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Abstract. Climate projections are made using a hierarchy of models of different complexities and computational efficiencies. 

While the most complex climate models contain the most detailed representations of many physical processes within the 15 

climate system, both parameter space exploration and Integrated Assessment Modelling require the increased computational 

efficiency of reduced-complexity models. This study presents a computationally efficient method for generating probabilistic 

projections of local warming across the globe, using a pattern scaling approach derived from the Climate Model 

Intercomparison Project phase 5 (CMIP5) ensemble, that can be coupled to any efficient model ensemble simulation of global 

mean surface warming. First, global mean warming is projected using a 103-member ensemble of history-matched simulations 20 

with an example reduced complexity Earth system model: the Warming Acidification and Sea-level Projector (WASP). The 

ensemble-projection of global mean warming from this WASP ensemble is then converted into local warming projections 

using a pattern scaling analysis from the CMIP5 archive, considering both the mean and uncertainty of the Local to Global 

Ratio of Temperature Change (LGRTC) spatial patterns from the CMIP5 ensemble for high-end and mitigated scenarios. The 

LGRTC spatial pattern is assessed for scenario dependence in the CMIP5 ensemble using RCP2.6, RCP4.5 and RCP8.5, and 25 

spatial domains are identified where the pattern scaling is useful across a variety of arbitrary scenarios. The computational 

efficiency of our WASP/LGRTC model approach makes it ideal for future incorporation into an Integrated Assessment Model 

framework, or efficient assessment of multiple scenarios. We utilise an emergent relationship between warming and future 

cumulative carbon emitted in our simulations to present an approximation tool making local warming projections from total 

future carbon emitted. 30 

 

1 Introduction 

The dominant climate projections, used by the 5th Assessment Report (AR5) of the Intergovernmental Panel on Climate 

Change (IPCC, 2013), are made using the Climate Model Inter-comparison Project phase 5 (CMIP5) ensemble (Taylor et al, 

2012). However, due to their high level of complexity, state-of-the-art CMIP5 Earth System Models (ESMs) are 35 

computationally demanding, and thus cannot be used on a regular basis to inform decision makers about the impacts of arbitrary 

carbon-emission scenarios. 

 

While a couple of years separate the different generations of CMIP-like experiments, many applications rather require climate 

simulations to be generated within a much shorter time frame. For instance, impact assessments may require climate 40 

projections for scenarios not considered by the CMIP5 experiments, for example scenarios designed to meet Paris Climate 

Agreement targets and maintain global mean surface warming below 1.5 or 2 °C (e.g. van Vuuren et al., 2018; Brown et al., 

2018; Nicholls et al., 2018; Goodwin et al., 2018a), and physical climate simulations are required within Integrated Assessment 

Models exploring the coupled economic, societal, ecological and climate systems (e.g. van Vuuren et al., 2018; van Vuuren et 

al., 2017; McJeon et al., 2014). 45 



2 
 

 

To generate computationally efficient climate simulations, a range of lower-complexity – but numerically more efficient – 

climate models have been developed. They generally use a reduced spatial resolution and/ora simplified representation of 

processes included within the complex models (e.g. Smith, 2012; Meinshausen et al., 2011a; Goodwin et al., 2018b).  

 5 

For example, the highly efficient MAGICC6 climate model uses an upwelling-diffusion representation of the ocean and an 

hemispherical averaged spatial resolution (Meinshausen et al., 2011a). MAGICC6 has been configured to emulate an ensemble 

of the more complex Climate Model Intercomparison Project phase 3 (CMIP3) climate models (Meinshausen et al., 2011a; 

2011b), but at a fraction of the computational expense. To generate spatial projections using MAGICC, a pattern scaling 

approach (e.g. Herger et al., 2015) is applied to emulate the spatial climate patterns from the CMIP3 models (e.g. Fordham et 10 

al. 2012): the regional climate SCENarioGENerator (SCENGEN). This MAGICC6 (and combined MAGICC6/SCENGEN) 

climate model is computationally efficient enough to usefully couple into Integrated Assessment Model (IAM) frameworks, 

including the IMAGE and MESSAGE frameworks (van Vuuren et al., 2017; McJeon et al., 2014). A key goal of IAMs is to 

explore consequences of the coupled human-climate system, through coupling representations of the physical climate system 

with the biosphere and human/society interactions, often including energy generation and land-use changes.  15 

 

A recent study (Goodwin et al., 2018b) takes a different approach to making future projections of global mean surface warming, 

using the computationally efficient Warming Acidification and Sea-level Projector (WASP) climate model (Goodwin, 2016; 

Goodwin et al., 2017). In Goodwin et al. (2018b) the efficient WASP model is configured, not by tuning the parameters to 

emulate existing complex climate models (e.g. Meinshausen et al., 2011a; 2011b), but instead by history matching (Williamson 20 

et al., 2015) the efficient model to real world data. Goodwin et al. (2018b) first generate one hundred million (108) simulations 

using WASP, by varying the model properties with a Monte Carlo approach. This includes an input distribution for climate 

sensitivity drawn from geological evidence (PALEOSENS, 2012). These 108 simulations are then integrated from year 1765 

to 2017, and each of them is checked against a set of historic observational reconstructions  of surface warming (Hansen et al., 

2010; Smith et al., 2008; Vose et al., 2012), ocean heat uptake (Levitus et al., 2012; Giese et al., 2011; Balmaseda et al., 2013; 25 

Good et al., 2013; Smith et al., 2015; Cheng et al., 2017) and carbon fluxes (IPCC, 2013; le Quéré et al., 2016). Only those 

WASP simulations that are consistent with the observational constraints are extracted to form the final history-matched 

ensemble of around 3×104 simulations (Goodwin et al., 2018b, see Supplementary Table 3 therein). This final history matched 

ensemble is then used to make future projections (Goodwin et al., 2018b). Note that the WASP ensemble is not configured to 

emulate the performance of more complex models, but to be consistent with observations of the real climate system. 30 

 

The WASP model (Goodwin, 2016) produces projections for global mean surface warming only (Goodwin et al., 2018b), so 

to gain information to calculate local warming we here apply a pattern scaling tool. Leduc et al (2016) have recently shown 

that the spatial pattern of warming across CMIP5 models is relatively robust even though the average warming varies widely 

between ensemble members. Using the well-known pattern scaling approach (Tebaldi and Arblaster, 2014), Leduc et al. (2016) 35 

calculated the spatial pattern of the Local to Global Ratio of Temperature Change (LGRTC) that represented the CMIP5 

ensemble, including both the mean and standard deviation in this spatial pattern.  

 

Globally, the near-linear sensitivity of mean surface warming to cumulative carbon emissions is expressed via the Transient 

Climate Response to cumulative CO2 Emissions (TCRE in °C per 1000PgC), which is estimated to be in the range 0.8 to 2.5 40 

°C per 1000PgC (IPCC, 2013; Matthews et al, 2009). One approach to generating local warming projections from carbon 

emission scenarios is to simply multiply the LGRTC characteristic of the CMIP5 ensemble (Leduc et al, 2016) by the estimated 

range for the TCRE and by the cumulative carbon emissions. However, this approach cannot be used to investigate or simulate 
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several phenomena of potential interest. Firstly, the effective TCRE depends on the ratio of CO2 to non-CO2 radiative forcing 

(Williams et al. 2017a). Therefore, while the efficient climate models can be applied to investigate future warming for arbitrary 

scenarios, the TCRE cannot be applied unless it is for a scenario for which the TCRE is already estimated (e.g. Matthews et 

al. 2009; Williams et al., 2017a), for example the defined Representative Concentration Pathway (RCP) scenarios 

(Meinshausen et al. 2011c) or an idealised scenario with 1% per year increase in CO2 concentration (1pctCO2; Taylor et al, 5 

2012) and no other forcing. Secondly, studies indicate that there can be a period of continued surface warming following 

cessation of annual carbon emissions (Frölicher et al., 2014; Williams et al., 2017b). This phenomenon cannot be explored 

using the TCRE alone, but is represented within efficient climate models such as WASP (Williams et al., 2017b). Thirdly, 

there is evidence that in some circumstances there is a path-dependence of surface warming from cumulative emissions 

(Zickfield et al, 2012), for example where cooling following negative emissions may not re-tracethe previous warming 10 

pathway. Again, this phenomenon is not captured within a constant TCRE framework, but may be explored with climate 

models. Thus a TCRE framework is applicable for certain situations, including idealised scenarios where the TRCE has already 

been established, but in the general case a time-dependent Earth system model is required. 

 

In this study, we present a new method for combining the LGRTC approach with an arbitrary efficient Earth system model to 15 

generate computationally efficient local warming projections for arbitrary forcing scenarios. Using the WASP model as our 

example efficient Earth system model, the combined WASP/LGRTC model makes local warming projections that are history 

matched to constrain the global mean surface warming (Goodwin et al., 2018b) and pattern scaled to the CMIP5 ensemble to 

generate the local information (Leduc et al., 2016). Our efficient method of ensemble generation is able to produce warming-

projections to year 2100 for arbitrary future carbon-emission scenarios in a matter of seconds on a standard desktop computer 20 

(with the computational efficiency of the particular, WASP, efficient model used). An approximation tool is also presented 

making local warming projections based on future cumulative carbon emitted, for idealised scenarios where the TCRE has 

been pre-established. 

 

Section 2 describes the spatial warming patterns analysed for RCP4.5 (Thomson et al., 2011) and RCP8.5 (Riahi et al., 2011) 25 

scenarios in 22 CMIP5 models, following the methodology of Leduc et al. (2016). Section 3 describes our methods for 

producing an ensemble of warming projections for any locality using the combined WASP/LGRTC Earth system model, while 

Section 4 presents the approximation approach for cases when the TCRE is pre-established. Section 5 discusses the wider 

implications of this study. 

 30 

2. Spatial warming patterns in the CMIP5 ensemble for RCP2.6, RCP4.5 and RCP8.5 

Leduc et al (2016) demonstrated the utility of considering the spatial warming over time as a product of the global mean 

warming, Δ𝑇(𝑡), and the spatial pattern of the Local to Global Ratio of Temperature Change, LGRTC(x,y), in the CMIP5 

ensemble, 

 35 

Δ𝑇(𝑥, 𝑦, 𝑡) = Δ𝑇(𝑡) × LGRTC(𝑥, 𝑦).        (1) 

 

The mean and standard deviation in LGRTC were analysed across 12 CMIP5 models (Leduc et al, 2016), under a 1 per cent 

per year increase in atmospheric CO2 concentration (1pctCO2; Taylor et al, 2012). To first order, the mean LGRTC can be 

treated as being independent of time and emission scenarios (Leduc et al, 2016, 2015). 40 

 

Here, the spatial warming patterns in 22 CMIP5 models (see Supplementary Table S1) are examined for RCP4.5 (Thomson et 

al., 2011) and RCP8.5 (Riahi et al., 2011) scenarios that contain also non-CO2 forcings from for example anthropogenic non-
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CO2 greenhouse gas and aerosol emissions. We evaluated the LGRTC comparing mean global temperature between years 

2006-2025 and 2079-2098. RCP2.6 data was not available for models CESM1-BGC, inmcm4, and IPSL-CM5B-LR. For the 

other 19 models, we calculated the RCP2.6 LGRTC for the temperature peak period, defined as a 20-year time window with 

the maximum time-average global mean surface air temperature. Different models had the peak temperature at different times 

so the we identified the peak individually for each model run. For most models, the peak in 20-year running-mean global 5 

temperature was around year 2070. For MIROC-ESM, CSIRO-Mk3-6-0, CCSM4, MRI-CGCM3, and CSIRO-Mk3-6-0 the 

period with the highest mean temperature was the years 2079-2098. The same reference period (2006-2025) was used as with 

the calculation of LGRTC using the end-of-the-century period for RCPs 4.5 and 8.5. Note that for RCP2.6 the LGRTC was 

calculated using the peak temperature period, rather than 2079-2098, because the 2078-2098 period was a similar temperature, 

or colder, than 2006-2025 in some models, making the calculation of LGRTC impractical since the denominator of the 10 

calculation (the global mean temperature change) was too small or negative. 

 

Figure 1 shows the multi-model mean LGRTC (µLGRTC) and multi-model standard deviation in LGRTC (sLGRTC) for the 

RCP4.5, RCP8.5 and RCP2.6 scenarios. With exception of oceanic regions where non-linear processes have important impacts 

on the climate sensitivity, such as the sea-ice albedo feedback in the Arctic and the meridional overturning circulation in the 15 

north Atlantic (Leduc et al., 2016), LGRTC is very similar in the RCP4.5 and RCP8.5 scenarios (Fig. 1, b,c). The uncertainty 

of the warming patterns within each scenario, defined as standard deviation of LGRTC within the model ensemble (sLGRTC), 

was largest in the Arctic Ocean and in the Southern Ocean for RCP4.5 and RCP8.5 (Fig 1e,f). The spatial average of the multi-

model standard deviation was larger in the RCP4.5 than in RCP8.5 over most areas of the globe. Over continents, it was around 

0.15-0.45 in RCP4.5 and mostly below 0.3 in RCP8.5. The RCP2.6 scenario shows greater multi-model mean LGRTC at low 20 

latitudes (Fig. 1a,b,c), and has more inter-model variation in the LGRTC at high latitudes (Fig. 1, d,e,f), compared to the 

RCP4.5 and RCP8.5 scenarios. 

 

The difference in LGRTC between two scenarios, relative to the multi-model variation within a scenario, is expressed via a 

spatially averaged ratio of 0𝜇23456,7(𝑥, 𝑦) − 𝜇23456,9(𝑥, 𝑦)0/𝜎23456,7(𝑥, 𝑦), where i signifies the reference scenario and j the 25 

scenario for comparison. Table 1 expresses how many multi-model standard deviations each of the three scenarios multi-model 

mean LGRTC lies relative to the other scenarios. Considering the mid-range scenario (RCP4.5) as the reference, the LGRTC 

for RCP8.5 lies a spatial average of just 0.17 standard deviations away from RCP4.5 (Table 1), indicating that the variation in 

LGRTC between models within the RCP4.5 scenario is more significant than the variation between RCP4.5 and RCP8.5 

scenarios. In contrast, the LGRTC for the RCP2.6 scenario lies 2.8 standard deviations away from RCP4.5 (Table 1). The 30 

multi-model-mean LGRTC for RCP4.5 and RCP8.5 scenarios lie a spatial average of 0.78 and 0.75 standard deviations away 

from the RCP2.6 scenario respectively (Table 1). Note that the asymmetry in Table 1, with lower difference when RCP2.6 is 

used as the reference scenario, reflects the larger values of 𝜎23456 in the RCP2.6 scenario (Fig. 1d,e,f). 

 

3 Local warming projections in the pattern-scaled WASP/LGRTC ensemble 35 

The aim here is to generate computationally efficient future projections of local warming across the globe, including a measure 

of the uncertainty in those local warming projections. This is distinct from generating a spatial warming projection that is 

internally physically consistent, maintaining physically plausible teleconnections between warming at different locations. Each 

CMIP5 model simulation creates a unique internally physically consistent spatial warming pattern for the prescribed forcing. 

When projecting local warming, including a measure of uncertainty, one method is to use information on the average and 40 

variation in the LGRTC information from multiple CMIP5 models (Figs. 1, 2). However, as soon as the information from 

multiple CMIP5 models are combined, the averaged result may not be internally physically consistent in terms of the spatial 

pattern of warming.  
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Section 3.1 describes how an observation-constrained projection of global mean surface warming is generated, including 

uncertainty. Section 3.2 then combines this global mean projection with the LGRTC information from the CMIP5 models 

(Section 2, above) to generate local warming projections.  

 5 

3.1 Generating global mean warming projections 

The WASP Earth system model comprises an 8-box representation of carbon and heat fluxes between the atmosphere, ocean 

and terrestrial systems (Goodwin, 2016), with surface warming solved via a functional equation linking warming to cumulative 

carbon emitted (Goodwin et al, 2015). For the terrestrial system, carbon uptake by photosynthesis is dependent on temperature 

and CO2, while carbon release via respiration is temperature dependent. Heat and carbon initially enters the ocean at the 10 

surface ocean mixed layer. Once in the surface ocean mixed layer, heat and carbon are exchanged with the sub-surface ocean 

regions over e-folding timescales that vary between each simulation in the ensemble. 

 

Here, the WASP model configuration of Goodwin et al. (2018b) is used. First, WASP is used to generate 3×106 initial 

simulations in a Monte Carlo approach, each one integrated from years 1765 to 2017. A history matching approach 15 

(Williamson et al., 2015) is then adopted to assess these initial 3×106 simulations for observational consistency against historic 

warming, ocean heat uptake and carbon fluxes (Supplementary Table S2; and see Goodwin et al., 2018b for how the history 

matching approach is applied to the WASP model). A total of 1×103 simulations are found to be observationally consistent, 

such that their simulated values of surface warming, ocean heat uptake and carbon fluxes are consistent within observational 

uncertainty (Supplementary Table S2; Goodwin et al., 2018b). 20 

 

The 1×103 observation-consistent simulations are extracted to form the final history matched ensemble. This ensemble is then 

integrated into the future to generate the distribution of global mean surface warming over time,   (Figure 3). The distributions 

of global mean surface warming, Δ𝑇7(𝑡), projected by this configuration and history matching approach using the WASP 

ensemble, are similar to the CMIP5 projectionsfrom highly complex ESMs for the four RCP scenarios (Goodwin et al., 2018b, 25 

see figure 2 therein). However, possibly because the WASP projections are more tightly constrained to observations, they 

show reduced ensemble spread in future warming compared to the CMIP5 ensemble. 

 

3.2 Generating local warming projections 

We now utilise projected distributions from the same configuration of the WASP model to calculate distributions of local 30 

warming across the globe using the LGRTC pattern scaling approach of Leduc et al (2016). The aim is to generate an ensemble 

of projections of local warming at time t for some scenario, Δ𝑇7(𝑥, 𝑦, 𝑡), by using the history matched WASP projections of 

Δ𝑇7(𝑡), and the mean and standard deviation of the LGRTC for the CMIP5 models, µLGRTC(x,y) and sLGRTC(x,y) respectively 

(Figs 2-3).  

 35 

3.2.1 Constructing the LGRTC suitable for a range of non-RCP scenarios 

The aim here is to apply a LGRTC calculation that will likely apply for multiple potential future scenarios, not just the three 

RCP scenario evaluated (Figure 1). To achieve this, we now combine the LGRTC fields for the different RCP scenarios to 

find aggregated LGRTC fields, considering the spatial domain over which this is likely to be feasible. The mean and standard 

deviations for the LGRTC at location x,y, in the new combined scenarios are calculated from the underlying RCP scenarios, 40 

using 

 

𝜇23456(𝑥, 𝑦) = ∑ 𝜇7(𝑥, 𝑦)=
7>? 𝑛⁄       (2) 
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and 

𝜎23456(𝑥, 𝑦) = B∑ C𝜎7(𝑥, 𝑦)D
E=

7>?       (3) 

 

where n is the number of underlying RCP scenarios used. 5 

 

The domain of the LGRTC in the new combined scenarios is assumed valid where the variation in LGRTC between underlying 

RCP scenarios is less than the variation ascribed within the new scenario, 𝜎23456(𝑥, 𝑦) . This is calculated such that 

𝜇23456(𝑥, 𝑦) exists where the variation between the mean of the LGRTC from the different scenarios is less than the combined 

standard deviation in the LGRTC 0𝜇9 − 𝜇F0 𝜎23456⁄ < 1.0 , for all combinations of two underlying RCP scenarios j and k.  10 

 

This method (eqs. 2 and 3) is used to generate LGRTC fields for three potential generic scenarios (Figure 2). First, a scenario 

for any arbitrary future warming scenario (arbitrary scenario) is constructed by combining all three RCP scenarios (RCP2.6, 

RCP4.5 and RCP8.5) (Fig. 2a, d, g). Second, a LGRTC scenario for warming consistent with Paris Climate Agreement targets 

of 1.5 and 2 °C (generic ≤ 2°C scenario) is constructed by combining RCP2.6 and RCP4.5 (Fig. 2, b,e,h), the two RCP 15 

scenarios containing (at least some) model simulations that do comply with the Paris Agreement. Lastly, a LGRTC scenario 

for future warming that is likely to exceed the Paris Climate Agreement targets (generic ≥ 2°C scenario) is constructed using 

RCP4.5 and RCP8.5 (Fig. 2, c,f,i), the scenarios where most (RCP4.5) or all (RCP8.5).  

 

The arbitrary and generic ≤2°C LGRTC scenarios are problematic to use in practice. Firstly, the large values of  𝜎23456(𝑥, 𝑦) 20 

across many regions, especially over land (Fig. 2d,e), make any local warming projection highly uncertain. The high 

𝜎23456(𝑥, 𝑦) values arise from the high inter-model variation in the LGRTC in the RCP2.6 scenario (Fig. 1b, eqs. 2,3). 

Secondly, both arbitrary and ≤2°C generic scenarios have regions that fail the validity criteria, 0𝜇9 − 𝜇F0 𝜎23456⁄ < 1.0 , and 

so are outside of the prescribed LGRTC domains (Fig. 2a,b, white regions). The largest of these regions lie in the low latitude 

oceans, with most areas outside the valid domain being marine. Most densely populated areas on land are within the valid 25 

domain, and so the LGRTC approach can be applied to project future local warming. Areas outside the applicable domain 

(Fig. 2a,b) are generally where inter-model variation, 𝜎23456(𝑥, 𝑦), is small (Fig. 2d,e and Fig. 1d,e,f), rather than where inter 

RCP scenario variation, 𝜇9 − 𝜇F, is large (Fig.1, a,b,c).  

 

The generic ≥2°C LGRTC pattern, a combination of RCP4.5 and RCP8.5 (eqs. 2,3) is usable in practice for more generic 30 

future warming scenarios. The generic ≥2°C LGRTC pattern retains a small 𝜎23456(𝑥, 𝑦) (Fig. 2 compare f to d,e) and, due to 

the similarities between LGRTC fields for RCP4.5 and RCP8.5 scenarios (Fig. 1, Table 1), the LGRTC pattern for the generic 

≥2°C scenario remains within the validity criteria for the entire globe (Fig. 2c,f,i). The generic ≥2°C LGRTC pattern (Fig. 2) 

assumes idealised future pathways within the range of the RCP4.5 and RCP8.5 scenarios (Figure 3b,c), including a similar 

ratio of CO2 to non-CO2 radiative forcing and spatial emissions of anthropogenic aerosols. This generic ≥2°C LGRTC field 35 

should not be used for extreme scenarios that differ widely from the underlying societal assumptions of the RCP sceanrios, for 

example in their spatial aerosol forcing (e.g. see Liu et al., 2018).  

 

 

3.2.2 Combining the LGRTC patterns with a probabilistic ensemble for global mean warming 40 

Here, we combine LGRTC patterns (Figs. 1, 2) with global mean warming projections from an efficient Earth system model. 

While we use the WASP model here, other efficient models could be used. For the ith ensemble member of this history matched 
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WASP ensemble, the WASP/LGRTC projection of local warming at location 𝑥, 𝑦, Δ𝑇7(𝑥, 𝑦, 𝑡) , is constructed using both the 

mean and standard deviation in the LGRTC from the CMIP5 models, 

 

Δ𝑇7(𝑥, 𝑦, 𝑡) = Δ𝑇7(𝑡) × [𝜇23456(𝑥, 𝑦) + 𝑧7𝜎23456(𝑥, 𝑦)] ,      (4) 

 5 

where zi is randomly chosen from a standard normal distribution. This distribution of local warming at time t, (eq. 4), includes 

both the uncertainty in global mean warming in the WASP ensemble (Figure 3; Goodwin et al., 2018b), and uncertainty in the 

spatial pattern of warming, sLGRTC, which is statistically derived from the CMIP5 ensemble (Figure 2; Leduc et al, 2016). Note 

that eq. (2) does not assume that the distribution of global mean temperature projections, Δ𝑇7(𝑡), from the efficient Earth 

system model is Gaussian. The distribution of Δ𝑇7(𝑡) may not be Gaussian if, for example, the assumed climate sensitivity 10 

distribution has a long tail of high values (e.g. see Knutti et al., 2017). Thus, this method for generating the local warming 

distribution, eq. (2), can be applied to any arbitrary distribution of global mean surface warming from any arbitrary efficient 

climate model. If, however, the distribution of global mean surface temperature, Δ𝑇7(𝑡) , were known in advance to be 

Gaussian, then it may be preferable to generate the local warming distribution, Δ𝑇7(𝑥, 𝑦, 𝑡), by multiplying the Gaussian 

distributions for global warming and LGRTC directly, rather than applying eq. (2) which multiplies the individual values 15 

within each distribution. 

 

The full WASP/LGRTC-ensemble local warming projections for RCP 4.5 and RCP 8.5 are given in Fig. 4, which shows the 

mean, 17th and 83rd percentile of the warming across the globe from the 1×103 WASP/LGRTC ensemble members. To 

generate the local projections (eq. 4) for RCP4.5 and RCP8.5, we apply the pattern scaling analysed from the CMIP5 models 20 

for the appropriate scenario (Fig. 2). In both scenarios, there is more uncertainty, that is a higher range of responses between 

the 17th and 83th percentiles, in local warming at high northern latitudes (Fig. 4), consistent with this area showing a larger 

ensemble spread between CMIP5 models (Fig. 1).  

 

The radiative forcing from aerosols can be highly localised, and so the ensemble mean and variation of local warming, 25 

µLGRTC(x,y) and sLGRTC(x,y) in eq. (4), depends on how the CO2 and non-CO2 agents evolve in the scenario. For that reason, we 

include local warming patterns for the 1pctCO2 scenario as well as the RCP4.5, RCP8.5 and generic ≥2°C scenarios in the 

pattern scaling for the WASP/LGRTC model code (https://doi.org/10.5281/zenodo.3819894) This allows future users to 

choose the spatial pattern scaling that is most suitable for their scenario. The next section utilises the generic ≥2°C LGRTC 

pattern (Fig. 2c) to project spatial warming patterns for scenarios where the cumulative carbon emission is specified. 30 

 

4. Approximation for arbitrary cumulative carbon emission scenarios 

This section explores further increasing the computational efficiency for making spatial warming projections for idealised 

future scenarios, by approximating to the history matched WASP ensemble projections of global mean surface warming as 

function of cumulative carbon emitted after 2018, Iem in PgC.  35 

 

The distribution of global mean surface warming in the WASP/LGRTC ensemble is approximately normally distributed for 

the RCP scenarios (Figure 3a). The history matched ensemble mean and standard deviation, 𝜇O5 and 𝜎O5 respectively, are 

both well approximated by second order polynomials in cumulative carbon emitted (Figure 3b,c). The ensemble mean warming 

projections is given by, 40 

 

𝜇O5(𝐼QR) = 𝑎?𝐼QRE + 𝑏?𝐼QR + 𝑐? ,       (5) 
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and the ensemble standard deviation by, 

 

𝜎O5(𝐼QR) = 𝑎E𝐼QRE + 𝑏E𝐼QR + 𝑐E ,       (6) 

 5 

where a1=3.50257×10-7, b1=2.50924×10-3, c1= 1.02159, a2= 2.14129×10-8, b2=2.28077×10-4 and c2=8.79361×10-2 for RCP8.5. 

Both the RCP4.5 and RCP2.6 scenarios see very similar warming per unit future carbon emitted to RCP8.5, while the RCP6.0 

scenario sees only slightly less warming per unit future carbon emitted (Figure 3b,c). 

 

Therefore, for emission scenarios over the 21st century in which the ratio of radiative forcing from sources other than CO2 to 10 

cumulative carbon emitted during the 21st century lies within the range of the RCP scenarios, the distribution of global mean 

surface warming from the history matched WASP ensemble can be approximated by quadratics in future carbon emitted (eqs. 

5 and 6; Fig. 3) 

 

The mean warming at location x,y is calculated by simply multiplying the mean of the 1×103 WASP ensemble members of the 15 

global average warming by the CMIP5 mean of the LGRTC, 

 

𝜇O5(𝑥, 𝑦, 𝐼QR) = 𝜇O5(𝐼QR) × 𝜇VWXYZ(𝑥, 𝑦) .     (7) 

 

The standard deviation in local warming at location x,y after cumulative emissions 𝐼QR, 𝜎O5(𝑥, 𝑦, 𝐼QR), is then calculated from 20 

the standard deviation in the global average warming in the i ensemble members, 𝜎O5(𝐼QR), and the standard deviation in the 

LGRTC, sLGRTC(x,y), using, 

 

𝜎O5(𝑥, 𝑦, 𝐼QR) = 𝜇O5(𝑥, 𝑦, 𝐼QR)[\
]^_( àb)

c^_( àb)
d
E
+ e]fghij(k,l)

cfghij(k,l)
m
E
 .   (8) 

 25 

Note that in this approximation tool the uncertainty in local warming is calculated directly by multiplying the assumed 

Gaussian distributions of LGRTC and global mean warming, eq. (8). This is unlike the uncertainty calculation for the generic 

method, eq. (4), which does not assume a Gaussian distribution for global mean warming. Applying equations (7) and (8) 

provides a method to approximate local warming projections as a function of the future carbon emitted after the start of 2018 

(Figure 5a; code available  at https://doi.org/10.5281/zenodo.3819894), including uncertainty in the warming at any location 30 

(Figure 5b). This method assumes idealised future pathways within the ranges of the RCP4.5 and RCP8.5 scenarios (Figure 

3b,c), including a similar ratio of CO2 to non-CO2 radiative forcing. The generic ≥2°C scenario LGRTC field (Fig. 2) is 

applied (Fig. 4), and as such the approximation tool should be utilised for cumulative carbon emission values that give a best 

estimate for global mean warming of 2°C or more. While this approximation tool (Fig. 5; eqs. 5-8) is not as general as the full 

WASP/LGRTC Earth system model in its potential applications, we anticipate it will still be a useful tool for back-of-the-35 

envelope approximations and pedagogical applications. 

 

5. Discussion 

A highly computationally efficient Earth System Model has been presented for projecting local warming projections, based on 

a history matched global mean warming projection using an efficient ESM (Goodwin, 2016; Goodwin et al., 2018b) and pattern 40 

scaling of the CMIP5 ensemble (Leduc et al., 2016): the WASP/LGRTC model. Along with the full WASP/LGRTC model is 
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an easy to use normal error propagation approximation variant producing projected ranges of both global mean warming and 

the spatial distribution of warming for future cumulative carbon-emission values.  

 

The WASP/LGRTC model presented here is an alternative to existing efficient climate models. For example, the 

MAGICC6/SCENGEN efficient model is often configured as an ‘emulator’ of the CMIP3 ensemble (Meinshausen et al, 5 

2001a,b): the MAGICC6/SCENGEN model parameters are tuned such that the ensemble members emulate the properties of 

the more complex CMIP3 models in both global mean warming and spatial warming patterns. However, even the most 

complex of climate model ensembles show discrepancy to observations (Goodwin et al, 2018b), and this discrepancy will be 

reproduced by an emulating ensemble. In contrast, the WASP/LGRTC model is not tuned to emulate more complex models. 

Instead the WASP model parameters are empirically constrained using the observed histories of warming, heat uptake and 10 

carbon fluxes to generate global mean surface warming projections (Goodwin et al, 2018b). Meanwhile, the LGRTC spatial 

pattern applies the mean and standard deviation in the spatial warming from across the CMIP5 ensemble (Leduc et al, 2016), 

but does not seek to emulate any specific CMIP5 model within any specific WASP/LGRTC ensemble member. 

 

At present, the WASP model requires prescribed radiative forcing from greenhouse gasses and agents other than CO2, for 15 

example methane or aerosols (Goodwin, 2016; Goodwin et al, 2018b). Future work will seek to implement an emission-based 

representation of other significant greenhouse gases and aerosols, allowing the WASP/LGRTC model to explore a wider range 

of future scenarios. 

 

Both the WASP/LGRTC model and the quadratic approximation to WASP/LGRTC model are easy to use. The full 20 

WASP/LGRTC model can quickly generate output for arbitrary future scenarios, while the approximated model makes 

projections for different future cumulative emissions assuming that the relative CO2 and non-CO2 radiative forcing is in the 

range of the RCP8.5, RCP4.5 or RCP2.6 scenarios (Figure 3b,c compare black dashed line to red, orange and purple). 

 

We anticipate that our full and approximated models will be beneficial both for scientific and pedagogical applications, where 25 

available computational resources or climate-model expertise exclude the use of highly complex models 

 

Code availability. Versions of the WASP model is available from the public GitHub repository at https://github.com/WASP-

ESM/WASP_Earth_System_Model. The specific code for both the WASP/LGRTC combined model approach used in this 

study, and the local warming projection approximation tool, are archived on Zenodo 30 

(https://doi.org/10.5281/zenodo.3819894).  
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Reference Scenario RCP2.6 RCP4.5 RCP8.5 

RCP2.6 - 0.78 0.75 

RCP4.5 2.83 - 0.17 

RCP8.5 2.15 0.41 - 

Table 1: The difference between one scenario LGRTC and another, expressed as the spatially averaged number of 

multi-model standard deviations in LGRTC the multi-model mean LGRTC is from the second scenario relative to the 

first: ∫ o
𝝁𝒋r𝝁𝒊
𝝈𝒊
o𝒅𝑨 ∫𝒅𝑨w , where A is surface area, 𝝁𝒋 and 𝝁𝒊 are the mean LGRTC of scenarios i and j, and 𝝈𝒊 is the 

standard deviation in LGRTC for scenario i. 

 5 

 

 
 
Figure 1: The LGRTC in RCP2.6, RCP4.5 and RCP8.5 scenarios analysed from a multi-model ensemble of CMIP5 simulations. (a), 

(b) and (c) show the multi-model mean LGRTC, µLGRTC, while (d), (e) and (f) show the multi-model standard deviation in 10 

LGRTC, µLGRTC, for each scenario.  
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Figure 2: The LGRTC in the arbitrary, generic ≤2°C and generic ≥2°C scenarios. Panels (a), (b) and (c) show the scenario mean 

LGRTC. Panels (c), (d) and (e) show the scenario standard deviation in LGRTC. Panels (g), (h) and (i) show the ratio of the maximum 

absolute discrepancy in the mean LGRTC from the underlying RCP scenarios, Dµ, to the standard deviation in the LGRTC, s, in 

the combined scenario: Dµ/ s.  5 
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Figure 3: Projections of global mean surface warming from the history matched WASP ensemble for different future carbon 

emission sizes. (a) Frequency distributions of projected warming in the WASP ensemble for different future carbon emission sizes 

after the start of 2018. (b) Ensemble-mean global warming as future cumulative carbon emitted increases. (c) Ensemble standard 

deviation in global warming as future carbon emitted increases. (b) and (c) show the RCP8.5 (blue), RCP6.0 (red), RCP4.5 (orange) 5 
and RCP2.6 (purple) scenarios. A quadratic approximation, eq. 3 for (b) and eq. 4 for (c), is a good fit to the RCP8.5 scenario (thin 

black line). All panels show warming calculated relative to the 1850-1900 average. 
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Figure 4: Projected warming for the period 2081-2100 relative to the 1850-1900 average from 1×103 history matched simulations of 

the ultra-fast WASP/LGRTC ensemble. The left-hand column is for the RCP4.5 scenario and the right-hand column is for the 

RCP8.5 scenario. The top, middle and bottom rows represent the mean, 83rd percentile and 17th percentile of the model ensemble. 

  5 
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Figure 5: Warming projections when future emissions reach 500 PgC from the start of 2018. (a) The spatial distribution of the 

central warming projection. (b) The probability distributions of local warming for 7 locations (solid colour lines) and the global 

surface average (black dashed line). All warming projections given relative to the average temperature from 1850 to 1900. Global 5 
mean warming projected from the quadratic approximation to the history matched WASP ensemble (eqns. 3 to 6) using the generic 

≥2°C spatial pattern. 
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