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Abstract. Fires affect the composition of the atmosphere and Earth’s radiation balance 32 

by emitting a suite of reactive gases and particles. An interactive fire module in an Earth 33 

System Model (ESM) allows us to study the natural and anthropogenic drivers, feedbacks, 34 

and interactions of open fires. To do so, we have developed pyrE, the NASA GISS 35 

interactive fire emissions module. The pyrE module is driven by environmental variables 36 

like flammability and cloud-to-ground lightning, calculated by the GISS ModelE ESM, 37 

and parameterized anthropogenic impacts based on population density data. Fire 38 

emissions are generated from the flaming phase in pyrE (active fires). Using pyrE, we 39 

examine fire occurrence, regional fire suppression, burned area, fire emissions, and how 40 

it all affects atmospheric composition. To do so, we evaluate pyrE by comparing it to 41 

satellite-based datasets of fire count, burned area, fire emissions, and aerosol optical 42 

depth (AOD). We demonstrate pyrE’s ability to simulate the daily and seasonal cycles of 43 

open fires and resulting emissions. Our results indicate that interactive fire emissions are 44 

biased low by 32-42%, depending on emitted species, compared to the GFED4s 45 

inventory. The bias in emissions drives underestimation in column densities, which is 46 

diluted by natural and anthropogenic emissions sources and production and loss 47 

mechanisms. Regionally, the resulting AOD of a simulation with interactive fire 48 

emissions is underestimated mostly over Indonesia compared to a simulation with 49 

GFED4s emissions and to MODIS AOD. In other parts of the world pyrE’s performance 50 

in terms of AOD is marginal to a simulation with prescribed fire emissions. 51 

1 Introduction 52 

Open biomass burning (BB), the outdoor combustion of organic material in the 53 

form of vegetation, occurs on every continent, with the exception of Antarctica, at a scale 54 

observable from space. Open BB is perceived as a natural ecological process that has 55 

been modulating the carbon cycle for more than 420 million years [Scott and Glasspool, 56 

2006]. However, in practice, BB has been mediated by human activities for more than 57 

100,000 years [Bowman et al., 2009, 2011; Archibald et al., 2012]. Bellouin et al. (2008) 58 

estimated that at present, only about 20% of fires, compared to preindustrial times, are 59 

natural. Andreae (1991) estimated that in the tropics, where about 85% of fire emissions 60 

occur [van der Werf et al., 2017], only 10% of fires are natural. In the USA, government 61 

records show that about 85% of fires are started by humans [Balch et al., 2017]. Humans 62 
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affect fires directly through ignition and suppression, and indirectly through man-made 63 

changes to land surfaces and climate. According to Hantson et al. (2015), land-use 64 

practices are the most important driver of human-fire interactions.  65 

BB regimes are often classified based on ecosystem type like boreal, temperate, 66 

and tropical forests, savanna and grassland, peat land, and agricultural fires [Ichoku et al., 67 

2012]. However, fire characteristics also vary between geographic regions of the same 68 

ecosystem type; for example, boreal fires in Russia have very different intensity, 69 

efficiency, and emissions than boreal fires in Canada [Wooster and Zhang, 2004]. Ichoku 70 

et al. (2008) suggested an energy-based classification of open BB indicating fire intensity, 71 

similar to hurricanes, using the radiative power of satellite-retrieved fires. Globally, 72 

satellite retrievals show that on average about 350 Mha are burned annually [Giglio et al., 73 

2013; Chuvieco et al., 2016], about 4% of the global vegetated area [Randerson et al., 74 

2012], an area similar to that of India. African fires contribute about 70% to the global 75 

total burned area (BA), with about equal contributions from Northern Hemisphere Africa 76 

(NHAF, Fig. 1) and Southern Hemisphere Africa (SHAF). The most flammable 77 

ecosystem, globally and specifically in Africa, is the savanna [Ichoku et al., 2008; 78 

Randerson et al., 2012; Giglio et al., 2013], which in the tropics (23.5° N - 23.5° S) alone 79 

is responsible for 62% (1341 TgC a-1) of global carbon emissions (2200 TgC a-1) [van der 80 

Werf et al., 2017]. Australian bushfires (grass and shrub) and South American savanna 81 

fires are the third and fourth largest regional contributors, with BAs of about 50 Mha and 82 

20 Mha annually, respectively. Globally, Randerson et al. (2012) estimated an additional 83 

contribution of 120 Mha from small fires. The thermal anomalies used to identify those 84 

fires, which are mostly associated with agricultural fires, are below the detection limit of 85 

satellite-retrieved surface reflectance, and come with large uncertainties. Regionally, 86 

small fires can have a significant contribution to BA. By adding the contribution of small 87 

fires, burned area increases in Equatorial Asia (EQAS) by 157%, in Central America 88 

(CEAM) by 143%, and in Southeast Asia (SEAS) by 90% [Randerson et al., 2012]. This 89 

highlights the regional importance of small agricultural fires to regional fire activity. 90 

Forest fires, including small fires, contribute about 17 Mha annually to global BA, and 91 

are dominant in Temperate North America (TENA), Boreal North America (BONA), 92 

Boreal Asia (BOAS) and EQAS. 93 
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BB can exist when three conditions are met: fuel is available, fuel is combustible, 94 

and ignition sources are present [Schoennagel et al., 2004]. The coincidence of these 95 

conditions is seasonal, making open BB an inherently seasonal phenomenon. The peak 96 

month and duration of fire season are coupled to the seasonal cycle in precipitation, 97 

especially in the tropics [Giglio et al., 2006; Hantson et al., 2017]. Precipitation and fire 98 

activity are sensitive to natural modes of variability like El Niño Southern Oscillation 99 

(ENSO). In particular, the Southern Hemisphere BB activity is strongly coupled to ENSO 100 

[Buchholz et al., 2018]. During an El Niño year regional BB emissions can be up to two 101 

times higher than their regional average level, due to increased fire activity in tropical 102 

rainforests [van der Werf, 2004; Andela and Werf, 2014; Field et al., 2016; Whitburn et 103 

al., 2016].  104 

Forest fires are either ignited on purpose, as part of forest management practices 105 

[Ryan et al., 2013], ignited by accident, as a by-product of the expansion of urban life to 106 

the wildland interface [Moritz et al., 2014; Fischer et al., 2016; Radeloff et al., 2018], or 107 

ignited by lightning [Díaz-Avalos et al., 2001]. Thus, fire activity is highly coupled to 108 

trends in population density as increased population density at the wildland-urban 109 

interface (WUI) increases the probability of fire [Radeloff et al., 2018], while land 110 

abandonment leads to shrub encroachment, and fuels fire activity [Butsic et al., 2015].  111 

Although BB emissions have high spatiotemporal variability, their impact on 112 

atmospheric composition is significant [Crutzen et al., 1979; Seiler and Crutzen, 1980; 113 

Crutzen and Andreae, 1990]. BB emissions impact air quality [Johnston et al., 2012, 114 

2014, 2016; Bauer et al., 2019], and climate [Ward et al., 2012; Lasslop et al., 2019]. 115 

Emitted pollutants include ozone precursors like methane (~49 Tg a-1), carbon monoxide 116 

(~820 Tg a-1), and NOx (mostly emitted as NO, ~19 Tg a-1) [Andreae, 2019]; the latter 117 

two are also deleterious for health on their own. In addition to gaseous pollutants, BB 118 

emits particulate matter (a total of ~85 Tg a-1) like primary emitted black carbon (~5 Tg 119 

a-1) and organic carbon (~36 Tg a-1), as well as precursors of brown carbon, and 120 

secondary organic and inorganic aerosols like non-methane volatile organic compounds 121 

(NMVOC, ~58 Tg a-1), ammonia (~9.9 Tg a-1), sulfur dioxide (~6 Tg a-1), and NOx 122 

[Andreae, 2019]. Exposure to these pollutants at high concentrations or for a long period 123 

of time can compromise the cardiorespiratory system and lead to death [Lelieveld et al., 124 
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2015]. These pollutants, along with BB-emitted greenhouse gases (GHGs) like carbon 125 

dioxide (CO2; ~13,900 Tg a-1) and nitrous oxide (N2O; ~1.38 Tg a-1), interact with 126 

radiation, directly and indirectly. Fires are a net source of carbon dioxide only where 127 

vegetation regrowth is inhibited, i.e. in deforested areas; otherwise BB is not viewed as a 128 

source of CO2 but as “fast respiration” [van der Werf et al., 2017]. Absorbing black and 129 

brown carbon [Lack et al., 2012; Lack and Langridge, 2013; Laskin et al., 2015], and 130 

reflecting primary and secondary organic and inorganic aerosols interact with solar 131 

radiation directly by scattering and absorbing radiation, and indirectly by modifying 132 

clouds. The radiative properties of particles and their hygroscopicity are also influenced 133 

by their mixing state [Bauer and Menon, 2012]. For example, when black carbon (BC) is 134 

coated it becomes even more absorbing per unit mass [Bond and Bergstrom, 2006]. There 135 

is evidence that smoke plumes can suppress or invigorate precipitation [Feingold et al., 136 

2001; Andreae et al., 2004; Tosca et al., 2015]. Aerosols impact cloud height and cover 137 

by modifying the heat profile of the atmosphere and increasing the number of cloud 138 

condensation nuclei. There are large uncertainties associated with aerosols’ impact on 139 

climate. Modeling studies suggest that the aerosol effects from BB emissions overrides 140 

the BB-GHG effect to a net negative radiative forcing [Mao et al., 2013], with the 141 

indirect effect of clouds dominating the forcing [Ward et al., 2012]. The present day BB 142 

forcing is estimated at -0.5-(-0.1)±0.05 Wm-2 [Ward et al., 2012; Mao et al., 2013; Jiang 143 

et al., 2016; Landry and Matthews, 2016; Lasslop et al., 2019].  144 

The quantification of speciated BB emissions is challenging due to the fact that no 145 

one fire is the same as another [Ito and Penner, 2005]. The composition of the resulting 146 

smoke plume depends on the fuel type, burning conditions (i.e. flaming or smoldering), 147 

fuel consumption, and on background chemistry. More complete combustion has a higher 148 

fraction of oxidized species (e.g. CO2 and NOx) while smoldering fires release more 149 

reduced species (e.g. CO, NH3, NMVOCs). Globally, most fire emissions occur during 150 

the active phase of the fire, with peat fires as the main exception [Andreae, 2019]. Thus, 151 

emissions in different regions contribute different amounts of pollutants; Indonesia, for 152 

example, is responsible for 8% of global carbon BB emissions, but 23% of methane BB 153 

emissions [van der Werf et al., 2017]. Emissions are sensitive to season and region. Even 154 

within one region, like a boreal forest, emissions from crown fires differ from those from 155 
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ground fires. The amount of fuel consumed by a fire is highly variable and depends on 156 

fuel load, density, moisture, vegetation type, and on environmental factors such as wind 157 

speed, soil moisture and soil composition. Additional challenges relate to external forcing 158 

like insect herbivority, mammal grazing, and manmade land fragmentation and 159 

deforestation [Schultz et al., 2008]. The quantification of BB emissions has an even 160 

bigger importance during preindustrial times, where fire emission are identified as the 161 

largest source of uncertainty for aerosol loading in Earth system models [Hamilton et al., 162 

2018]. BB emissions are a key quantity needed for quantifying the unperturbed-from-163 

humans background conditions of the atmosphere [Carslaw et al., 2013].  164 

Traditionally, fires are included in climate models using emission inventories 165 

[Lamarque et al., 2010; van der Werf et al., 2010, 2017; van Marle et al., 2017]. Some 166 

models have the ability to simulate BB emissions interactively with a varying level of 167 

complexity [Thonicke et al., 2001; Arora and Boer, 2005; Pechony and Shindell, 2009; Li 168 

et al., 2012; Lasslop et al., 2014; Hantson et al., 2016; Mangeon et al., 2016; Rabin et al., 169 

2017; Zou et al., 2019]. On the one end of the spectrum, there are statistically-based 170 

models, and on the other end there are detailed empirical and physical process-based 171 

models. Statistical models are skilled at making predictions based on present-day 172 

relationships between climate and fire (their training data). Process-based models 173 

encapsulate the complex feedbacks within the climate system at various levels. They 174 

combine physical processes such as fuel condition, cloud-to-ground lightning ignitions, 175 

and wind-driven fire expansion. The most sophisticated models are coupled to dynamic 176 

global vegetation models and directly connect fire-Earth system interactions through fuel 177 

consumption (e.g. LPJ-GUESS-GlobFIRM, LPJ-GUESS-SIMFIRE-BLAZE (Smith et al., 178 

2001, 2014; Lindeskog et al., 2013), and MC-Fire (Bachelet et al., 2015; Sheehan et al., 179 

2015)). Some models also include simplified empirical relationships of anthropogenic 180 

ignition and suppression, which, at present, are not understood in a dynamic process level. 181 

State-of-the-art process-based fire models are well equipped to study the feedbacks 182 

between the climate system and fires [Hantson et al., 2016]. However, there is indication 183 

that they lack accurate predictive capabilities, as they only partly capture trends in present 184 

day observations. For example, satellite products show a global decrease in burned area 185 

from about 500 Mha a-1 in 1997 to 400 Mha a-1 in 2013, a trend which fire models do not 186 
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capture [Andela et al., 2017]. This trend is mostly driven by land fragmentation and 187 

grazing practices over African savanna, highlighting the challenge of fire models to 188 

account for the combined changes in climate, vegetation and socio-economic drivers 189 

[Forkel et al., 2019]. Though less accurate than observational datasets, when trying to 190 

simulate individual fire events, fire models provide the unique advantage of linking the 191 

atmosphere, biosphere and hydrosphere in a consistent way, a crucial step when studying 192 

Earth System interactions. They are also able to predict fire during climate periods for 193 

which we have no observational data available (e.g. preindustrial and future).   194 

In this paper we present a new global fire module, pyrE, based on an improved 195 

scheme of [Pechony and Shindell, 2009, 2010] with new capabilities. The pyrE module is 196 

process-based, as it includes the two basic parameters of fuel availability and 197 

combustibility, which are used to calculate active fires. It utilizes empirical relationships 198 

with population density to account for the anthropogenic impact on fire ignition and 199 

suppression. However, unlike most fire models where fire suppression is applied 200 

uniformly across all regions [Rabin et al., 2017], in pyrE fire suppression depends both 201 

on population density and region. Additionally, pyrE uses active fires to derive emissions 202 

in contrast to other fire models that use BA. The fire module is part of the NASA GISS 203 

ModelE Earth System model, ModelE2.1 (an updated version based on Schmidt et al. 204 

(2014)), and is described below. 205 

2 Model description 206 

pyrE, from the Greek word for fire (pyr, πυρ), is a global fire module within GISS 207 

ModelE. It incorporates the active fire parameterization of Pechony and Shindell (2009, 208 

2010), with the addition of fire spread and BA, following the Community Land Model’s 209 

(CLM) approach [Li et al., 2012]. The module is a collection of physical processes like 210 

flammability, natural ignition, fire spread, and fire emissions, and empirical processes 211 

that include accidental ignition and suppression (Fig. 2). The climate model input 212 

required, includes surface temperature, surface relative humidity (RH), precipitation, 213 

surface wind speed, vegetation density and type, cloud-to-ground lightning frequency and 214 

population density. Like many fire modules it lacks explicit intentional ignition (e.g. crop, 215 

deforestation) and peat fires. 216 

2.1 Flammability 217 
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Flammability is a parameter that indicates conditions favorable for fire occurrence 218 

[Pechony and Shindell, 2009, 2010]. It is a unit-less number that ranges between zero and 219 

one, and is calculated using vapor pressure deficit (𝑉𝑃𝐷) , monthly-accumulated 220 

precipitation, and vegetation density (𝑉𝐷).  221 

𝑉𝑃𝐷 , an indicator of drought [Seager et al., 2015; Williams et al., 2015], is 222 

calculated via the Goff-Gratch equation [Goff and Gratch, 1946; Goff, 1957] using the 223 

saturation vapor pressure (𝑒') and surface relative humidity (𝑅𝐻):  224 

𝑉𝑃𝐷 = 𝑒' +1 −
./
011
2 (1) 225 

Where 𝑒'3 = 1013.245	[𝑚𝑏] is the saturation vapor pressure at the boiling point 226 

of water and 𝑒' = 𝑒'310?(@) depends on temperature (𝑇): 227 

𝑍(𝑇) = 𝑎 +@D
@
− 12 + 𝑏 ⋅ log +@D

@
2 + 𝑐 K10L+0M

ND
N 2 − 1O + 𝑓 K10Q+

ND
N M02 − 1O (2) 228 

With the coefficients: 𝑎 = −7.90298; 𝑏 = 5.02808; 𝑐 = −1.3816 ⋅ 10MW; 𝑑 =229 

11.344; 𝑓 = 8.1328 ⋅ 10MY; ℎ = −3.49149  [Goff and Gratch, 1946], and 𝑇' =230 

373.16	[°𝐾] (water boiling point temperature). 231 

The precipitation dependence of flammability is in the form of an inverse 232 

exponential (Following [Keetch and Byram, 1968]):  233 

𝑓(𝑅) = exp(−𝑐.𝑅) (3) 234 

Where 𝑅  is the surface rain rate in mm per day and 𝑐. = 2	[𝑑𝑎𝑦/𝑚𝑚]	is an 235 

empirical constant [Pechony and Shindell, 2009].  236 

Vegetation density (𝑉𝐷) is taken as the normalized leaf area index (LAI) in the 237 

land fraction of a grid cell, varying between 0 for no vegetation and 1 for dense 238 

vegetation.  239 

We modified the original calculation proposed by [Pechony and Shindell, 2009] 240 

by calculating flammability only for the fraction of the model’s grid cell that is not 241 

burned from previous fires. The flammability 𝐹 at a time step 𝑡 in a grid cell (𝑖, 𝑗) is: 242 

𝐹(𝑡) = 10?g@(3)h,ij +1 − ./(3)h,i
011

2 𝑉𝐷(𝑡)k,l K1 −
mn(3)hi,
onh,i

O expg−𝑐.𝑅(𝑡)k,lj (4) 243 

Where 𝐿𝐴k,l is the total land area (LA) in the grid cell (𝑖, 𝑗). 244 

2.2 Ignition 245 
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Natural and anthropogenic ignition varies in space and time, and is necessary for 246 

the calculation of active fires. If ignition is zero, the resulting number of active fires will 247 

be zero, independent of flammability. Natural ignition is in the form of cloud-to-ground 248 

lightning frequency, which is interactively calculated in ModelE2.1 [Price and Rind, 249 

1992, 1993]. The parameterization of anthropogenic ignition follows Venevsky et al. 250 

(2002) and is based on the assumption that in sparsely populated regions people interact 251 

more with the natural environment, thus increasing the potential for ignition. The 252 

parameterization uses population density data and empirical scaling factors, as described 253 

by Pechony and Shindell (2009), and does not include intentional ignition. The number of 254 

anthropogenic accidental ignitions per km2 per month is:  255 

𝐼n = 𝑘(𝑃𝐷)𝑃𝐷𝛼 (5) 256 

Where PD is the population density; 𝑘(𝑃𝐷) = 6.8𝑃𝐷M1.u represents the varying 257 

anthropogenic ignition potentials as a function of population density; 𝛼 = 0.03 is the 258 

number of potential ignitions per person per month. Coefficients are taken following 259 

Pechony and Shindell (2009) and Mangeon et al. (2016) which utilized correlation 260 

calculations done by Venevsky et al. (2002). 261 

2.3 Suppression 262 

A first-order approximation of the impact of population density on explicit fire 263 

suppression was proposed by Pechony and Shindell (2009). According to that 264 

parameterization, more fires are suppressed in densely populated areas compared to 265 

sparsely populated areas, regardless of ignition source. Specifically, suppression varies 266 

from 5% to 95% of fires. However, fire management is a region-specific practice, which 267 

depends on cultural norms and economic capabilities. For example, fire suppression in 268 

the United States of America (USA) is a common practice (Parisien and Moritz, 2009; 269 

Marlon et al., 2012) while active fire suppression in most parts of Africa is not 270 

commonly practiced. Most fire suppression in Africa is an indirect byproduct of changes 271 

in land surface properties through grazing and fragmentation (Archibald, 2016). Hence, 272 

we modified the simplistic approach suggested by Pechony and Shindell (2009), guided 273 

by the results presented in Sect. 5.1.1 to better match with observed fire activity at 274 

specific regions. Our initial analysis showed that with the original Pechony and Shindell 275 

(2009) suppression scheme fire activity is overestimated in the TENA and MIDE regions 276 
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while being underestimated in NHAF and SHAF. Following these initial results a series 277 

of sensitivity simulations were conducted with varying values of suppression coefficients. 278 

The final values were chosen in a heuristic manner that improved the simulations yet did 279 

not over-fit them to the observations, similarly to Pechony and Shindell (2009) and other 280 

fire parameterization, due to the lack of appropriate global data. 281 

We use the complement of the fraction of suppressed fires that is the fraction of 282 

non-suppressed fires, 𝑓vw: 283 

𝑓vw = x
0.2exp	(−0.05𝑃𝐷), 𝑈𝑆𝐴	𝑎𝑛𝑑	𝑀𝐼𝐷𝐸

1, 𝐴𝑓𝑟𝑖𝑐𝑎
0.05 + 0.9exp	(−0.05𝑃𝐷), 𝐸𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (6) 284 

2.4 Active fires 285 

Active fires are a key metric used to drive burned area and fire emissions in pyrE. 286 

The number of fires in a time step per km2 is calculated as the product of flammability, 287 

sum of natural and anthropogenic ignition, and suppression [Pechony and Shindell, 2009] 288 

(Fig. 2): 289 

𝑁�k��(𝑡)k,l = 𝐹(𝑡)k,l ⋅ g𝐼v(𝑡)k,l + 𝐼n(𝑡)k,lj ⋅ 𝑓vw(𝑡)k,l (7) 290 

2.5 Burned area (BA) 291 

We adopted the process-based approach of Li et al. (2012) to calculate fire spread 292 

and burned area. The burned area in grid cell (𝑖, 𝑗) at a model time step 𝑡 is the product of 293 

active fires and the weighted average over plant functional types (PFTs) of the area 294 

burned by one fire:  295 

𝐵𝐴k,l = 𝑁�k��(𝑡)k,l ⋅ ∑ 𝑎k,l,� ⋅ 𝑓k,l,��  (8) 296 

Where 𝑓k,l,�  is the fractional area covered by plant functional type v, and the 297 

burned area of a single fire 𝑎k,l,�	is assumed to have an elliptical shape (Fig. 3). Wind 298 

speed, surface relative humidity, and vegetation type control the eccentricity of the 299 

ellipsoid that represents the burned area of a single fire (based on van Wagner (1969)):  300 

𝑎k,l,� =
�.�w���

�om
+1 + 0

/m
2
�
 (9) 301 

Where 𝑅𝑂𝑆 is the rate of fire spread, 𝐿𝐵 is the length-to-breadth ratio, and 𝐻𝐵 is 302 

the head-to-breadth ratio. The stronger the wind, the more eccentric the ellipse, i.e. the 303 

bigger the length-to-breadth ratio: 304 

𝐿𝐵 = 1 + 10 ⋅ (1 − exp(−0.06𝑊)) (10) 305 
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Where 𝑊 is the surface wind speed in m s-1. 306 

Strong winds also increase the head to back ratio; the ratio of the downwind 307 

spread compared to the upwind spread: 308 

𝐻𝐵 = om�√om�M0
omM√om�M0

 (11) 309 

The rate of spread (ROS) of a fire is a function of vegetation type, wind speed, 310 

and atmospheric and soil moisture: 311 

𝑅𝑂𝑆 = 𝑅𝑂𝑆��� ⋅ 𝑔𝑊 ⋅ 𝑓./ ⋅ 𝑓� (12) 312 

𝑅𝑂𝑆��� is the maximum fire spread rate. Following Li et al. (2012), we set it to 313 

0.2 m s-1 for grasses, 0.17 m s-1 for shrubs, 0.15 m s-1 for needle leaf trees, and 0.11 m s-1 314 

for other trees. Li et al. (2012) estimated the fire spread coefficients to be on the lower 315 

range of observed ROS, but are yet higher than the global value of 0.13 m s-1 suggested 316 

by Arora and Boer (2005).   317 

The limit of the fire spread is set by: 318 

𝑔𝑊 = �o�
0� �

��

𝑔0 (13) 319 

Where 𝑔0 = 0�/m���
��

�om���
≈ 0.05 320 

𝑓./, 𝑓� are the dependencies of fire spread on RH and root zone soil moisture: 321 

𝑓./ = ¡

1 𝑅𝐻 ≤ 𝑅𝐻£¤¥
./¦§M./

./¦§M./¨©ª
𝑅𝐻£¤¥ < 𝑅𝐻 < 𝑅𝐻¬

0 𝑅𝐻 ≥ 𝑅𝐻¬

 (14) 322 

Following Li et al. (2012), we set  𝑹𝑯𝒍𝒐𝒘 = 𝟑𝟎%,𝑹𝑯𝒖𝒑 = 𝟕𝟎%	𝒂𝒏𝒅	𝒇𝜽 = 𝟎. 𝟓 323 

as ModelE2.1 does not simulate prognostic root zone soil moisture. 324 

2.6 Emissions 325 

Trace gas and aerosol emissions are generated during the active phase of the fire 326 

and are calculated as the product of the simulated active fires and emission factors 327 

g𝐸𝐹',�j and are a function of PFT (denoted by v) and chemical specie (denoted by s). The 328 

use of active fires to derive emissions is driven by the extremely rudimentary 329 

representation of the terrestrial biosphere in ModelE, under which interactive fuel 330 

consumption cannot be calculated. The emissions per grid cell (𝑖, 𝑗)  of specie 𝑠  at a 331 

model time step 𝑡 are calculated by:  332 
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𝐸k,l,'(𝑡) = 𝑁�k��(𝑡)k,l ⋅ ∑ 𝐸𝐹',� ⋅ 𝑓k,l,��  (15) 333 

Where 𝐸k,l,'(𝑡) is the emissions flux rate in kg m-2 s-1, 𝑁�k��(𝑡)k,l are the number 334 

of active fires, 𝐸𝐹',� are the offline emission factors, and 𝑓� is the fractional area of that 335 

PFT in the grid cell. 336 

Emission factors describe the PFT-specific speciated mass (in kg) of the smoke, 337 

normalized per fire (Table 1). Emission factors were calculated offline using ModelE2.1 338 

PFTs, annual mean global MODIS Terra fire count, and GFED4s emissions from the 339 

period of 2003-2009. Our technique, known as multivariate curve fitting, matched the 340 

emissions within the PFT fraction of the grid cell with the respective fire count. We 341 

correlated a time series of GFED4s emissions with a time series of MODIS fire count for 342 

each modeled PFT in a grid cell. Our settings included statistical (Poisson) weighting of 343 

the GFED4s emissions (1 over emissions) and a uniform initial estimate of 100,000 kg m-344 
2 s-1 per fire per PFT. This calculation resulted with a specific emission factors per PFT 345 

(Table 1). 346 

2.7 Implementation within ModelE 347 

ModelE2.1 can be used with either GFED4s prescribed fire emissions or 348 

interactive pyrE emissions. The pyrE module generates emissions at every model time 349 

step with ESM-simulated climate as a driver. Flammability is calculated only in the 350 

fraction of grid cells with natural vegetation. It is driven by the simulated surface RH, 351 

surface temperature, monthly accumulated precipitation, and LAI. LAI is calculated by 352 

Ent [Kim et al., 2015], the Terrestrial Biosphere Model component of ModelE2.1, and is 353 

currently derived from 2005 MODIS LAI data [Tian et al., 2002a, 2002b]. Cloud-to-354 

ground lightning, calculated by ModelE2.1, is used as the natural ignition source. Most 355 

ESMs have low skill in reproducing flash rate distributions [Murray, 2016], and the GISS 356 

model is no exception. A qualitative comparison with the World Wide Lightning 357 

Location Network (WWLN) (not presented here) showed that modeled cloud-to-ground 358 

lightning, which makes up only about 30% of total lightning, is biased high in ModelE2.1. 359 

We decided to use a simple scaling factor of 0.1 in the calculation of natural ignition to 360 

better match observed flash rates, as improving the lightning parameterization is beyond 361 

the scope of this study.  362 
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All fire-related parameters like flammability, active fires, burned area, and fire 363 

emissions are recalculated in every model time step (30 min) with memory only of the 364 

burned area in the previous time step. We could not extend the “fire memory” past the 365 

previous time step due to limitations related to ModelE’s terrestrial biosphere module. 366 

However this is a reasonable application, given that the climate inputs we use for fire 367 

calculations such as monthly accumulated precipitation, surface RH and temperature 368 

don’t change significantly between each time step. The fire module’s impact on the Earth 369 

system is currently only through interactive emissions. Albedo, carbon stocks and LAI 370 

are not modified by pyrE. 371 

The modeling approach presented in this paper provides a good reproduction of 372 

the seasonality compared to satellite retrievals (see Results section). However, the 373 

simulated magnitude of active fires and burned area was too small compared to satellite 374 

retrievals and required the use of a scaling factor, a common practice among other fire 375 

models [Pfeifer et al., 2013; Hantson et al., 2016; Mangeon et al., 2016; Zou et al., 376 

2019]. To calibrate the global modeled active fires to MODIS retrievals, we used a global 377 

scaling factor of 30 for all active fires. A similar approach was taken by Pechony and 378 

Shindell (2009). We scaled burned area by a factor of 250 to reach the magnitude of 379 

GFED4s. Nevertheless, even with this large correction factor, burned area, which 380 

accounts for a small fraction of the grid cell that is able to burn, has a very minor impact 381 

on fire activity and fire emissions as its only impact to fire activity is through 382 

flammability. 383 

3 Model configuration 384 

We used ModelE2.1 with a spatial resolution of 2° in latitude by 2.5° in longitude, 385 

40 vertical layers and a model top at 0.1 hPa. The vegetation component of ModelE2.1 is 386 

the Ent Terrestrial Biosphere Model (Ent TBM), which is coupled with the land use/land 387 

cover data in the model [Kim et al., 2015]. Ent prescribes leaf area index (LAI) for 14 388 

plant functional types (presented in Table 1) derived from MODIS 2005 data (cover and 389 

biome types [Friedl et al., 2010]; LAI [Tian et al., 2002a, 2002b]), historical crop cover 390 

[Pongratz et al., 2008], and vegetation heights from [Simard et al., 2011].  391 

In this study we show results from runs of ModelE2.1 coupled to the aerosol 392 

microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) 393 
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[Bauer et al., 2008]. MATRIX simulates aerosol formation, condensation and 394 

coagulation, calculates the size distribution of aerosols and tracks their mixing state. Sea 395 

salt, dust, and dimethyl sulfide (DMS) emissions were calculated interactively, driven by 396 

the simulated climate, while other natural and anthropogenic fluxes, except for fires, were 397 

prescribed from the CEDS (Community Emissions Data System) inventory [Hoesly et al., 398 

2018].  399 

In the following, we will present a simulation with pyrE turned on, generating 400 

interactive fire emissions, and a simulation with pyrE turned off, using prescribed 2005 401 

climatological (interpolated 2000-2010) GFED4s emissions instead. Also, we will 402 

discuss sensitivity studies using two simulations where pyrE generates interactive fire 403 

emissions but suppression is changed from a global parameterization to a regional one. 404 

Prescribed climatological monthly varying mean (1996-2004) sea surface temperature 405 

and sea ice thickness and extent were used as boundary conditions [Rayner et al., 2003]. 406 

4 Dataset 407 

Most of the data below are based on a composite of level 3 Aqua and Terra 408 

Moderate-resolution Imaging Spectro-radiometer (MODIS) Collection 5.1 data [Giglio et 409 

al., 2003b; Giglio, 2013], unless otherwise stated. Aqua and Terra are sun-synchronous, 410 

near-polar orbiting satellites with a global continuous record of more than 15 years; Aqua 411 

was launched in May 2002 and Terra in December 1999. Aqua’s overpass time is 412 

1:30AM and 1:30PM local, and Terra’s overpass time 10:30AM and 10:30PM local, and 413 

their period is between one to two days. All reference data used in this study are 414 

interpolated and re-gridded to the resolution of ModelE2.1. 415 

4.1 Population density 416 

Gridded population density (PD) that drives both anthropogenic ignition and fire 417 

suppression is based on historical data for years prior to 2010 [Klein Goldewijk et al., 418 

2010]. PD has a time resolution of 10 years and is interpolated in between.  419 

4.2 Fire count 420 

To detect fires, MODIS uses brightness temperatures (thermal anomaly) derived 421 

from two channels [Justice et al., 2002; Giglio et al., 2006]. In our study we used the 422 

monthly cloud-corrected fire count (CloudCorrFirePix) climate model grid data 423 

(MYD14CMH, MOD14CMH). One single fire might include multiple fire pixels. The 424 
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spatial resolution of the data is 0.5°. Static, persistent hot spots are excluded from this 425 

product [Giglio, 2013]. Because of its non-uniform spatial and temporal sampling, raw 426 

MODIS data are biased high at high latitudes [Giglio et al., 2003a, 2006]. The product 427 

we used is corrected for the multiple satellite overpasses, the missing data, and variable 428 

cloud cover. Cloud cover hinders MODIS retrievals. The active fires in the product we 429 

used are normalized to the fraction of cloud cover in a pixel. In highly cloudy pixels, the 430 

product is set to zero. The local time of retrieval matters for fire detection, as fires are 431 

driven by the daily cycle in solar heating. The largest number of active fires is detected 432 

during daytime, with an order of magnitude difference between daytime detections and 433 

nighttime detections [Ichoku et al., 2008]. Thus, differences are evident between the 434 

Aqua and Terra retrievals. This motivated us to use data from the two satellites in our 435 

analysis. We calculate and utilize climatological monthly means from the period 2003-436 

2016. 437 

4.3 Burned area 438 

We used burned area from the Global Fire Emissions Database (GFED) version 439 

4s that includes small fires [van der Werf et al., 2010, 2017; Randerson et al., 2012; 440 

Giglio et al., 2013]. The GFED4s inventory is based on multi-sensor MODIS data, 441 

involving both reflectance and thermal anomalies measurements from Aqua and Terra. 442 

Retrievals must be free from cloud contamination and free from active fires within the 443 

500 m MODIS grid cell. First, to generate the GFED4s data, MODIS burned area 444 

collection 5.1 data (MCD64A1 product) are aggregated to a 0.25° grid. Then, burned area 445 

from small fires is added. The burned area of small fires is statistically estimated using 446 

active fires detected by MODIS (a composite of both Aqua and Terra). In this study we 447 

use climatological monthly means of burned area from the period 2003-2016. 448 

4.4 Biomass burning emission inventory 449 

GFED4s emissions are derived from the multiplication of burned area and fuel 450 

consumption [van der Werf et al., 2010, 2017]. As such, they have the same spatial and 451 

temporal resolution as burned area, of 0.25° by 0.25° and a month. Fuel consumption is 452 

calculated using an estimation of fuel loss and combustion completeness, which are 453 

calculated using MODIS-based metrics such as differences in normalized burned area 454 

(dNBR), normalized vegetation index (NDVI), and land surface temperature (LST). The 455 
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satellite-based data are used as input to the Carnegie–Ames–Stanford Approach (CASA) 456 

biogeochemical model [Randerson et al., 1996] to calculate the dry matter burned. Then, 457 

emission factors [Andreae and Merlet, 2001; Akagi et al., 2011] are applied to convert 458 

the dry matter burned to PFT-specific speciated gas and aerosol phase emissions. Kaiser 459 

et al. (2012) and Pan et al. (2020) showed that there are regional biases in older and 460 

current versions of GFED; being especially biased low in the Southern Hemisphere 461 

compared to AERONET aerosol optical depth (AOD). In order to eliminate the strong 462 

interannual BB variability, our analysis used GFED4s mean climatological data of 2000-463 

2010.  464 

4.5 Fire regions 465 

The analysis we present below is based on the widely used fire regions (Fig. 1) as 466 

defined by GFED [Giglio et al., 2006; van der Werf et al., 2006]. The regions are defined 467 

based on climate and fire regimes, and are widely used as basis regions for global fire 468 

studies. 469 

4.6 Aerosol optical depth 470 

The impact of fire emissions on atmospheric composition is investigated by 471 

comparing monthly Aqua and Terra MODIS retrievals of AOD at 550nm [Remer et al., 472 

2005; Platnick et al., 2015]. AOD describes the entire atmospheric column-integrated 473 

extinction of aerosols. MODIS AOD data are a useful tool in the study of simulated BB 474 

plumes [Voulgarakis and Field, 2015; Johnson et al., 2016; Bauer et al., 2019]. The 475 

AOD data we used has a 1° spatial resolution. The monthly mean data (MYD08_M3 and 476 

MOD08_M3 products) have been averaged over the period 2003–2007 to create monthly 477 

climatologies centered around the year 2005. The AOD product we use includes 478 

improvements made via the Dark Target algorithm [Kaufman et al., 1997], which was 479 

developed particularly for retrievals over dark vegetated surfaces [Wei et al., 2019]. 480 

However, the algorithm fails at retrieving valid AOD data over bright surfaces like desert 481 

areas [Levy et al., 2013], which we discard. Here we use collection 6.1 data. 482 

5 Results and discussion 483 

5.1 Fire activity 484 

5.1.1 Regional suppression 485 
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First we want to demonstrate how the parameterization with regionally-dependent 486 

fire suppression improves the simulation of fire activity compared to the original 487 

simplified global fire suppression proposed by Pechony and Shindell (2009) (Fig. 4). Our 488 

goal was to improve the fire parameterization in regions where the seasonality was 489 

captured in timing but not in magnitude. We propose regional modifications to Africa 490 

(NHAF, SHAF), a region that drives global fire activity, and had a distinct mismatch in 491 

active fires compared to satellite retrievals. Originally, over NHAF the fire seasonality 492 

was too flat, while over SHAF it matched MODIS-Terra, but was orders of magnitude 493 

smaller than MODIS-Aqua. Since fire suppression for open BB is not commonly 494 

practiced in rural Africa, eliminating it over NHAF and SHAF helped resolve the 495 

seasonal cycle (Fig. 4 and Eq. 6). The two other regions we modified are TENA and 496 

Middle East (MIDE). Over both of those regions the simulated fire seasonality was too 497 

strong. Increasing fire suppression over MIDE and TENA greatly improved our 498 

simulations compared to MODIS retrievals. 499 

The pyrE module is skilled at capturing the fire seasonality in regions identified 500 

by Forkel et al. (2017) as controlled by temperature and wetness (climate controls), like 501 

Southern Hemisphere South America (SHSA) (Fig. A1). However, there are regions that 502 

our parameterization does not simulate well, mainly due to the fact that the fire activity 503 

there is driven by land use practices and intentional fire ignitions, which pyrE does not 504 

resolve. For example, in TENA we are missing the spring peak of agricultural fires. 505 

Similarly, over Europe and Boreal Asia (Fig. A1) we are missing the winter and spring 506 

fires associated with intentional ignition [Dwyer et al., 2000; Ganteaume et al., 2013]. 507 

Other regions where the seasonality is not well captured, likely due to the fact that it is 508 

driven by intentional ignitions, include Central America, Northern Hemisphere South 509 

America, Central Asia, Southeast Asia, and Equatorial Asia. Over Australia, the model 510 

captures neither the magnitude nor the timing of the BB seasonality. This is in part due to 511 

the model’s poor performance of the simulated cloud-to-ground lightning ignitions in that 512 

region (not shown). 513 

In all simulations going forward we used the regional suppression scheme.  514 

5.1.2 Daily cycle 515 
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We looked at the active fires’ daily cycle to see if it can explain the differences 516 

between Aqua, Terra, and the model. The monthly mean fire count detected by Aqua and 517 

Terra is expected to be different due to their different overpass times. In Fig. 5, pyrE 518 

simulates a distinct daily cycle in active fires in different locations. The simulated daily 519 

cycle is most strongly controlled by the simulated daily cycle in flammability (not 520 

presented here), matching the daily solar cycle. pyrE’s ability to resolve a daily cycle of 521 

fire activity highlights the dynamic nature of a process-based fire model. 522 

Using 30-minute simulation output, we sampled all surface grid cells at the 523 

daytime overpass time of MODIS Terra, 10:30am local time, and MODIS Aqua, 1:30pm 524 

local time. We focused on the daytime overpass time of Terra and Aqua since about 95% 525 

of active fire detections occur then [Ichoku et al., 2008]. Our results in Fig. 6 and Fig. 7 526 

indicate that, globally, simulated active fires sampled at daytime overpass are biased high 527 

compared to MODIS retrievals from the respective satellite, for much of the year. On a 528 

global annual mean, the active fires of the model sampled in daytime Terra overpass time 529 

are higher than MODIS Terra by 45%, while the active fires of the model sampled in 530 

daytime Aqua overpass time are higher than MODIS Aqua by 13%. However, this 531 

behavior differs by region and maximizes in NH sub-Saharan Africa and SH central 532 

Africa. The simulated fire activity is biased low compared to MODIS retrievals along the 533 

coast of west Africa, in eastern southeast Asia and Australia. When simulated monthly 534 

mean active fires values are in the range of Terra and Aqua (Fig. 4, A1), they are in fact 535 

biased high, given the bias due to the overpass time of the satellite. Considering that the 536 

actual number of active fires is likely higher than the number retrieved by MODIS, as 537 

cloud contamination is decreasing its detection efficiency, it is conceivable that a model 538 

weakly high-biased compare to the satellite retrievals is realistic. All results presented 539 

later were not sampled according to a satellite overpass time, but instead were averaged 540 

over the whole length of the day.  541 

5.2 Burned area 542 

The simulated burned area is biased low compared to the GFED4s inventory (Fig. 543 

8, A2). The total annual simulated burned area (10-year climatological mean) is 380 Mha 544 

while GFED4s burned area (mean of 2003-2016) is 460 Mha. However, this behavior is 545 

region-specific. The simulated burned area is lower compared to GFED4s over northern 546 
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hemisphere Africa, particularly in November-December, over central and equatorial Asia, 547 

and over Australia. The simulated burned area (Fig. 8, A2) reflects the spatial distribution 548 

and seasonality of simulated active fires (Fig. 8, A1). GFED4s burned area and MODIS 549 

fire count do not always have the same seasonality, for example during October-550 

December. During this season the satellite-retrieved fires produce a higher burned area 551 

relative to other seasons. The fire activity driving this behavior occurs in the NHAF 552 

savanna, and northern hemisphere South America. In those regions and times of the year 553 

the normalized mean bias of modeled burned area is at least twice the size of the 554 

normalized mean bias of active fires, e.g. in NHAF a bias of 6.5 for burned area and 1-3 555 

for active fires, depending on the MODIS satellite. This implies that for every fire 556 

modeled in these regions and season a smaller area is simulated to burn compared to the 557 

reference datasets. 558 

Why is the burned area per fire relationship in simulations much weaker than it is 559 

in the reference datasets? Two contributing factors are: prescribed PFT and simulated 560 

wind. The prescribed PFT distribution present in the model is rudimentary; it is 561 

comprised of 11 flammable vegetation types (Table 1). As for surface winds, the 562 

simulated wind patterns driving burned area are averaged over a coarse grid cell 563 

(2°x2.5°). Simulated wind does not represent sub-grid scale processes and is not fueled 564 

by the fire’s energy, which is likely contributing to an underestimation of the spread of 565 

burned area. However, though wind directly impacts burned area, it does not play a major 566 

role in the distribution of simulated fires, since burned area itself has a minor impact on 567 

fires through flammability due to its small percentage in a grid cell. At most burned area 568 

reaches less than 18% of the naturally vegetated fraction of a grid cell, and is on average 569 

less than 1%.  570 

5.3 Emissions 571 

Due to limitations in the current capabilities of the simulated terrestrial biosphere 572 

in ModelE, emissions are generated from active fires, similar to the approach of Pechony 573 

and Shindell (2009, 2010) and Pechony et al. (2013). The main source regions for fire 574 

emissions are NHAF, EQAS, SHSA, and SHAF. Emissions are well simulated over 575 

SHSA and SHAF (Fig. A3-A5), both in terms of timing of the seasonality and in 576 

magnitude. The main regions where simulated emissions are lower than GFED4s are 577 
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NHAF and EQAS, mainly Indonesia (Fig. 8, A3-A5). However, more generally, 578 

simulated gaseous and particulate emissions are globally biased low compared to 579 

GFED4s emissions (Table 2). To a lesser degree, simulated fire emissions are also 580 

weaker compared to GFED4s in the boreal regions (Fig. A3-A5). The contribution from 581 

these regions to the global total is an order of magnitude smaller compared to the main 582 

source regions. 583 

The weaker emissions compared to GFED4s are responding to the following inputs: 584 

offline emissions factors, lack of crop and peat fires, LAI, and prescribed PFTs. The 585 

emission factors that generate fire emissions are derived using multivariate statistical 586 

analysis. Though we used seven full years (2003-2009) of data to derive the factors, it 587 

might have generated biases in emissions. Areas that burn annually are properly sampled, 588 

but areas that have a fire cycle that is longer than a seven year might be biased high or 589 

low, depending on whether they were included in the training dataset or not. Also, crop 590 

and peat fires are not explicitly included in the simulated emissions, as intentional 591 

ignition is not parameterized in pyrE. Specifically, fires are not applied to the crop faction 592 

of a grid cell, and peat surfaces are not included in the PFTs. However, our method of 593 

deriving the offline emission factors uses MODIS fire count and GFED4s emissions, and 594 

does not distinguish between intentional and accidental fires. Hence, intentional fires are 595 

indirectly accounted for in the global sum. However, this indirect inclusion of intentional 596 

fires does not necessarily add missing fire emissions in the correct locations. The LAI in 597 

Ent, ModelE’s DGVM, is based on 2005 MODIS retrievals. Though we cannot estimate 598 

the role that the lack of interactive LAI plays, it is certainly not optimal, neither for fire 599 

activity simulation, nor for fire emissions that are derived from active fires. Unlike 600 

simulated active fires, simulated fire emissions are strongly tied to the map of PFTs. The 601 

offline emission factors are based on prescribed PFTs, and the interactive emissions 602 

themselves are applied according to the sub-grid PFT distribution. The prescribed PFT 603 

distribution present in the model might be different than reality, and those differences 604 

affect emissions. In the model, the PFTs in areas where emissions are biased high 605 

compared to GFED4s there is a high percentage (>50%) of the following PFTs: 606 

evergreen broadleaf trees (Amazon, central Africa), cold broadleaf trees (northeast 607 

America, Europe), and drought broadleaf trees (central Africa and northern India). In 608 
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EQAS, a region with biased low simulated emissions, close to 100% of the prescribed 609 

PFTs is evergreen broadleaf trees, which in reality is replaced by crops. The biased low 610 

emissions in EQAS are very likely tied to the lack of prescribed peat PFT. In areas with 611 

biased low emissions modeled PFTs are mainly (>50%) c4 grass (NHAF, Australia), 612 

deciduous needle leaf trees (boreal regions), and arid shrubs (S Africa, Australia).  613 

5.4 Composition 614 

5.4.1 Column load 615 

In order to quantify how the model skill changes with the inclusion of pyrE 616 

instead of prescribed emission inventory data in ModelE2.1, we compare a simulation 617 

with interactive fires to a simulation with prescribed BB sources. Though emissions are 618 

mostly biased-low compared to GFED4s, this behavior is less evident in the column 619 

density (Fig. 9). For most BB emitted species, the simulation with interactive fires has 620 

lower column densities than the simulation with prescribed emissions (Table 2) with a 621 

bias ranging from -6.3-0.5% for gaseous species, -4.8% for black carbon and -16% for 622 

organic aerosol. However, the column densities are only partly driven by fire emissions, 623 

as those make up less than 35% of total global emissions of either CO, organic aerosol, 624 

and black carbon emissions. Non-emissions production-and-loss mechanisms also impact 625 

column densities. Having a weak global impact on composition does not imply that 626 

regionally fires are not important. 627 

The difference in column densities between the two simulations is greatest over 628 

north sub-Saharan Africa, Indonesia, and the boreal regions. The behavior is region-629 

specific, and some regions like central Africa and northern hemisphere South America 630 

have higher column densities compared to the simulation with prescribed emissions. The 631 

differences between the two simulations are more prominent for organic aerosol than any 632 

of the other species (Fig. 9, Table 2), while the differences in the spatial distribution of 633 

CO are marginal. 634 

5.4.2 Aerosol optical depth (AOD) 635 

In Fig. 10 we compare climatologically-simulated clear-sky AOD with MODIS 636 

AOD (Aqua) for January, April, July, and October. The conclusions from Terra products 637 

are similar to Aqua’s, and will not be presented here, for brevity. In a regional 638 

perspective, simulated AOD is able to reproduce the seasonality and spatial distribution 639 
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of MODIS-retrieved pollution over west and central Africa, east and southeast Asia, and 640 

the Arabian sea. The simulations of ModelE2.1 has higher AOD compared to MODIS 641 

over the tropical eastern Pacific, an artifact due to the model’s skill in simulating 642 

stratocumulus cloud decks, which have been improved in a newer version of the ESM 643 

(ModelE3).  644 

Model performance as a function of interactive versus offline fire emissions is 645 

similar in terms of AOD (Fig. 11). Both simulations have persistently lower (0-30%) 646 

AODs over central Africa and central South America compared to MODIS. The locations 647 

with an outstanding difference in performance between the simulations are in central sub-648 

Saharan Africa in January and July, and over a small area in Indonesia (Kalimantan) 649 

during October. In January over central sub-Saharan Africa the simulation with pyrE has 650 

AOD values (NHAF regional mean AOD of 0.26) closer to MODIS (NHAF regional 651 

mean AOD of 0.2) than a simulation with prescribed fire emissions (NHAF regional 652 

mean AOD of 0.33), while in July it is the simulation with pyrE (NHAF regional mean 653 

AOD of 0.53) that is more biased high than the prescribed one (NHAF regional mean 654 

AOD of 0.46). Over EQAS in October the simulation with prescribed fires has an AOD 655 

of ~0.28 while the simulation with pyrE has an AOD of ~0.18. AOD in this region is 656 

sensitive to peat fires, which are not included in ModelE, strongly impacting pyrE’s 657 

results. Globally, mean AOD simulated with interactive fire emissions is 0.142 while 658 

mean AOD simulated with prescribed fire emissions is 0.146. The fact that pyrE has a 659 

marginal performance in climatological runs when compared against a simulation with 660 

the more accurate offline emissions is a strong indication that it is a robust module that 661 

can be used with confidence at time periods where offline emissions are not available. 662 

Finally, we demonstrate the contribution of BB emissions to total clear-sky AOD 663 

by comparing the simulations with both prescribed and interactive fire emissions to a 664 

simulation that has no fire emissions at all (Fig. 12). In the simulation with prescribed fire 665 

emissions, clear sky AOD is on average 10% higher than it is in a simulation with no fire 666 

emissions. In a simulation with pyrE clear sky AOD is about 7.5% higher than it is in a 667 

simulation with no fire emissions. The impact of BB emissions on AOD is most 668 

pronounced in the source regions of Africa and the Amazon. In those regions the 669 

difference in AOD varies between 0.15-0.3. It is important to note that the differences in 670 
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AOD are not only due to impact of BB emissions, but also reflect climate variability, 671 

which impacts aerosol lifetime and interactive dust emissions. 672 

6 Conclusions 673 

The development of pyrE allowed us for the first time to interactively simulate 674 

climate and fire activity with GISS-ModelE2.1. The pyrE module, which is based on a 675 

the fire parameterizations of Pechony and Shindell (2009), was expanded to include fire 676 

spread and burned area, following the approach of Li et al. (2012). This study set out to 677 

simulate the climatology of fires, and not individual fire events. Like only a few other fire 678 

models [Zou et al., 2019], pyrE was developed with consideration of regional behavior. 679 

The new fire suppression scheme depends on population density, but also on geographic 680 

regions. The new scheme reflects more intense fire suppression in the USA and Middle 681 

East, and revokes fire suppression in Africa, which improved the fire activity seasonality 682 

simulated by pyrE compared to satellite retrievals. Active fires’ seasonality is well 683 

simulated in the fire source regions: the Amazon, SH Africa, and NH Africa, with the 684 

exception of being biased low compared to MODIS during November-December. This is 685 

due to the lack in parameterization of intentional ignitions and agricultural fires.  686 

The regional model skill of fire activity was also demonstrated in the simulated 687 

burned area. Burned area in southern hemisphere Africa was well simulated by the model, 688 

while less active fire regions like temperate and boreal North America, Boreal Asia, 689 

Europe, and Middle East were biased high compared to GFED4s. Other regions like 690 

Australia, northern sub-Saharan Africa in November-December, Central Asia and 691 

Southeast Asia in January-March were biased low. Though the seasonality of simulated 692 

burned area reflects that of simulated active fires, the bias of burned area compared to 693 

GFED4s data is at least double that of active fires. Burned area is a quantity that most fire 694 

models struggle with. Wind speed, a driver of burned area, is averaged over a coarse grid 695 

cell, with no feedback from fire heat and energy, which can be a contributing factor to the 696 

lower simulated burned area values. The prescribed rudimentary PFTs of the model are a 697 

simplified version of the real world and thus can be a source of additional uncertainty. 698 

Finally, the rate of spread of burned area, a function of the burning vegetation type, that 699 

pyrE and other fire models use is on the lower end of field observations. A higher rate of 700 
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spread could help to both override the scaling factor used for burned area, and to reduce 701 

the negative bias compared to GFED4s.  702 

Unlike other fire models, fire emissions in pyrE are driven directly by fires 703 

instead of burned area. Emissions are based on online active fires calculations and offline 704 

emission factors derived as described in Sect. 2.6. In contrast to the fact that simulated 705 

active fires are biased high compared to MODIS, globally, fire emissions are biased low 706 

compared to GFED4s. Fire emissions are well-simulated over the southern hemisphere 707 

with the exception of Australia. Emissions are biased low over the northern hemisphere 708 

including northern sub-Sahara, with the exception of NH South America, which is biased 709 

high. The bias of active fires compared to MODIS in Australia and in northern sub-710 

Saharan Africa during November-December propagates to emissions. The emission 711 

factors, which were calculated offline using MODIS fire count and GFED4s fire 712 

emissions and were applied based on the prescribed PFTs of the model, have their own 713 

limitations. They are based on a training dataset of seven years, which would introduce 714 

biases in regions where fire cycle is longer than seven years. Also, they rely on the 715 

modeled PFTs, enhancing the emissions dependency on the prescribed PFT and the lack 716 

of peat. Emission factors do not distinguish between intentional and accidental fires, thus 717 

they indirectly account for all fire emissions, which reduce existing biases, although the 718 

regional distribution of them will not match the locations of intentional fires, unless 719 

natural vegetation burning occurs in the vicinity.  720 

Less emissions compared to GFED4s means lower column densities and lower 721 

AOD when comparing a simulation with interactive fires to one with prescribed fires. 722 

However, as these quantities depend on climate feedbacks including processes other than 723 

fire, e.g. additional emission sources, precipitation, deposition, transport, and chemistry, 724 

the differences between the two simulations dilute. Nonetheless, a comparison with 725 

MODIS AOD demonstrates that AOD from a simulation with interactive fire emissions is 726 

comparable to AOD from a simulation with prescribed fire emissions. 727 

The work presented here highlights that timing matters just as much as magnitude. 728 

This is true for fire distribution, emissions, and atmospheric composition. Timing is also 729 

the reason why intentional ignition was excluded from pyrE. Intentional ignition, namely 730 

land clearing and agricultural fires, depends on region and crop specific planting and 731 
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harvesting times. To include it would require crop functionality in ModelE, which was 732 

not present during the time of our development. Further future development should focus 733 

on the inclusion of intentional ignition and agricultural fires which are seasonal in nature, 734 

derived from crop planting and land clearing times. This addition could perhaps improve 735 

model performance over regions like equatorial Asia, Southeast Asia, and Central 736 

America as well as override the global scaling factors applied to active fires and burned 737 

area. The use of scaling factors is a common practice among fire models, and should be 738 

carefully and transparently documented. Also, enhancing the prescribed PFTs, especially 739 

via the addition of peat is imperative when studying fires. Peat exists as well outside of 740 

tropical Asia. There are immense reservoirs of peat in Africa [Dargie et al., 2017], as 741 

well as the boreal regions [Yu, 2012], where it used to be trapped under permafrost. Peat 742 

will likely become an even bigger source of fire emissions in the future. Improvement of 743 

the cloud to ground lightning parameterization may also prove useful, as changes to 744 

natural ignition will likely have significant impacts on Australian and boreal fire 745 

emissions. Finally, given that the heat component of fires interact with the climate system, 746 

and can also be used to derive more accurate emissions, as demonstrated by Ichoku and 747 

Ellison (2014) and three of the eleven FireMIP models (Rabin et al., 2017), it is 748 

worthwhile taking it into consideration when developing new fire modeling capabilities. 749 

7 Code availability 750 

Information on ModelE, including access to online data and descriptions are available at 751 

http://www.giss.nasa.gov/tools/modelE. The pyrE module is included in ModelE version 752 

2.1. The source code, along with documentation, can be downloaded from the NASA 753 

Goddard Institute of Space Studies website: https://simplex.giss.nasa.gov/snapshots/. 754 
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Tables 1196 

Table 1 Fire emission factors for the different plant functional types (PFTs) in ModelE2.1. 1197 

Factors are in units of kg per fire per PFT in the grid cell. For organic and black carbon 1198 

units kg is substituted with kg of carbon. 1199 

PFT CO NOx SO2 NH3 Alkenes Paraffin OC BC 

Cold Broadleaf 113392 1529 555 2101 106 69.8 3437 767 

Deciduous 

Needle leaf 
481485 1559 4168 10722 422 373 36753 1844 

Drought 

Broadleaf 
230829 4835 1687 2340 214 108 10667 1382 

Evergreen 

Broadleaf 
249906 4905 1438 2847 220 102 10941 1434 

Evergreen 

Needle leaf 
146622 1197 972 2277 137 89.1 6537 821 

Cold Shrub 105936 241 878 2006 104 72.1 6562 357 

Arid Shrub 39268 1009 262 378 36.6 18.5 1479 238 

C3 Annual 

Grass 
26761 690 147 313 25.1 13.9 728 173 

C3 Arctic 

Grass 
251702 1094 2315 5065 489 226 15551 1159 

C3 Perennial 

Grass 
41043 908 270 438 38.8 20.7 1504 257 

C4 Grass 117577 3152 795 1196 110 57 4339 726 
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Table 2: Total fire emissions and global mean column loads of fire emitted species. 1208 

Modeled annual emissions and column load means are based on an ensemble of 10 1209 

simulations. GFED4s emissions are based on a 2000-2010 climatological mean. 1210 

Species Variable pyrE GFED4s Bias [%] 

CO 
Emissions [Tg a-1] 2.14E+02 3.51E+02 -39 

Column Load [kg m-2] 7.22E-04 7.71E-04 -6.3 

OA 
Emissions [TgC a-1] 1.31E+01 2.29E+01 -42 

Column Load [kg m-2] 8.52E-07 1.02E-06 -16 

BC 
Emissions [TgC a-1] 1.25E+00 1.84E+00 -32 

Column Load [kg m-2] 7.25E-09 7.62E-09 -4.8 

NOx 
Emissions [Tg a-1] 4.27E+00 6.76E+00 -36 

Column Load [kg m-2] 5.94E-07 5.91E-07 0.5 

NH3 
Emissions [Tg a-1] 2.43E+00 4.15E+00 -41 

Column Load [kg m-2] 2.15E-07 2.23E-07 -3.5 

SO2 
Emissions [Tg a-1] 1.34E+00 2.25E+00 -40 

Column Load [kg m-2] 2.67E-06 2.69E-06 -0.7 

Alkenes 
Emissions [Tg a-1] 1.94E-01 3.18E-01 -39 

Column Load [kg m-2] 5.73E-08 5.70E-08 0.5 

Paraffin 
Emissions [Tg a-1] 9.79E-02 1.65E-01 -40 

Column Load [kg m-2] 2.36E-07 2.42E-07 -2.4 
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FIGURES 1221 

 1222 
BONA Boreal North America 

TENA Temperate North America 

CEAM Central America 

NHSA Northern Hemisphere South America 

SHSA Southern Hemisphere South America 

EURO Europe 

MIDE Middle East 

NHAF Northern Hemisphere Africa 

SHAF Southern Hemisphere Africa 

BOAS Boreal Asia 

CEAS Central Asia 

SEAS Southeast Asia 

EQAS Equatorial Asia 

AUST Australia and New Zealand 
 1223 
Figure 1. GFED basis regions regrided to the resolution of ModelE2.1 of 2° in latitude by 1224 

2.5° in longitude. 1225 
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Figure 2. Structure of the fire parameterization of pyrE. Processes related to atmospheric 1237 

properties in blue, surface properties in green, ignition and suppression in yellow and 1238 

gray, and fire properties in red. 1239 
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Length 

  1258 
 1259 

Figure 3. Approximation of a single fire spread. Based on van Wagner (1969) and Arora 1260 

and Boer (2005). 1261 
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 1263 
Figure 4: Seasonality of total active fires for NHAF (a), SHAF (b), TENA (c) and MIDE 1264 

(d) observed by MODIS Aqua (red) and Terra (orange) and simulated with explicit 1265 

regional suppression (blue) and generic global suppression parameterization (green); Eq. 1266 

6. Error bars represent the range over 10-year climatological simulations. Note that 1267 

TERRA and AQUA have different overpass times, and the model data presented here are 1268 

monthly means. Also, note the different scale in each panel. 1269 

(c) (d)

(a) (b)
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 1270 
Figure 5: Daily mean cycle in active fires (FC, blue line) and daily mean (black line) at 4 1271 

locations (Russia (a), India (b), Brazil (c), Nigeria (d)) during the month of January. The 1272 

daytime overpass times of Terra (10:30am) and Aqua (13:30pm) are marked with a red 1273 

star. Error bars represent the range during the month. Note the different scale in each 1274 

panel. 1275 

 1276 

(c) (d)

(a) (b)



47	

 1277 
Figure 6: Global seasonality of total active fires (FC) by MODIS Aqua (red) and Terra 1278 

(orange) and simulated by the model: monthly mean (blue), monthly mean sampled at the 1279 

daytime Terra overpass time (green), and sampled at the daytime Aqua overpass time 1280 

(purple). Error bars represent the 10-year range in the simulation. 1281 
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 1289 
Figure 7: Annual mean model (left) and MODIS (right) active fires. Modeled annual 1290 

mean is based on an ensemble of 10 simulations. Simulated fires sampled at the daytime 1291 

Terra overpass time, 10:30am local time (a) and daytime Aqua overpass time, 1:30pm 1292 

local time (c). MODIS active firs are based on MODIS Terra (b) and MODIS Aqua (d) 1293 

from 2003-2016. 1294 

(c) (d)

(a) (b)
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 1295 
Figure 8: Annual mean model (left) and satellite based (right) active fires (a, b), burned 1296 

area (c, d), and CO emissions (e, f). Modeled annual mean is based on an ensemble of 10 1297 

simulations. Satellite detected active fires are based on MODIS Aqua retrievals of 2003-1298 

2016, burned area is based on GFED4s inventory of 2003-2016, and CO emissions are 1299 

based on climatological GFED4s emissions of 2000-2010. 1300 

(e) (f)

(c) (d)

(a) (b)
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 1301 
Figure 9: Modeled annual mean column density using pyrE fire emissions (left), and the 1302 

difference in column densities with a simulation using offline GFED4s emissions (pyrE – 1303 

GFED4s; right). CO (a, b), OA (c, d), and BC (e, f). Data based on an ensemble of 10 1304 

simulations.  1305 

(e) (f)

(c) (d)

(a) (b)
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 1306 
Figure 10: Monthly modeled clear-sky aerosol optical depth (AOD) simulated using pyrE 1307 

fire emissions (left), and detected by Aqua-MODIS (right). January (a, b), April (c, d), 1308 

July (e, f), and October (g, h). Monthly mean simulated AOD is based on an ensemble of 1309 

10 simulations, and climatologically monthly MODIS AOD is based on 2003-2007 data. 1310 

Missing MODIS data is shaded in light gray. 1311 

(g) (h)

(e) (f)

(c) (d)

(a) (b)
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 1312 
Figure 11: The difference in monthly modeled clear-sky aerosol optical depth (AOD) and 1313 

MODIS Aqua (model – satellite). Model simulations using pyrE fire emissions (left) and 1314 

model simulations using offline GFED4s emissions (right). January (a, b), April (c, d), 1315 

July (e, f), and October (g, h). The difference is based on an ensemble of 10 simulations 1316 

and 2003-2007 MODIS climatological monthly data. Missing MODIS data is shaded in 1317 

light gray. 1318 
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 1320 
Figure 12: The difference in annual modeled clear-sky aerosol optical depth (AOD) 1321 

between a simulation with no fire emissions to a simulation using pyrE fire emissions (a), 1322 

and a simulation with offline GFED4s emissions (b). The difference (model with no fire 1323 

emissions – model with fire emissions) is based on an ensemble of 10 simulations. 1324 
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APPENDIX 1341 

 1342 
Figure A1: Seasonality of total active fires (FC) detected by MODIS Aqua (red) and 1343 

Terra (orange) and simulated (blue) in all GFED regions (Fig. 1). Error bars represent the 1344 

10-year range in the simulations. Note the different scale in each panel. 1345 
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 1346 
Figure A2: Seasonality of total burned area; simulated (blue) and reported by GFED4s 1347 

(red) in GFED regions. Error bars represent the 10-year range in the simulations. Note the 1348 

different scale in each panel. 1349 
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 1350 
Figure A3: Seasonality of total fire CO emissions; simulated (blue) and reported by 1351 

GFED4s (red) in GFED regions. Error bars represent the 10-year range in the simulations. 1352 

Note the different scale in each panel. 1353 
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 1354 
Figure A4: Seasonality of total fire organic aerosol (OA) emissions; simulated (blue) and 1355 

reported by GFED4s (red) in all GFED regions. Error bars represent the 10-year range in 1356 

the simulations. Note the different scale in each panel. 1357 
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 1358 
Figure A5: Seasonality of total fire BC emissions; simulated (blue) and reported by 1359 

GFED4s (red) in all GFED regions. Error bars represent the 10-year range in the 1360 

simulations. Note the different scale in each panel. 1361 


