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We thank the reviewers and editor for their comments, which have greatly improved this revised 
version. Below, we spell out how we have amended the manuscript to each specific comment. The 
‘tracked changes’ version of the manuscript follows this. 
 
Authors’ response to the editorial comment: 
 
The comment by Astrid Kerkweg drew attention to an editorial requirement: 
 
“In particular, please note that for your paper, the following requirement has not been 
met in the Discussions paper: 
 
• "The main paper must give the model name and version number (or other unique 
identifier) in the title." 
 
Please add the names/acronyms (WASP/LGRTC) of the models used/developed and 
their version numbers to the title upon your revised submission to GMD. Yours, 
 
Astrid Kerkweg” 
 
 
Thank you for drawing this editorial requirement to our attention. We have now included the model 
version described in the paper (WASP-LGRTC-1.0) within the new title:  
 

“A computationally efficient method for probabilistic local warming projections constrained 
by history matching and pattern scaling, demonstrated by WASP-LGRTC-1.0” 
 
 
Authors’ responses to reviewer 1’s comments: 
 
We thank reviewer 1, Dr. Christopher Smith, for important and insightful comments about our 
manuscript. Below we explain how we will use these comments to further improve our manuscript. 
 
“General comments 
This paper describes a simple methodology for translating global mean surface temperature 
diagnostic output from a simple climate model (WASP, but in theory any model like MAGICC, 
FAIR, Hector could theoretically be used) into regional surface temperature changes using a 
pattern scaling approach. While this is not a necessarily new concept (see fldgen: 
https://www.geosci-model-dev.net/12/1477/2019/), it is appreciated that a quick and simple tool 
would be greatly useful for translating the output of simple climate models (e.g. from IAMs) to 
regional impacts. Additionally, there is a nice link from carbon emissions/carbon budgets to future 
carbon emissions. With this knowledge it could be possible to assess regional impacts as a 
function of the remaining carbon budget (e.g. to 1.5C).” 
 
 

Point 1: Applicability of the spatial tool to any model capable of projecting global 
mean warming. We agree that any model capable of generating probabilistic projections for global 
mean surface temperature could be combined with the spatial tools presented in this manuscript. 
This would then generate projections for the mean and standard deviation for future local warming. 
In our revised manuscript we highlight how the spatial tool can be coupled to any model projecting 
global mean warming, and not just the WASP model. This is first explicitly stated in the revised title 
of the manuscript, referring to a ‘method’ as opposed to a ‘model’: “A computationally efficient 
method for probabilistic local warming projections constrained by history matching and pattern 
scaling, demonstrated by WASP-LGRTC-1.0”. We then exolicitly state that we are presenting a 
method that can be coupled to any efficient model in the manuscript, e.g. page 1, Lines 17-20: 
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“This study presents a computationally efficient method for generating probabilistic 
projections of local warming across the globe, using a pattern scaling approach derived from the 
Climate Model Intercomparison Project phase 5 (CMIP5) ensemble, that can be coupled to any 
efficient model ensemble simulation of global mean surface warming.” 
 
Page 3, Lines 15-16: 
 
 “In this study, we present a new method for combining the LGRTC approach with an 
arbitrary efficient Earth system model to generate computationally efficient local warming 
projections for arbitrary forcing scenarios.” 
 
This change makes the revised manuscript more general in nature, and of interest to a wider range 
of readers.  
 
Point 2: Link to emissions budgets and regional impacts. We agree that the approximation 
tool presented provides a useful link to assess regional impacts from carbon emissions/carbon 
budgets. In our revised manuscript we have improved this link by exploring the spatial warming 
pattern (the LGRTC) for the RCP2.6 scenario (Fig. 1a,d) – a scenario with strong mitigation and a 
high likelihood of meeting the Paris Climate Agreement goals. 
 
 
 
“p4 l4-10: I am not sure if three scenarios that all show various rates of continually increasing 
warming are sufficient to make this conclusion. I would suspect that this does not hold for RCP2.6 
where most models stabilise in temperature but regional patterns may continue to evolve. It would 
be good to show this. It would be helpful to see the 1pctCO2 scenarios for comparison in figure 1, 
also. (also relevant to p6 l6-10)” 
 
Scenarios with increasing warming and scenarios with stabilised warming. We agree that 
the scenarios considered have increasing warming {although we note that in RCP4.5 the there is 
little additional warming after 2080 across the 13 CMIP5 models considered by Goodwin et al., 
(2018b – see figure 2c therein, grey shaded area), we agree that there is little time for the warming 
pattern to continue to evolve}.  
 
We also agree that the RCP2.6 scenario offers a chance to explore our LGRTC tool for generating 
local warming projections in a scenario with stabilised climate. In this revised version we produce a 
LGRTC for RCP2.6 (Fig. 1a,d) and compare this to the existing scenarios (Table 1). This allows us 
to test our methodology for a climate with warming stabilised close to the Paris Climate Agreement 
warming targets of 1.5 and 2.0 °C.  
 
 
 
“p4l22: a point on different non-CO2 forcers in the three scenarios - the RCPs are quite 
heterogeneous in their aerosol forcing in future scenarios, and 1pctCO2 does not include them. I’m 
not sure this gives us much information for pattern scaling for custom emissions scenarios. See 
figure 3 in Liu et al. for temperature responses to - admittedly somewhat extreme - cases of 
aerosol forcing in Europe and Asia. https://doi.org/10.1175/JCLI-D-17-0439.s1 . Some more 
discussion about how this model could handle widely varying timeseries of global and regional 
aerosol forcing would really help strengthen the model (and paper).” 
 
Pattern scaling for custom emissions scenarios with extreme aerosol emissions. Our 
analysis now demonstrates how a single LGRTC with small uncertainty covers both RCP4.5 and 
RCP8.5 scenarios (Fig. 2c,f,i), and so will also be applicable to similar scenarios. In the production 
of the RCP scenarios, assumptions have been made as to the relative amounts of different forcing 
agents emitted (e.g. CO2, other well mixed greenhouse gasses, aerosols etc) (e.g. see IPCC, 2013 
or Meinshausen et al., 2011). Some forcing agents, specifically aerosols, are not well mixed in the 
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atmosphere but exert a significant local influence. We agree that for extreme cases of localised 
aerosol radiative forcing the pattern of warming would be different to the assumptions used in the 
generation of the different RCP scenarios. 
 
In a revised manuscript, we state how our generic LGRTC approach can be applied to scenarios 
with similar underlying assumptions to the RCP scenarios (Page 6, Lines 33-35): 
 

“The generic ≥2°C LGRTC pattern (Fig. 2) assumes idealised future pathways within the 
range of the RCP4.5 and RCP8.5 scenarios (Figure 3b,c), including a similar ratio of CO2 to non-
CO2 radiative forcing and spatial emissions of anthropogenic aerosols.” 

 
We then also explain how our generic LGRTC approach cannot be applied to scenarios with 
extreme spatial aerosol forcing that differs widely from the RCOP scenarios (p. 6 Lines 35-37): 
 
 “This generic ≥2°C LGRTC field should not be used for extreme scenarios that differ widely 
from the underlying societal assumptions of the RCP sceanrios, for example in their spatial aerosol 
forcing (e.g. see Liu et al., 2018).” 
 
The method presented could potentially be extended in future work to attempt to calculate the 
impact on the LGRTC of different localised aerosol forcing patterns. For example by: 
(1) Calculating the LGRTC for a scenario with CO2 only (or well mixed greenhouse gas only) 
forcing, (2) Exploring the sensitivity of LGRTC patterns to regional aerosol emission in complex 
climate models, for cases with idealised aerosol emissions for each region (e.g. Europe, Asia etc).  
(3) Combining the LGRTC from well mixed greenhouse forcing with the LGRTC from idealised 
aerosol forcing in each region, using knowledge of the relative emissions from greenhouse gasses 
and aerosols by region in the custom scenario, to generate a custom warming pattern for a 
scenario with extreme aerosol emission patterns. The key to such a method working is that the 
uncertainties introduced by the assumptions involved in combining different spatial patterns are 
smaller than the uncertainties introduced by the range of CMIP class model responses for a given 
scenario. 
 
Since this potential method relies on new targeted experiments with complex CMIP models, this is 
not feasible to conduct for this paper and is reserved for future study. 
 
Note that the calculations for the LGRTC presented here will apply for custom scenarios that do 
utilise similar assumptions to the RCP scenarios in terms of the relative amounts of well mixed 
greenhouse emissions and aerosols. 
 
Minor/stylistic points. We also thank Dr. Smith for also raising minor/stylistic points, which we 
can confirm have all be addressed in the revised version. 
 
Reply to reviewer 2’s comments 
 
“1 General comments 
Goodwin et al. present a tool for projecting local warming with uncertainty from multiple 
anthropogenic emissions scenarios. The major advance of the paper is the combination of output 
from a probabilistic climate model and warming ratios from AOGCM/ESMs (I note that the 
MAGICC/SCENGEN, http://www.cgd.ucar.edu/cas/wigley/magicc/, tool does a similar thing but 
given that this paper is not tightly coupled to MAGICC or any other probabilistic climate model and 
its code is open sourced I consider this paper to be a significant advance on the 
MAGICC/SCENGEN tool). I feel that this advance could be a very useful addition to the literature if 
a few concerns were addressed to provide more confidence in the paper’s conclusions.” 
 
General comments. We are pleased the reviewer sees the advance offered, and in this revision 
we have amended the manuscript to address the specific concerns raised – please see details 
below. 
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“My major concerns focus on: whether the tool is actually scenario specific or not, how 
uncertainties from the climate model and LGRTC are combined and and whether WASP is actually 
a key part of the tool or whether any probabilistic climate model could be used. 
 
One other key comment, given the availability of CMIP6 model output, I feel this paper 
could be significantly improved if it were to use CMIP6 output rather than focussing on 
CMIP5.” 
 
Concerns. We spell out in detail below how our revision addresses the concerns raised. In brief, 
the revised manuscript:  
(1) Analyses the LGRTC for an additional scenario, RCP2.6 (new Fig. 1a,d), and provides more 
robust statistical comparisons of the differences in LGRTC for the different scenarios (new Table 1; 
new Fig. 2), including identifying a spatial domain over which more generic LGRTC fields can be 
applied (Fig. 2a,b,c); 
(2) Stresses that the method is not specific to the WASP model, and makes it clear that our 
methodology can be applied to any efficient model generating projections of global mean surface 
warming (Changed title; plus e.g. Page 1 Lines 17-20); and  
(3) Reserves the analysis of CMIP6 model output for future study. 
 
“2.1 Scenario specificity of pattern scaling 
 
It is not clear to me that the pattern scaling technique here is actually scenario agnostic. All the 
presented results are scenario specific (the RCP45 projections use RCP45 LGRTC and the 
RCP85 projections use RCP85 LGRTC) and there is no analysis of whether a ‘general LGRTC’ 
can be used nor whether such a ‘general LGRTC’ would have small enough uncertainties as to be 
useful.” 
 
Scenario specificity of the LGRTC. We agree that the LGRTC pattern scaling technique is not 
truly scenario agnostic – there are of course factors about a scenario that affect the LGRTC. 
However, this revised version explores, by comparing the LGRTC for three RCP scenarios, how 
the LGRTC approach can be applied over scenarios that are similar to, yet not precisely the same 
as, the specific RCP scenarios.  
 
“I feel the comment (page 6, line 10), ‘This allows future users to choose the spatial pattern scaling 
that is most suitable for their scenario.’ is misleading. Only 3 patterns are available and none of 
them have been shown to be applicable for an emissions scenario different to the one from which 
they were derived (see comment above). Such cross-validation would be a vital step to providing 
confidence that the spatial pattern derived from one scenario can then be applied to any arbitrary 
scenario.” 
 
Agreed that the sentence “This allows future users to choose the spatial pattern scaling that is 
most suitable for their scenario’ was unclear, and this statement has been removed in the revised 
version. We now quantify how different the scenario LGRTC fields are, in terms of the ratio of inter-
model variation to inter-scenario variation in the LGRTC (Table 1). We also combine the scenarios  
 
Note that the arbitrary and generic ≤2°C LGRTC patterns (that include RCP2.6 information) are not 
practical to use because of the large uncertainties in the LGRTC, caused by the large inter-model 
differences in the RCP2.6 LGRTC patterns for CMIP5 models (Fig. 1d). However, for most of the 
globe the variation between CMIP5 model LGRTC patterns is still larger than the variation between 
scenarios (Fig. 2a,b – consider the regions with a vlid domain). Therefore, the approach is valid for 
a large domain, it just results in high uncertainty. 
 
See below for details on broader points. 
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“I am not convinced by the comment (page 4, line 8), ‘The absolute value of differences in LGRTC 
between the three scenarios was below 0.72C perC in all grid-cells and mostly below 0.2C perC 
over the continents. Therefore, the choice of the emission scenario to define spatial pattern of 
warming in this study is not much relevant when only inhabited regions are considered.’ Relative to 
strong mitigation targets (e.g. the 1.5C target), I am not convinced these are trivial variations. In 
addition, in this context ‘mostly’ is meaningless and provides no quantification of how wide the 
disagreement is nor of the regions in which this generalisation doesn’t hold (and how wrong it is).” 
 
“I am also not convinced by the comment (page 4, line 19), ‘This might have led to the large 
differences in the Arctic region, but detailed analysis and explanation is outside the scope of this 
study.’ If the pattern scaling approach is to be used for arbitrary scenarios, there needs to be 
evidence that one pattern, with sufficiently large uncertainties, can be applied to multiple scenarios 
and give results that are in line with known results from CMIP models. Any differences need to be 
explained as they are of key interest when applying this tool (or the tools’ domain of applicability 
should only be limited to those regions where the differences are small/well understood).” 
 
Imprecise wording of comparisons between scenario-LGRTC patters. Agreed that the 
highlighted sentences do not provide robust statistical analysis of the differences and similarities 
between the LGRTC patterns for the scenarios. In a revised manuscript, we now provide a robust 
statistical comparison of the LGRTC for different scenarios (Table 1) and over different areas of 
the domain (Figure 2g,h,i). We now define the domain over which the tool is applicable for more 
generic scenarios that are similar to, but not identical to, the RCP2.6, RCP4.5 and RCP8.5 
scenarios. See answer to the next paragraph for more details. 
 
“I think the data is there to address this concern. One suggestion (which would satisfy me) would 
be to derive some ‘general LGRTC’ (including uncertainty) which could be used with any emissions 
scenario. The ‘general LGRTC’ could then be applied to the RCPs (here meaning all RCPs, 
including RCP26 and RCP60, not just RCP45 and RCP85) and the differences quantified. This 
would provide a meaningful quantification of how big the uncertainties need to be on a ‘general 
LGRTC’ for it to sufficiently capture the variation across CMIP models and scenarios in the cases  
where we have data. I would be even more convinced if a ‘general LGRTC’ derived from CMIP5 
RCPs was shown to hold for CMIP6 SSP scenarios.” 
 
Addressing concern over applicability of LGRTC for different scenarios/scenario 
dependence quantification. Agreed that greater insight into the amount of scenario-dependence 
is required, and that this affects the validity of using the LGRTC for scenarios other than the 
scenarios from which they were derived. The following changes improve the manuscript: 
 
(1) The revised manuscript analyses the LGRTC for an additional scenario, RCP2.6 (a stabilisation 
scenario with strong mitigation in line with the Paris Climate Agreement’s targets of keeping 
warming under 2.0 °C): Fig. 1a,d). This scenario shows greater inter-model variation (Fig.1d 
comnpared to Fig 1e,f). In part, this greater model variation in LGRTC will likely be due the lower 
global mean warming in the RCP2.6 scenario: since the LGRTC has the global mean warming on 
the demoninator, scenarios that have small global mean warming will likely show more variation in 
spatial LGRTC patterns for different models. 
 
(2) The revised manuscript provides a meaningful statistical comparison of the LGRTC for the 
different scenarios (RCP8.5, RCP4.5 and RCP2.6: Table 1). This statistical comparison constitutes 
a comparison of the magnitudes of LGRTC uncertainty due to differences ‘within scenario but 
between CMIP5 models’ to the LGRTC differences ‘between scenarios’. i.e. comparing 
sigma_LGRTC within a scenario to the differences between mu_LGRTC for different scenarios. 
 
 
(3) The revised manuiscript explores the feasibility of defining a domain over which a set of generic 
LGRTC patterns can be defined (with uncertainties large enough to capture variation across 
CMIP5 models and variation between scenarios). 
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Three generic LGRTC patterns are produced (Fig. 2): (i) an arbitrary scenario for any warming 
level (made by combining RCP2.6, RCP4.5 and RCP8.5); (ii) a generic scenario for warming up to 
2 °C (mode by combining RCP2.6 and RCP4.5); and (iii) a generic scenario for wearming of 2 °C 
and more (mode by combining RCP2.6 and RCP8.5.  
 
The methods used to produce the generic LGRTC fields are explained in Section 3.2.1, including 
equations (2) and (3). Ultimately, a key property of a generic LGRTC pattern must be that the 
uncertainty introduced by the scenario choice is less than the uncertainty introduced by the range 
of CMIP-class model responses within each a given scenario. Therefore, the revised manuscript 
restricts the domains of the generic LGRTC patterns to locations where the condition 
!"# − "%! &'()*+⁄ < 1.0 is met. This comparison also quantifies the value of !"# − "%! &'()*+⁄  over 
the globe (Fig. 2g,h,i). 
 
We will reserve comparisons to CMIP6 for future study. 
 
“2.2 Scenario specificity of WASP 
 
WASP currently requires exogenous estimates of non-CO2 radiative forcing (see manuscript 
paragraph starting page 7, line 33). As far as I can tell, this means that this tool is not applicable to 
arbitray emissions scenarios but rather only ones for which there is an available non-CO2 radiative 
forcing quantification. I feel this is a rather fatal flaw of a tool which is meant to be applicable to 
arbitrary emissions scenarios. 
 
An easy remedy would be to alter the tool from being ‘WASP/LGRTC’ to ‘a general framework for 
coupling probabilistic climate model output and LGRTC’ (insert acronym here) i.e. remove the 
explicit dependence on WASP. I can’t see any reason why WASP is the only model with which this 
tool would work. This paper could still illustrate the use of the framework with WASP output, but 
such a reframing would make clear that the coupling could be done with any probabilistic climate 
model so a model which can run fully GHG-emissions driven could be used instead and would 
immediately fix the issue of WASP’s limited available scenario set.” 
 
Agreed, the method’s (non)reliance on WASP is now explicitly stated. We agree that the LGRTC 
method can be applied to any arbitrary probabilistic climate model ensemble, not just the WASP 
ensemble used in the study. We have reframed the manuscript title and text in terms of offering a 
general framework, with WASP the efficient model used as an example tool to illustrate the 
approach.  
 
 
“2.3 Combination of uncertainties 
 
I am not convinced that the combination of uncertainties in equation 2 is correct. In equation 2, 
shouldn’t the resulting distribution be the product/convolution of the two distributions rather than 
the output of random sampling from the two distributions? Given LGRTC is assumed to be 
gaussian, and that the WASP output is approximately gaussian, wouldn’t it be better to derive the 
distribution of Delta T_i (x, y, t) by taking the product of two gaussians (see 
e.g. https://ccrma.stanford.edu/~jos/sasp/Product_Two_Gaussian_PDFs.html) 
which isn’t the same as the product of two gaussian variables (see 
e.g. https://math.stackexchange.com/questions/101062/is-the-product-of-twogaussian- 
random-variables-also-a-gaussian). I’m happy to be corrected on this as I am not a statistical 
expert. However, regardless of whether I am correct or not I think some explanation must be 
added to the manuscript or the supplementary to explain this uncertainty propogation.” 
 
Combination of uncertainties. We agree with the statistical points made about the random 
sampling of two Gaussian distributions not in general giving the same answer as the convolution of 
two Gaussian distributions. 
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However, to make our LGRTC method applicable to any arbitrary probabilistic projection of global 
mean surface warming (not just from this WASP ensemble), we cannot assume that the projection 
of global mean surface warming is Gaussian. It may be that a projection of global mean surface 
warming is significantly skewed, for example due to a skewed probability distributiuon of climate 
sensitivity with a long tail of high values (e.g. see Assessment Report 5 of the IPCC, 2013). 
Therefore, to ensure that our approach is generally applicable to any efficient model’s projection of 
global mean surface warming, we cannot take product of two Gaussian distributions as suggested 
by the reviewer. We explain this on Page 7 Lines 9-13: 
 
 “Note that eq. (2) does not assume that the distribution of global mean temperature 
projections, Δ¯(T_i )(t), from the efficient Earth system model is Gaussian. The distribution of 
Δ¯(T_i )(t) may not be Gaussian if, for example, the assumed climate sensitivity distribution has a 
long tail of high values (e.g. see Knutti et al., 2017). Thus, this method for generating the local 
warming distribution, eq. (2), can be applied to any arbitrary distribution of global mean surface 
warming from any arbitrary efficient climate model.” 
 
Our method, of randomly sampling from both the distributions of global mean warming and 
LGRTC, is applicable to any arbitrary projection of global mean surface warming from any arbitrary 
efficient Earth system model. 
 
We now also point out that in the MATLAB approximation tool, which does tie in to the WASP 
ensemble, we have used the product of two Gaussian distributions (as the reviewer suggests) 
rather than random sampling (Page 8 Lines 26-27): 
 
 “Note that in this approximation tool the uncertainty in local warming is calculated directly 
by multiplying the assumed Gaussian distributions of LGRTC and global mean warming, eq. (8).” 
 
 
 
 
 
2.4 Reliance on WASP 
It is not clear if this paper is using an existing WASP probabilistic distribution or presenting 
a new one (e.g. contradiction between page 5, line 9: ‘3x106 members’ and page 2, line 23: ‘108 
simulations’). If the reframing suggested earlier were to take place then this is no longer an issue 
(as the choice of particular probabilistic climate model is just for illustration and isn’t a key feature 
of the tool). However, if this particular WASP probabilistic distribution is key then I would have to 
consider that component more closely.” 
 
The (non)reliance on WASP. The novel methodology (of combining the LGRTC with a 
probabilistic ensemble of global mean warming from an efficient numerical model) is not tied to 
WASP. Therefore, we will be making the reframing suggested by the reviewer earlier clear in a 
revised manuscript. We adopt the probabilistic ensemble generated in Goodwin et al (2018b). We 
will make the particular ensemble used clear in the revised manuscript. 
 
We note that there is not a contradiction between having 3x106 members in the posterior ensemble 
and 108 members of the prior ensemble in the WASP methodology (see below). 
 
“(If the WASP probabilistic distribution is not key this entire paragraph can be ignored but for 
completeness) At the moment … 
 
Our revised manuscript now presents a LGRTC method that can be applied to any efficient 
model’s projection of global mean surface warming (rather than specific to only the WASP model). 
Therefore, the WASP probability distribution is not key to the manuscript’s findings, and so the 
points made by the reviewer in this paragraph are not relevant – as the reviewer identified. 
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Abstract. Climate projections are made using a hierarchy of models of different complexities and computational 

efficiencies. While the most complex climate models contain the most detailed representations of many physical processes 15 

within the climate system, both parameter space exploration and Integrated Assessment Modelling require the increased 

computational efficiency of reduced-complexity models. This study presents a computationally efficient method for 

generating probabilistic projections of local warming across the globe, using a pattern scaling approach derived from the 

Climate Model Intercomparison Project phase 5 (CMIP5) ensemble, that can be coupled to any efficient model ensemble 

simulation of global mean surface warming. First, global mean warming is projected using a 103-member ensemble of 20 

history-matched simulations with an example reduced complexity Earth system model: the Warming Acidification and Sea-

level Projector (WASP). The ensemble-projection of global mean warming from this WASP ensemble is then converted into 

local warming projections using a pattern scaling analysis from the CMIP5 archive, considering both the mean and 

uncertainty of the Local to Global Ratio of Temperature Change (LGRTC) spatial patterns from the CMIP5 ensemble for 

high-end and mitigated scenarios. The LGRTC spatial pattern is assessed for scenario dependence in the CMIP5 ensemble 25 

using RCP2.6, RCP4.5 and RCP8.5, and spatial domains are identified where the pattern scaling is useful across a variety of 

arbitrary scenarios. The computational efficiency of our WASP/LGRTC model approach makes it ideal for future 

incorporation into an Integrated Assessment Model framework, or efficient assessment of multiple scenarios. We utilise an 

emergent relationship between warming and future cumulative carbon emitted in our simulations to present an 

approximation tool making local warming projections from total future carbon emitted. 30 

 

1 Introduction 

The dominant climate projections, used by the 5th Assessment Report (AR5) of the Intergovernmental Panel on Climate 

Change (IPCC, 2013), are made using the Climate Model Inter-comparison Project phase 5 (CMIP5) ensemble (Taylor et al, 

2012). However, due to their high level of complexity, state-of-the-art CMIP5 Earth System Models (ESMs) are 35 

computationally demanding, and thus cannot be used on a regular basis to inform decision makers about the impacts of 

arbitrary carbon-emission scenarios. 

 

While a couple of years separate the different generations of CMIP-like experiments, many applications rather require 

climate simulations to be generated within a much shorter time frame. For instance, impact assessments may require climate 40 

projections for scenarios not considered by the CMIP5 experiments, for example scenarios designed to meet Paris Climate 

Agreement targets and maintain global mean surface warming below 1.5 or 2 °C (e.g. van Vuuren et al., 2018; Brown et al., 

2018; Nicholls et al., 2018; Goodwin et al., 2018a), and physical climate simulations are required within Integrated 

Assessment Models exploring the coupled economic, societal, ecological and climate systems (e.g. van Vuuren et al., 2018; 

van Vuuren et al., 2017; McJeon et al., 2014). 45 
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To generate computationally efficient climate simulations, a range of lower-complexity – but numerically more efficient – 

climate models have been developed. They generally use a reduced spatial resolution and/ora simplified representation of 

processes included within the complex models (e.g. Smith, 2012; Meinshausen et al., 2011a; Goodwin et al., 2018b).  

 5 

For example, the highly efficient MAGICC6 climate model uses an upwelling-diffusion representation of the ocean and an 

hemispherical averaged spatial resolution (Meinshausen et al., 2011a). MAGICC6 has been configured to emulate an 

ensemble of the more complex Climate Model Intercomparison Project phase 3 (CMIP3) climate models (Meinshausen et 

al., 2011a; 2011b), but at a fraction of the computational expense. To generate spatial projections using MAGICC, a pattern 

scaling approach (e.g. Herger et al., 2015) is applied to emulate the spatial climate patterns from the CMIP3 models (e.g. 10 

Fordham et al. 2012): the regional climate SCENarioGENerator (SCENGEN). This MAGICC6 (and combined 

MAGICC6/SCENGEN) climate model is computationally efficient enough to usefully couple into Integrated Assessment 

Model (IAM) frameworks, including the IMAGE and MESSAGE frameworks (van Vuuren et al., 2017; McJeon et al., 

2014). A key goal of IAMs is to explore consequences of the coupled human-climate system, through coupling 

representations of the physical climate system with the biosphere and human/society interactions, often including energy 15 

generation and land-use changes.  

 

A recent study (Goodwin et al., 2018b) takes a different approach to making future projections of global mean surface 

warming, using the computationally efficient Warming Acidification and Sea-level Projector (WASP) climate model 

(Goodwin, 2016; Goodwin et al., 2017). In Goodwin et al. (2018b) the efficient WASP model is configured, not by tuning 20 

the parameters to emulate existing complex climate models (e.g. Meinshausen et al., 2011a; 2011b), but instead by history 

matching (Williamson et al., 2015) the efficient model to real world data. Goodwin et al. (2018b) first generate one hundred 

million (108) simulations using WASP, by varying the model properties with a Monte Carlo approach. This includes an input 

distribution for climate sensitivity drawn from geological evidence (PALEOSENS, 2012). These 108 simulations are then 

integrated from year 1765 to 2017, and each of them is checked against a set of historic observational reconstructions  of 25 

surface warming (Hansen et al., 2010; Smith et al., 2008; Vose et al., 2012), ocean heat uptake (Levitus et al., 2012; Giese et 

al., 2011; Balmaseda et al., 2013; Good et al., 2013; Smith et al., 2015; Cheng et al., 2017) and carbon fluxes (IPCC, 2013; 

le Quéré et al., 2016). Only those WASP simulations that are consistent with the observational constraints are extracted to 

form the final history-matched ensemble of around 3×104 simulations (Goodwin et al., 2018b, see Supplementary Table 3 

therein). This final history matched ensemble is then used to make future projections (Goodwin et al., 2018b). Note that the 30 

WASP ensemble is not configured to emulate the performance of more complex models, but to be consistent with 

observations of the real climate system. 

 

The WASP model (Goodwin, 2016) produces projections for global mean surface warming only (Goodwin et al., 2018b), so 

to gain information to calculate local warming we here apply a pattern scaling tool. Leduc et al (2016) have recently shown 35 

that the spatial pattern of warming across CMIP5 models is relatively robust even though the average warming varies widely 

between ensemble members. Using the well-known pattern scaling approach (Tebaldi and Arblaster, 2014), Leduc et al. 

(2016) calculated the spatial pattern of the Local to Global Ratio of Temperature Change (LGRTC) that represented the 

CMIP5 ensemble, including both the mean and standard deviation in this spatial pattern.  

 40 

Globally, the near-linear sensitivity of mean surface warming to cumulative carbon emissions is expressed via the Transient 

Climate Response to cumulative CO2 Emissions (TCRE in °C per 1000PgC), which is estimated to be in the range 0.8 to 2.5 

°C per 1000PgC (IPCC, 2013; Matthews et al, 2009). One approach to generating local warming projections from carbon 
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emission scenarios is to simply multiply the LGRTC characteristic of the CMIP5 ensemble (Leduc et al, 2016) by the 

estimated range for the TCRE and by the cumulative carbon emissions. However, this approach cannot be used to investigate 

or simulate several phenomena of potential interest. Firstly, the effective TCRE depends on the ratio of CO2 to non-CO2 

radiative forcing (Williams et al. 2017a). Therefore, while the efficient climate models can be applied to investigate future 

warming for arbitrary scenarios, the TCRE cannot be applied unless it is for a scenario for which the TCRE is already 5 

estimated (e.g. Matthews et al. 2009; Williams et al., 2017a), for example the defined Representative Concentration Pathway 

(RCP) scenarios (Meinshausen et al. 2011c) or an idealised scenario with 1% per year increase in CO2 concentration 

(1pctCO2; Taylor et al, 2012) and no other forcing. Secondly, studies indicate that there can be a period of continued surface 

warming following cessation of annual carbon emissions (Frölicher et al., 2014; Williams et al., 2017b). This phenomenon 

cannot be explored using the TCRE alone, but is represented within efficient climate models such as WASP (Williams et al., 10 

2017b). Thirdly, there is evidence that in some circumstances there is a path-dependence of surface warming from 

cumulative emissions (Zickfield et al, 2012), for example where cooling following negative emissions may not re-tracethe 

previous warming pathway. Again, this phenomenon is not captured within a constant TCRE framework, but may be 

explored with climate models. Thus a TCRE framework is applicable for certain situations, including idealised scenarios 

where the TRCE has already been established, but in the general case a time-dependent Earth system model is required. 15 

 

In this study, we present a new method for combining the LGRTC approach with an arbitrary efficient Earth system model 

to generate computationally efficient local warming projections for arbitrary forcing scenarios. Using the WASP model as 

our example efficient Earth system model, the combined WASP/LGRTC model makes local warming projections that are 

history matched to constrain the global mean surface warming (Goodwin et al., 2018b) and pattern scaled to the CMIP5 20 

ensemble to generate the local information (Leduc et al., 2016). Our efficient method of ensemble generation is able to 

produce warming-projections to year 2100 for arbitrary future carbon-emission scenarios in a matter of seconds on a 

standard desktop computer (with the computational efficiency of the particular, WASP, efficient model used). An 

approximation tool is also presented making local warming projections based on future cumulative carbon emitted, for 

idealised scenarios where the TCRE has been pre-established. 25 

 

Section 2 describes the spatial warming patterns analysed for RCP4.5 (Thomson et al., 2011) and RCP8.5 (Riahi et al., 2011) 

scenarios in 22 CMIP5 models, following the methodology of Leduc et al. (2016). Section 3 describes our methods for 

producing an ensemble of warming projections for any locality using the combined WASP/LGRTC Earth system model, 

while Section 4 presents the approximation approach for cases when the TCRE is pre-established. Section 5 discusses the 30 

wider implications of this study. 

 

2. Spatial warming patterns in the CMIP5 ensemble for RCP2.6, RCP4.5 and RCP8.5 

Leduc et al (2016) demonstrated the utility of considering the spatial warming over time as a product of the global mean 

warming, Δ"($), and the spatial pattern of the Local to Global Ratio of Temperature Change, LGRTC(x,y), in the CMIP5 35 

ensemble, 

 

Δ"(&, (, $) = Δ"($) × LGRTC(&, ().        (1) 

 

The mean and standard deviation in LGRTC were analysed across 12 CMIP5 models (Leduc et al, 2016), under a 1 per cent 40 

per year increase in atmospheric CO2 concentration (1pctCO2; Taylor et al, 2012). To first order, the mean LGRTC can be 

treated as being independent of time and emission scenarios (Leduc et al, 2016, 2015). 
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Here, the spatial warming patterns in 22 CMIP5 models (see Supplementary Table S1) are examined for RCP4.5 (Thomson 

et al., 2011) and RCP8.5 (Riahi et al., 2011) scenarios that contain also non-CO2 forcings from for example anthropogenic 

non-CO2 greenhouse gas and aerosol emissions. We evaluated the LGRTC comparing mean global temperature between 

years 2006-2025 and 2079-2098. RCP2.6 data was not available for models CESM1-BGC, inmcm4, and IPSL-CM5B-LR. 

For the other 19 models, we calculated the RCP2.6 LGRTC for the temperature peak period, defined as a 20-year time 5 

window with the maximum time-average global mean surface air temperature. Different models had the peak temperature at 

different times so the we identified the peak individually for each model run. For most models, the peak in 20-year running-

mean global temperature was around year 2070. For MIROC-ESM, CSIRO-Mk3-6-0, CCSM4, MRI-CGCM3, and CSIRO-

Mk3-6-0 the period with the highest mean temperature was the years 2079-2098. The same reference period (2006-2025) 

was used as with the calculation of LGRTC using the end-of-the-century period for RCPs 4.5 and 8.5. Note that for RCP2.6 10 

the LGRTC was calculated using the peak temperature period, rather than 2079-2098, because the 2078-2098 period was a 

similar temperature, or colder, than 2006-2025 in some models, making the calculation of LGRTC impractical since the 

denominator of the calculation (the global mean temperature change) was too small or negative. 

 

Figure 1 shows the multi-model mean LGRTC (µLGRTC) and multi-model standard deviation in LGRTC (sLGRTC) for the 15 

RCP4.5, RCP8.5 and RCP2.6 scenarios. With exception of oceanic regions where non-linear processes have important 

impacts on the climate sensitivity, such as the sea-ice albedo feedback in the Arctic and the meridional overturning 

circulation in the north Atlantic (Leduc et al., 2016), LGRTC is very similar in the RCP4.5 and RCP8.5 scenarios (Fig. 1, 

b,c). The uncertainty of the warming patterns within each scenario, defined as standard deviation of LGRTC within the 

model ensemble (sLGRTC), was largest in the Arctic Ocean and in the Southern Ocean for RCP4.5 and RCP8.5 (Fig 1e,f). The 20 

spatial average of the multi-model standard deviation was larger in the RCP4.5 than in RCP8.5 over most areas of the globe. 

Over continents, it was around 0.15-0.45 in RCP4.5 and mostly below 0.3 in RCP8.5. The RCP2.6 scenario shows greater 

multi-model mean LGRTC at low latitudes (Fig. 1a,b,c), and has more inter-model variation in the LGRTC at high latitudes 

(Fig. 1, d,e,f), compared to the RCP4.5 and RCP8.5 scenarios. 

 25 

The difference in LGRTC between two scenarios, relative to the multi-model variation within a scenario, is expressed via a 

spatially averaged ratio of 0123456,7(&, () − 123456,9(&, ()0/;23456,7(&, (), where i signifies the reference scenario and j the 

scenario for comparison. Table 1 expresses how many multi-model standard deviations each of the three scenarios multi-

model mean LGRTC lies relative to the other scenarios. Considering the mid-range scenario (RCP4.5) as the reference, the 

LGRTC for RCP8.5 lies a spatial average of just 0.17 standard deviations away from RCP4.5 (Table 1), indicating that the 30 

variation in LGRTC between models within the RCP4.5 scenario is more significant than the variation between RCP4.5 and 

RCP8.5 scenarios. In contrast, the LGRTC for the RCP2.6 scenario lies 2.8 standard deviations away from RCP4.5 (Table 

1). The multi-model-mean LGRTC for RCP4.5 and RCP8.5 scenarios lie a spatial average of 0.78 and 0.75 standard 

deviations away from the RCP2.6 scenario respectively (Table 1). Note that the asymmetry in Table 1, with lower difference 

when RCP2.6 is used as the reference scenario, reflects the larger values of ;23456 in the RCP2.6 scenario (Fig. 1d,e,f). 35 

 

3 Local warming projections in the pattern-scaled WASP/LGRTC ensemble 

The aim here is to generate computationally efficient future projections of local warming across the globe, including a 

measure of the uncertainty in those local warming projections. This is distinct from generating a spatial warming projection 

that is internally physically consistent, maintaining physically plausible teleconnections between warming at different 40 

locations. Each CMIP5 model simulation creates a unique internally physically consistent spatial warming pattern for the 

prescribed forcing. When projecting local warming, including a measure of uncertainty, one method is to use information on 

the average and variation in the LGRTC information from multiple CMIP5 models (Figs. 1, 2). However, as soon as the 
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information from multiple CMIP5 models are combined, the averaged result may not be internally physically consistent in 

terms of the spatial pattern of warming.  

 

Section 3.1 describes how an observation-constrained projection of global mean surface warming is generated, including 

uncertainty. Section 3.2 then combines this global mean projection with the LGRTC information from the CMIP5 models 5 

(Section 2, above) to generate local warming projections.  

 

3.1 Generating global mean warming projections 

The WASP Earth system model comprises an 8-box representation of carbon and heat fluxes between the atmosphere, ocean 

and terrestrial systems (Goodwin, 2016), with surface warming solved via a functional equation linking warming to 10 

cumulative carbon emitted (Goodwin et al, 2015). For the terrestrial system, carbon uptake by photosynthesis is dependent 

on temperature and CO2, while carbon release via respiration is temperature dependent. Heat and carbon initially enters the 

ocean at the surface ocean mixed layer. Once in the surface ocean mixed layer, heat and carbon are exchanged with the sub-

surface ocean regions over e-folding timescales that vary between each simulation in the ensemble. 

 15 

Here, the WASP model configuration of Goodwin et al. (2018b) is used. First, WASP is used to generate 3×106 initial 

simulations in a Monte Carlo approach, each one integrated from years 1765 to 2017. A history matching approach 

(Williamson et al., 2015) is then adopted to assess these initial 3×106 simulations for observational consistency against 

historic warming, ocean heat uptake and carbon fluxes (Supplementary Table S2; and see Goodwin et al., 2018b for how the 

history matching approach is applied to the WASP model). A total of 1×103 simulations are found to be observationally 20 

consistent, such that their simulated values of surface warming, ocean heat uptake and carbon fluxes are consistent within 

observational uncertainty (Supplementary Table S2; Goodwin et al., 2018b). 

 

The 1×103 observation-consistent simulations are extracted to form the final history matched ensemble. This ensemble is 

then integrated into the future to generate the distribution of global mean surface warming over time,   (Figure 3). The 25 

distributions of global mean surface warming, Δ"7($), projected by this configuration and history matching approach using 

the WASP ensemble, are similar to the CMIP5 projectionsfrom highly complex ESMs for the four RCP scenarios (Goodwin 

et al., 2018b, see figure 2 therein). However, possibly because the WASP projections are more tightly constrained to 

observations, they show reduced ensemble spread in future warming compared to the CMIP5 ensemble. 

 30 

3.2 Generating local warming projections 

We now utilise projected distributions from the same configuration of the WASP model to calculate distributions of local 

warming across the globe using the LGRTC pattern scaling approach of Leduc et al (2016). The aim is to generate an 

ensemble of projections of local warming at time t for some scenario, Δ"7(&, (, $), by using the history matched WASP 

projections of Δ"7($), and the mean and standard deviation of the LGRTC for the CMIP5 models, µLGRTC(x,y) and sLGRTC(x,y) 35 

respectively (Figs 2-3).  

 

3.2.1 Constructing the LGRTC suitable for a range of non-RCP scenarios 

The aim here is to apply a LGRTC calculation that will likely apply for multiple potential future scenarios, not just the three 

RCP scenario evaluated (Figure 1). To achieve this, we now combine the LGRTC fields for the different RCP scenarios to 40 

find aggregated LGRTC fields, considering the spatial domain over which this is likely to be feasible. The mean and 

standard deviations for the LGRTC at location x,y, in the new combined scenarios are calculated from the underlying RCP 

scenarios, using 

Deleted: a given RCP



6 
 

 

123456(&, () = ∑ 17(&, ()=
7>? @⁄       (2) 

 

and 

;23456(&, () = B∑ C;7(&, ()D
E=

7>?       (3) 5 

 

where n is the number of underlying RCP scenarios used. 

 

The domain of the LGRTC in the new combined scenarios is assumed valid where the variation in LGRTC between 

underlying RCP scenarios is less than the variation ascribed within the new scenario, ;23456(&, (). This is calculated such 10 

that 123456(&, () exists where the variation between the mean of the LGRTC from the different scenarios is less than the 

combined standard deviation in the LGRTC 019 − 1F0 ;23456⁄ < 1.0 , for all combinations of two underlying RCP scenarios 

j and k.  

 

This method (eqs. 2 and 3) is used to generate LGRTC fields for three potential generic scenarios (Figure 2). First, a scenario 15 

for any arbitrary future warming scenario (arbitrary scenario) is constructed by combining all three RCP scenarios (RCP2.6, 

RCP4.5 and RCP8.5) (Fig. 2a, d, g). Second, a LGRTC scenario for warming consistent with Paris Climate Agreement 

targets of 1.5 and 2 °C (generic ≤ 2°C scenario) is constructed by combining RCP2.6 and RCP4.5 (Fig. 2, b,e,h), the two 

RCP scenarios containing (at least some) model simulations that do comply with the Paris Agreement. Lastly, a LGRTC 

scenario for future warming that is likely to exceed the Paris Climate Agreement targets (generic ≥ 2°C scenario) is 20 

constructed using RCP4.5 and RCP8.5 (Fig. 2, c,f,i), the scenarios where most (RCP4.5) or all (RCP8.5).  

 

The arbitrary and generic ≤2°C LGRTC scenarios are problematic to use in practice. Firstly, the large values of  

;23456(&, () across many regions, especially over land (Fig. 2d,e), make any local warming projection highly uncertain. The 

high ;23456(&, () values arise from the high inter-model variation in the LGRTC in the RCP2.6 scenario (Fig. 1b, eqs. 2,3). 25 

Secondly, both arbitrary and ≤2°C generic scenarios have regions that fail the validity criteria, 019 − 1F0 ;23456⁄ < 1.0 , and 

so are outside of the prescribed LGRTC domains (Fig. 2a,b, white regions). The largest of these regions lie in the low 

latitude oceans, with most areas outside the valid domain being marine. Most densely populated areas on land are within the 

valid domain, and so the LGRTC approach can be applied to project future local warming. Areas outside the applicable 

domain (Fig. 2a,b) are generally where inter-model variation, ;23456(&, (), is small (Fig. 2d,e and Fig. 1d,e,f), rather than 30 

where inter RCP scenario variation, 19 − 1F, is large (Fig.1, a,b,c).  

 

The generic ≥2°C LGRTC pattern, a combination of RCP4.5 and RCP8.5 (eqs. 2,3) is usable in practice for more generic 

future warming scenarios. The generic ≥2°C LGRTC pattern retains a small ;23456(&, () (Fig. 2 compare f to d,e) and, due 

to the similarities between LGRTC fields for RCP4.5 and RCP8.5 scenarios (Fig. 1, Table 1), the LGRTC pattern for the 35 

generic ≥2°C scenario remains within the validity criteria for the entire globe (Fig. 2c,f,i). The generic ≥2°C LGRTC pattern 

(Fig. 2) assumes idealised future pathways within the range of the RCP4.5 and RCP8.5 scenarios (Figure 3b,c), including a 

similar ratio of CO2 to non-CO2 radiative forcing and spatial emissions of anthropogenic aerosols. This generic ≥2°C 

LGRTC field should not be used for extreme scenarios that differ widely from the underlying societal assumptions of the 

RCP sceanrios, for example in their spatial aerosol forcing (e.g. see Liu et al., 2018).  40 
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3.2.2 Combining the LGRTC patterns with a probabilistic ensemble for global mean warming 

Here, we combine LGRTC patterns (Figs. 1, 2) with global mean warming projections from an efficient Earth system model. 

While we use the WASP model here, other efficient models could be used. For the ith ensemble member of this history 

matched WASP ensemble, the WASP/LGRTC projection of local warming at location &, (, Δ"7(&, (, $) , is constructed using 

both the mean and standard deviation in the LGRTC from the CMIP5 models, 5 

 

Δ"7(&, (, $) = Δ"7($) × [123456(&, () + M7;23456(&, ()] ,      (4) 

 

where zi is randomly chosen from a standard normal distribution. This distribution of local warming at time t, (eq. 4), 

includes both the uncertainty in global mean warming in the WASP ensemble (Figure 3; Goodwin et al., 2018b), and 10 

uncertainty in the spatial pattern of warming, sLGRTC, which is statistically derived from the CMIP5 ensemble (Figure 2; 

Leduc et al, 2016). Note that eq. (2) does not assume that the distribution of global mean temperature projections, Δ"7($), 

from the efficient Earth system model is Gaussian. The distribution of Δ"7($) may not be Gaussian if, for example, the 

assumed climate sensitivity distribution has a long tail of high values (e.g. see Knutti et al., 2017). Thus, this method for 

generating the local warming distribution, eq. (2), can be applied to any arbitrary distribution of global mean surface 15 

warming from any arbitrary efficient climate model. If, however, the distribution of global mean surface temperature, 

Δ"7($), were known in advance to be Gaussian, then it may be preferable to generate the local warming distribution, 

Δ"7(&, (, $), by multiplying the Gaussian distributions for global warming and LGRTC directly, rather than applying eq. (2) 

which multiplies the individual values within each distribution. 

 20 

The full WASP/LGRTC-ensemble local warming projections for RCP 4.5 and RCP 8.5 are given in Fig. 4, which shows the 

mean, 17th and 83rd percentile of the warming across the globe from the 1×103 WASP/LGRTC ensemble members. To 

generate the local projections (eq. 4) for RCP4.5 and RCP8.5, we apply the pattern scaling analysed from the CMIP5 models 

for the appropriate scenario (Fig. 2). In both scenarios, there is more uncertainty, that is a higher range of responses between 

the 17th and 83th percentiles, in local warming at high northern latitudes (Fig. 4), consistent with this area showing a larger 25 

ensemble spread between CMIP5 models (Fig. 1).  

 

The radiative forcing from aerosols can be highly localised, and so the ensemble mean and variation of local warming, 

µLGRTC(x,y) and sLGRTC(x,y) in eq. (4), depends on how the CO2 and non-CO2 agents evolve in the scenario. For that reason, 

we include local warming patterns for the 1pctCO2 scenario as well as the RCP4.5, RCP8.5 and generic ≥2°C scenarios in 30 

the pattern scaling for the WASP/LGRTC model code (https://doi.org/10.5281/zenodo.3819894) This allows future users to 

choose the spatial pattern scaling that is most suitable for their scenario. The next section utilises the generic ≥2°C LGRTC 

pattern (Fig. 2c) to project spatial warming patterns for scenarios where the cumulative carbon emission is specified. 

 

4. Approximation for arbitrary cumulative carbon emission scenarios 35 

This section explores further increasing the computational efficiency for making spatial warming projections for idealised 

future scenarios, by approximating to the history matched WASP ensemble projections of global mean surface warming as 

function of cumulative carbon emitted after 2018, Iem in PgC.  

 

The distribution of global mean surface warming in the WASP/LGRTC ensemble is approximately normally distributed for 40 

the RCP scenarios (Figure 3a). The history matched ensemble mean and standard deviation, 1O5 and ;O5 respectively, are 
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both well approximated by second order polynomials in cumulative carbon emitted (Figure 3b,c). The ensemble mean 

warming projections is given by, 

 

1O5(PQR) = S?PQRE + T?PQR + U? ,       (5) 

 5 

and the ensemble standard deviation by, 

 

;O5(PQR) = SEPQRE + TEPQR + UE ,       (6) 

 

where a1=3.50257×10-7, b1=2.50924×10-3, c1= 1.02159, a2= 2.14129×10-8, b2=2.28077×10-4 and c2=8.79361×10-2 for 10 

RCP8.5. Both the RCP4.5 and RCP2.6 scenarios see very similar warming per unit future carbon emitted to RCP8.5, while 

the RCP6.0 scenario sees only slightly less warming per unit future carbon emitted (Figure 3b,c). 

 

Therefore, for emission scenarios over the 21st century in which the ratio of radiative forcing from sources other than CO2 

to cumulative carbon emitted during the 21st century lies within the range of the RCP scenarios, the distribution of global 15 

mean surface warming from the history matched WASP ensemble can be approximated by quadratics in future carbon 

emitted (eqs. 5 and 6; Fig. 3) 

 

The mean warming at location x,y is calculated by simply multiplying the mean of the 1×103 WASP ensemble members of 

the global average warming by the CMIP5 mean of the LGRTC, 20 

 

1O5(&, (, PQR) = 1O5(PQR) × 1VWXYZ(&, () .     (7) 

 

The standard deviation in local warming at location x,y after cumulative emissions PQR, ;O5(&, (, PQR), is then calculated 

from the standard deviation in the global average warming in the i ensemble members, ;O5(PQR), and the standard deviation 25 

in the LGRTC, sLGRTC(x,y), using, 

 

;O5(&, (, PQR) = 1O5(&, (, PQR)[\
]^_( àb)

c^_( àb)
d
E
+ e

]fghij(k,l)
cfghij(k,l)

m
E
 .   (8) 

 

Note that in this approximation tool the uncertainty in local warming is calculated directly by multiplying the assumed 30 

Gaussian distributions of LGRTC and global mean warming, eq. (8). This is unlike the uncertainty calculation for the 

generic method, eq. (4), which does not assume a Gaussian distribution for global mean warming. Applying equations (7) 

and (8) provides a method to approximate local warming projections as a function of the future carbon emitted after the start 

of 2018 (Figure 5a; code available  at https://doi.org/10.5281/zenodo.3819894), including uncertainty in the warming at any 

location (Figure 5b). This method assumes idealised future pathways within the ranges of the RCP4.5 and RCP8.5 scenarios 35 

(Figure 3b,c), including a similar ratio of CO2 to non-CO2 radiative forcing. The generic ≥2°C scenario LGRTC field (Fig. 

2) is applied (Fig. 4), and as such the approximation tool should be utilised for cumulative carbon emission values that give a 

best estimate for global mean warming of 2°C or more. While this approximation tool (Fig. 5; eqs. 5-8) is not as general as 

the full WASP/LGRTC Earth system model in its potential applications, we anticipate it will still be a useful tool for back-

of-the-envelope approximations and pedagogical applications. 40 
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5. Discussion 

A highly computationally efficient Earth System Model has been presented for projecting local warming projections, based 

on a history matched global mean warming projection using an efficient ESM (Goodwin, 2016; Goodwin et al., 2018b) and 

pattern scaling of the CMIP5 ensemble (Leduc et al., 2016): the WASP/LGRTC model. Along with the full WASP/LGRTC 

model is an easy to use normal error propagation approximation variant producing projected ranges of both global mean 5 

warming and the spatial distribution of warming for future cumulative carbon-emission values.  

 

The WASP/LGRTC model presented here is an alternative to existing efficient climate models. For example, the 

MAGICC6/SCENGEN efficient model is often configured as an ‘emulator’ of the CMIP3 ensemble (Meinshausen et al, 

2001a,b): the MAGICC6/SCENGEN model parameters are tuned such that the ensemble members emulate the properties of 10 

the more complex CMIP3 models in both global mean warming and spatial warming patterns. However, even the most 

complex of climate model ensembles show discrepancy to observations (Goodwin et al, 2018b), and this discrepancy will be 

reproduced by an emulating ensemble. In contrast, the WASP/LGRTC model is not tuned to emulate more complex models. 

Instead the WASP model parameters are empirically constrained using the observed histories of warming, heat uptake and 

carbon fluxes to generate global mean surface warming projections (Goodwin et al, 2018b). Meanwhile, the LGRTC spatial 15 

pattern applies the mean and standard deviation in the spatial warming from across the CMIP5 ensemble (Leduc et al, 2016), 

but does not seek to emulate any specific CMIP5 model within any specific WASP/LGRTC ensemble member. 

 

At present, the WASP model requires prescribed radiative forcing from greenhouse gasses and agents other than CO2, for 

example methane or aerosols (Goodwin, 2016; Goodwin et al, 2018b). Future work will seek to implement an emission-20 

based representation of other significant greenhouse gases and aerosols, allowing the WASP/LGRTC model to explore a 

wider range of future scenarios. 

 

Both the WASP/LGRTC model and the quadratic approximation to WASP/LGRTC model are easy to use. The full 

WASP/LGRTC model can quickly generate output for arbitrary future scenarios, while the approximated model makes 25 

projections for different future cumulative emissions assuming that the relative CO2 and non-CO2 radiative forcing is in the 

range of the RCP8.5, RCP4.5 or RCP2.6 scenarios (Figure 3b,c compare black dashed line to red, orange and purple). 

 

We anticipate that our full and approximated models will be beneficial both for scientific and pedagogical applications, 

where available computational resources or climate-model expertise exclude the use of highly complex models 30 

 

Code availability. Versions of the WASP model is available from the public GitHub repository at 

https://github.com/WASP-ESM/WASP_Earth_System_Model. The specific code for both the WASP/LGRTC combined 

model approach used in this study, and the local warming projection approximation tool, are archived on Zenodo 

(https://doi.org/10.5281/zenodo.3819894).  35 
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Reference Scenario RCP2.6 RCP4.5 RCP8.5 

RCP2.6 - 0.78 0.75 

RCP4.5 2.83 - 0.17 

RCP8.5 2.15 0.41 - 

Table 1: The difference between one scenario LGRTC and another, expressed as the spatially averaged number of 

multi-model standard deviations in LGRTC the multi-model mean LGRTC is from the second scenario relative to 

the first: ∫ o
pqrps
ts
ouv ∫uvw , where A is surface area, pq and ps are the mean LGRTC of scenarios i and j, and ts is the 

standard deviation in LGRTC for scenario i. 

 5 

 

 

 
Figure 1: The LGRTC in RCP2.6, RCP4.5 and RCP8.5 scenarios analysed from a multi-model ensemble of CMIP5 simulations. 

(a), (b) and (c) show the multi-model mean LGRTC, µLGRTC, while (d), (e) and (f) show the multi-model standard deviation 10 

in LGRTC, µLGRTC, for each scenario.  
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Figure 2: The LGRTC in the arbitrary, generic ≤2°C and generic ≥2°C scenarios. Panels (a), (b) and (c) show the scenario mean 

LGRTC. Panels (c), (d) and (e) show the scenario standard deviation in LGRTC. Panels (g), (h) and (i) show the ratio of the 

maximum absolute discrepancy in the mean LGRTC from the underlying RCP scenarios, Dµ, to the standard deviation in the 

LGRTC, s, in the combined scenario: Dµ/ s.  5 
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Figure 3: Projections of global mean surface warming from the history matched WASP ensemble for different future carbon 

emission sizes. (a) Frequency distributions of projected warming in the WASP ensemble for different future carbon emission sizes 

after the start of 2018. (b) Ensemble-mean global warming as future cumulative carbon emitted increases. (c) Ensemble standard 

deviation in global warming as future carbon emitted increases. (b) and (c) show the RCP8.5 (blue), RCP6.0 (red), RCP4.5 5 
(orange) and RCP2.6 (purple) scenarios. A quadratic approximation, eq. 3 for (b) and eq. 4 for (c), is a good fit to the RCP8.5 

scenario (thin black line). All panels show warming calculated relative to the 1850-1900 average. 
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Figure 4: Projected warming for the period 2081-2100 relative to the 1850-1900 average from 1×103 history matched simulations 

of the ultra-fast WASP/LGRTC ensemble. The left-hand column is for the RCP4.5 scenario and the right-hand column is for the 

RCP8.5 scenario. The top, middle and bottom rows represent the mean, 83rd percentile and 17th percentile of the model 

ensemble. 5 
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Figure 5: Warming projections when future emissions reach 500 PgC from the start of 2018. (a) The spatial distribution of the 

central warming projection. (b) The probability distributions of local warming for 7 locations (solid colour lines) and the global 

surface average (black dashed line). All warming projections given relative to the average temperature from 1850 to 1900. Global 5 
mean warming projected from the quadratic approximation to the history matched WASP ensemble (eqns. 3 to 6) using the 

generic ≥2°C spatial pattern. 
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