 % uncertainty ranges for the observed quantities, or (2) the sum total of the deviation from the 90 to 95 % uncertainty ranges across all constraints is less than a small permitted level (Goodwin et al, 2018b). This permitted deviation allows the tails of the observational uncertainty distributions to be present within the observation-constrained simulations