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Abstract. Fires affect the composition of the atmosphere and Earth’s radiation balance 32 

by emitting a suite of reactive gases and particles. An interactive fire module in an Earth 33 

System Model (ESM) allows us to study the natural and anthropogenic drivers, feedbacks, 34 

and interactions of open fires. To do so, we have developed pyrE, the NASA GISS 35 

interactive fire emissions module. The pyrE module is driven by environmental variables 36 

like flammability and cloud-to-ground lightning, calculated by the GISS ModelE ESM, 37 

and parameterized anthropogenic impacts based on population density data. Fire 38 

emissions are generated from the actual flaming phase in pyrE (fire count), not the scar 39 

left behind (burned area), as is commonly done in other interactive fire modules. Using 40 

pyrE, we examine fire behavior, regional fire suppression, burned area, fire emissions, 41 

and how it all affects atmospheric composition. To do so, we evaluate pyrE by comparing 42 

it to satellite-based datasets of fire count, burned area, fire emissions, and aerosol optical 43 

depth (AOD). We demonstrate pyrE’s ability to simulate the daily and seasonal cycles of 44 

open fires and resulting emissions. Our results indicate that interactive fire emissions are 45 

bias low by 32-42%, depending on emitted species, compared to the GFED4s inventory. 46 

The bias in emissions drives underestimation in column densities, which is diluted by 47 

natural and anthropogenic emissions sources and production and loss mechanisms. Yet, 48 

in terms of AOD, a simulation with interactive fire emissions performs just as well as a 49 

simulation with prescribed fire emissions. 50 

 51 

1 Introduction 52 

Open biomass burning (BB), the outdoor combustion of organic material in the 53 

form of vegetation, occurs on every continent, with the exception of Antarctica, at a scale 54 

observable from space. Open BB is perceived as a natural ecological process that has 55 

been modulating the carbon cycle for more than 420 million years [Scott and Glasspool, 56 

2006]. However, in practice, BB has been mediated by human activities for more than 57 

100,000 years [Bowman et al., 2009, 2011; Archibald et al., 2012]. Bellouin et al. (2008) 58 

estimated that at present, only about 20% of fires, compared to preindustrial times, are 59 

natural. Andreae (1991) estimated that in the tropics, where about 85% of fire emissions 60 

occur [van der Werf et al., 2017], only 10% of fires are natural. In the USA, government 61 

records show that about 85% of fires are started by humans [Balch et al., 2017]. Humans 62 
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affect fires directly through ignition and suppression, and indirectly through man-made 63 

changes to land surfaces and climate. According to Hantson et al. (2015), land-use 64 

practices are the most important driver of human-fire interactions.  65 

BB regimes are often classified based on ecosystem type like boreal, temperate, 66 

and tropical forests, savanna and grassland, peat land, and agricultural fires [Ichoku et al., 67 

2012]. However, fire characteristics also vary between geographic regions of the same 68 

ecosystem type; for example, boreal fires in Russia have very different intensity, 69 

efficiency, and emissions than boreal fires in Canada [Wooster and Zhang, 2004]. Ichoku 70 

et al. (2008) suggested an energy-based classification of open BB indicating fire intensity, 71 

similar to hurricanes, using the radiative power of satellite-retrieved fires. Globally, 72 

satellite retrievals show that on average about 350 Mha are burned annually [Giglio et al., 73 

2013; Chuvieco et al., 2016], about 4% of the global vegetated area [Randerson et al., 74 

2012], an area similar to that of India. African fires contribute about 70% to the global 75 

total burned area (BA), with about equal contributions from Northern Hemisphere Africa 76 

(NHAF, Fig. 1) and Southern Hemisphere Africa (SHAF). The most flammable 77 

ecosystem, globally and specifically in Africa, is the savanna [Ichoku et al., 2008; 78 

Randerson et al., 2012; Giglio et al., 2013], which in the tropics (23.5° N - 23.5° S) alone 79 

is responsible for 62% (1341 TgC a-1) of global carbon emissions (2200 TgC a-1) [van der 80 

Werf et al., 2017]. Australian bushfires (grass and shrub) and South American savanna 81 

fires are the third and fourth largest regional contributors, with BAs of about 50 Mha and 82 

20 Mha annually, respectively. Globally, Randerson et al. (2012) estimated an additional 83 

contribution of 120 Mha from small fires. The thermal anomalies used to identify those 84 

fires, which are mostly associated with agricultural fires, are below the detection limit of 85 

satellite-retrieved surface reflectance, and come with large uncertainties. Regionally, 86 

small fires can have a significant contribution to BA. By adding the contribution of small 87 

fires, burned area increases in Equatorial Asia (EQAS) by 157%, in Central America 88 

(CEAM) by 143%, and in Southeast Asia (SEAS) by 90% [Randerson et al., 2012]. This 89 

highlights the regional importance of small agricultural fires to regional fire activity. 90 

Forest fires, including small fires, contribute about 17 Mha annually to global BA, and 91 

are dominant in Temperate North America (TENA), Boreal North America (BONA), 92 

Boreal Asia (BOAS) and EQAS. 93 
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BB can exist when three conditions are met: fuel is available, fuel is combustible, 94 

and ignition sources are present [Schoennagel et al., 2004]. The coincidence of these 95 

conditions is seasonal, making open BB an inherently seasonal phenomenon. The peak 96 

month and duration of fire season are coupled to the seasonal cycle in precipitation, 97 

especially in the tropics [Giglio et al., 2006; Hantson et al., 2017b]. In North America, 98 

most fires occur over the plains of the Midwest and Southeast from early spring to 99 

summer where they peak in June-July. Those anthropogenic fires are ignited as a mean of 100 

agricultural land clearing. Similarly, around the summer months forest fires are common 101 

along the Rocky Mountains, the Sierra Nevada mountain range, the Pacific Northwest, 102 

and Boreal Canada and Alaska. Forest fires are either ignited on purpose, as part of forest 103 

management practices [Ryan et al., 2013], ignited by accident, as a by-product of the 104 

expansion of urban life to the wildland interface [Moritz et al., 2014; Fischer et al., 2016; 105 

Radeloff et al., 2018], or ignited by lightning [Díaz-Avalos et al., 2001]. In Central 106 

America there is a south-to-north migration of fire activity, which follows the dry season. 107 

Savanna burning in Colombia and Venezuela takes place between January-April, 108 

followed by a May-August burning in Mexico. In South America most of the burning 109 

takes place in the grasslands of southeast Brazil, set by ranchers for land management 110 

practices, from June to mid-October [Dwyer et al., 2000]. In Europe and Eurasia the BB 111 

season is from April to September, with peaks in May, July and August. From April 112 

through August, farmers in the breadbasket of Eurasia, from the Black Sea to Lake Baikal, 113 

start fires to clear the land and burn crop residue. Siberian boreal fires, which are mostly 114 

lightning-ignited, peak in July-August [Dwyer et al., 2000]. Around the same time 115 

Mediterranean fires peak. Trends in population density like land abandonment and shrub 116 

encroachment, fuel the Mediterranean fires [Butsic et al., 2015]. In NHAF the burning 117 

season is from November to March, which peaks in December-January [Giglio et al., 118 

2013]. Then, the shift in the dry season to the Southern hemisphere dictates the SHAF 119 

burning season from May to October, starting in the northwest and progressing to the 120 

southeast [Giglio et al., 2006]. Fires are mostly set on purpose to clear land of crop 121 

residue and parasites, create firebreaks around settlements, and initiate regrowth of 122 

vegetation [Dwyer et al., 2000]. In SEAS the fire season, driven by land management, 123 

starts in January and ends in early April, dictated by the monsoon circulation. BB in 124 
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eastern Asia, of mainly crop field residue, occurs between May-August. In EQAS 125 

burning occurs between August and November. In Australia, most fires occur in the 126 

grasslands of the Northern Territories, starting in the west and progressing to the east 127 

from May to December. Additionally, fire activity occurs between January and March in 128 

Southern Australia. The Southern Hemisphere BB activity is particularly sensitive to 129 

natural modes of variability like El Niño Southern Oscillation (ENSO) [Buchholz et al., 130 

2018]. During an El Niño year regional BB emissions can be up to two times higher than 131 

their regional average level, due to increased fire activity in tropical rainforests [van der 132 

Werf, 2004; Andela and Werf, 2014; Field et al., 2016; Whitburn et al., 2016].  133 

Although BB emissions have high spatiotemporal variability, their impact on 134 

atmospheric composition is significant [Crutzen et al., 1979; Seiler and Crutzen, 1980; 135 

Crutzen and Andreae, 1990]. BB emissions impact air quality [Johnston et al., 2012, 136 

2014, 2016; Bauer et al., 2019], and climate [Ward et al., 2012; Lasslop et al., 2019]. 137 

Emitted pollutants include ozone precursors like methane (~49 Tg a-1), carbon monoxide 138 

(~820 Tg a-1), and NOx (mostly emitted as NO, ~19 Tg a-1) [Andreae, 2019]; the latter 139 

two are also deleterious for health on their own. In addition to gaseous pollutants, BB 140 

emits particulate matter (a total of ~85 Tg a-1) like primary emitted black carbon (~5 Tg 141 

a-1) and organic carbon (~36 Tg a-1), as well as precursors of brown carbon, and 142 

secondary organic and inorganic aerosols like non-methane volatile organic compounds 143 

(NMVOC, ~58 Tg a-1), ammonia (~9.9 Tg a-1), sulfur dioxide (~6 Tg a-1), and NOx 144 

[Andreae, 2019]. Exposure to these pollutants at high concentrations or for a long period 145 

of time can compromise the cardiorespiratory system and lead to death [Lelieveld et al., 146 

2015]. These pollutants, along with BB-emitted greenhouse gases (GHGs) like carbon 147 

dioxide (CO2; ~13,900 Tg a-1) and nitrous oxide (N2O; ~1.38 Tg a-1), interact with 148 

radiation, directly and indirectly. Fires are a net source of carbon dioxide only where 149 

vegetation regrowth is inhibited, i.e. in deforested areas; otherwise BB is not viewed as a 150 

source of CO2 but as “fast respiration” [van der Werf et al., 2017]. Absorbing black and 151 

brown carbon [Lack et al., 2012; Lack and Langridge, 2013; Laskin et al., 2015], and 152 

reflecting primary and secondary organic and inorganic aerosols interact with solar 153 

radiation directly by scattering and absorbing radiation, and indirectly by modifying 154 

clouds. The radiative properties of particles and their hygroscopicity are also influenced 155 
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by their mixing state [Bauer and Menon, 2012]. For example, when black carbon (BC) is 156 

coated it becomes even more absorbing per unit mass [Bond and Bergstrom, 2006]. There 157 

is evidence that smoke plumes can suppress or invigorate precipitation [Feingold et al., 158 

2001; Andreae et al., 2004; Tosca et al., 2015]. Aerosols impact cloud height and cover 159 

by modifying the heat profile of the atmosphere and increasing the number of cloud 160 

condensation nuclei. There are large uncertainties associated with aerosols’ impact on 161 

climate. Modeling studies suggest that the aerosol effects from BB emissions overrides 162 

the BB-GHG effect to a net negative radiative forcing [Mao et al., 2013], with the 163 

indirect effect of clouds dominating the forcing [Ward et al., 2012]. The present day BB 164 

forcing is estimated at -0.5-(-0.1)±0.05 Wm-2 [ Ward et al., 2012; Mao et al., 2013; Jiang 165 

et al., 2016; Landry and Matthews, 2016; Lasslop et al., 2019].  166 

The quantification of speciated BB emissions is challenging due to the fact that no 167 

one fire is the same as another [Ito and Penner, 2005]. The composition of the resulting 168 

smoke plume depends on the fuel type, burning conditions (i.e. flaming or smoldering), 169 

fuel consumption, and on background chemistry. More complete combustion has a higher 170 

fraction of oxidized species (e.g. CO2 and NOx) while smoldering fires release more 171 

reduced species (e.g. CO, NH3, NMVOCs). Thus, emissions in different regions 172 

contribute different amounts of pollutants; Indonesia, for example, is responsible for 8% 173 

of global carbon BB emissions, but 23% of methane BB emissions [van der Werf et al., 174 

2017]. Emissions are sensitive to season and region. Even within one region, like a boreal 175 

forest, emissions from crown fires differ from those from ground fires. The amount of 176 

fuel consumed by a fire is highly variable and depends on fuel load, density, moisture, 177 

vegetation type, and on environmental factors such as wind speed, soil moisture and soil 178 

composition. Additional challenges relate to external forcing like insect herbivority, 179 

mammal grazing, and manmade land fragmentation and deforestation [Schultz et al., 180 

2008]. The quantification of BB emissions has an even bigger importance during 181 

preindustrial times, where fire emission are identified as the largest source of uncertainty 182 

for aerosol loading in Earth system models [Hamilton et al., 2018]. BB emissions are a 183 

key quantity needed for quantifying the unperturbed-from-humans background conditions 184 

of the atmosphere [Carslaw et al., 2013].  185 
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Traditionally, fires are included in climate models using emission inventories 186 

[Lamarque et al., 2010; van der Werf et al., 2010, 2017; van Marle et al., 2017]. Some 187 

models have the ability to simulate BB emissions interactively with a varying level of 188 

complexity [Thonicke et al., 2001; Arora and Boer, 2005; Pechony and Shindell, 2009; Li 189 

et al., 2012; Lasslop et al., 2014; Hantson et al., 2016; Mangeon et al., 2016; Rabin et al., 190 

2017; Zou et al., 2019]. On the one end of the spectrum, there are statistically-based 191 

models, and on the other end there are detailed empirical and physical process-based 192 

models. Statistical models are skilled at making predictions based on present-day 193 

relationships between climate and fire (their training data). Process-based models 194 

encapsulate the complex feedbacks within the climate system at various levels. They 195 

combine physical processes such as fuel condition, cloud-to-ground lightning ignitions, 196 

and wind-driven fire expansion. Some models also include simplified empirical 197 

relationships of anthropogenic ignition and suppression, which, at present, are not 198 

understood in a dynamic process level. Though less accurate than observational datasets, 199 

when trying to simulate individual fire events, fire models provide the unique advantage 200 

of linking the atmosphere, biosphere and hydrosphere in a consistent way, a crucial step 201 

when studying Earth System interactions. They are also able to predict fire during climate 202 

periods for which we have no observational data available (e.g. preindustrial and future).  203 

State-of-the-art process-based fire models are well equipped to study the 204 

feedbacks between the climate system and fires [Hantson et al., 2016]. However, there is 205 

indication that they lack accurate predictive capabilities, as they only partly capture 206 

trends in present day observations. For example, satellite products show a global decrease 207 

in burned area from about 500 Mha a-1 in 1997 to 400 Mha a-1 in 2013, a trend which fire 208 

models do not capture [Andela et al., 2017]. This trend is mostly driven by land 209 

fragmentation and grazing practices over African savanna, highlighting the challenge of 210 

fire models to account for the combined changes in climate, vegetation and socio-211 

economic drivers [Forkel et al., 2019].  212 

In this paper we present a new global fire module, pyrE, based on an improved 213 

scheme of [Pechony and Shindell, 2009, 2010] with new, state-of-the-art, capabilities. 214 

The pyrE module is process-based, as it includes the two basic parameters of fuel 215 

availability and combustibility, which are used to calculate fire count. It utilizes empirical 216 
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relationships with population density to account for the anthropogenic impact on fire 217 

ignition and suppression. However, unlike other fire models where fire suppression is 218 

applied uniformly across all regions [Rabin et al., 2017], in pyrE fire suppression 219 

depends both on population density and region. Additionally, pyrE uses fire count to 220 

derive emissions, and is therefore more directly connected to the actual fires, in contrast 221 

to other fire models that use BA, a measure more indicative of fire’s effect on the 222 

landscape. The fire module is part of the NASA GISS ModelE Earth System model, 223 

ModelE2.1 (an updated version based on Schmidt et al. (2014)), and is described below.  224 

2 Model description 225 

pyrE, from the Greek word for fire (pyr), is a global fire module within GISS 226 

ModelE. It incorporates the fire count parameterization of Pechony and Shindell (2009, 227 

2010), with the addition of fire spread and BA, following the Community Land Model’s 228 

(CLM) approach [Li et al., 2012]. The module is a collection of physical processes like 229 

flammability, natural and accidental ignition, suppression, fire spread, and fire emissions 230 

(Fig. 2). The climate model input required, includes surface temperature, surface relative 231 

humidity (RH), precipitation, surface wind speed, vegetation density and type, cloud-to-232 

ground lightning frequency and population density. Like many fire modules it lacks 233 

explicit intentional ignition (e.g. crop, deforestation) and peat fires. 234 

2.1 Flammability 235 

Flammability is a parameter that indicates conditions favorable for fire occurrence 236 

[Pechony and Shindell, 2009, 2010]. It is a unit-less number that ranges between zero and 237 

one, and is calculated using vapor pressure deficit (𝑉𝑃𝐷) , monthly-accumulated 238 

precipitation, and vegetation density (𝑉𝐷).  239 

𝑉𝑃𝐷, an indicator of drought [Seager et al., 2015; Williams et al., 2015], is 240 

calculated via the Goff-Gratch equation [Goff and Gratch, 1946; Goff, 1957] using the 241 

saturation vapor pressure 𝑒!  and surface relative humidity (𝑅𝐻):  242 

𝑉𝑃𝐷 = 𝑒! 1− !"
!""

 (1) 243 

Where 𝑒!" = 1013.245 𝑚𝑏  is the saturation vapor pressure at the boiling point 244 

of water and 𝑒! = 𝑒!"10! !  depends on temperature 𝑇 : 245 

𝑍 𝑇 = 𝑎 !!
!
− 1 + 𝑏 ⋅ log !!

!
+ 𝑐 10! !!!!! − 1 + 𝑓 10!

!!
! !! − 1  (2) 246 
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With the coefficients: 𝑎 = −7.90298; 𝑏 = 5.02808; 𝑐 = −1.3816 ⋅ 10!!;𝑑 =247 

11.344; 𝑓 = 8.1328 ⋅ 10!!;ℎ = −3.49149  [Goff and Gratch, 1946], and 𝑇! =248 

373.16 °𝐾  (water boiling point temperature). 249 

The precipitation dependence of flammability is in the form of an inverse 250 

exponential (Following [Keetch and Byram, 1968]):  251 

𝑓 𝑅 = exp −𝑐!𝑅  (3) 252 

Where 𝑅 is the surface rain rate in mm per day and 𝑐! = 2 𝑑𝑎𝑦/𝑚𝑚  is an 253 

empirical constant [Pechony and Shindell, 2009].  254 

Vegetation density (𝑉𝐷) is taken as the normalized leaf area index (LAI) in the 255 

land fraction of a grid cell, varying between 0 for no vegetation and 1 for dense 256 

vegetation.  257 

We modified the original calculation proposed by [Pechony and Shindell, 2009] 258 

by calculating flammability only for the fraction of the model’s grid cell that is not 259 

burned from previous fires. The flammability 𝐹 at a time step 𝑡 in a grid cell (𝑖, 𝑗) is: 260 

𝐹 𝑡 = 10! ! ! !,! 1− !" ! !,!

!""
𝑉𝐷 𝑡 !,! 1− !" ! !",

!!!,!
exp −𝑐!𝑅 𝑡 !,!  (4) 261 

Where 𝐿𝐴!,! is the total land area (LA) in the grid cell (𝑖, 𝑗). 262 

2.2 Ignition 263 

Natural and anthropogenic ignition varies in space and time, and is necessary for 264 

the calculation of fire count. If ignition is zero, the resulting fire count will be zero, 265 

independent of flammability. Natural ignition is in the form of cloud-to-ground lightning 266 

frequency, which is interactively calculated in ModelE2.1 [Price and Rind, 1992, 1993]. 267 

The parameterization of anthropogenic ignition follows Venevsky et al. (2002) and is 268 

based on the assumption that in sparsely populated regions people interact more with the 269 

natural environment, thus increasing the potential for ignition. The parameterization uses 270 

population density data and empirical scaling factors, as described by Pechony and 271 

Shindell (2009), and does not include intentional ignition. The number of anthropogenic 272 

accidental ignitions per km2 per month is:  273 

𝐼! = 𝑘 𝑃𝐷 𝑃𝐷𝛼 (5) 274 

Where PD is the population density; 𝑘 𝑃𝐷 = 6.8𝑃𝐷!!.! represents the varying 275 

anthropogenic ignition potentials as a function of population density; 𝛼 = 0.03 is the 276 
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number of potential ignitions per person per month. Coefficients are taken following 277 

Pechony and Shindell (2009) and Mangeon et al. (2016) which utilized correlation 278 

calculations done by Venevsky et al. (2002). 279 

2.3 Suppression 280 

A first-order approximation of the impact of population density on explicit fire 281 

suppression was proposed by Pechony and Shindell (2009). According to that 282 

parameterization, more fires are suppressed in densely populated areas compared to 283 

sparsely populated areas, regardless of ignition source. Specifically, suppression varies 284 

from 5% to 95% of fires. However, fire management is a region-specific practice, which 285 

depends on cultural norms and economic capabilities. For example, fire suppression in 286 

the United States of America (USA) is much more aggressive than most regions in the 287 

world. In the Middle East, vegetation is sparse and is mostly near centers of human 288 

population for agricultural purposes. Natural ignition is almost inexistent and most fires 289 

are controlled by human activities, which make the impact of suppression stronger. Fire 290 

suppression for open BB is not commonly practiced in most parts of Africa. In some 291 

regions of Africa, fires are used as a tool to clear land for agriculture and to prevent 292 

savanna overgrowth and the spread of pests. Hence, we improved the simplistic approach 293 

suggested by Pechony and Shindell (2009), guided by the results presented in Sect. 5.1.1. 294 

We use the complement of the fraction of suppressed fires that is the fraction of non-295 

suppressed fires, 𝑓!": 296 

𝑓!" =
0.2exp (−0.05𝑃𝐷), 𝑈𝑆𝐴 𝑎𝑛𝑑 𝑀𝐼𝐷𝐸

1, 𝐴𝑓𝑟𝑖𝑐𝑎
0.05+ 0.9exp (−0.05𝑃𝐷), 𝐸𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (6) 297 

Similarly to Pechony and Shindell (2009), constant values are selected in a 298 

heuristic manner, due to the lack of appropriate global data. 299 

2.4 Fire count 300 

Fire count is a key metric as it is used to drive burned area and fire emissions in 301 

pyrE. The number of fires in a time step per km2 is calculated as the product of 302 

flammability, sum of natural and anthropogenic ignition, and suppression [Pechony and 303 

Shindell, 2009] (Fig. 2): 304 

𝑁!"#$ 𝑡 !,! = 𝐹 𝑡 !,! ⋅ 𝐼! 𝑡 !,! + 𝐼! 𝑡 !,! ⋅ 𝑓!" 𝑡 !,! (7) 305 
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2.5 Burned area (BA) 306 

We adopted the process-based approach of Li et al. (2012) to calculate fire spread 307 

and burned area. The burned area in grid cell 𝑖, 𝑗  at a model time step 𝑡 is the product of 308 

fire count and the weighted average over plant functional types (PFTs) of the area burned 309 

by one fire:  310 

𝐵𝐴!,! = 𝑁!"#! 𝑡 !,! ⋅ 𝑎!,!,! ⋅ 𝑓!,!,!!  (8) 311 

Where 𝑓!,!,! is the fractional area covered by plant functional type v, and the 312 

burned area of a single fire 𝑎!,!,! is assumed to have an elliptical shape (Fig. 3). Wind 313 

speed, surface relative humidity, and vegetation type control the eccentricity of the 314 

ellipsoid that represents the burned area of a single fire (based on van Wagner (1969)):  315 

𝑎!,!,! =
!"#!!!!

!!"
1+ !

!"

!
 (9) 316 

Where 𝑅𝑂𝑆 is the rate of fire spread, 𝐿𝐵 is the length-to-breadth ratio, and 𝐻𝐵 is 317 

the head-to-breadth ratio. The stronger the wind, the more eccentric the ellipse, i.e. the 318 

bigger the length-to-breadth ratio: 319 

𝐿𝐵 = 1+ 10 ⋅ 1− exp −0.06𝑊  (10) 320 

Where 𝑊 is the surface wind speed in m s-1. 321 

Strong winds also increase the head to back ratio; the ratio of the downwind 322 

spread compared to the upwind spread: 323 

𝐻𝐵 = !"! !!!!!
!"! !!!!!

 (11) 324 

The rate of spread (ROS) of a fire is a function of vegetation type, wind speed, 325 

and atmospheric and soil moisture: 326 

𝑅𝑂𝑆 = 𝑅𝑂𝑆!"# ⋅ 𝑔𝑊 ⋅ 𝑓!" ⋅ 𝑓! (12) 327 

𝑅𝑂𝑆!"# is the maximum fire spread rate. Following Li et al. (2012), we set it to 328 

0.2 m s-1 for grasses, 0.17 m s-1 for shrubs, 0.15 m s-1 for needle leaf trees, and 0.11 m s-1 329 

for other trees. Li et al. (2012) estimated the fire spread coefficients to be on the lower 330 

range of observed ROS, but are yet higher than the global value of 0.13 m s-1 suggested 331 

by Arora and Boer (2005).   332 

The limit of the fire spread is set by: 333 

𝑔𝑊 = !!!
!! !

!!

𝑔0 (13) 334 
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Where 𝑔0 = !!!!!"#
!!

!!!!"#
≈ 0.05 335 

𝑓!! , 𝑓! are the dependencies of fire spread on RH and root zone soil moisture: 336 

𝑓!" =

1 𝑅𝐻 ≤ 𝑅𝐻!"#
!!!"!!"

!!!"!!!!"#
𝑅𝐻!"# < 𝑅𝐻 < 𝑅𝐻!"

0 𝑅𝐻 ≥ 𝑅𝐻!"

 (14) 337 

Following Li et al. (2012), we set  𝑅𝐻!"# = 30%,𝑅𝐻!" = 70% 𝑎𝑛𝑑 𝑓! = 0.5 as 338 

ModelE2.1 does not simulate prognostic root zone soil moisture. 339 

2.6 Emissions 340 

Trace gas and aerosol emissions are calculated using PFT (denoted by v) and 341 

chemical specie (s) specific emission factors 𝐸𝐹!,! . The emissions per grid cell 𝑖, 𝑗  of 342 

specie 𝑠 at a model time step 𝑡 are calculated by:  343 

𝐸!,!,! 𝑡 = 𝑁!"#$ 𝑡 !,! ⋅ 𝐸𝐹!,! ⋅ 𝑓!,!,!!  (15) 344 

Where 𝐸!,!,! 𝑡  is the emissions flux rate in kg m-2 s-1, 𝑁!"#$ 𝑡 !,! are the fire 345 

count, 𝐸𝐹!,! are the offline emission factors, and 𝑓! is the fractional area of that PFT in 346 

the grid cell. 347 

Emission factors describe the PFT-specific speciated mass (in kg) of the smoke, 348 

normalized per fire (Table 1). Emission factors were calculated offline using ModelE2.1 349 

PFTs, annual mean global MODIS Terra fire count, and GFED4s emissions from the 350 

period of 2003-2009. Our technique, known as multivariate curve fitting, matched the 351 

emissions within the PFT fraction of the grid cell with the respective fire count. We 352 

correlated GFED4s emissions with MODIS fire count as a function of the fraction of 353 

modeled PFTs in a grid cell and calculated different emission factors per PFT. 354 

2.7 Implementation within ModelE 355 

ModelE2.1 can be used with either GFED4s prescribed fire emissions or 356 

interactive pyrE emissions. The pyrE module generates emissions at every model time 357 

step with ESM-simulated climate as a driver. Flammability is calculated only in the 358 

fraction of grid cells with natural vegetation. It is driven by the simulated surface RH, 359 

surface temperature, monthly accumulated precipitation, and LAI. LAI is calculated by 360 

Ent [Kim et al., 2015], the Terrestrial Biosphere Model component of ModelE2.1, and is 361 

currently derived from 2005 MODIS LAI data [Tian et al., 2002a, 2002b]. Cloud-to-362 
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ground lightning, calculated by ModelE2.1, is used as the natural ignition source. Most 363 

ESMs have low skill in reproducing flash rate distributions [Murray, 2016], and the GISS 364 

model is no exception. A qualitative comparison with the World Wide Lightning 365 

Location Network (WWLN) (not presented here) showed that modeled cloud-to-ground 366 

lightning, which makes up only about 30% of total lightning, is bias-high in ModelE2.1. 367 

We decided to use a simple scaling factor of 0.1 in the calculation of natural ignition to 368 

better match observed flash rates, as improving the lightning parameterization is beyond 369 

the scope of this study. Gridded population density (PD) that drives both anthropogenic 370 

ignition and fire suppression is based on historical data for years prior to 2010 [Klein 371 

Goldewijk et al., 2010], and on future projections (not used in this study) for years past 372 

2010. PD has a time resolution of 10 years and is interpolated in between.  373 

The modeling approach presented in this paper provides a good reproduction of 374 

the seasonality compared to satellite retrievals (see Results section). However, the 375 

simulated magnitude of fire count and burned area was too small compared to satellite 376 

retrievals and required the use of a scaling factor, a common practice among other fire 377 

models [Pfeifer et al., 2013; Knorr et al., 2014; Hantson et al., 2016; Mangeon et al., 378 

2016; Zou et al., 2019]. To calibrate the global modeled fire count to MODIS retrievals, 379 

we used a global scaling factor of 30 for all fire count. A similar approach was taken by 380 

Pechony and Shindell (2009). We scaled burned area by a factor of 250 to reach the 381 

magnitude of GFED4s. Nevertheless, even with this large correction factor, burned area 382 

has a very minor impact on fire count and fire emissions as it accounts for a small 383 

fraction of the grid cell that is able to burn. 384 

 385 

3 Model configuration 386 

We used ModelE2.1 with a spatial resolution of 2° in latitude by 2.5° in longitude, 387 

40 vertical layers and a model top at 0.1 hPa. The vegetation component of ModelE2.1 is 388 

the Ent Terrestrial Biosphere Model (Ent TBM), which is coupled with the land use/land 389 

cover data in the model [Kim et al., 2015]. Ent prescribes leaf area index (LAI) for 14 390 

plant functional types (presented in Table 1) derived from MODIS 2005 data (cover and 391 

biome types [Friedl et al., 2010]; LAI [Tian et al., 2002a, 2002b]), historical crop cover 392 

[Pongratz et al., 2008], and vegetation heights from [Simard et al., 2011].  393 
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In this study we show results from runs of ModelE2.1 coupled to the aerosol 394 

microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) 395 

[Bauer et al., 2008]. MATRIX simulates aerosol formation, condensation and 396 

coagulation, calculates the size distribution of aerosols and tracks their mixing state. Sea 397 

salt, dust, and dimethyl sulfide (DMS) emissions were calculated interactively, driven by 398 

the simulated climate, while other natural and anthropogenic fluxes, except for fires, were 399 

prescribed from the CEDS (Community Emissions Data System) inventory [Hoesly et al., 400 

2018].  401 

In the following, we will present a simulation with pyrE turned on, generating 402 

interactive fire emissions, and a simulation with pyrE turned off, using prescribed 2005 403 

climatological GFED4s emissions instead. Also, we will discuss sensitivity studies using 404 

two simulations where pyrE generates interactive fire emissions but suppression is 405 

changed from a global parameterization to a regional one. Prescribed climatological 406 

monthly varying mean (1996-2004) sea surface temperature and sea ice thickness and 407 

extent were used as boundary conditions [Rayner et al., 2003]. 408 

4 Reference datasets 409 

The data below are based on a composite of level 3 Aqua and Terra Moderate-410 

resolution Imaging Spectro-radiometer (MODIS) Collection 5.1 data [Giglio et al., 411 

2003b; Giglio, 2013], unless otherwise stated. Aqua and Terra are sun-synchronous, near-412 

polar orbiting satellites with a global continuous record of more than 15 years; Aqua was 413 

launched in May 2002 and Terra in December 1999. Aqua’s overpass time is 1:30AM 414 

and 1:30PM local, and Terra’s overpass time 10:30AM and 10:30PM local, and their 415 

period is between one to two days. All reference data used in this study are interpolated 416 

and re-gridded to the resolution of ModelE2.1. 417 

4.1 Fire count 418 

To detect fires, MODIS uses brightness temperatures (thermal anomaly) derived 419 

from two channels. Channel 31, that saturates at 400° K, and either channel 21, that 420 

saturates at 500° K, or channel 22, that saturates at 331° K. Channel 22 is preferred over 421 

21 as it has a higher signal to noise ratio, but when it saturates, or has missing data, 422 

channel 21 is used [Justice et al., 2002; Giglio et al., 2006]. 423 
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In our study we used the monthly cloud-corrected fire count (CloudCorrFirePix) 424 

climate model grid data (MYD14CMH, MOD14CMH). The spatial resolution of the data 425 

is 0.5°. Static, persistent hot spots are excluded from this product [Giglio, 2013]. Because 426 

of its non-uniform spatial and temporal sampling, raw MODIS data are biased high at 427 

high latitudes [Giglio et al., 2003a, 2006]. The product we used is corrected for the 428 

multiple satellite overpasses, the missing data, and variable cloud cover. Cloud cover 429 

hinders MODIS retrievals. The fire count in the product we used is normalized to the 430 

fraction of cloud cover in a pixel. In highly cloudy pixels, the product is set to zero. The 431 

local time of retrieval matters for fire detection, as fires are driven by the daily cycle in 432 

solar heating. The largest number of fire count is detected during daytime, with an order 433 

of magnitude difference between daytime fire count detections and nighttime fire count 434 

detections [Ichoku et al., 2008]. Thus, differences are evident between the Aqua and 435 

Terra retrievals. This motivated us to use data from the two satellites in our analysis. We 436 

calculate and utilize climatological monthly means from the period 2003-2016. 437 

4.2 Burned area 438 

We used burned area from the Global Fire Emissions Database (GFED) version 439 

4s that includes small fires [van der Werf et al., 2010, 2017; Randerson et al., 2012; 440 

Giglio et al., 2013]. The GFED4s inventory is based on multi-sensor MODIS data, 441 

involving both reflectance and thermal anomalies measurements from Aqua and Terra. 442 

MODIS detects burned area using the 650 nm, 1200 nm, and 2100 nm reflectance bands. 443 

Retrievals must be free from cloud contamination and free from active fires within the 444 

500 m MODIS grid cell. First, to generate the GFED4s data, MODIS burned area 445 

collection 5.1 data (MCD64A1 product) are aggregated to a 0.25° grid. Then, burned area 446 

from small fires is added. The burned area of small fires is statistically estimated using 447 

active fire count detected by MODIS (a composite of both Aqua and Terra). Both the 448 

ratio and correction factor are estimated each year as a function of region, season, and 449 

vegetation type [Randerson et al., 2012; van der Werf et al., 2017]. Due to the projection 450 

of the MODIS reflectance product over the thermal anomaly one, some resampling errors 451 

occur. To partially correct this error, region-specific factors ranging from 0.88 in Africa 452 

to 1.12 in boreal Asia are applied. In this study we use climatological monthly means of 453 

burned area from the period 2003-2016. 454 
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4.3 Biomass burning emission inventory 455 

GFED4s emissions are derived from the multiplication of burned area and fuel 456 

consumption [van der Werf et al., 2010, 2017]. As such, they have the same spatial and 457 

temporal resolution as burned area, of 0.25° by 0.25° and a month. Fuel consumption is 458 

calculated using an estimation of fuel loss and combustion completeness, which are 459 

calculated using MODIS-based metrics such as differences in normalized burned area 460 

(dNBR), normalized vegetation index (NDVI), and land surface temperature (LST). 461 

These metrics inform about changes in green vegetation, canopy and soil water, and 462 

landscape charring. The satellite-based data are used as input to the Carnegie–Ames–463 

Stanford Approach (CASA) biogeochemical model [Randerson et al., 1996] to calculate 464 

the dry matter burned. Then, emission factors [Andreae and Merlet, 2001; Akagi et al., 465 

2011] are applied to convert the dry matter burned to PFT-specific speciated gas and 466 

aerosol phase emissions. Kaiser et al. (2012) and Pan et al. (2019) showed that there are 467 

regional biases in older and current versions of GFED; being especially biased low in the 468 

Southern Hemisphere compared to AERONET aerosol optical depth (AOD). In order to 469 

eliminate the strong interannual BB variability, our analysis used GFED4s mean 470 

climatological data of 1995-2010.  471 

4.4 Fire regions 472 

The analysis we present below is based on the widely used fire regions (Fig. 1) as 473 

defined by GFED [Giglio et al., 2006; van der Werf et al., 2006]. The regions are defined 474 

based on climate and fire regimes, and are widely used as basis regions for global fire 475 

studies. 476 

4.5 Aerosol optical depth 477 

The impact of fire emissions on atmospheric composition is investigated by 478 

comparing monthly Aqua and Terra MODIS retrievals of AOD at 550nm [Remer et al., 479 

2005; Platnick et al., 2015]. AOD describes the entire atmospheric column-integrated 480 

extinction of aerosols. MODIS AOD data are a useful tool in the study of simulated BB 481 

plumes [Voulgarakis and Field, 2015; Johnson et al., 2016; Bauer et al., 2019]. The 482 

AOD data we used has a 1° spatial resolution. The monthly mean data (MYD08_M3 and 483 

MOD08_M3 products) have been averaged over the period 2003–2007 to create monthly 484 

climatologies centered around the year 2005. The AOD product we use includes 485 
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improvements made via the Dark Target algorithm [Kaufman et al., 1997], which was 486 

developed particularly for retrievals over dark vegetated surfaces [Wei et al., 2019]. 487 

However, the algorithm fails at retrieving valid AOD data over bright surfaces like desert 488 

areas [Levy et al., 2013], which we discard. Here we use collection 6.1 data. 489 

5 Results and discussion 490 

5.1 Fire count 491 

5.1.1 Regional suppression 492 

First we want to demonstrate how the parameterization with regionally-dependent 493 

fire suppression improves the simulation of fire count compared to the original simplified 494 

global fire suppression proposed by Pechony and Shindell (2009) (Fig. 4). Our goal was 495 

to improve the fire parameterization in regions where the seasonality was captured in 496 

timing but not in magnitude. We propose regional modifications to Africa (NHAF, 497 

SHAF), a region that drives global fire activity, and had a distinct mismatch in fire count 498 

compared to satellite retrievals. Originally, over NHAF the fire seasonality was too flat, 499 

while over SHAF it matched MODIS-Terra, but was orders of magnitude smaller than 500 

MODIS-Aqua. Since fire suppression for open BB is not commonly practiced in rural 501 

Africa, eliminating it over NHAF and SHAF helped resolve the seasonal cycle (Fig. 4 502 

and Eq. 6). The two other regions we modified are TENA and Middle East (MIDE). Over 503 

both of those regions the simulated fire seasonality was too strong. Increasing fire 504 

suppression over MIDE and TENA greatly improved our simulations compared to 505 

MODIS retrievals. 506 

The pyrE module is skilled at capturing the fire seasonality in regions identified 507 

by Forkel et al. (2017) as controlled by temperature and wetness (climate controls), like 508 

Southern Hemisphere South America (SHSA) (Fig. A1). However, there are regions that 509 

our parameterization does not simulate well, mainly due to the fact that the fire activity 510 

there is driven by land use practices and intentional fire ignitions, which pyrE does not 511 

resolve. For example, in TENA we are missing the spring peak of agricultural fires. 512 

Similarly, over Europe and Boreal Asia (Fig. A1) we are missing the winter and spring 513 

fires associated with intentional ignition [Dwyer et al., 2000; Ganteaume et al., 2013]. 514 

Other regions where the seasonality is not well captured, likely due to the fact that it is 515 

driven by intentional ignitions, include Central America, Northern Hemisphere South 516 
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America, Central Asia, Southeast Asia, and Equatorial Asia. Over Australia, the model 517 

captures neither the magnitude nor the timing of the BB seasonality. This is in part due to 518 

the model’s poor performance of the simulated cloud-to-ground lightning ignitions in that 519 

region (not shown). 520 

In all simulations going forward we used the regional suppression scheme.  521 

5.1.2 Daily cycle 522 

We looked at the fire count daily cycle to see if it can explain the differences 523 

between Aqua, Terra, and the model. The monthly mean fire count detected by Aqua and 524 

Terra is expected to be different due to their different overpass times. In Fig. 5, pyrE 525 

simulates a distinct daily cycle in fire count in different locations. The simulated daily 526 

cycle is most strongly controlled by the simulated daily cycle in flammability (not 527 

presented here), matching the daily solar cycle. pyrE’s ability to resolve a daily cycle of 528 

fire activity highlights the dynamic nature of a process-based fire model. 529 

Using 30-minute simulation output, we sampled all surface grid cells at the 530 

daytime overpass time of MODIS Terra, 10:30am local time, and MODIS Aqua, 1:30pm 531 

local time. We focused on the daytime overpass time of Terra and Aqua since about 95% 532 

of fire count detections occur then [Ichoku et al., 2008]. Our results in Fig. 6 and Fig. 7 533 

indicate that, globally, simulated fire count sampled at daytime overpass is bias-high 534 

compared to MODIS retrievals from the respective satellite, for much of the year. On a 535 

global annual mean, the model sampled in daytime Terra overpass time is higher than 536 

MODIS Terra fire count by 45%, while the model sampled in daytime Aqua overpass 537 

time is higher than MODIS Aqua fire count by 13%. However, this behavior differs by 538 

region and maximizes in NH sub-Saharan Africa and SH central Africa. The simulated 539 

fire count is bias-low compared to MODIS retrievals along the coast of west Africa, in 540 

eastern southeast Asia and Australia. The implications of these findings are that even 541 

though the simulated monthly mean fire count is in the range of Terra and Aqua (Fig. 4, 542 

A1), the simulated fire count is in fact higher than MODIS retrievals. Considering that 543 

the actual number of fire count is likely higher than the number retrieved by MODIS, as 544 

cloud contamination is decreasing its detection efficiency, it is conceivable that a model 545 

weakly high-biased compare to the satellite retrievals is realistic. All results presented 546 
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later were not sampled according to a satellite overpass time, but instead were averaged 547 

over the whole length of the day.  548 

 549 

 550 

 551 

5.2 Burned area 552 

The simulated burned area is bias-low compared to the GFED4s inventory (Fig. 8, 553 

A2). The total annual simulated burned area (10-year climatological mean) is 31.5 Mha 554 

while GFED4s burned area (mean of 2003-2016) is 38.1 Mha. However, this behavior is 555 

region-specific. The simulated burned area is lower compared to GFED4s over northern 556 

hemisphere Africa, particularly in November-December, over central and equatorial Asia, 557 

and over Australia. The simulated burned area (Fig. 8, A2) reflects the spatial distribution 558 

and seasonality of simulated fire count (Fig. 8, A1). GFED4s burned area and MODIS 559 

fire count do not always have the same seasonality, for example during October-560 

December. During this season the satellite-retrieved fires produce a higher burned area 561 

relative to other seasons. The fire activity driving this behavior occurs in the savanna of 562 

sub-Saharan Africa, and northern hemisphere South America. In those regions and times 563 

of the year the normalized mean bias of modeled burned area is at least twice the size of 564 

the normalized mean bias of fire count, e.g. in NHAF a bias of 6.5 for burned area and 1-565 

3 for fire count, depending on the MODIS satellite. This implies that for every fire 566 

modeled in these regions and season a smaller area is simulated to burn compared to the 567 

reference datasets. 568 

Why is the burned area per fire relationship in simulations much weaker than it is 569 

in the reference datasets? Two contributing factors are: prescribed PFT and simulated 570 

wind. The prescribed PFT distribution present in the model is rudimentary; it is 571 

comprised of 11 flammable vegetation types (Table 1). As for surface winds, the 572 

simulated wind patterns driving burned area are averaged over a coarse grid cell 573 

(2°x2.5°). Simulated wind does not represent sub-grid scale processes and is not fueled 574 

by the fire’s energy, which is likely contributing to an underestimation of the spread of 575 

burned area. However, though wind directly impacts burned area, it does not play a major 576 

role in the distribution of simulated fires, since burned area itself has a minor impact on 577 
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fires due to its small percentage in a grid cell. At most burned area reaches less than 18% 578 

of the naturally vegetated fraction of a grid cell, and is on average less than 1%.  579 

5.3 Emissions 580 

Due to the intricate processes involved in burned area spread, most fire models 581 

struggle to reproduce the observed trend [Andela et al., 2017] and seasonality [Hantson et 582 

al., 2017a] of burned area. A more direct approach would be to use fire count, similar to 583 

the approach of Pechony and Shindell (2009, 2010) and Pechony et al. (2013).  584 

The main source regions for fire emissions are NHAF, EQAS, SHSA, and SHAF. 585 

Emissions are well simulated over SHSA and SHAF (Fig. A3-A5), both in terms of 586 

timing of the seasonality and in magnitude. The main regions where simulated emissions 587 

are lower than GFED4s are sub-Saharan Africa and Indonesia (Fig. 8). However, more 588 

generally, simulated gaseous and particulate emissions are globally bias low compared to 589 

GFED4s emissions (Table 2). This behavior is most prominent in sub-Saharan east Africa 590 

and in EQAS, mainly in Indonesia (Fig. 8). To a lesser degree, simulated fire emissions 591 

are also weaker compared to GFED4s in the boreal regions (Fig. A3-A5). The 592 

contribution from these regions to the global total is an order of magnitude smaller 593 

compared to the main source regions. 594 

The weaker emissions compared to GFED4s are responding to the following inputs: 595 

offline emissions factors, lack of crop and peat fires, LAI, and prescribed PFTs. The 596 

emission factors that generate fire emissions are derived using multivariate statistical 597 

analysis. Though we used seven full years (2003-2009) of data to derive the factors, it 598 

might have generated biases in emissions. Areas that burn annually are properly sampled, 599 

but areas that have a fire cycle that is longer than a seven year might be biased high or 600 

low, depending on whether they were included in the training dataset or not. Also, crop 601 

and peat fires are not explicitly included in the simulated emissions, as intentional 602 

ignition is not parameterized in pyrE. Specifically, fires are not applied to the crop faction 603 

of a grid cell, and peat surfaces are not included in the PFTs. However, our method of 604 

deriving the offline emission factors uses MODIS fire count and GFED4s emissions, and 605 

does not distinguish between intentional and accidental fires. Hence, intentional fires are 606 

indirectly accounted for in the global sum. However, this indirect inclusion of intentional 607 

fires does not necessarily add missing fire emissions in the correct locations. The LAI in 608 
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Ent, ModelE’s DGVM, is based on 2005 MODIS retrievals. Though we cannot estimate 609 

the role that the lack of interactive LAI plays, it is certainly not optimal, neither for fire 610 

count simulation, nor for fire emissions that are derived from these fire count. Unlike fire 611 

count, fire emissions are strongly tied to the map of PFTs. The offline emission factors 612 

are based on prescribed PFTs, and the interactive emissions themselves are applied 613 

according to the sub-grid PFT distribution. The prescribed PFT distribution present in the 614 

model might be different than reality, and those differences affect emissions. In the 615 

model, the PFTs in areas where emissions are bias high compared to GFED4s there is a 616 

high percentage (>50%) of the following PFTs: evergreen broadleaf trees (Amazon, 617 

central Africa), cold broadleaf trees (northeast America, Europe), and drought broadleaf 618 

trees (central Africa and northern India). In EQAS, a region with bias low simulated 619 

emissions, close to 100% of the prescribed PFTs is evergreen broadleaf trees, which in 620 

reality is replaced by crops. The bias-low emissions in EQAS are very likely tied to the 621 

lack of prescribed peat PFT. In areas with bias low emissions modeled PFTs are mainly 622 

(>50%) c4 grass (sub-Saharan Africa, Australia), deciduous needle leaf trees (boreal 623 

regions), and arid shrubs (S Africa, Australia).  624 

5.4 Composition 625 

5.4.1 Column load 626 

In order to quantify how the model skill changes with the inclusion of pyrE 627 

instead of prescribed emission inventory data in ModelE2.1, we compare a simulation 628 

with interactive fires to a simulation with prescribed BB sources. Though emissions are 629 

mostly bias-low compared to GFED4s, this behavior is less evident in the column density 630 

(Fig. 9). For most BB emitted species, the simulation with interactive fires has lower 631 

column densities than the simulation with prescribed emissions (Table 2) with a bias 632 

ranging from -6.3-0.5% for gaseous species, -4.8% for black carbon and -16% for organic 633 

aerosol. However, the column densities are only partly driven by fire emissions, as those 634 

make up less than 35% of total global emissions of either CO, organic aerosol, and black 635 

carbon emissions. Non-emissions production-and-loss mechanisms also impact column 636 

densities.  637 

The difference in column densities between the two simulations is greatest over 638 

north sub-Saharan Africa, Indonesia, and the boreal regions. The behavior is region-639 
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specific, and some regions like central Africa and northern hemisphere South America 640 

have higher column densities compared to the simulation with prescribed emissions. The 641 

differences between the two simulations are more prominent for organic aerosol than any 642 

of the other species (Fig. 9, Table 2), while the differences in the spatial distribution of 643 

CO are marginal. 644 

5.4.2 Aerosol optical depth (AOD) 645 

In Fig. 10 we compare climatologically-simulated clear-sky AOD with MODIS 646 

AOD (Aqua) for January, April, July, and October. The conclusions from Terra products 647 

are similar to Aqua’s, and will not be presented here, for brevity. In a regional 648 

perspective, simulated AOD is able to reproduce the seasonality and spatial distribution 649 

of MODIS-retrieved pollution over west and central Africa, east and southeast Asia, and 650 

the Arabian sea. The simulations of ModelE2.1 has higher AOD compared to MODIS 651 

over the tropical eastern Pacific, an artifact due to the model’s skill in simulating 652 

stratocumulus cloud decks, which have been improved in a newer version of the ESM 653 

(ModelE3).  654 

Model performance as a function of interactive versus offline fire emissions is 655 

similar in terms of AOD (Fig. 11). Both simulations have persistently lower (0-30%) 656 

AODs over central Africa and central South America compared to MODIS. The locations 657 

with an outstanding difference in performance between the simulations are in central sub-658 

Saharan Africa in January and July, and over a small area in Indonesia (Kalimantan) 659 

during October. In January over central sub-Saharan Africa the simulation with pyrE has 660 

AOD values (NHAF regional mean AOD of 0.26) closer to MODIS (NHAF regional 661 

mean AOD of 0.2) than a simulation with prescribed fire emissions (NHAF regional 662 

mean AOD of 0.33).while in July it is the simulation with pyrE (NHAF regional mean 663 

AOD of 0.53) that is more bias high than the prescribed one (NHAF regional mean AOD 664 

of 0.46). Over EQAS in October the simulation with prescribed fires has an AOD of 665 

~0.28 while the simulation with pyrE has an AOD of ~0.18. AOD in this region is 666 

sensitive to peat fires, which are not included in ModelE, strongly impacting pyrE’s 667 

results. Globally, mean AOD simulated with interactive fire emissions is 0.142 while 668 

mean AOD simulated with prescribed fire emissions is 0.146. The fact that pyrE has a 669 

marginal performance in climatological runs when compared against a simulation using 670 
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the more accurate offline emissions is a strong indication that it is a robust module that 671 

can be used with confidence at time periods where offline emissions are not available. 672 

Finally, we demonstrate the contribution of BB emissions to total clear-sky AOD 673 

by comparing the simulations with both prescribed and interactive fire emissions to a 674 

simulation that has no fire emissions at all (Fig. 12). In the simulation with prescribed fire 675 

emissions, clear sky AOD is on average 10% higher than it is in a simulation with no fire 676 

emissions. In a simulation with pyre clear sky AOD is about 7.5% higher than it is in a 677 

simulation with no fire emissions. The impact of BB emissions on AOD is most 678 

pronounced in the source regions of Africa and the Amazon. In those regions the 679 

difference in AOD varies between 0.15-0.3. It is important to note that the differences in 680 

AOD are not only due to impact of BB emissions, but also reflect climate variability, 681 

which impacts aerosol lifetime and interactive dust emissions. 682 

6 Conclusions 683 

The development of pyrE, allowed us for the first time to interactively simulate 684 

climate and fire activity with GISS-ModelE2.1. The pyrE module, which is based on a 685 

the fire parameterizations of Pechony and Shindell (2009), was expanded to include fire 686 

spread and burned area, following the approach of Li et al. (2012). This study set out to 687 

simulate the climatology of fires, and not individual fire events. Like only a few other fire 688 

models [Zou et al., 2019], pyrE was developed with consideration of regional behavior. 689 

The new fire suppression scheme depends on population density, but also on geographic 690 

regions. The new scheme reflects more intense fire suppression in the USA and Middle 691 

East, and revokes fire suppression in Africa, which improved the fire count seasonality 692 

simulated by pyrE compared to satellite retrievals. Fire count seasonality is well 693 

simulated in the fire source regions: the Amazon, SH Africa, and NH Africa, with the 694 

exception of being bias-low compared to MODIS during November-December. This is 695 

due to the lack in parameterization of intentional ignitions and agricultural fires.  696 

The regional model skill of fire count was also demonstrated in the simulated 697 

burned area. Burned area in southern hemisphere Africa was well simulated by the model, 698 

while less active fire regions like temperate and boreal North America, Boreal Asia 699 

Europe, and Middle were bias high compared to GFED4s. Other regions like Australia, 700 

sub-Saharan and West Africa in November-December, Central Asia and Southeast Asia 701 
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in January-March were bias low. Though the seasonality of simulated burned area 702 

reflects that of simulated fire count, the bias of burned area compared to GFED4s data is 703 

at least double that of fire count. Burned area is a quantity that most fire models struggle 704 

with. Wind speed, a driver of burned area, is averaged over a coarse grid cell, with no 705 

feedback from fire heat and energy, which can be a contributing factor to the lower 706 

simulated burned area values. The prescribed rudimentary PFTs of the model are a 707 

simplified version of the real world and thus can be a source of additional uncertainty. 708 

Finally, the rate of spread of burned area, a function of the burning vegetation type, that 709 

pyrE and other fire models use is on the lower end of field observations. A higher rate of 710 

spread could help to both override the scaling factor used for burned area, and to reduce 711 

the negative bias compared to GFED4s.  712 

Unlike other fire models, fire emissions in pyrE are driven directly by fires 713 

instead of burned area. Emissions are based on online fire count calculations and offline 714 

emission factors derived as described in Sect. 2.6. In contrast to the fact that simulated 715 

fire count are bias-high compared to MODIS, globally, fire emissions are bias-low 716 

compared to GFED4s. Fire emissions are well-simulated over the southern hemisphere 717 

with the exception of Australia. Emissions are bias low over the northern hemisphere 718 

including northern sub-Sahara, with the exception of NH South America, which is bias 719 

high. The bias of fire count compared to MODIS in Australia and in sub-Saharan Africa 720 

during November-December propagates to emissions. The emission factors, which were 721 

calculated offline using MODIS fire count and GFED4s fire emissions and were applied 722 

based on the prescribed PFTs of the model, have their own limitations. They are based on 723 

a training dataset of seven years, which would introduce biases in regions where fire 724 

cycle is longer than seven years. Also, they rely on the modeled PFTs, enhancing the 725 

emissions dependency on the prescribed PFT and the lack of peat. Emission factors do 726 

not distinguish between intentional and accidental fires, thus they indirectly account for 727 

all fire emissions, which reduce existing biases, although the regional distribution of them 728 

will not match the locations of intentional fires, unless natural vegetation burning occurs 729 

in the vicinity.  730 

Less emissions compared to GFED4s means lower column densities and lower 731 

AOD when comparing a simulation with interactive fires to one with prescribed fires. 732 
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However, as these quantities depend on climate feedbacks including processes other than 733 

fire, e.g. additional emission sources, precipitation, deposition, transport, and chemistry, 734 

the differences between the two simulations dilute. Nonetheless, a comparison with 735 

MODIS AOD demonstrates that AOD from a simulation with interactive fire emissions is 736 

comparable to AOD from a simulation with prescribed fire emissions. 737 

The work presented here highlights that timing matters just as much as magnitude. 738 

This is true for fire distribution, emissions, and atmospheric composition. Timing is also 739 

the reason why intentional ignition was excluded from pyrE. Intentional ignition, namely 740 

land clearing and agricultural fires, depends on region and crop specific planting and 741 

harvesting times. To include it would require crop functionality in ModelE, which was 742 

not present during the time of our development. Further future development should focus 743 

on the inclusion of intentional ignition and agricultural fires which are seasonal in nature, 744 

derived from crop planting and land clearing times. This addition could perhaps improve 745 

model performance over regions like equatorial Asia, Southeast Asia, and Central 746 

America as well as override the global scaling factors applied to fire count and burned 747 

area. The use of scaling factors is a common practice among fire models, and should be 748 

carefully and transparently documented. Also, enhancing the prescribed PFTs, especially 749 

via the addition of peat is imperative when studying fires. Peat exists as well outside of 750 

tropical Asia. There are immense reservoirs of peat in Africa [Dargie et al., 2017], as 751 

well as the boreal regions [Yu, 2012], where it used to be trapped under permafrost. Peat 752 

will likely become an even bigger source of fire emissions in the future. Improvement of 753 

the cloud to ground lightning parameterization may also prove useful, as changes to 754 

natural ignition will likely have significant impacts on Australian and boreal fire 755 

emissions. Finally, almost no fire models include fire energy. However, given that the 756 

heat component of fires interact with the climate system, and can also be used to derive 757 

more accurate emissions (as demonstrated by Ichoku and Ellison (2014)), it is worthwhile 758 

taking it into consideration.  759 

 760 

 761 

 762 

 763 
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7 Code availability 764 

pyrE is in line with state-of-the-art fire models, and can be easily applied to other ESMs. 765 

Information on ModelE, including access to online data and descriptions are available at 766 

http://www.giss.nasa.gov/tools/modelE. The pyrE module is included in ModelE version 767 

2.1. The source code, along with documentation, can be downloaded from the NASA 768 

Goddard Institute of Space Studies website: https://simplex.giss.nasa.gov/snapshots/. 769 
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Tables 1198 

Table 1 Fire emission factors for the different plant functional types (PFTs) in ModelE2.1. 1199 

Factors are in units of kg per fire per PFT in the grid cell. For organic and black carbon 1200 

units kg is substituted with kg of carbon. 1201 

PFT CO NOx SO2 NH3 Alkenes Paraffin OC BC 

Cold Broadleaf 113392 1529 555 2101 106 69.8 3437 767 

Deciduous 

Needle leaf 
481485 1559 4168 10722 422 373 36753 1844 

Drought 

Broadleaf 
230829 4835 1687 2340 214 108 10667 1382 

Evergreen 

Broadleaf 
249906 4905 1438 2847 220 102 10941 1434 

Evergreen 

Needle leaf 
146622 1197 972 2277 137 89.1 6537 821 

Cold Shrub 105936 241 878 2006 104 72.1 6562 357 

Arid Shrub 39268 1009 262 378 36.6 18.5 1479 238 

C3 Annual 

Grass 
26761 690 147 313 25.1 13.9 728 173 

C3 Arctic 

Grass 
251702 1094 2315 5065 489 226 15551 1159 

C3 Perennial 

Grass 
41043 908 270 438 38.8 20.7 1504 257 

C4 Grass 117577 3152 795 1196 110 57 4339 726 
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Table 2: Total fire emissions and global mean column loads of fire emitted species. 1210 

Species Variable pyrE GFED4s Bias [%] 

CO 
Emissions [Tg a-1] 2.14E+02 3.51E+02 -39 

Column Load [kg m-2] 7.22E-04 7.71E-04 -6.3 

OA 
Emissions [TgC a-1] 1.31E+01 2.29E+01 -42 

Column Load [kg m-2] 8.52E-07 1.02E-06 -16 

BC 
Emissions [TgC a-1] 1.25E+00 1.84E+00 -32 

Column Load [kg m-2] 7.25E-09 7.62E-09 -4.8 

NOx 
Emissions [Tg a-1] 4.27E+00 6.76E+00 -36 

Column Load [kg m-2] 5.94E-07 5.91E-07 0.5 

NH3 
Emissions [Tg a-1] 2.43E+00 4.15E+00 -41 

Column Load [kg m-2] 2.15E-07 2.23E-07 -3.5 

SO2 
Emissions [Tg a-1] 1.34E+00 2.25E+00 -40 

Column Load [kg m-2] 2.67E-06 2.69E-06 -0.7 

Alkenes 
Emissions [Tg a-1] 1.94E-01 3.18E-01 -39 

Column Load [kg m-2] 5.73E-08 5.70E-08 0.5 

Paraffin 
Emissions [Tg a-1] 9.79E-02 1.65E-01 -40 

Column Load [kg m-2] 2.36E-07 2.42E-07 -2.4 
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FIGURES 1224 

 1225 
BONA Boreal North America 

TENA Temperate North America 

CEAM Central America 
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SHSA Southern Hemisphere South America 
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NHAF Northern Hemisphere Africa 
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SEAS Southeast Asia 

EQAS Equatorial Asia 

AUST Australia and New Zealand 

 1226 
Figure 1. GFED basis regions regrided to the resolution of ModelE2.1 of 2° in latitude by 1227 

2.5° in longitude. 1228 
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 1239 

 1240 

Figure 2. Structure of the fire parameterization of pyrE. Processes related to atmospheric 1241 

properties in blue, surface properties in green, ignition and suppression in yellow and 1242 

gray, and fire properties in red. 1243 
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Length 

 1261 

  1262 
 1263 

Figure 3. Approximation of a single fire spread. Based on van Wagner (1969) and Arora 1264 

and Boer (2005). 1265 

 1266 

 

Ignition 

 
Breadth 

 

Head 

 Back Wind 

https://doi.org/10.5194/gmd-2019-263
Preprint. Discussion started: 14 October 2019
c© Author(s) 2019. CC BY 4.0 License.



45	

 1267 
Figure 4: Seasonality of total fire count for NHAF (top left), SHAF (top right), TENA 1268 

(bottom left) and MIDE (bottom right) observed by MODIS Aqua (red) and Terra 1269 

(orange) and simulated with explicit regional suppression (blue) and generic global 1270 

suppression parameterization (green); Eq. 6. Error bars represent the range over 10-year 1271 

climatological simulations. Note that TERRA and AQUA have different overpass times, 1272 

and the model data presented here are monthly means. Also, note the different scale in 1273 

each panel. 1274 
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 1276 
Figure 5: Daily mean cycle in fire count (FC, blue line) and daily mean (black line) at 4 1277 

locations during the month of January. The daytime overpass times of Terra (10:30am) 1278 

and Aqua (13:30pm) are marked with a red star. Error bars represent the range during the 1279 

month. Note the different scale in each panel. 1280 
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 1282 
Figure 6: Global seasonality of total fire count (FC) by MODIS Aqua (red) and Terra 1283 

(orange) and simulated by the model: monthly mean (blue), monthly mean sampled at the 1284 

daytime Terra overpass time (green), and sampled at the daytime Aqua overpass time 1285 

(purple). Error bars represent the 10-year range in the simulation. 1286 
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 1294 
Figure 7: Annual mean model (left) and MODIS (right) fire count. Modeled annual mean 1295 

is based on an ensemble of 10 simulations. Simulated fires sampled at the daytime Terra 1296 

overpass time, 10:30am local time (upper left) and daytime Aqua overpass time, 1:30pm 1297 

local time (lower left). MODIS fire count is based on MODIS Terra (upper right) and 1298 

MODIS Aqua (lower right) from 2003-2016. 1299 
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 1300 
Figure 8: Annual mean model (left) and satellite based (right) fire count (upper), burned 1301 

area (middle), and CO emissions (lower). Modeled annual mean is based on an ensemble 1302 

of 10 simulations. Satellite detected fire count are based on MODIS Aqua retrievals of 1303 

2003-2016, burned area is based on GFED4s inventory of 2003-2016, and CO emissions 1304 

are based on climatological GFED4s emissions of 1995-2010. 1305 
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 1308 
Figure 9: Modeled annual mean column density using pyrE fire emissions (left), and the 1309 

difference in column densities with a simulation using offline GFED4s emissions (pyrE – 1310 

GFED4s; right). CO (upper), OA (middle), and BC (lower). Data based on an ensemble 1311 

of 10 simulations.  1312 
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 1315 
Figure 10: Monthly modeled clear-sky aerosol optical depth (AOD) simulated using pyrE 1316 

fire emissions (left), and detected by Aqua-MODIS (right). January (first row), April 1317 

(second row), July (third row), and October (last row). Monthly mean simulated AOD is 1318 

based on an ensemble of 10 simulations, and climatologically monthly MODIS AOD is 1319 

based on 2003-2007 data. Missing MODIS data is shaded in light gray. 1320 
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 1327 
Figure 11: The difference in monthly modeled clear-sky aerosol optical depth (AOD) and 1328 

MODIS Aqua (model – satellite). Model simulations using pyrE fire emissions (left) and 1329 

model simulations using offline GFED4s emissions (right). January (first row), April 1330 

(second row), July (third row), and October (last row). The difference is based on an 1331 

ensemble of 10 simulations and 2003-2007 MODIS climatological monthly data. Missing 1332 

MODIS data is shaded in light gray. 1333 
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 1339 
Figure 12: The difference in annual modeled clear-sky aerosol optical depth (AOD) 1340 

between a simulation with no fire emissions to a simulation using pyrE fire emissions 1341 

(left), and a simulation with offline GFED4s emissions (right). The difference (model 1342 

with no fire emissions – model with fire emissions) is based on an ensemble of 10 1343 

simulations. 1344 
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APPENDIX 1361 

 1362 
Figure A1: Seasonality of total fire count (FC) detected by MODIS Aqua (red) and Terra 1363 

(orange) and simulated (blue) in all GFED regions (Fig. 1). Error bars represent the 10-1364 

year range in the simulations. Note the different scale in each panel. 1365 
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 1366 
Figure A2: Seasonality of total burned area; simulated (blue) and reported by GFED4s 1367 

(red) in GFED regions. Error bars represent the 10-year range in the simulations. Note the 1368 

different scale in each panel. 1369 
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 1370 
Figure A3: Seasonality of total fire CO emissions; simulated (blue) and reported by 1371 

GFED4s (red) in GFED regions. Error bars represent the 10-year range in the simulations. 1372 

Note the different scale in each panel. 1373 
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 1374 
Figure A4: Seasonality of total fire organic aerosol (OA) emissions; simulated (blue) and 1375 

reported by GFED4s (red) in all GFED regions. Error bars represent the 10-year range in 1376 

the simulations. Note the different scale in each panel. 1377 
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 1378 
Figure A5: Seasonality of total fire BC emissions; simulated (blue) and reported by 1379 

GFED4s (red) in all GFED regions. Error bars represent the 10-year range in the 1380 

simulations. Note the different scale in each panel. 1381 
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