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Abstract. This paper presents the first version of the regional scale personal exposure model EXPLUME. The model uses sim-

ulated gridded data of outdoor O3 and PM2.5 concentrations and several population and building-related datasets to simulate 1)

space-time activity event sequences, 2) the infiltration of atmospheric contaminants indoors and 3) daily aggregated personal

exposures. The model is applied over the greater Paris region at 2km x 2km resolution for the entire 2017 year. Annual averaged

population exposures are discussed. We show that population mobility within the region, disregarding pollutant concentrations5

indoors, has only a small effect on average daily exposures. By contrast, considering the infiltration of PM2.5 in buildings de-

creases annual average exposure by 11% (population average). Moreover, accounting for PM2.5 exposure during transportation

(in-vehicle, while waiting on subway platforms, and while crossing on-road tunnels) increases average population exposure

by 5%. We show that the spatial distribution of PM2.5 and O3 exposures is similar to the concentration maps over the region,

but the exposure scale is very different when accounting for indoor exposure. We model large intra-population variability in10

PM2.5 exposure as a function of the transportation mode, especially for the upper percentiles of the distribution. 20% of the

population using bicycles or motorcycles is exposed to annual average PM2.5 concentrations above the EU target value (25

µg/m3), compared to 0% for people travelling by car. Finally, we develop a 2050-horizon projection of the building stock to

study how changes in the buildings' characteristics to comply with the thermal regulations will affect personal exposures. We

show that exposure to ozone will decrease by as much as 14% as a result of this projection, whereas there is no significant15

impact on exposure to PM2.5.

1 Introduction

Air pollution is the first environmental health risk with significant effects on morbidity and mortality (Lim et al., 2012; WHO,

2014). Despite significant improvement in European air-quality over the past decades, in 2017 approximately 77% of the

urban population was still exposed to PM2.5 concentrations exceeding the WHO Air Quality Guidelines for health (14% for20

O3) (EEA, 2019). More than half of the mortality burden attributed to exposure to suspended particles of an aerodynamic

diameter less than 2.5 µg/m3 (PM2.5) in France, occurs in cities of more than 100 000 inhabitants (Pascal et al., 2016). Several
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epidemiological studies have shown the adverse health effects of exposure to PM2.5. For instance in France, in 2004–2006,

about 3000 deaths per year were attributed to levels of PM2.5 exceeding the WHO guideline value in nine French urban areas

participating in the Aphekom project (Pascal et al., 2013). Previous studies have shown that ozone exposures correlate with25

both morbidity and mortality (Sun et al., 2018; Di et al., 2017).

In the majority of these studies, the exposure surrogate associated with morbidity or mortality metrics is a spatially ag-

gregated pollutant concentration from measurements at different sites over the urban agglomeration (Anderson et al., 2004;

Bell et al., 2005). The underlying hypothesis here is that exposure is homogenous over the population. For this assumption

to be valid, these studies are limited to small geographical zones where population density and pollutant concentrations are30

also homogenous (Sarnat et al., 2007). Several shortcomings of this approach have been raised in previous studies. On one

hand, pollutant concentrations are spatially heterogeneous, especially within cities where different emission sources co-exist

and the presence of buildings imposes barriers to the dispersion of pollutants. For example, a Health Effects Institute report

states that the zones most impacted by traffic-related pollution are up to 300–500m from highways and other major roads, and

when calculated for large cities in North America that affects 30 – 45% of the population (HEI, 2010). Intra-urban variability35

in pollutant concentration is a principal source of exposure misclassification in environmental epidemiology models, leading to

errors in the evaluation of the health risk (Blair et al., 2007; Edwards and Keil, 2017). Furthermore, large variability in popu-

lation exposure arises from human activity, population mobility, transport usage, building characteristics (Georgopoulos et al.,

2005). Therefore, to study the health risk on specific population groups — such as children, elderly people, asthma patients or

pregnant women (Olsson et al., 2014) or the health effect of co-pollutants (Olstrup et al., 2019b, a; Valari et al., 2011), or the40

risk associated to living or working near busy roads (Lipfert and Wyzga, 2008; Miranda et al., 2013) — one has to account for

pollutant concentration at district-level, population dynamics, and exposure indoors and during transport (Franklin et al., 2012;

Hodas et al., 2012).

To answer this emerging demand, several methods for estimating personal exposure have been developed. Land-use regres-

sion models have been largely used to relate concentrations measured at monitor sites with concentration estimates at different45

locations across the city (Beelen et al., 2013; Cattani et al., 2017; Ryan and LeMasters, 2007). Then, space-time activity data

are coupled to concentration data to provide exposure estimates (Vizcaino and Lavalle, 2018; Xu et al., 2019a). Land-use

regression models provide spatial maps where urban features such as roads, buildings, parks may be distinguished from back-

ground concentration levels. But concentration gradients resulting from the regression do not account for the dynamical or

chemical processes taking place at these scales. Portable instruments, based on mass filters or high-accuracy optical methods50

(reference sensors) have also been used during specific field campaigns to to measure exposure in cars, in subway trains and on

subway platforms, and in residences or other indoor micro-environmental locations (Hwang and Lee, 2018; Lim et al., 2012;

Morales Betancourt et al., 2019; Williams and Knibbs, 2016; Xu et al., 2019b). These methods are accurate but restricted to

limited periods and spatial contexts. The availability of low-cost personal monitors (micro-sensors) is a new opportunity in

the atmospheric exposure field. They provide access to almost real-time, high resolution concentration measurements (Xie55

et al., 2017). However, the accuracy of these instruments, their calibration, as well as their high sensitivity to environmental
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conditions (e.g. humidity) and human manipulation are yet to be addressed before their true potential to be realized (Berchet

et al., 2017).

Pollutant concentration fields simulated with atmospheric dispersion models are another possible input source for exposure

models. The advantage of this approach is that simulation data may cover long time-periods to support climate studies or policy60

applications adjusting for meteorological variability, emissions regulations, and land-use classification. Gaussian dispersion

models have often been coupled with population space-time activity data for use in exposure studies (Dias and Tchepel, 2018;

Korek et al., 2015; Batterman et al., 2014; Willers et al., 2013). These models, coupled with regional-scale chemistry-transport

models, account simultaneously for long-range transport, regional background concentrations, and local features such as traffic

emissions over the road network (Soares et al., 2014).65

Regional scale chemistry-transport models (CTMs) such as CHIMERE (Mailler et al., 2017) or CMAQ (K. Wyat Appel

et al., 2014) have achieved resolution of 1km x 1km with sufficient accuracy to be considered for use in such fine scale ap-

plications (Beevers et al., 2013). Statistical, dynamical or hybrid downscaling techniques such as kriging (Beauchamp et al.,

2015) or subgrid-scale parametrizations (Valari and Menut, 2010) can be applied or coupled to these models to provide con-

centrations at district level. The use of CTMs instead of high-resolution Gaussian or Lagrangian models in an exposure context70

has several advantages. The study domain may be large enough to cover an entire region, whereas typical Gaussian or La-

grangian applications cover at best, the urban agglomeration. However, a large part of the population moves in and out of the

agglomeration within the day and on systematic basis. Furthermore, the enhanced chemical mechanisms of CTMs compared

to the simplified chemistry (the Chapman cycle) in Gaussian or Lagrangian models gives access to refined information on the

chemical speciation and size distribution of particulate matter (PM). This information is particularly relevant in the context of75

health impact assessment, since the health impact of PM strongly depends on these properties (Atkinson et al., 2015; Cassee

et al., 2013).

This paper presents the first version of a regional scale model for personal exposures to O3 and PM2.5. The originality of the

model lies on the development of i) individual activity sequences that are defined geographically in space and time and ii) the

modelling of seasonal distributions of indoor/outdoor ratios by building type and age. This latter feature is unique in personal80

exposure modelling since typically, indoor pollutant concentrations relie on measurements for a few locations that may not

represent the area’s buildings. The model is developed as a post-processing tool for the CHIMERE regional scale CTM and

aims to facilitate health impact assessment. Outdoor pollutant concentrations are simulated with CHIMERE at 2km x 2km

resolution. The model selects sample populations that reproduce essential demographics at relevant geographical units (com-

munes), namely age, gender, occupation, communes of residence and work, principal modes of transportation and construction85

dates of residence and workplace. Activity event sequences for each member of the sample are developed by matching the

distributions in the simulated population with distributions in the Enquête Globale de Transport (EGT, 2010) study. Infiltration

of outdoor air-pollution indoors in dwellings, offices, and schools, is modeled with the SIREN model (Collignan et al., 2012),

developed at the Centre Scientifique et Technique du Bâtiment (CSTB). SIREN is used to develop seasonal distributions of

indoor/outdoor ratios for each type of building. For other indoor locations (cars, buses, subway and regional trains and tram)90

we apply indoor/outdoor ratios found in the literature from previous measurement campaigns conducted in the region. Ad-
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justments are also applied for specific activities such as cycling, walking on busy roads, waiting at the subway platforms, as

well as for car journeys that intersect tunnels or the Boulevard Periphèrique (ring road). Space-time activity sequences define

the geographical coordinates of each member of the population at each minute of the simulation. Daily averaged personal

exposures are calculated from the products of time spent by a person in different microenvironments and the time-averaged95

pollutant concentrations occurring in those locations (Klepeis, 2006). Personal exposures are simulated for the entire 2017 year

over the Ile-de-France region (greater Paris).

2 Personal exposure calculation

The most accurate exposure assessment would rely on real-time personal monitoring devices affixed to people as they move

within all the locations that are part of their daily routines (Klepeis, 2006). In practice, such equipment is too expensive to100

affix to large cohorts. Also questions such as the calibration of the monitors and the assessment of the uncertainties still need

to be tackled before such studies could be carried out at regional scale. In a modeling framework, discrete locations termed

as microenvironments are considered rather than fully continuous space. In this case, the exposure trajectory of the receptor

is followed explicitly. This approach has been adapted in cohort studies such as McBride et al. (2007). As in Klepeis (2006),

in the exposure model developed here receptors are simulated through individuals. Further discretizing in time, we calculate105

exposure as the sum of the product of time spent by a person in different microenvironments and the time-averaged pollutant

concentrations occurring in those locations:

Ei =

m∑
j=1

CijTij (1)

Here Tij is the time spent in microenvironment j by person i with units in minutes, Cij is the air-pollutant concentration person

i experiences in microenvironment j in units of [µg/m3], Ei is the integrated exposure for person i [µg/m3 min], and m the110

number of different microenvironments. In this formulation, concentration Cij is averaged over the corresponding time period

Tij .

The general structure of the model with the necessary input datasets for the exposure calculation is illustrated in Figure 1.

Outdoor pollutant concentrations are simulated with a regional scale chemistry-transport model. We use hourly averaged data

over a horizontal grid with 2km spacing in both the west-east and the south-north directions (Section 3.1). Indoors pollutant115

concentrations(in buildings and during transportation) are deduced from outdoor concentrations by applying indoor/outdoor

ratios. The model does not account for indoor sources so far. For buildings, indoor/outdoor ratios are calculated through a

ventilation model (Section 3.2.1). For other indoor microenvironments, indoor/outdoor ratios are either taken from previous

studies in the Ile-de-France region or calculated from existing indoor and outdoor concentration data as is the case for subway

platforms (Section 3.2.2).120

To obtain activity event sequences that determine the location of each member of the simulated population in time we draw

on the 2010 survey “Enquête globale de transport” (EGT, 2010) conducted by the Direction Régional et Interdépartemental de

l'Equipement et de l'Aménagement d'Ile-de-France. This survey questioned 43 000 individuals and identified 143 000 journeys.
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Figure 1. Overview of the EXPLUME model structure, from the input data to the exposure calculation.

Each journey is characterized by the origin and destination points, the motive for traveling, the duration and the means of

transportation used. The mobility of the sample population is simulated with a Monte Carlo model that matches the simulated125

data with the EGT (2010) data (Section 4).
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3 Pollutant concentrations

3.1 Outdoor O3 and PM2.5 concentration predictions

Pollutant concentrations are modeled with the CHIMERE model (Mailler et al., 2017) at a horizontal resolution of 2km x 2km.

Four-level one-way nesting is used for the CHIMERE simulation with grids of 60, 20, 7 and 2km spacing between cells at130

both west-east and south-north directions. 15 vertical layers are used from 998 up to 300hPa with layers becoming thicker

with distance from the surface level. Meteorological conditions are modeled with the Weather Research and Forecasting model

(Skamarock et al., 2008) off-line at the same 4-level nesting grids as for the CHIMERE simulation but with a two-way nesting

configuration. Global HTAP (Hemispheric Transport of Atmospheric Pollutants) anthropogenic emissions are used outside the

European continent, EMEP emissions for Europe outside the Ile-de-France region and finally a 1km x 1km resolution bottom135

up emission inventory developed by the AIRPARIF agency for anthropogenic emissions over the Ile-de-France region.

Table 1. Common metrics of statistical performance of the CHIMERE model, namely Pearson correlation, mean bias and root mean square

error, aggregated over the whole 2017 year and for summer and winter seasons. Comparisons with traffic background and rural stations are

conducted separately.

O3 hourly [ppb] PM2.5 hourly [µg/m3]

Urban background (15 sites) Rural (7 sites) Urban background (6 sites) Traffic (4 sites)

YEAR / Pears. Cor. [non dim.] 0.74 0.74 0.55 0.57

YEAR / Mean Bias 0.06 0.95 2.14 -1.91

YEAR / RMSE 10.25 9.6 11.8 12.7

SUMMER / Pears. Cor. [non dim.] 0.72 0.75 0.19 0.23

SUMMER / Mean Bias 0.79 2.58 0.19 -3.48

SUMMER / RMSE 10.7 10.1 5.4 7.3

WINTER / Pears. Cor. [non dim.] 0.58 0.62 0.56 0.59

WINTER / Mean Bias -0.73 1.9 0.74 -1.35

WINTER / RMSE 9.7 9.7 16.8 18.1

Table 1 summarizes the comparison between the 2017-year simulation against measurements at all the available monitor

sites of the AIRPARIF air-quality network. Urban monitoring-sites are divided into two groups : traffic sites are located on the

road network and have a relatively small spatial representativeness, whereas urban background stations are located away from

the road network and their spatial representativeness spans over larger areas. Rural monitor sites are located outside the city140

and have the largest spatial representativeness. A good temporal correlation on an hourly basis is observed for ozone, especially

for summer periods on both urban background and rural locations. The correlation is lower for the winter period. Afternoon

ozone concentrations are underestimated over urban background stations as also shown in Figure 2. This is due to model’s
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horizontal resolution that is too coarse to spatially resolve the fast NO-titration near high emission sources. On the contrary,

day-time ozone is slightly overestimated over rural locations see Figure S1 (supplemental material). In both urban background145

and rural locations, night-time ozone is largely overestimated. The model keeps bringing ozone at the surface layer from the

stratosphere and ozone accumulates in the surface layer in the absence of local NO emissions and dry deposition that remove

it during day-time.

Figure 2. Hourly mean bias of simulated surface O3 (summer) and PM2.5 (summer and winter) concentrations calculated during the year

2017 over 15 and 6 urban background monitor sites respectively.

Temporal correlation, on an hourly basis, between simulated and observed PM2.5 concentrations is much better for winter

than for summer. Pearson correlation over urban background sites drops from 0.56 for the winter period to 0.19 for summer.150

The CHIMERE model overestimates PM2.5 concentrations over urban sites and underestimates them over traffic stations (ta-

ble 1 and Figure S2). Road transport is a major source of fine particles in urban areas. The 2km x 2km horizontal resolution is

insufficient to reproduce the high PM2.5 concentrations near these sources. Another possible reason for model’s underestima-
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tion of PM2.5 concentrations over traffic stations is a poor representation of secondary organic aerosol formation near traffic

emissions. The distribution of the above statistics across sites is shown in Figure S2 (supplemental material). As shown there,155

the underestimation of PM2.5 concentrations over traffic sites may be particularly high.

Globally, we assume that the CHIMERE model at 2km x 2km resolution provides reliable O3 and PM2.5 background

concentrations, being able to spatially differentiate the urban agglomeration from peri-urban and remote rural locations for

PM2.5 (Figure 3). The formation of well-structured ozone plumes over the rural area is also well represented as shown in the

top left panel, where specific date/hour surface ozone concentration map is shown. The model is also capable of reproducing160

the diurnal cycle of ozone and PM2.5. Pollutant episodes induced by favorable meteorological conditions are also well-captured

by the model, even though a trend to underestimate ozone peaks and overestimate PM2.5 peaks is observed.

Based on this analysis, for the personal exposure calculation we use simulated background O3 and PM2.5 concentrations

from the CHIMERE model grid-cell where the activity takes place. Over the road network, where we know that the 2kmx2km

CHIMERE model resolution is insufficient to reproduce the high PM2.5 concentration levels, we apply correction coefficients165

to increase modeled concentrations. This happens in two cases: the Boulevard Periphérique (road ring) and inside road tunnels

(see Section 3.2.2). Therefore, no stochastic selection operates for the estimation of outdoor pollutant concentrations.

3.2 Infiltration of outdoor O3 and PM2.5 indoors

3.2.1 Dwellings, offices and schools

Indoor pollutant concentration levels depend on indoor sources and on outdoor pollutants entering the building through natural170

or mechanical ventilation. As air flows through the envelope of the building, pollutants react with the surfaces over which

they flow. Therefore, the actual flow indoors depends on the specific path that the air flow takes: permeability of the building

shell, natural air entry, or ducts (Walker and Sherman, 2013). Other sinks of pollutants indoor are deposition on the indoor

surfaces and chemical reactions with other indoor species. The relationship between these sources and sinks is expressed

through equation 2 as in Walker et al. (2009).175

dCX,in

dt
=
∑
i

(PX,iQin,i) ·CX,out − (Qout + ηQh)CX,in − kdCX,in −
∑
j

kj [chemj ] +
CX

V
(2)

Here,

– CX,in and CX,out are the concentrations of pollutant X indoors and outdoors respectively (µg/m3)

– PX,I is the dimensionless penetration factor for the pollutant X through leak path i, i.e the fraction of the pollutant in the

infiltration air that passes through the building shell or air entrance180

– Qin,i, Qout, Qh are, respectively the volume-normalized air flow rates into the building through path i, out of the building,

and through the heating ventilating and air-conditioning equipment expressed in Air Changes per Hour units (h−1)

– η is the removal efficiency on the heating ventilating and air-conditioning equipment
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Figure 3. Surface O3 (left) and PM2.5 (right) concentrations modeled with the CHIMERE chemistry-transport model. Maps on top show

example of hourly averaged O3 concentration (left) and daily averaged PM2.5 concentration (right) for specific hour/date. Maps on the

bottom are annual averaged concentrations.

– kd is the indoor deposition loss rate coefficient (h−1)

– chemj is the concentration of the jth chemical species reacting with the X pollutant (µg/m3)185

– kj the second order rate constant for the j reaction (h−1)

– SX is the time varying indoor production rate (µg/h)

– V the volume (m3)

Several studies have measured indoor/outdoor ratios for different building types and meteorological conditions, in cities

around the world for ozone (Collignan et al., 2012; J., 2000) and airborne particles (Cyrys et al., 2004; Matson, 2005; Monn,190

2001). Results show a strong dependence on the building usage (residence or office/school), the air-tightness of the building,

the ventilation system ,and the proximity to atmospheric pollution sources. Ozone I/O ratios generally vary between 0.2 and

0.7 (J., 2000), while for PM2.5, in the absence of indoor sources, between 0.5 and 1 (L. Morawska, C. He, 2003).
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To account for the variability in I/O ratios due to these factors, we modelled ozone and fine airborne particles (PM2.5) I/O

ratios with the building ventilation model developed at the Centre Scientifique et Technique du bâtiment (CSTB), called SIREN195

(Collignan et al., 2012). The differential equation 2 is reformulated based on three assumptions: i) no indoor sources for O3

and PM2.5 ; ii) no chemical reactions with other atmospheric contaminants indoors; and iii) initial concentration indoors is

null. We conducted simulations for a typical dwelling and office/school.

To account for the variability of I/O ratios due to air-tightness and ventilation systems, we applied a classification of the

building stock based on the construction date. This information integrates air-tightness and ventilation systems evolution based200

on the national thermal and ventilation regulations (ADEME, 2013), the evolution of the building stock as described in (INSEE,

2014), and the use of ventilation systems in French buildings (OQAI, 2006). Table 2 shows the applied parametrizations for

the different usages and construction dates. The values of air-tightness range from 2.5 m3/h/m2, representative of old leaky

buildings to 0.6 m3/h/m2 corresponding to air-tight new constructions. A sensitivity analysis with the SIREN model showed

that I/O ratio for O3 decrease from 0.3 for the leaky building to 0.2 for the air-tight building and from 1 (air-tight building)205

to 0.8 (leaky building) for PM2.5. Based on the INSEE (2014) data, the percentages of dwellings constructed before 1974 in

the non-thermally rehabilitated and thermally rehabilitated classes are 25% and 75% respectively. No thermal rehabilitation is

applied on offices and schools constructed before 1974. The air-tightness and ventilation systems for offices and schools built

after 2012 do not change but the proportion of buildings in this category increases with time.

Climatological conditions, temperature, pressure, and outdoor pollutant concentrations are simulated with atmospheric mod-210

els (WRF for meteorology and CHIMERE for ozone and PM2.5 concentrations) at a 4x4km2 horizontal resolution for a ten-year

period from 1991 to 2000. Atmospheric fields are spatially averaged over the eight departments of the region. So, the atmo-

spheric conditions database input for the SIREN model consists of ten-year period hourly data for the eight departments of the

Ile-de-France region.

For each Ile-de-France department eight SIREN simulations are conducted (five for dwellings and three for office/schools)215

at a 3 min time-step. Penetration factor is fixed to 0.8 through the building shell and 1 through air inlet based on the state of

the art (Chen and Zhao, 2011; Monn, 2001; Stephens et al., 2012; Thatcher et al., 2003). Confronting numerical simulations

with SIREN and I/O ratio measurements the deposition rate was fixed to 0.1 h−1. The SIREN model output consists of a

decade long database of I/O ratios for ozone and PM2.5 at 3 min resolution for each of the eight Ile-de-France departments,

for five construction date classes for dwellings and 3 construction date classes for offices and schools. This database is further220

processed to provide seasonal I/O ratios for each pollutant, building type, construction date, and geographical zone as shown

in Figure 4. Indoor/outdoor ratios for the personal exposure calculation are drawn randomly from the corresponding seasonal

distribution depending on the personal profile and month.

3.2.2 Transportation

Ambient concentrations inside the principal transportation modes are deduced from outdoor concentrations by adjusting for225

indoor/outdoor coefficients taken from a study dedicated to evaluating the pollutant levels to which the Ile-de-France citizens

are exposed while commuting to work and back during morning and evening rash hours (Delaunay C. et al., 2012). A significant
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Table 2. Parametrization of the SIREN ventilation model depending on the construction date and the type of building, referring to the

buildings' air-tightness and the ventilation system.

Dwelling Office/Scool

Air-tightness under 4

Pa depressurization
Ventilation

Air-tightness under 4

Pa depressurization
Ventilation

Before 1974 not

thermally

rehabilitated

2.5 m3/h/m2

Natural ventilation

based on the principle

of rooms ventilated

separately

2.5 m3/h/m2 No ventilation system

Before 1974 thermally

rehabilitated
1.7 m3/h/m2

Natural ventilation

based on the principle

of rooms ventilated

separately

NA NA

1974 - 2005 1.7 m3/h/m2

Cross ventilation prin-

ciple induced by an ex-

haust mechanical venti-

lation system

2.0 m3/h/m2

Cross ventilation prin-

ciple by separated room

induced by an exhaust

mechanical ventilation

system

2006 - 2012 1.0 m3/h/m2

Cross ventilation prin-

ciple induced by an ex-

haust mechanical venti-

lation system

1.5m3/h/m2

Cross ventilation prin-

ciple induced by a

double flow mechanical

ventilation system

After 2012 0.6 m3/h/m2

Cross ventilation prin-

ciple induced by a

double flow mechanical

ventilation system

NA NA

number of contrasting situations is retained; twenty routes are chosen implementing the main modes of transport: car, bus,

subway, tramway, cycling and walking. Each route has been reproduced 30 times (15 round trips). The measurement campaign

took place during the winter period of 2007 and 2008.230

To define the indoor/outdoor ratio for each journey in the model we chose a random number within a uniform distribution

between the minimum and maximum values obtained by the study of Delaunay C. et al. (2012). The extreme values of these

distributions are shown in Table 3. For public transport we distinguish between waiting on the platform and journey. For the

suburban train (RER), we distinguish between journeys inside the subway network in the Paris agglomeration and the rest of the
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Figure 4. O3 and PM2.5 indoor/outdoor ratios modeled with the SIREN model for dwellings (unitless). The number of occurrences of the

histogram is normalized over the size of the dataset.

network. For journeys in cars, we distinguish between the road network in the Paris agglomeration, the Boulevard Periphèrique235

(road ring), and the rest of the network (rural).

Several studies have shown that pollutant concentrations measured inside tunnels are several times higher than concentrations

over the road but outside the tunnel. Orru H, B. Lövenheim, C. Johansson, B. Forsberg (2015) conducted a study to evaluate

the health impact of the exposure to traffic exhaust inside road tunnels. Here, we apply a special adjustment for car journeys
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Table 3. O3 and PM2.5 indoor / outdoor ratios for the principal means of transportation.

Waiting Journey

O3 PM2.5 O3 PM2.5

Subway 1 1 0 1.7-3.7

Bus 0 SQUALES 0 5.5-8.5

Tram 0 SQUALES 0 5.5-8.5

On foot 0 SQUALES 0 5.5-8.5

Two wheels 0 SQUALES 0 5.5-8.5

Paris intra-muros/outside

RER 0/1 SQUALES/1 0/0 3.2-5.4 / 2.9-3.2

O3 PM2.5

Rural Boulevard Periphérique Paris agglomeration

Car 0 0.9-2 0.9-2.1 0.9-3.3

that cross tunnels. We assume that if the itinerary of an individual intersects a grid cell (2km x 2km) containing a tunnel, there240

is a 20% probability that the driver will pass through the tunnel. Due to lack of actual data this number is assigned here in an

arbitrary manner. Further investigation in traffic data could provide a more accurate estimate of this probability. Based on the

measurement campaign described in AIRPARIF (2009), we assume that the PM2.5 concentration inside road-tunnels is two

times higher than the outdoors concentration (see also Section 2).

PM2.5 concentrations in the subway train tunnels are particularly high, especially for lines with rubber-tyred railway vehicles.245

To keep a record of the air-quality in the subway platforms the RATP (Régie Autonome des Transports Parisiens) operates

measurements on a 24-hour basis at two metro stations and one RER platform (SQUALES). We used hourly on-platform

measurements of the SQUALES network and outdoor concentration measurements from the AIRPARIF network for the entire

2013 year to establish a diurnal cycle of the indoor /outdoor ratio inside the subway platforms (Figure 5). For the personal

exposure calculation, we draw a random value from the hourly distributions of indoor/outdoor ratios.250

3.2.3 Other indoors

The SIREN model provides indoor /outdoor ratios for dwellings, offices and schools (Section 3.2.1). For other activities taking

place indoors such as entertainment and shopping we use the same indoor/outdoor ratios that SIREN predicts for offices and

schools. For the personal exposure calculation we draw random values for indoor/outdoor ratios from the seasonal distributions.

To decide whether shopping takes place indoors or outdoors we are based on statistics from the IAURIF (2006) study, following255

which 14% of the shopping activity in the Ile-de-France region takes place outdoors. Entertainment other than exercise is
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Figure 5. Hourly distributions of indoor/outdoor PM2.5 ratios for subway platforms issued from in-platform measurements of the SQUALES

network and outdoor measurements of the AIRPARIF network. The blue line is the median I/O ratio.

assumed to always take place indoors. For exercise activities, we first chose the type of exercise activity (IAURIF, 2006) and

then whether it takes place indoors or outdoors depending on the specific activity.

4 Population data

The methodological steps to obtain activity event sequences for the sample population are listed here:260

– select the population sample size that statistically reproduces essential demographics such as population of each admin-

istrative unit.

– assign attributes to the members of the population such as age, gender, principal occupation etc.

– simulate the mobility of the population by matching the journeys of the EGT (2010).

Monte-Carlo sampling method is used to randomly generate a data set of simulated individuals based on these steps.265

4.1 Generation of the sample population

The population data implemented in the model are public census data published by the INSEE (Institut Nationale de la Statis-

tique et des Études Économiques). The current version of the model implements datasets for year 2009. The administrative unit

chosen for the current study is the commune. The Ile-de-France region has 1300 communes and a population of 11 726 743.

The most densely populated communes are located at the outer rings of the Paris agglomeration followed by a second circle270

of high population density at the suburbs directly attached to the agglomeration. A third highly urbanized ring is distinguished

before reaching the rural areas at the outskirts of the Ile-de-France region (Figure 6).
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Figure 6. Population density at the commune level in the Ile-de-France region (left). Distribution of exposure factors in the sample population

(right). Data source census 2009 (INSEE).

The size of the sample population is fixed at 250 000 individuals (≈2% of the actual population). A sensitivity analysis

showed that further increasing this number does not significantly affect the results of the simulation (not shown). The first

module of the model sequence assigns several demographic attributes to each member of the sample population. These at-275

tributes, referred to as exposure factors hereafter, remain unchanged throughout the simulation. The procedure consists of

randomly selecting values from a distribution that matches the distribution of each attribute in the actual population of each

commune. By repeating this process for each member of the sample population we are sure to reproduce the distribution of the

exposure factors in the simulated population.

The population is divided in four age groups. Five occupation classes are defined, and two possible contract types (full-time280

or part-time) corresponding to 9-hours or 5-hours working days. Data on the construction date of the building of residence and

work are also implemented, to account for the infiltration of outdoor pollution indoors. The ten exposure factors implemented

in the model are listed below. The different possible values for each model parameter are shown.

– Home commune: 1 out of 1300

– Gender: Male, female285

– Age group: <4, 4-24, 25-64, >64

– Occupation: Day-care, pupils/students, active employed, active unemployed, not active (retired, at home, other)

– Contract: No contract, full-time, part-time

– Work area: Same commune as residence, different commune in the same department, different commune in different

Ile-de-France department, outside IdF or abroad290
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– Work commune: 1 out of 1300

– Means of transportation: No transportation, on foot, 2-wheels, car, public transport

– Construction date of residence: <1974 not rehabilitated, <1974 rehabilitated, 1974-2004, >2005

– Construction date of work place: <1974, 1974-2004, >2005

A certain dependency exists between the exposure factors. For example, the professional occupation strongly depends on295

gender and age. To preserve the sub-population variability in the sample population, the random sampling of the exposure

factors operates on stratified data, where exposure factors are supposed to be homogeneous. First, we assign the commune of

residence, and then the other attributes in the following order: gender, age group, principal occupation, and finally the kind of

contract. Once these primary attributes assigned, we then proceed to the selection of the rest, secondary characteristics. Working

area is a function of the occupation and the commune of residence, the construction date of the buildings of residence depends300

on the commune, the gender and the age group. For offices general statistics are provided by ADEME for each Ile-de-France

department dividing offices in three age classes.

4.2 Modeling the activity sequences

The second module of the model compiles 24-hour activity event sequences for each member of the sample population. Two

diaries are compiled for each individual, one for weekdays and one for weekends. At each moment in time, people are either305

at home, engaged in an activity, or in transport. Eligible activities are the six motives for transport in the EGT (2010), namely

work, professional affairs, school, market, recreation or personal affairs. From this study, we deduce the number of journeys

to take place at each hour in the region for each of the six aforementioned motives. Whenever an activity ends, or once every

hour if the person is at home, the model checks whether the individual is about to move. Some restrictions are implemented,

because not all individuals are eligible for all activities. For example, only certain age groups are eligible to go to day-care or310

school, only employed people are bound to go to work, etc. Once these restrictions are implemented, people will move in order

to match the proportions of journeys per motive at each hour. If the person is bound to move, a number of choices are made in

the following order: i) transportation mode ; ii) destination commune ; iii) travel distance ; iv) travel time ; v) activity duration

(see also Figure 7): For journeys to work and back, the INSEE provides a detailed dataset with the principal modes of transport.

This information is part of the exposure factors assigned in the previous module (Section 4.1). The only stochastic choice here315

is for the 2-wheels case that has a 40% and 60% share between bicycles and motorcycles respectively (EGT, 2010). For the

rest of the journeys we match the proportions of the transportation modes per motive and hour from the EGT (2010).

In some cases, the destination commune is known (the person goes to work, to study, or back home). For other cases we

only know whether the destination commune lies in the same department as the residence or in a different department. In this

case, we first define the destination department based on data on the inter-departmental flows. Then we combine two pieces of320

information to assign the destination commune:
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– data on the average distance travelled per means of transportation. We assume a straight line connecting the centroids of

the communes. Several possible destination communes are selected based on the distance criterion.

– we use the information on the destination commune for the journeys in the EGT (2010) to assign a degree of attractiveness

to the communes of the Ile-de-France region for each motive.325

To assign the distance of the journey we distinguish between two cases. If the destination lies in a different commune, then the

journey distance is assumed to be equal to the distance over a straight line connecting the centroids of the two communes. If the

destination lies within the commune of the current location then a stochastic choice is made for the traveled distance. We use

statistics for the mean distance travelled per transportation means from the residents of the different departments. Depending

on the transport mode, we assign a certain range around this average value and scale the limits to the commune size (radius of330

a circle with an area equal to the commune's area) and randomly chose a travel distance within this range.

Figure 7. Flow chart of the compilation of activity event sequences.

To estimate the duration of the travel, we use two pieces of information at sub-communal scale. The first is the population

density at 1x1km2 resolution. Individuals are distributed over the 1x1km2 resolution grid based on the population density.

The second information is the average speed and flow over the road segments of the traffic network. We assume a straight

line linking the centers of the origin and destination cells of the 1x1km2 grid and search for all grid-cells that intersect this335

trajectory. The speed at which the grid cell is passed through is assigned stochastically based on the distribution of speeds over

the road segments within the grid-cell. We note here that it would be more accurate to base our selection on the flows over each

road segment rather than the speed distribution, but the geometry of the problem would become too complex. Given the high
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resolution of the application our insight is that this simplification is not bound to introduce significant errors to the transport

model. The duration of the travel is then deduced from the distance and speed.340

The final step is to define the duration of the activity. For children younger than 3 years old we use statistics on the time

spent at day-care. In all other cases we use statistics at department scale on the time spent by the population per activity.

A further distinction is whether the activity or transportation takes place indoors or outdoors. Certain activities may occur

indoors or outdoors based on existing statistics (e.g. market and recreation). Possible means of transportation are on foot, two

wheels (bicycle or motorcycle), car, bus, subway (metro), train (RER), and tramway. For public transportation, we distinguish345

between waiting time and travel time. For tramway, bus and RER outside Paris waiting takes place outdoors.

Figure 8 shows the results of the transport model. The diurnal patterns of the mobility of the population per motive are

well reproduced. The model fails to reach the rush hour peaks, especially the morning peaks for work and school motives.

It systematically underestimates the lunch hour peak. This is because the model does not implement secondary journeys i.e.

people leaving the workplace to go for lunch and then back to work. These remarks become clear when looking at the total350

number of journeys (bottom left of Figure 8), where we also see that the model underestimates the number of journeys at all

hours. However, the general picture of the simulation results is that the EGT (2010) data have been globally well implemented

in the transport module.

Figure 8. Number of journeys per motive (1st and 2nd rows) and total number of journeys all motives included (bottom left) at each hour.

The number of individuals engaged in each activity at each hour of the day.

The transport module simulates the mobility of the population. When individuals reach their destination they engage in

the activity corresponding to the journey's motive. For activities other than travel we assign a mean duration. Activity event355
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sequences are simulated at 1min temporal resolution. The ambient concentrations at which people are exposed during the

activity is the corresponding hour-averaged concentration modeled with the CHIMERE model at the grid-cell where the activity

takes place. In the case of travelling, the model simulates the trajectory of the journey. For car journeys, we use the mean hourly

traffic flows on each segment of the road network to assign probabilities to each road and assign the route trajectories. The

trajectory of the journey may intersect several CHIMERE grid-cells. The corresponding outdoor concentrations are weighted360

by the time spent in each grid-cell to estimate the aggregated exposure. Figure 8 (bottom right) shows the number of people

engaged in each of the implemented activities at each hour of the simulation. Here, time-activity is modelled based on available

data for the region relied on questionnaires. Modelling mobility patterns using smart phones with built-in GPS is an emerging

trend in personal exposure assessment (Yu et al., 2019). Combining GPS-derived data on the trajectories of large number of

individuals with information from questionnaires on the locations and activities of the population, could help overcome large365

part of the uncertainties relating to the time-activity module developed in this study.

5 Results

In this section we highlight different possible applications of the exposure model. Each section looks at a different aspect of

the model output as exemples of its use in applications. The spatial distribution of exposure over the Ile-de-France region is

discussed in Section 5.1, the relative contribution of each microenvironment in the daily aggregated exposure is quantified in370

Section 5.2, the variability in exposure patterns across sub-populations is studied in Section 5.3, and the impact of considering

1) the infiltration of pollutants indoors and 2) the mobility of the population is illustrated in Section 5.4. Finally, in Section 5.5

we develop a 2050 horizon projection in the building stock of the Ile-de-France region, and quantify its impact in exposure to

PM2.5 and ozone.

5.1 Exposure maps375

Personal exposures may be spatially averaged over the communes to provide population exposure maps (Figure 9). The annual

averaged exposure to ozone is three times higher for the residents of the remote rural areas compared to the exposure of the

Parisians. NO emitted by cars over the dense road network in the Paris city reacts fast with O3 to form NO2. This explains

the absence of O3 over the urban agglomeration. NO2 emitted in large amounts over Paris under the influence of sunshine

and in the presence of volatile organic compounds forms O3 downwind, over the rural area (see also Figure 3). We also note380

that the exposure to ozone is much lower than outdoors ozone concentration (30 and 15 ppb for the rural and urban areas

respectively (compare to maps in Figure 3)). This difference is due to the high amount of time people spent indoors, where

ozone concentrations are close to zero (see also I/O ratios for O3 Figure 4).
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Figure 9. Annual averaged O3 and PM2.5 exposure maps. Personal exposures are spatially averaged among the residents of each commune.

The traffic network is a large source of PM2.5, which explains why exposures to PM2.5 are much higher in the Paris agglom-

eration than in the rural areas. Exposures to PM2.5 are much closer to concentration levels because I/O ratios in buildings for385

PM2.5 are closer to 1 than for O3. Annual mean PM2.5 concentrations are however lower than annual mean PM2.5 exposures

(compare with concentration maps in Figure 9). Even if indoor PM2.5 sources in buildings are not yet implemented in the

model and therefore concentrations in buildings are always lower than outdoor concentrations, PM2.5 concentrations in cars,

subway train or in subway platforms are several times higher than outdoor concentrations (see Table 3). Even if the time spent

in transport is relatively lower than the time spent inside buildings, concentrations there are so high that the daily aggregated390

exposures are higher than outdoor concentrations. The construction date of buildings also plays an important role, with older

buildings (higher I/O ratios) contributing to exposure at higher pollutant levels. Buildings in the Paris agglomeration are in

general older than buildings outside of the city center and therefore indoor exposure to PM2.5 is higher for the residents of

Paris.

5.2 Exposure in different micro-environments395

The relative contribution of exposure in different micro-environments in the aggregated daily exposure depends on outdoor

concentrations, the indoor/outdoor coefficients if the activity takes place indoors, and the time spent in the micro-environment.

For the active population (between 4 and 65 years old) residential exposure accounts for about 75% of daily exposure to PM2.5

and almost 80% of the agregated exposure to O3 (Figure 10) reflecting the large amount of time spent at home (see also bottom

right panel in Figure 8). Exposure at school represents the second largest part of total daily exposure to both pollutants (more400

than 10%). Exposure outdoors represents a larger part of the total exposure for people between 24 and 65 years old (working
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population) than for children going to school (4-23 years old). For PM2.5 exposures in public transportation and car also have

significant contributions.

Figure 10. Relative contribution of the different micro-environments in the aggregated daily exposures depending on the age-group.

5.3 Exposure of sub-population groups

Here we study the impact of several exposure factors on personal exposures. Figure 11 shows the cumulative distribution of405

exposure over specific sub-populations. We identify the two factors that have the largest impact on personal exposures, namely

the mode of transportation and the construction date of the building of residence. Both factors seem to strongly affect exposure

to PM2.5 and ozone. People traveling with motorcycles or cyces are exposed to the highest PM2.5 levels, while exposure in cars

is the lowest. 10% of the population using 2-wheels as transportation mode is exposed to PM2.5 levels higher than the 25 µg/m3

EU target value related to human health. The percentage of the population exposed to PM2.5 levels above the EU target value410

drops to 5% for people travelling on foot, 3% for public transport and 1% for people travelling by car. The construction date

of the home building also plays an important role in personal exposure. For both pollutants, exposure is higher for buildings

constructed before 1974. 100% of the population living in buildings constructed after 2005 are exposed to PM2.5 levels below

the EU target value while 5% of the population living in constructions before 1974 is exposed to levels above the EU target

value.415
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Figure 11. Cumulative distributions of exposures to PM2.5 (above) and O3 (below) for sub-populations distinguished by the transportation

mode (left) and construction date of the building where they live.

5.4 Model sensitivity to population mobility and exposure indoors

Often, epidemiological methods estimate exposure metrics by modelling pollution concentrations at individual addresses.

However, these models do not take into account neither exposure indoors nor population mobility. To provide insight into the

exposure misclassification error due to this omission we conducted several sensitivity studies. We calculated personal exposures

to PM2.5 with and without accounting for the mobility of the population and exposure indoors as follows:420

– REF The population stays at home and indoor concentrations are the same as outdoors.

– +MOBILITY The population moves but concentrations indoors are the same as outdoors.

– +INDOORS BUILDINGS The population stays at home and indoor / outdoor coefficients for buildings are applied.

– +INDOORS BUILDINGS & TRANSPORT The population moves and indoor / outdoor coefficients for both buildings

and transportation are applied.425
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Figure 12. Cumulative distributions of exposure to PM2.5 resulting for simulations integrating increasing levels of complexity in the input

data

Comparing the REF simulation with +MOBILITY shows that the mobility of the population within the region alone has a

small negative impact on personal exposures (-1.5% on the median). This may be explained by the fact that people spend most

of their time indoors. We note here, that Shekarrizfard et al. (2016) found an increase in personal exposures to NO2 that may

be as high as +10% in the Montreal metropolitan area when population mobility was accounted for compared to the simpler

set-up where exposure at individual address was considered. This is explained by the difference in the air-quality models430

used in each study: a gaussian dispersion model around each segment of the road network for the Shekarrizfard et al. (2016)

study compared to a regional scale CTM in our case. Accounting for residential exposure in the +INDOORS BUILDINGS

simulation strongly affects personal exposures (-11% difference with the REF in the median exposure). Accounting also for

indoors exposure during transportation +INDOORS BUILDINGS & TRANSPORT leads to a 4.6% increase in the median

exposure compared to only accounting for residential exposures (+INDOORS BUILDINGS). PM2.5 concentrations during435

transportation are higher than outdoors whereas concentrations in buildings are always lower than outdoors (no indoor sources

in buildings). These results are comparable to the findings of Smith et al. (2016) who also estimate a decrease in personal
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exposures to PM2.5 in the London metropolitan area when population mobility and indoor exposure are accounted for. In the

REF simulation 5% of the population is exposed to concentrations above the EU target value of 25µg/m3 while in the complete

implementation of indoor exposures only 2% of the population is exposed to PM2.5 above this threshold (Figure 12).440

5.5 2050 horizon projection of the building stock

Based on data on the evolution of the French building stock (INSEE, 2014) and the national thermal building regulation found

in the 2013 report of the Agence de l'Environnement et de la Maitrise de l'Energie (ADEME, 2013), the CSTB developed a

projection for the evolution of the building stock that is applied here for the 2050 horizon. To comply with thermal legislations

and energy demand, buildings will tend to be more air-tight and ventilation systems more efficient. This evolution in the445

building stock will also affect air-quality in buildings, and therefore human exposure to atmospheric contaminants.

Following this projection, in 2050 dwellings, offices and schools will still fall in the same categories presented in Table 2 but

the proportions of buildings falling in each category will change due to demolition, new construction and thermal rehabilitation.

The projection developed here models the annual rate of change in the building stock as follows:

For dwellings (Equation 3):450

– Buildings belonging to the 5th class (construction date >2012) will increase

– Buildings belonging in the 1st class (<1974 not rehabilitated) will decrease due to demolition and thermal rehabilitation

– Buildings belonging to the 2nd class (<1974 rehabilitated) will increase due to thermal rehabilitation of buildings in the

1st class

Nn+1
D5 =Nn

D5 +0.012 ∗
5∑
1

Nn
Di

Nn+1
D1 =Nn

D1 − 0.01 ∗
5∑
1

Nn
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D1 − 0.015 ∗
5∑
1

Nn
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Nn+1
D2 =Nn

D2 +0.015 ∗
5∑
1

Nn
Di

(3)455

For offices and schools (Equation 4):

– Buildings belonging to the 3rd class (2006-2012) will increase

– Buildings belonging to the 1st class (<1974 not rehabilitated) will decrease due to demolition
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The projection is applied to the Ile-de-France building stock, and we simulate personal exposures to quantify its impact. Due460

to new buildings being more air-tight with a better control of air renewal using more efficient ventilation systems, even less

ozone penetrates the building shell. The resulting reduction in annual average exposure to O3 is up to 14% (Figure 13). The

change in annual averaged PM2.5 exposure is very small (not shown).

Figure 13. Exposure to O3 (µg/m3) considering the actual building stock (left) and the 2050 horizon projection of the building stock (right).

6 Conclusions

We developed a regional scale model for personal exposures to PM2.5 and O3. The model uses simulated outdoor pollutant465

concentrations and models the infiltration of outdoor contaminants indoors in buildings with a ventilation mass-balance model.

Three building types are considered: dwellings, schools and offices. It also models population mobility inside the region con-

sidering the different possible transportation modes and adjusts for pollutant concentrations inside cars, buses, tram, subway

train and regional trains. A special treatment for concentrations in subway platforms is applied considering online measure-

ments on the platform and outdoors. An adjustment for ambient concentrations inside road-tunnels is also applied from data470
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from the literature. The model also uses data from the road traffic network to estimate the most probable trajectory for travel,

as well as mean travel speed and duration.

We show that considering the population daily movement inside the region without accounting for the penetration of out-

door pollution indoors or indoor concentration during transportation has a small negative impact on annual averaged personal

exposures. This is in contrast with the previous study of Shekarrizfard et al. (2016) who found an increase in exposures to475

NO2 in the Montreal metropolitan area when population mobility is accounted for. However, the two models are not directly

comparable since they look at different pollutants, at different time-scales and use different air-quality models.

We show that, accounting for the penetration of outdoor pollution indoors in buildings without considering population

movement decreases annual averaged personal exposures by 11% for PM2.5. This decrease stems only from the buildings'

envelope acting as barrier to pollution infiltration indoors. When accounting also for population movement, annual averaged480

population exposures increase by 5%, showing the importance of exposure during transportation. Even if travelling represents

only a small portion of time, exposures to PM2.5 are too high and increase the daily burden of exposure. These results are in

alignment with the previous study of Smith et al. (2016) who also found that personal exposures decrease in London when

population mobility and exposure indoors are taken into account. The discrepancy in the magnitude of the decrease (-37%

in their case vs. -7% in ours) may be due to the relatively coarse resolution of the outdoor concentration fields simulated485

with CHIMERE (2km x 2km). However, if this resolution is not enough to solve concentration gradients at the proximity of

local sources such as roads, it is capable to distinguish between urban, suburban and rural concentrations. Most of the daily

movement in the region crosses these boundaries (e.g. people living at the suburbs work in Paris and vice-versa).

We conclude that both infiltration of pollutant indoors and population movement need to be considered to estimate the

aggregated daily exposure. We note here that, so far, the model does not implement indoor sources of PM2.5 in buildings.490

We are aware that PM2.5 indoors may be several times higher than outdoor concentrations (as is the case during transport).

However, in this version of the model we were more interested to see how different building types and characteristics affect

personal exposures independent of human activity that would drive indoor sources. The CSTB is working actively to develop

parametrizations accounting for indoor emission sources of PM2.5 as well as their resuspension due to human activity.

Several applications of the model are presented. We first show the maps of exposure to O3 and PM2.5 over the region.495

The spatial distribution of the exposure field is very similar to the concentration one, showing the strong correlation of the

aggregated exposure to outdoor concentration. However, we show that if we focus on specific sub-population groups, such as

people using bicycles or motorcycles systematically in their daily journeys or people living in houses built before 1974, the

upper percentiles of exposure are much higher than the general population. To study the impact of buildings' characteristics on

personal exposures we implemented a 2050-horizon projection of the building stock in the Ile-de-France region. Following this500

projection, older buildings will be demolished or rehabilitated to comply with the thermal regulation and newer constructions

will have modernized characteristics. The share of people living in the different building categories is modified to match this

projection and personal exposures are simulated. 2050-horizon personal exposures to O3 are decreased by as much as 14%

according to this projection.
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This first version of the model is parametrized for data available for greater Paris. However, the input data required for the505

simulation are also possible to find in other regions: census data, construction dates of buildings, mobility data. We can therefore

imagine that with small adjustments in the format, the model could be applied to other regions. In all applications presented

here, outdoor concentration data are simulated with the CHIMERE model and therefore the horizontal resolution is limited

to the order of 1km x 1km. However, this resolution limit is not inherent for the exposure model. If outdoor concentration

fields at higher horizontal resolution were available from another dispersion model (e.g Gaussian or Lagrangian), the exposure510

calculation would have run without any modification being necessary.
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