
Response to Referees’ Comments

#1 Referee Nikolay V. Koldunov

Referee’s Comments: The paper describes the implementation and tuning of the parallel I/O
in MOM. This is a very good and very timely study, as the parallel I/O continues to be one of
the major problems in the current Earth System Science codes. This type of description is
usually ether never put together as a text or in a best-case scenario just “collect dust” as a
technical report. The authors did a great job of describing in de- tail their technical
development as a paper, and I wish there are more such descriptions in the future. The
sharing of this information is very important so that the progress in the field is faster.

Response:

We appreciate referee’s comments as above and agree that it is important to share
experience and skills in enhancing I/O performance of the climate and earth system models.

Referee’s Comments: I am in general happy with the paper, while having a couple of
suggestions that authors free to agree or disagree with. Paper can be published after minor
revision.

General points:

To make the paper even more useful it would be nice to discuss several additional details.
Short description of how hard it was to implement parallel I/O using each of the libraries
(maybe person/month estimate?), what is the user experience with each of the libraries (are
they easy to install and support?).

Response:

FMS has provided enough functionality to allow us to use the netCDF library directly (please
see response to the next comment) while the parallel I/O to netCDF-4 and classic files are
achieved through the HDF5 and PnetCDF libraries respectively. All these libraries are widely
used in scientific computing; they follow standard installation process (e.g. autotools) and are
well supported. It is straightforward to implement I/O operations in the code by invoking the
netCDF library APIs after some extra work to set up the I/O domain communicator. The
following sentences have been added to the revised manuscript to estimate the time of
development work (line 202-205): “Development required approximately one month to
implement a working feature, along with an additional month of work to troubleshoot more
complex configurations related to land masking and the handling of I/O domains which only
cover a subset of the total grid.” We also spent plenty of time and effort on the I/O
performance tuning, as there are lots of possible bindings among parameters from multiple
I/O layers spanning MOM5 I/O domain, netCDF library, MPI-IO and lustre file system. It proves
that these efforts are necessary to achieve the optimized parallel I/O performance.

Referee’s Comments: Mentioning another parallel I/O solutions, that become popular in
Earth Science (e.g. XIOS http://www.ifremer.fr/docmars/html/doc.coupling.xios.html) or
even something outside of the ocean modelling world (e.g. https://csmd.ornl.gov/adios)
would help the unexperienced reader to be more aware of available software solutions.

Response:

XIOS is an attractive I/O framework with the capability to provide highly scalable I/O
performance and it has been used in many climate and earth models. We excluded XIOS as
the I/O solution in this work because there is a need to maintain the current I/O pattern of
FMS in which compute PEs take part in I/O activities rather than setting up the dedicated I/O
server with extra PEs as XIOS does. However, the possibility on implementing XIOS in future
version is always open. We also ruled out ADIOS as the candidate solution, although it appears
to be highly scalable, as it doesn’t directly support netCDF and it requires conversion to
netCDF. It has not yet been used in the weather and climate domain. We have added the
following paragraph to Section 2 explaining why FMS was sufficient for our approach (line
143-147). “Because FMS provides access to distributed datasets as well as a mechanism for
collecting the data into larger I/O domains for writing to disk, we concluded that FMS already
contained much of the functionality provided by existing parallel I/O libraries, and that it
would be more efficient to generalize the I/O domain for both writing to files and passing data
to a general-purpose IO libraries such as netCDF. In this sense, there is no need to set up the
dedicated I/O server with extra PEs as other popular parallel I/O solution like XIOS does.”

Referee’s Comments: Maybe you can speculate about the applicability of your results to
unstructured mesh ocean models, that usually store their results in netCDF as long 1D vectors?

Response:

Although we are not very familiar with the implementation details of unstructured models,
we believe that there may be a benefit to using the methods detailed here if the data for each
mesh element are stored contiguously, and the buffers do not need to be populated from
complex data structures associated with the mesh. We have added the following paragraph
to the discussion commenting on this issue (line 589-593): “Although this work is applied to
a model with a fixed regular grid, these results could be applied to a model with an
unstructured mesh. Much of the work required to populate the I/O domains and to define
chunked regions is required to produce contiguous streams of data which are passed to the
I/O library. If the data is already stored as contiguous 1D arrays, then the task of dividing the
data across I/O servers could be trivial. If more complex data structures are used, such as
linked lists, then the buffering of data into contiguous arrays could add significant overhead
to parallel I/O.”

Referee’s Comments: Your data-intensive benchmark, although it serves the purpose well, is
not very realistic. I think your results will shine even more if you can show how beneficial
parallel I/O is in realistic simulations. In Koldunov et al., 2019 we showed that in our case for
relatively small setup (about 600 000 surface points) running on 1152 cores the price of the
serial I/O in “operational” simulation is only about 5%. For the user that typically has tasks of
this size it is not a very large price to pay, and maybe investments in the parallel I/O are not

necessary. It would be great if you can run, say, a year of model simulations with typical I/O
workload (e.g. in our case its monthly means) on different number of cores with serial and
parallel I/O and estimate the amount of time (in %) the I/O takes from the total run time.

Response:

We agree with the reviewer that it would be valuable to consider the potential benefits of
parallel I/O in more realistic simulations, and have included results from 8-day simulations
with 1-day and 4-day I/O frequencies in a new table (Table 6). The serial I/O takes around 6%
of total runtime in 720-PE runs which could be regarded as typical I/O workload. The
benchmark results indicate that parallel I/O can reduce the I/O time ratio to be less than 1%.
More importantly, the serial I/O time ratio of the 1440-PE simulation is about 11%, indicating
that the serial I/O may eventually become the parallel performance bottleneck. The parallel
write time, on the other hand, scales well with the number of PEs and may prevent I/O from
blocking the overall performance scalability.

Referee’s Comments:

Minor point

For figures 3 to 7 please add PE/node as a second x-axis (e.g. on the top). This will make it
easier to interpret.

Response:
This is a very good suggestion. In this paper the same I/O layout may exist in both 720-PE and
1440-PE simulations. For example, the I/O layout 2 × 15 could be given by 2 PEs per node ×
15 nodes in 720-PE or 1 PE per node × 30 nodes in 1440-PE simulations respectively. Thus it
is impracticable to make the second x-axis on the top as the same I/O layouts may repeat at
the first x-axis. Alternatively, we append the PE distribution i.e. [PE per node × nodes] to I/O
layout at the x-axis in those revised Figures (Fig. 3∼7) to clarify the connection between I/O
layout and PE distribution.

#2 Referee Michael Kuhn

Referee’s Comments: The authors present a detailed study of implementing parallel I/O using
NetCDF in the Modular Ocean Model version 5 via the Flexible Modelling System. Even though
the implementation is quite specific to MOM5, the paper can serve as a useful experience for
developers aiming to implement parallel I/O within other scientific software packages. Overall,
I believe the paper is worth publishing, especially since I/O aspects are often neglected. There
are still some points for improvement, though.

Specific comments:

- Lines 36-38: Where is the number of 350 MB/s for disk throughput coming from? The HDDs
I know about typically max out at roughly 200 MB/s. While I understand the point you are

trying to make with these sentences, I believe some more details would make them easier to
follow.

Response:

The 350 MB/s performance was based on measurements of direct disk writes (using `dd`) for
idealized output on the machine (Raijin), and was the performance typically reported in most
technical specifications of the machine. Although this machine has since been
decommissioned, 350 MB/s is the cited performance of the “gdata1” filesystem; see the
following presentation by Daniel Rodwell from 2016, slide 27
 https://www.eofs.eu/_media/events/lad16/05_petascale_data_migration_rodwell.pdf

We also note that consumer SATA SSD speeds of 500 MB/s are not uncommon, and the
presentation above cites Lustre OST write speeds as high as 800 MB/s. So our estimate of
350 GB/s seems to be reasonable for the purpose of discussion at this early stage of the paper.
Given the large variation in write speed performance, we do not have a good reference but
are welcome to suggestions from the reviewer.

Referee’s Comments: How long does a one-year simulation typically take? Is writing out one
terabyte of data even relevant in this case?

Response:

We believe that the sentences preceding the discussion of terabyte-per-year output justify
this output rate. A typical 0.1° grid (3600 x 2700) with 75 levels at double precision will require
approx. 5.8 GB per step. At a 5-day output rate, this will require over 400 GB, and the output
could have many such fields.

There is no simple way to characterize a typical model output rate, but we believe that the
information above justifies that even a minimal high-resolution experiment will produce
output on the order of terabytes per year.

As for whether a year represents a typical climate simulation time, we felt that this needed
no citation.

A typical runtime of a high resolution model would be on the order of 10 hours per year. But
the compute runtime or the ratio of compute to I/O time does not change the fact that
terabytes of data must be written, and the preceding sentences establish that it is a
reasonable workload for a high resolution ocean model. It must be done, and it would require
hours of time to complete if it were done serially.

Our purpose was to demonstrate that serial I/O of a high resolution model is a prohibitive
task, and we feel that the leading statements justify this statement. But if the reviewer
disagrees with any of the statements above, we are happy to address them.

Referee’s Comments:

- Lines 87-96: Please elaborate why you have selected NetCDF for your parallelization
efforts. There are also other approaches such as SIONlib or ADIOS. While NetCDF probably
makes the most sense for geoscientific applications, this should at least be discussed briefly.

Response:

In a later revision of the paper as a response to the first referee, we explain that I/O domain
of FMS provides most of the functionality of these libraries, and therefore opted to directly
implement parallel I/O based on the existing I/O domain structure. The following discussions
have been added in Section 2 of the revised manuscript ((line 143-147):

“Because FMS provides access to distributed datasets as well as a mechanism for collecting
the data into larger I/O domains for writing to disk, we concluded that FMS already contained
much of the functionality provided by existing parallel I/O libraries, and that it would be more
efficient to generalize the I/O domain for both writing to files and passing data to a general-
purpose IO libraries such as netCDF. In this sense, there is no need to set up the dedicated I/O
server with extra PEs as other popular parallel I/O solution like XIOS does.”

Referee’s Comments:

- Lines 191-195: Have you considered the alignment of chunks? We have shown in "A Best
Practice Analysis of HDF5 and NetCDF-4 Using Lustre (Bartz, Chasapis, Kuhn, Nerge, Ludwig)"
that chunk alignment can have very significant impact on parallel I/O performance. Sadly,
NetCDF did not (and apparently still does not) expose this functionality while HDF5 does. It is
therefore necessary to patch NetCDF to enable HDF5’s chunk alignment. Missing alignment
could be the cause of contention you describe when increasing the number of I/O PEs per I/O
domain.

- Lines 295-299: See previous comment, this could also be caused by missing alignment.

Response:

In this paper we focus on the configurable parameters associated with MOM5 I/O domain
layout, the netCDF library (based on standard HDF5 installation), MPI-IO, and the Lustre file
system. The impact of chunk alignment configurable by HDF5 is an interesting idea worthy of
further exploration, and it may help to explain some of the performance differences between
PnetCDF and HDF5, but we feel that it is perhaps beyond the scope of this paper, i.e. it is not
tuneable via netCDF library.

Referee’s Comments:

- Lines 451-453: The serial I/O versions with 720 PEs ran for 6 hours while the ones with 1440
PEs were killed after 5 hours. Did the 720 PE version run on a different partition? If so, is it
still possible to compare the two?

Response:

Both 720 PE and 1440 PE jobs run on the same partition, but the latter has a shorter time
limit, i.e. 5 hours, set by the PBS queue system. At this stage, it is not possible to compare the
two as the machine has been decommissioned. We can only present it as an incompletable
task on our platform, which we believe is sufficient for the more detailed analysis of the
parallel I/O performance. However, as per request of the first referee, we added a new table
(Table 6 in the revised manuscript) to compare simulations with typical I/O loads. In that table,
both serial I/O and parallel I/O are compared between 720 PEs and 1440 PEs but with much
less I/O loads than those in Table 5.

Referee’s Comments:

- Lines 508-512: Why did you develop your own I/O profiling tool? There are existing options
such as Score-P or Darshan. Please state why the existing tools did not meet your
requirements.

Response:

We would like to analyse costs of each site in major I/O call paths by collecting the elapsed
time and sizes for all MPI ranks at multiple I/O layers such as NetCDF, MPI-IO and POSIX I/O
calls. The existing I/O profilers, however, cannot fully approach this goal. Score-P is good at
profiling user code and MPI-IO functions, but it is hard to measure the time spent within the
netCDF library and POSIX calls. Also, it cannot measure the elapsed time and size per I/O
operation for each individual input and output file. Darshan, on the other hand, is good at
profiling the time and size of I/O operations of different files. However, it cannot provide the
rank distribution of time which is necessary to analyse the load balance issue.

By recognizing the above deficiencies of existing I/O profilers, we decided to develop our own
profile tool which can address above issues with negligible overheads. The tool can provide
all details we need to evaluate the cost of each I/O layer, rank distribution of time per file,
access size per I/O function or operation and so on.

Referee’s Comments:

- Line 526: I gave the GitHub repository a quick look but could only find the source
code. According to GMD’s code and data policy, the data must also be provided. You have
also not mentioned in the paper which commit you were using to perform the model runs.

Response:

These issues were also raised by the executive editor. We have updated more details about
the code and data availability as below (line 603-605):

The source code of parallel I/O enabled FMS is available from
doi:org/10.5281/zenodo.3700099. The MOM5 code used in the work is available at
https://github.com/mom-ocean/MOM5.git. The core dataset is available as doi:10.1007/s00382-
008-0441-3. Build script, configure files and job scripts are available from
dio:org/10.5281/zenodo.3710732.

Referee’s Comments:

Technical corrections:
- Line 28: The acronym OS has been introduced before in line 23 and does not need to be
repeated here.

Response: Removed acronym OS.

- Lines 62-70: Since you talk about "single file I/O" in the paragraph before, it might be worth
mentioning explicitly that one file is created per I/O domain in this case.
Response: Explicitly cite 4 write patterns of Table 1 in the context.

- Line 73: "A typical 0.25◦ global simulations ..." - It should be "simulation".

Response: Fixed.

- Line 183: "... in Table 3, ..." - This should be "Table 2".

Response: Fixed.

- Line 227: "... of the I/O parameters in Table 3." - Should be "Table 2".

Response: Fixed.

- Line 238: "... grids are disturbed over ..." - This should probably be "distributed".

Response: Fixed.

- Line 375: "... in the charts below for each library." - This should rather reference the figures
directly since they are placed in the appendix.

Response: Reference the figures directly.

- Line 429: "... in Figure 14." - Figure 14 seems to be rather blurry while the others are fine.
Please provide a high-resolution version if possible.

Response: Figure 14 is reproduced with the higher resolution.

- Lines 581-622: Are the reported values averages? If so, you should mention this somewhere
and also give deviations. Figure 14 already includes them but the others do not.

Response: Clarified in figure caption that the reported values are maximum among all PEs.

- Lines 625-639: Bright orange is hard to read on white, so it might make sense to change the
color for the profiling graphs.

Response: The light color has been replaced by the deeper one.

- Line 665: "Number of Output File" - This should be "Files".

Response: Fixed.

- Lines 680-685: To better assess the scaling behavior, please also mention the number of
nodes in addition to the number of PEs.

Response: Added node counts in Table 5.

A list of all changes in the revised manuscript

line 143-147: New paragraph
“Because FMS provides access to distributed datasets as well as a mechanism for collecting
the data into larger I/O domains for writing to disk, we concluded that FMS already contained
much of the functionality provided by existing parallel I/O libraries, and that it would be more
efficient to generalize the I/O domain for both writing to files and passing data to a general-
purpose IO libraries such as netCDF. In this sense, there is no need to set up the dedicated
I/O server with extra PEs as other popular parallel I/O solution like XIOS does.”

Line 202-205: New paragraph
 “Development required approximately one month to implement a working feature, along
with an additional month of work to troubleshoot more complex configurations related to
land masking and the handling of I/O domains which only cover a subset of the total grid.”

Line 545-569: Add descriptions of table 6.

Line 589-593: New paragraph
“Although this work is applied to a model with a fixed regular grid, these results could be
applied to a model with an unstructured mesh. Much of the work required to populate the
I/O domains and to define chunked regions is required to produce contiguous streams of data
which are passed to the I/O library. If the data is already stored as contiguous 1D arrays, then
the task of dividing the data across I/O servers could be trivial. If more complex data
structures are used, such as linked lists, then the buffering of data into contiguous arrays
could add significant overhead to parallel I/O.”

Line 603-605: Revise “Code Availability” section
The source code of parallel I/O enabled FMS is available from
doi:org/10.5281/zenodo.3700099. The MOM5 code used in the work is available at
https://github.com/mom-ocean/MOM5.git. The core dataset is available as doi:10.1007/s00382-
008-0441-3. Build script, configure files and job scripts are available from
dio:org/10.5281/zenodo.3710732.

Line 675 -700: Revise figures 3-7
we append the PE distribution i.e. [PE per node × nodes] to I/O layout at the x-axis in Figure
3-7.

Line 732-760: The light colour is replaced with the deeper one in Figure 10-12.

Line 770-775: Figure 14 is replaced with the higher resolution one.

Line 815-820: Add node counts in Table 5.

Line 825-830: Add new table 6.

Other minor changes based on referees’ comments.

1

Parallel I/O in FMS and MOM5
Rui Yang1, Marshall Ward1,2, Ben Evans1
1National Computational Infrastructure, the Australian National University, Canberra, ACT 0200, Australia
2now at Geophysics Fluid Dynamics Laboratory, National Oceanic & Atmospheric Administration, Princeton, NJ 08540-
6649, USA 5

Correspondence to: Rui Yang (rui.yang@anu.edu.au)

Abstract. We present an implementation of parallel I/O in the Modular Ocean Model (MOM), a numerical ocean model used

for climate forecasting, and determine its optimal performance over a range of tuning parameters. Our implementation uses

the parallel API of the netCDF library, and we investigate the potential bottlenecks associated with the model configuration, 10

netCDF implementation, the underpinning MPI-IO library/implementations and Lustre filesystem. We investigate the

performance of a global 0.25° resolution model using 240 and 960 CPUs. The best performance is observed when we limit the

number of contiguous I/O domains on each compute node and assign one MPI rank to aggregate and write the data from each

node, while ensuring that all nodes participate in writing this data to our Lustre filesystem. These best performance

configurations are then applied to a higher 0.1° resolution global model using 720 and 1440 CPUs, where we observe even 15

greater performance improvements. In all cases, the tuned parallel I/O implementation achieves much faster write speeds

relative to serial single-file I/O, with write speeds up to 60 times faster at higher resolutions. Under the constraints outlined

above, we observe that the performance scales as the number of compute nodes and I/O aggregators are increased, ensuring

the continued scalability of I/O-intensive MOM5 model runs that will be used in our next generation higher resolution

simulations. 20

1 Introduction

Optimal performance of a computational science model requires efficient numerical methods that are facilitated by the

computational resources of the HPC platform. For each calculation in the model, the operating system (OS) must provide

sufficient access to the data so that the calculation can proceed without interruption. This is particularly true in highly

parallelised models on HPC cluster systems, where the calculations are distributed across multiple compute nodes, and often 25

with strong data dependencies between the individual processes. I/O operations represent such a bottleneck, where one must

manage the access of potentially large datasets by many processes while also relying on the available interfaces, typically

provided by a Linux operating system to a POSIX parallel (or cluster) filesystem such as Lustre and through to distributed

storage arrays. A poorly designed model can be limited by the data speed of an individual disk, or a poorly configured kernel

may lack a parallel filesystem that is able to distribute the data transfer across multiple disks. 30

Deleted: (OS)

2

Datasets in climate modelling at the highest practical resolutions are typically on the order of gigabytes in size per numerical

field, and dozens of such fields may be required to define the state of the model. For example, a double precision floating point

variable of an ocean model over a grid of approximately 0.1° horizontal resolution and 75 vertical levels will typically require

over 5 GiB of memory per field. Over 20 such fields may be necessary to capture the model state and preserve bitwise 35

reproducibility, and the periodic storage of model output may involve a similar number of variables per diagnostic timestep.

A typical one-year simulation can require reading hundreds of gigabytes of input data, and can produce terabytes of model

output. For disk speeds of 350 MB/sec, a serial transfer of each terabyte would take approximately one hour and can severely

burden the model runtime. For such models, efficient I/O parallelisation is a critical requirement, and the increase in future

scalability requires further improvements in I/O efficiency. Parallel I/O can describe any skilful decomposition of the reading 40

and writing of data across multiple threads, processes, compute nodes, or physical storage. Many climate models, and ocean

models in particular, can be characterised as hyperbolic PDE solvers, which are naturally decomposed into numerically

solvable subdomains with only local data dependencies (Webb et al., 1996, 1997), and it is natural to consider parallel I/O

operations which follow a similar decomposition.

In short, there are four fundamental approaches to model I/O, each with its respective trade-offs, which are outlined in Table 45

1. The first three approaches are common when using a single file per process, although multiple problems can arise regardless

of whether the I/O operation is single-threaded or distributed (Shan et al., 2007).

In the simplest and most extreme case, the field is fully decomposed to match the computational decomposition of the model,

so that the data used by each process element (PE), such as an MPI rank or an OpenMP thread, is associated with a separate

file, i.e. ‘Distributed I/O, Single File per PE in Table 1’. An example decomposition is shown in Figure 1, where the numbered 50

black squares denote the computational domain of each PE. I/O operations in this case are fully parallelised. But this can also

require an increasing number of concurrent I/O operations, which can produce an abnormal load on the OS and its target

filesystems when such a model is distributed over thousands of PEs (Shan et al., 2007). It can also result in datasets which are

distributed over thousands of files, which may require significant effort to either analyse or reconstruct into a single file.

At the other extreme, it is possible to associate the data of all PEs with a single file, denoted by the red border in Figure 1. One 55

method for handling single file I/O is to allow all PEs to directly write to this file. Although POSIX I/O permits concurrent

writes to a single file, it can often compound the issues raised in the previous case, where resource contentions in the filesystem

must now be resolved alongside any contentions associated with the writing of the data itself. Such methods are rarely scalable

without considerable attention to the underlying resource management, and hence we do not consider this method in the paper.

A more typical approach for single file I/O is to assign a master PE which gathers data from all ranks, and then serially writes 60

the data to the output file. That is, ‘Single-threaded, Single File’ in Table 1. While this approach avoids the issues of filesystem

resourcing outlined above, it also requires either an expensive collective operation and the storage of the entire field into

memory, or a separation of the work into a sequence of multiple potentially expensive collectives and I/O writes. These two

options represent the traditional trade-off of memory usage versus computational performance, and both are limited to serial

I/O write speeds. 65

Moved (insertion) [1]

Deleted: with one file

3

In order to balance the desire for parallel I/O performance while also limiting the number of required files, one can use a

coarser decomposition of the grid which groups the local domains of several PEs into a larger “I/O domain”, i.e. ‘Distributed

I/O, Single File per I/O domain’ in Table 1. A representative I/O domain decomposition, with I/O domains delineated by the

yellow borders, is shown in Figure 1. Within each I/O domain, one PE is nominated to be responsible for the gathering and 70

writing of data. This has the effect of reducing the number of I/O processes to the number of I/O domains, while still permitting

some degree of scalability from the concurrent I/O. Several models and libraries provide implementations of I/O domains,

including the model used in this study (Maisonnave et al.,2017; Dennis et al., 2012). A similar scheme for rearranging data

from compute tasks to selective I/O tasks is proposed and implemented in the PIO (parallel I/O) library which can be regarded

as an alternative implementation of I/O domains (Edwards et al., 2019). 75

Because the I/O domain decomposition will produce fields that are fragmented across multiple files, this often requires some

degree of pre-processing. For example, any model change which modifies the I/O domain layout, such as an increase of CPUs,

will often require that any fragmented input fields be reconstructed as single files. A typical 0.25° global simulation can require

approximately 30 minutes of post-processing time to reconstruct its fields as single files; for global 0.1° simulations, this time

can be on the order of several hours, often exceeding the runtime of the model which produced the output. 80

One solution, presented in this paper, is to use a parallel I/O library with sufficient access to the OS and its filesystem which

can optimise performance around such limitations and provide efficient parallel I/O within a single file, i.e. ‘Parallel I/O,

Single Shared File’ in Table 1. For example, a library based on MPI-IO can use MPI message passing to coordinate data

transfer across processes, and can reshape data transfers to optimally match the available bandwidth and number of physical

disks provided by a parallel filesystem such as Lustre (Howison et al., 2010). This eliminates the need for writer PEs to allocate 85

large amounts of memory, and also avoids any unnecessary post-processing of fragmented datasets into single files, while also

presenting the possibility of efficient, scalable I/O performance when writing to a parallel filesystem.

In this paper, we focus on a parallel I/O implementation for the Modular Ocean Model (MOM), the principal ocean model of

the Geophysical Fluid Dynamics Laboratory (GFDL) (Griffies et al., 2012). As MOM and its Flexible Modelling System

(FMS) provide an implementation of I/O domains, it is an ideal platform to assess the performance of these different 90

approaches in a realistic model simulation. For this study, we focus on the MOM5 release, although the work remains relevant

to the more recent and dynamically distinct MOM6 model, which uses the same FMS framework.

We present a modified version of FMS which supports parallel I/O in MOM by using the parallel netCDF API, and we test

two different netCDF implementations: the PnetCDF library (Li et al., 2003) and the pHDF5-based implementation of netCDF-

4 (Unidata, 2015). When properly configured to accommodate the model grid and the underlying Lustre filesystem, both 95

libraries demonstrate significantly greater performance when compared to serial I/O, without the need to distribute the data

across multiple I/O domains.

In order to achieve the satisfied parallel I/O performance, it is necessary to determine the optimal settings across the hierarchy

of I/O stack, including the user code, high level I/O libraries, I/O middleware layer and parallel filesystem. There is a large

number of parameters at each layer of the I/O stack, and the right combination of parameters is highly dependent on the 100

Deleted: ”.

Deleted: simulations

Moved up [1]: In short, there are four fundamental approaches to
model I/O, each with its respective trade-offs, which are outlined in
Table 1. The first three approaches are common when using a single 105
file per process, although multiple problems can arise regardless of
whether the I/O operation is single-threaded or distributed (Shan et
al., 2007).¶

Deleted: .

4

application, HPC platform, problem size and concurrency. Designing and conducting the I/O tuning benchmark is the key task 110

of this work. It is of particular relevance to MOM/FMS users bottlenecked by I/O performance. But given the ubiquity of I/O

in the HPC domain, the findings will be of interest to most researchers and members of the general scientific community.

The paper is outlined as follows. We first describe the basic I/O implementation of the FMS library, and summarise our changes

required to support parallel I/O. The benchmark process and tuning results are described and presented in the following section.

Finally, we verify the optimal I/O parameter values by applying them to an I/O-intensive MOM simulation at higher resolution. 115

2 Parallel I/O Implementations in FMS

The MOM source code, which is primarily devoted to numerical calculation, will rarely access any files directly and instead

relies on FMS functions devoted to specific I/O tasks, such as the saving of diagnostic variables or the reading of an existing

input file. Generic operations for opening and reading of file data occur exclusively within the FMS library, and all I/O tasks

in MOM can be regarded as FMS tasks. 120

Within FMS, all I/O operations over datasets are handled as parallel operations, and are accessed by using the mpp module,

which manages the model’s MPI operations across ranks. The API resembles most POSIX-based I/O interfaces, and the most

important operations are the mpp_open, mpp_read, mpp_write and mpp_close functions, which are outlined below.

Files are created or opened using the mpp_open function, which sets up the I/O control flags and identifies which ranks will

participate in I/O activity. Each rank determines whether or not it is assigned as a master rank of its I/O domain and, if so, 125

opens the file using either the netCDF nf_create or nf_open functions.

The mpp_write interface is used to write data to a file, and supports fields of different data types and numbers of dimensions.

Non-distributed datasets are contiguous in memory and are typically saved on every PE, and such fields are directly passed to

the write_record function, which uses the appropriate netCDF nf_put_var function to write its values to disk.

When used with distributed datasets, mpp_write must contend with both the accumulation of data across ranks and the non-130

contiguity of the data itself, due to the values along the boundaries (or “halos”) of the local PE domains which are determined

by the neighbouring PEs. The mpp_write function supports the various I/O methods described in Section 1. For single-

threaded I/O, the data on each PE must first strip its local halo data from the field and copy the interior values onto a local

contiguous vector. These vectors are first gathered onto a single master rank, which passes the data to the write_record

function. The alternative is to use I/O domains, where each rank sends its data to the master PE of its local I/O domain in the 135

same manner as the single-threaded method, but where each I/O domain writes to its own file. When using I/O domains, a

postprocessing step may be required to reconstruct the domain output into a single file.

The mpp_read function is responsible for reading data from files and is very similar to mpp_write in most respects,

including the handling of distributed data. In this function, read_record replaces the role of write_record and the

netCDF nf_get functions replace the nf_put functions. 140

5

When I/O operations have been completed, mpp_close is called to close the file, which finalises the file for use by other

applications. This is primarily a wrapper to the netCDF nf_close function.

Because FMS provides access to distributed datasets as well as a mechanism for collecting the data into larger I/O domains

for writing to disk, we concluded that FMS already contained much of the functionality provided by existing parallel I/O

libraries, and that it would be more efficient to generalize the I/O domain for both writing to files and passing data to a general-145

purpose IO libraries such as netCDF. By using FMS directly, there is no need to set up a dedicated I/O server with extra PEs,

as done in other popular parallel I/O libraries such as XIOS (XIOS, 2020).

The major code changes relevant to the parallel I/O implementations are outlined below.

• All implementations are fully integrated into FMS and are written in a way to take advantage of existing FMS

functionality. 150

• netCDF files are now handled in parallel by invoking the nc_create_par and nc_open_par functions in the

FMS file handler, mpp_open.

• All fields are opened with collective read/write operations, via the NF_COLLECTIVE tag. This is a requirement for

accessing variables with unlimited time axis and also a necessary setting to achieve good I/O performance. When

possible, the prefilling of variables is disabled to shorten the file initialization time. 155

• Infrastructure for configuring MPI_Info settings has been added to allow fine tuning of the I/O performance at the

MPI-IO level.

• The root PEs of I/O domains, which we identify as I/O PEs, are grouped into a new communicator via FMS

subroutines and used to access the shared files in parallel.

• The FMS subroutine write_record is modified to specify the correct start position and size of data blocks in the 160

I/O domain for each I/O PE.

• New FMS namelist statements have been introduced to enable parallel I/O support and features. An example namelist

group is shown below.

&mpp_io_nml

 parallel_netcdf = .true. # enable parallel I/O (Default: .false.) 165

 parallel_read = .false. # Enable parallel I/O for read operation

 # (Default: .false.)

 pnetcdf = .false. # Use PnetCDF backend in place of HDF5

 # (Default: .false.)

 parallel_chunk = .true. # Set a custom chunk for netCDF-4 format 170

 # (Default: .false.)

 chunk_layout = cnk_x, cnk_y # The user defined chunk layout if

Formatted: Font: +Body (Times New Roman)

Deleted:

Formatted: Font: Consolas, 11 pt

Deleted: !
 175

Formatted: Font: Consolas, 11 pt
Deleted: !

Formatted: Font: Consolas, 11 pt

Deleted: operations

Formatted: Font: Consolas, 11 pt

Deleted: !
 180

Formatted: Font: Consolas, 11 pt
Deleted: enable

Formatted: Font: Consolas, 11 pt
Deleted: (.true.) or

Formatted: Font: Consolas, 11 pt

Deleted: backend

Formatted: Font: Consolas, 11 pt
Deleted: !
 185
Formatted: Font: Consolas, 11 pt
Deleted: # Default (.false.) or customized

Formatted: Font: Consolas, 11 pt
Deleted: (.true.).!

Formatted: Font: Consolas, 11 pt

6

 # parallel_chunk is set as .true.

/ 190

Development required approximately one month to implement a working feature, along with an additional month of work to

troubleshoot more complex configurations related to land masking and the handling of I/O domains which only cover a subset

of the total grid.

3 Parallel I/O Performance Benchmark 195

On large-scale platforms, I/O performance optimization relies on many factors at the architecture level (filesystem), software

stack (high level I/O libraries), and the application (access patterns). Moreover, external noise from application interference

and the OS can cause performance variability, which can mask the effect of an optimization.

Obtaining good parallel I/O performance on a diverse range of HPC platforms is a major challenge, in part because of complex

interdependencies between I/O middleware and hardware. The parallel I/O software stack is comprised of multiple layers to 200

support multiple data abstractions and performance optimizations, such as the high-level I/O library, middleware layer, and a

parallel filesystem (Lustre, GPFS, etc.). A high-level I/O library translates the application’s data structures into a structured

file format, such as netCDF-3 or netCDF-4. Specifically, PnetCDF and parallel HDF5 are the parallel interfaces to the netCDF-

3 and netCDF-4 file formats, respectively, and they are built on top of MPI-IO. The middleware layer, which in our case is an

MPI-IO implementation, handles the organization and access optimization from many concurrent processes. The parallel 205

filesystem handles any accesses to files stored on the storage hardware in data blocks.

While each layer exposes tuneable parameters for improving performance, there is little guidance for application developers

on how these parameters interact with each other and how they affect the overall I/O performance. To address this, we select

combinations of tuneable parameters at multiple I/O layers covering parallelization scales, application I/O layout, high-level

I/O libraries, netCDF formats, data storage layouts, MPI-IO and the Lustre filesystem. Although there is a large space of 210

tunable parameters at all layers of the parallel I/O stack, many parameters interact with each other and only the leading ones

need to be investigated.

3.1 I/O Parameter Space

With over twenty tunable parameters across the parallel I/O stack, it can become intractable to independently tune every

parameter for a realistic ocean simulation. In order to simplify this process, we conduct a pre-selection process by executing a 215

stand-alone FMS I/O program (test_mpp_io) which tests most of the fundamental FMS I/O operations over a domain of a

size comparable to the lower resolution MOM5 benchmarks. After running this simplified model over the complete range of

I/O parameters, we found that most of the parameters had no measurable impact on performance, and we were able to reduce

the number of relevant parameters to the list shown in Table 2, which are summarised below.

Formatted: Justified

Formatted: Font: Consolas, 11 pt

Deleted: tunable220

Deleted: tunable

Deleted: 3

7

• Application: As described in the introduction, the io_layout parameter is used to define the distribution of I/O

domains in FMS. In the original distributed I/O pattern, multiple PEs are grouped into a single I/O domain within

which a root I/O PE collects data from the other PEs and writes them into a separate file. In our parallel I/O 225

implementation, the I/O domain concept is preserved in that data is still gathered from each I/O domain onto its root

PE. The main difference is that these I/O PEs now direct their data to the MPI-IO library, which controls how the

data is gathered and written to a single shared file. Retaining the I/O domain structures allows the application to

reorganize data in memory prior to any I/O operations and enables more contiguous access to the file.

• High-level I/O library: In general, the data storage layout should match the application access patterns in order to 230

achieve significant I/O performance gains. The data layout of netCDF-3 is contiguous, whereas netCDF-4 permits

more generalised layouts using blocks of contiguous subdomains (or “chunks”). To simplify the I/O tuning, we use

the default chunking layout of netCDF-4 files, so that we can focus on the impact of other I/O parameters. We consider

the impact of chunking on performance in the high-resolution benchmark.

• MPI-IO: There are many parameters in the MPI-IO layer that could dramatically affect the I/O performance. MPI-IO 235

distinguishes between two fundamental styles of I/O: independent and collective. We only consider collective I/O in

this work as it is required for accessing netCDF variables with unlimited dimensions (typically the time axis). All

configurable settings on independent functions are thus excluded. The collective I/O functions require process

synchronization, which provides an MPI-IO implementation the opportunity to coordinate processes and rearrange

the requests for better performance. For example, as the high-performance portable implementation packaged in 240

MPICH and OpenMPI, ROMIO has two key optimizations, data sieving and collective buffering, which have

demonstrated significant performance improvements over uncoordinated I/O. However, even with these

improvements, the shared file I/O performance is still far below the single-file-per-process approach. Part of the

reason is that shared file I/O incurs higher overhead due to filesystem locking, which can never happen if a file is

only accessed by a unique process. In order to reduce such overhead, it is necessary to tune the collective operations. 245

By reorganizing the data access in memory, collective buffering assigns a subset of client PEs as I/O aggregators.

These aggregators gather smaller, non-contiguous accesses into a larger, contiguous buffer, and then write the buffer

to the filesystem (Liao et al., 2008). Both I/O aggregators and collective buffer size can be set through MPI info

objects (Thakur et al., 1999). For example, the number of aggregators per node is controlled by the MPI-IO hint

cb_config_list and the total number of aggregators is specified in cb_nodes. To simplify the benchmark 250

configuration, we always set cb_nodes to the total number of PEs and leave cb_config_list to control the

actual aggregator distribution over all nodes. The collective buffer size, cb_buffer_size, is the size of the

intermediate buffer on an aggregator for collective I/O. We initially set the value to 64 kB in the lower resolution

model, and then evaluate its impact on the I/O performance of the higher resolution model.

Deleted: 255

8

• Lustre Filesystem: The positioning of files on the disks can have a major impact on I/O performance. On the Lustre

filesystem, this can be controlled by striping the file across different OSTs (Object Storage Target). The Lustre stripe

count, striping_factor, specifies the number of OSTs over which a file is distributed, and the stripe size,

striping_unit, specifies the number of bytes written to an OST before cycling to the next OST. As there is limit

of 165 stripes for a shared file on our Lustre filesystem, we set a range of stripe counts up to 165 to align the number 260

of nodes. The stripe size should generally match the data block size of I/O operations (Turner et al., 2017); we find

that the stripe size had limited effects on the write performance and the default 1MiB gave satisfactory I/O

performance in our pre-selection process.

3.2 Configurations

The parallel I/O performance benchmark configurations are set up as shown in Table 3. 265

• Project size: We run a suite of 1-day simulations of the 0.25° global MOM-SIS model for each of the I/O parameters

in Table 3. We then apply these results to a 1-day simulation of 0.1° models and validate the parallel I/O performance

benefits. Each simulation is initialised with prescribed temperature and salinity fields and is forced by prescribed

surface fields. The compute domain is represented by the horizontal grid sizes of 1440 ✕ 1080 and 3600 ✕ 2700 for

the 0.25° and 0.1° models, respectively. Both configurations use a common 50 level vertical grid. Model output 270

consists of several restart files in double-precision format, and a diagnostic output file in single-precision format. In

order to produce significant I/O loads for such a short run, diagnostic output is saved after every timestep. In the

0.25° configuration, the model writes 70 GB of data to the diagnostic file over 48 time steps with the 0.25°

configuration, and writes 2.7 TB of data over 288 steps with the 0.1° configuration model. Multiple independent runs

are repeated, and the shortest time is shown for each case. 275

• Domain layout: Domain layout depends on the total number of PEs in use. Two distinct CPU configurations, 240 and

960 PEs, are considered for the 0.25° model. The domain layout is 16 ✕ 15 for 240 PEs and 32 ✕ 30 for 960 PEs. In

0.1° model, grids are distributed over 720 and 1440 PEs with the domain layout of 48 ✕ 15 and 48 ✕ 30 respectively.

PEs are equally assigned in node majority along x direction of domain layout.

• High level I/O libraries and netCDF formats: The netCDF library provides parallel access to netCDF-4 formatted 280

files based on the HDF5 library, and netCDF-3 formatted files via the PnetCDF library. HDF5 maintains two version

tracks, 1.8.x and 1.10.x, in order to maintain the file format compatibility and the enabling of new features, such as

the collective metadata I/O or Virtual Datasets. We are interested in checking the I/O performance to access different

formats via various libraries as listed in Table 3.

We rely on the FMS I/O timers to measure the time metrics on opening (mpp_open), reading (mpp_read), writing 285

(mpp_write) and closing (mpp_close) files together with the total runtime. The metric time contains both I/O operations

and communications for generation of restart and diagnostic files and it takes the maximum walltime among all PEs. We do

Deleted: disturbed

9

not attempt to compensate for variability associated with the Lustre filesystem, such as network activity or file caching, and

rely on the ensemble to identify such variability. 290

Experiments are carried out on the NCI Raijin supercomputing platform. Each compute node consists of 2 Intel Xeon (Sandy

Bridge) E5-2670 processors with a nominal clock speed of 2.6 GHz and containing 8 cores, or 16 cores per compute node.

Standard compute nodes have 64 GB of memory shared between the two processors. A Lustre filesystem having 40 OSSes

(Object Storage Servers) and 360 OSTs is mounted as the working directory via 56 Gb FDR InfiniBand connections.

4 Benchmark Results 295

4.1 Single-Threaded Single-File I/O of the 0.25° Model

The single-threaded single-file pattern of MOM5 is chosen as the reference to compare its I/O time with the parallel I/O

methods. As with parallel I/O, this method creates a single output file and no post-processing is required. The I/O operation

times and total execution times for our target libraries and PE configurations are shown in Table 4.

We can see that all benchmarks are I/O intensive and they are driven by file initialization and writing operations. Specifically, 300

writing 4D dataset into the diagnostic file takes about 85% of total elapsed time. All other times are notably shorter than

mpp_write.

The time used in writing data into netCDF-4 formatted files is about 10% longer than creating netCDF-3 formatted files. This

reflects the fact that in serial I/O, the root PE holding the global domain data tends to write the file contiguously and it matches

the contiguous data layout of netCDF-3 better than the default block chunking layout of netCDF-4. 305

Most I/O operations excluding mpp_read take longer time when the number of PEs increases from 240 to 960, due to the

higher overhead from resource contention, I/O locking and data communication. This indicates that I/O time of MOM5 does

not scale with number of PEs in the single-threaded single-file I/O pattern.

4.2 Parallel I/O performance Tuning of the 0.25° Model

4.2.1 I/O Layout 310

As outlined in the introduction, I/O layout specifies the topology of I/O domains to which the global domain is mapped. In our

parallel I/O implementation, we adapt the I/O layouts in FMS to define subdomains of parallel I/O activity. Only the root PE

of each I/O domain is involved in accessing the shared output file via MPI-IO. A skilful selection of I/O layout can help to

control the contentions on opening and writing of files. I/O layout is not involved in reading input files; all PEs access the

input files independently when reading the grid and initialization data. 315

In this section we explore how I/O layouts affects the I/O performance. For each I/O layout, we adjust the number of stripe

count and aggregator to approach the shortest I/O time.

10

In the 240 PE benchmark, the domain PEs are distributed over a two-dimensional grid of 16 PEs in the x-direction and 15 PEs

in the y-direction, denoted as 16×15. On our platform, this corresponds to 16 PEs per node over 15 nodes. The experimental

I/O subdomain is similarly defined as nx×ny, where nx= 1, 2, 4, 8, 16 and ny= 3, 5, 15. On our platform, which uses 16 CPUs 320

per node, we can interpret nx as the number of I/O PEs per node and ny as the number of I/O nodes. A schematic diagram of

16×15 PE domains and 4×3 I/O domains in 240 PE benchmark is shown in Figure 2. For the 960 PE benchmark, the PE layout

is 32×30, which utilizes 960 CPU cores over 60 nodes. The experimental I/O layout is set as the combination of nx = 1, 2, 4,

8, 16, 32 and ny= 15, 30. Note that in the case of nx = 1, there are ny I/O nodes and 1 I/O rank per I/O node. For all other cases

in the 960-PE benchmark, there are 2 ny I/O nodes and ½ nx I/O PEs per I/O node. 325

The time metrics associated with different I/O layouts by using 240 and 960 PEs are measured and compared. All benchmark

results are classified based on its library/format and the I/O layout, and we report the shortest observed time in each category.

In all benchmarks, the elapsed times for writing files in netCDF-4 and netCDF classic formats are very similar, as both are

produced by utilizing HDF5 1.10.2 library. We will thus report performance among 3 libraries i.e. HDF5 1.8.20, HDF5 1.10.2

and PnetCDF 1.9.0. 330

The mpp_open metric measures both the opening time of input files and the creation time of output files. Its runtime versus

I/O layout at 240 and 960 PE benchmarks is shown in Figure 3. In all of the experiments, PnetCDF has shorter mpp_open

time than HDF5 due to the simpler netCDF-3 file structure. Both runtime and variability are much less in 240 PEs than in 960

PEs, indicating higher filesystem contention as the number of PEs is increased.

The mpp_read metric measures the time of all PEs to read data from the input files. Its dependence on I/O layout is shown 335

in Figure 4. As I/O layout is only applicable to write rather than read operations, mpp_read time should be unaffected by I/O

layout, as demonstrated in the figure. We also observe no consistent difference in mpp_read due to the choice of I/O library.

As with mpp_open time, the mpp_read time is much higher in 960 PEs than 240 PEs which we again attribute to the

increased file locking times and OST contentions when using more PEs.

The majority of I/O time is due to mpp_write, which depends strongly on the choice of I/O layout, as shown in Figure 5. In 340

the 240 PE benchmarks, the write time drops quickly as we increase the number of I/O nodes (ny) and more gently as the

number of I/O PEs per node (nx) is increased. The 960 PE benchmarks show a similar trend to the 240 PE results. The shortest

write time of the 960 PE benchmarks is less than that of 240 PE ones, which indicates that parallel write time demonstrates

the same degree of scalability. All libraries present similar mpp_write trend over I/O layout, as they approach the shortest

mpp_write time with moderate number of PEs per node (i.e. 2 or 4 PEs/node). 345

The mpp_close metric measures the time to close files, which involves synchronizations across all I/O ranks. Its dependence

on I/O layout is shown in Figure 6. We observe that there is a notable loss of performance in the HDF5 1.8.20 library, which

is exacerbated as both the number of nodes and I/O PEs per node are increased. As we shall demonstrate in a later section, this

can be attributed to issues related to contentions between MPI operations and the use of the MPI_File_set_size function

11

in a Lustre filesystem. This effect is mitigated, although still present, in the HDF5 1.10.2 library. In contrast to all HDF5 350

libraries, PnetCDF has negligible mpp_close time as there are fewer metadata operations in netCDF-3 than netCDF-4.

The total elapsed time versus I/O layout for all libraries are plotted in Figure 7. The HDF5 1.8.20 takes more time than HDF5

1.10.2 to produce the netCDF 4 files, due to longer mpp_write and mpp_close time. The shortest total time for HDF5

1.10.2 and PnetCDF 1.9.0 happens at an I/O layout of 8✕15 (8 PEs/node) for 240-PE and 4✕30 (2 PEs/node) for 960-PE.

Comparing it with all other time metrics as shown above, mpp_write dominates the total I/O time. 355

The impact of I/O layout on each I/O component time indicates that excessive parallelism can give rise to high I/O contention

within the file server and can diminish I/O performance. We could thus set up the delegated I/O processes to reduce the

contention that is also detailed in other work (Nisar et al., 2008). The best I/O performance is achieved by using a moderate

number of I/O PEs per node, such as 8 I/O PEs/node in the 240-PE or 2 I/O PEs/node in the 960-PE benchmark. Each I/O PE

collects data from other PEs within the same I/O domain and forms more contiguous data blocks to be written to disk. In the 360

next section, we use the best-performing I/O layouts, 8✕15 for 240 PE and 4✕30 for 960 PE, to explore the optimal settings

of Lustre stripe count and MPI-IO aggregator.

4.2.2 Stripe Count and Aggregators

The Lustre stripe count and the number of MPI-IO aggregators can be set as MPI-IO hints when creating or opening a file, and

are the two major MPI-IO parameters affecting I/O performance. The MPI-IO hint striping_factor controls the total 365

number of stripe counts of a file; cbnode sets the total number of collective aggregators; and cb_config_list controls

the distribution of aggregators over each node. In ROMIO, there are competing rules which can change the interpretation of

these parameters. For example, the total number of aggregators must not exceed the stripe count; otherwise, it will always be

set to the stripe count. To simplify the parameter space, we adopt the actual number of aggregators (denoted as real_aggr)

and stripe counts (denoted as real_stp_cnt) as the basic parameters in tuning the I/O performance. 370

240 PEs

The variations of each time metric versus the number of aggregators and stripe counts for each library are plotted in Figure 8

for the 240 PE experiments.

The mpp_open time does not depend strongly on the number of aggregators. PnetCDF spends less mpp_open time than all

HDF5 libraries. 375

The mpp_read time increases as the number of aggregators and stripe counts are increased. Runtime is independent of library,

as expected for a serial I/O operation.

12

The optimal mpp_write time is observed when the aggregator and stripe counts are set to 60. The overall mpp_write

times are quite comparable among all HDF5 libraries and they are slightly higher than PnetCDF, as observed in the I/O layout

timings. 380

The mpp_close times of the HDF5-based libraries are independent of the number of aggregators, and increase slightly as

the stripe count is increased. HDF5 v1.8.20 spends a much greater time in mpp_close than HDF5 1.10.2. The mpp_close

time is negligible for PnetCDF and shows no measurable dependence on aggregator and stripe count.

The total runtime shows similar dependences on stripe count and aggregators with mpp_write. The performance trend across

libraries remains consistent over I/O tuning parameters, with PnetCDF showing the best performances followed by HDF5 385

1.10.2 and HDF 1.8.20. The optimal parameters for read and write operations was observed when we set the number of

aggregators and stripe count to 15 or 30. This corresponds to one or two aggregators per node, with all 15 nodes contributing

to I/O operations.

960 PEs

The variations of each time metric on the number of aggregator and stripe count in all library/format bindings are plotted in 390

Figure 9 for 960-PE experiments.

The metrics for the 960-PE benchmarks show a similar trend to the 240-PE benchmarks. Both mpp_open and mpp_read

times increase from 240-PE to 960-PE, in most cases by a factor of two, due to the higher contentions due to accessing the

same files. Using the smallest number of aggregators, namely 60 aggregators or 1 aggregator per node, together with an equal

number of stripes, gives the best performance for both mpp_open and mpp_read times. The mpp_write times are shorter 395

than those of 240-PE. As in previous results, PnetCDF shows the best performance, while HDF5 1.10.2 outperforms HDF5

1.8.20. We observe that the best write performance occurs when the number of aggregators and stripe counts are set to 60, or

1 per node. Overall, the total time is reduced when using 960 PEs.

In both the 240-PE and 960-PE experiments, the best I/O performance occurs when the Lustre stripe count matches the number

of aggregators. Using a larger stripe count may degrade the performance, since each aggregator process must communicate 400

with many OSTs and must contend with reduced memory cache locality when the network buffer is multiplexed across many

OSTs (Bartz et al., 2015; Dickens et al., 2008; Yu et al., 2007).

4.2.3 I/O Implementation Profiling Analysis

The above benchmark results show performance variances among different libraries and formats. In order to explore the source

of differences in performance, we have developed an I/O profile to capture I/O function calls at multiple layers of the parallel 405

I/O stack, including netCDF, MPI-IO and POSIX I/O, without requiring source code modifications. It provides a passive

method for tracing events through the use of dynamic library preloading. It intercepts netCDF function calls issued by the

application and reroutes them to the tracer, where the timestamp, library function name, target file name, and netCDF variable

13

name along with function arguments are recorded. The original library function is then called after these details have been

recorded. It is applied similarly at the MPI-IO and POSIX I/O layers. We have disabled profiling of HDF5 and PnetCDF 410

libraries, as both are intermediate layers. Profiling overheads were measured to be negligible in comparison to the total I/O

time.

We apply the I/O profiler described above to the 240-PE benchmark experiments, using the optimal I/O parameters from the

previous analysis. The profiling results are plotted in call path flow charts for each library as shown in Fig. 10-12. The

accumulated maximum PE time is presented within each function node and above call path links. The number of I/O PEs 415

involved in each call path is also given in the brackets. Call paths with trivial elapsed time have been omitted.

As shown in Fig. 10, nc_close is the most time consuming netCDF function in the benchmark of HDF5 1.8.20/netCDF-4.

Two underlying MPI-IO functions, MPI_File_write_at and MPI_File_set_size, consume the majority of time

within nc_close. HDF5 metadata operations are comprised of many smaller writes, and the independent write function

MPI_File_write_at from each PE may give rise to large overheads due to repeated use of system calls. It is a known 420

issue that using MPI_File_set_size on a Lustre filesystem which uses the ftruncate system call, has an unfavourable

interaction with the locking for the series of metadata communications which the HDF5 library makes during a file close

(Howison et al., 2010). In practice, this leads to relatively long close times and prohibits I/O scalability.

Aside from the metadata operations, reading and writing netCDF variables are conducted collectively via

MPI_File_read_at_all and MPI_File_write_at_all functions, which retain good I/O performance when 425

processing non-contiguous data blocks.

In the HDF5 1.10.x track, collective I/O was introduced to improve the performance of metadata operations. Collective

metadata I/O can improve performance by allowing the library to perform optimizations when reading the metadata, by having

one rank read the data and broadcasting it to all other ranks. It can improve metadata write performance through the

construction of an MPI derived datatype that is then written collectively in a single call. The call path flow of tuned 240-PE 430

benchmark with HDF5 1.10.2/netCDF-4 is shown in Fig. 11.

It shows that nc_close now invokes MPI_File_write_at_all instead of MPI_File_write_at in HDF5 1.10.2

spends less time than HDF5 1.8.20. Furthermore, HDF5 1.10.2 has been modified to avoid MPI_File_set_size calls

when possible by comparing the library's EOA (End of Allocation) with the filesystems EOF and skipping the

MPI_File_set_size call if the two matches. As a result, HDF5 1.10.2 spends much less time on nc_close function 435

than HDF5 1.8.20. Aside from the metadata operations, the general write performance of the nc_put_vara_double and

nc_put_var1_double functions show similar performance in netCDF 1.10.2 and 1.8.20 when accessing netCDF-4

formatted files.

The call path flow of the tuned 240-PE benchmark with PnetCDF is shown in Fig. 12. Due to the simpler file structure of

netCDF-3, the nc_close function spends a trivial amount of time in MPI_Barrier and MPI_file_sync rather than 440

invoking expensive MPI_File_set_size function calls, which explains the much shorter mpp_close time in the

Deleted: shown

Deleted: the

Deleted: below

14

benchmark experiments. In addition, the function nc_put_vara_double also spends less time than the HDF5 libraries, 445

which implies that the access pattern matches the contiguous data layout of netCDF-3 performs in a better way than the default

block chunking layout of netCDF-4.

4.2.4 Load Balance

Load balance is another factor which may strongly affect I/O performance. In Fig. 13 we compare the time distribution over

PEs in 3 layers of the major write call path between HDF5 1.10.2 and PnetCDF. 450

In the benchmark of the HDF5 1.10.2, both nc_put_vara_double and MPI_File_write_at_all functions are

called by 8 PEs per node, as configured in the I/O layout of 8✕15. The POSIX write function is invoked by 2 PEs per node,

as configured by the MPI-IO aggregator configuration, real_aggr=30. All three functions show good load balance, as one

would expect since all I/O PEs participate in the collective I/O operations. There are overheads in the

nc_put_vara_double and MPI_File_write_at_all functions, but there is a larger time gap between 455

MPI_File_write_at_all and the POSIX write call, which reflects the communication overhead among aggregators

and other PEs associated with collective buffering. A similar pattern also appears in the PnetCDF profile. Although HDF5

1.10.2 and PnetCDF spend a similar amount of time on POSIX write calls, the aggregation overheads are much higher in

HDF5. This suggests again that the conventional contiguous storage layout in netCDF-3 matches the access pattern better than

the default block chunking layout of netCDF-4. 460

4.2.5 Serial Read and Parallel Read

As indicated in the above benchmark experiments, the write performance is optimised by choosing an appropriate number of

I/O PEs, aggregators and Lustre stripe count. In contrast to mpp_write, the mpp_read time grows from 240-PE to 960-PE

benchmarks and can potentially become a major performance bottleneck for a large number of PEs. Since I/O layout is not

employed in the parallel read process and the input files may use different formats and data layouts, there is no means to 465

skilfully tune the parallel read performance.

As noted earlier, the serial mpp_read time is relatively small and stable in both 240-PE and 960-PE benchmarks. This

motivates us to combine the original serial read with the parallel write in order to approach the best overall I/O performance.

The 960-PE benchmarks with an I/O layout of 4✕30 and using serial read (denoted here as sread) and parallel write methods

are shown for the HDF5 1.10.2 and PnetCDF libraries. The performance is compared with the parallel read benchmarks 470

(denoted as pread) in Figure 14.

The mpp_read time is much shorter in the serial read benchmarks than the parallel reads and it remains fixed as stripe count

is increased. The mpp_open times increase with stripe count, but are otherwise consistent across the four benchmarks shown.

The serial read is unaffected by the write performance and file closing times. As a result, the net serial read time is overall

shorter than parallel read times in both HDF5 1.10.2 and PnetCDF benchmarks. 475

15

5 I/O Performance validation of 0.1° Model

The tuning results from the 0.25° model suggests that the best parallel I/O performance could be achieved with the following

settings:

• Parallel write with
o Moderate number I/O PEs per node to access the file, as defined by I/O layout. 480

o 1 or 2 aggregators per node, as defined by MPI-IO hints.

o Stripe count matching the number of aggregators, as defined by MPI-IO hints.

• Serial read on input files with the same stripe count as parallel write.

In this section we apply the above settings to the 0.1° model and measure their impact on I/O performance. As shown in

previous results, the HDF5 1.8.20 library is overall slower than the HDF5 1.10.2 due to its higher metadata operation 485

overheads, so we focus on the HDF5 1.10.2 and PnetCDF libraries.

The domain layouts of the 720-PE and 1440-PE runs are 48✕15 and 48✕30, respectively. We choose I/O layouts of 3✕15

and 3✕30 for 720 and 1440 PEs respectively so there is one I/O PE per node. The number of aggregators is also configured to

one per node, and the stripe count is set to the total number of aggregators, i.e. 45 and 90 for the 720-PE and 1440-PE runs,

respectively. For all benchmark experiments, we use serial independent reads and parallel writes. The measured time metrics 490

in 720-PE and 1440-PE runs for the HDF5 1.10.2 and PnetCDF libraries are shown in Table 5. The timings of the original

single-threaded single file I/O (SIO) pattern in 720-PE and 1440-PE runs are also listed for comparison.

As shown in Table 5, the original serial I/O pattern requires a very long time (about 6 hours) to create a large diagnostic file

(2.7 TB) and multiple restart files (75 GB) in 720-PE runs. The serial 1440-PE runs exceeded the platform job time limit of 5

hours and could not be completed, but the lack of scalability of serial I/O indicated by 0.25° model (Table 4) suggest that the 495

total time would be comparable to the 720-PE runs. We noticed that the PnetCDF timings are 20% faster than the HDF5 times,

as also observed in the 0.25° model benchmarks. Both libraries have similar non-I/O times at each level of PE count, which

comprise less than 5% of total runtime, demonstrating that the benchmarks are I/O intensive and that different libraries have

no impact on the computation time.

The value of mpp_write in parallel I/O are much shorter than the serial times. In the 720-PE runs, the parallel write time is 500

about 30 to 36 times faster than the serial time in both the HDF5 and PnetCDF libraries. Such speedups are reasonable relative

to the 720-PE configuration, which uses 45 I/O PEs, aggregators and stripe counts. In the 1440-PE benchmark, which also

doubles our number of I/O PEs, aggregators, and stripe counts to 90, the parallel mpp_write runtime was further reduced

by a factor of two. We also observe that the non-I/O compute time of MOM from 720-PE to 1440-PE runs was reduced by a

factor of two, complementing the enhanced I/O scalability of the parallel I/O configuration and maintaining the high overall 505

parallel scalability of the model for I/O intensive calculations.

16

The PnetCDF library shows better write performance than HDF5 in both serial and parallel I/O, as well as a much shorter time

in mpp_close. To investigate such performance diversity, we have conducted further tests on changing the data layout of

HDF5/netCDF-4.

 All HDF5 performance results used the default block chunking layout, where the chunk size is close to 4 MB with a roughly 510

equal number of chunks along each axis. We repeated these tests by customizing the chunk layout while keeping all other I/O

parameters unchanged. The chunk layout, (ckx, cky), could be defined such that the global domain grids are divided into

ckx and cky segments along the X and Y axes, respectively. The mpp_write times and total runtimes of the 720-PE runs

for chunking layouts spanning values of ckx∈{1, 2, 3, 4} and cky∈{1, 3, 5, 15} are plotted in Figure 15. The performance

of the default chunking layout of HDF5 and PnetCDF are also shown in the figure as a reference point. 515

The chunk layout of (1, 1) defines the whole file as a single chunk. In this case, it occupies the same contiguous data layout

with PnetCDF. Not surprisingly, the mpp_write time of chunk layout (1, 1) is nearly the same as that of PnetCDF/netCDF-

3 as shown in Figure 16. In fact, the mpp_write time changes only slightly across cky values when for ckx=1. On the other

hand, changing ckx values for a fixed cky value give rise to a steeply increasing mpp_write time. Given the conventional

contiguous storage layout of a 4d variable (t, z, y, x), the time dimension varies most slowly, z and y vary faster, and x varies 520

fastest. This is also true within a chunk and increasing ckx will produce more non-contiguous chunks than increasing cky.

This means an I/O PE needs more I/O operations to write a contiguous memory data block across multiple chunks along the

increasing ckx than cky, and thus write times rise accordingly as shown in Figure 14. An exception case is ckx=3 as it used

similarly short write time with ckx=1. This is because it matches the number of x divisions of I/O layout (3, 15) and each I/O

PE needs only 1 operation to write a line of data with the fixed y value. Instead, for ckx=2 or ckx=4, each I/O PE may use 525

two or more write operations to write a line of y as it crosses multiple chunks. This makes the write time much longer for

ckx∈{2, 4} than ckx∈{1, 3}.

The mpp_close time is negligible in all tests. By reducing the total number of chunks and thus the metadata operations

overheads, the mpp_close time can also be controlled with the reasonable chunk layout. The total time presents the similar

trend with mpp_write along different chunk layouts as shown in Figure 15. 530

Choosing a good chunk layout depends strongly on the I/O layout settings. Using a single chunk in the netCDF-4 file is

unnecessary as it resembles the same data layout as the netCDF-3 format. Adopting an I/O layout as the chunk shape is

sufficient for achieving optimal performance if our intention is to create netCDF-4 formatted output files and to utilize more

advanced features, such as compression and filtering operations.

Although benchmark tests in this work are highly I/O intensive to explore the performance of parallel I/O, the general 535

simulation with less I/O workloads could also benefit from parallel I/O. To demonstrate it we conducted 8-day simulations of

0.1° model with I/O frequencies in every 1 day and 4 days. The I/O time and total runtime in each simulation from 720-PEs

and 1440-PEs runs are listed in Table 6. The produced ocean diagnostic files are 73GB and 19GB for 1-day and 4-day I/O

frequencies respectively.

17

For 720-PEs the I/O time takes 6.09% of total runtime for 1-day I/O frequency and it reduces to 3.87% of total runtime for 540

less I/O frequency of 4-day I/O frequency. These are regarded as typical I/O workloads of normal model simulations at 5%

(Koldunov et al., 2019). The parallel I/O scheme could reduce the I/O weight to be less than 1% of total run time in both

netCDF-4 and netCDF-3 formats. It is noticed that total overheads from those one-time I/O operations such as mpp_read,

mpp_open and mpp_close are comparable with and in most cases larger than mpp_write time due to the very limited

number of write frequency, i.e. 8 time steps for 1-day and 2 time steps for 4-day I/O frequencies. This gives rise to a weaker 545

scalability between serial I/O and parallel I/O in compare with the case of high I/O intensive simulations given in Table 5. By

running the simulation with 1440 PEs, the compute time are reduced in scale with number of PEs but the I/O time of SIO is

kept similarly with 720-PEs. As a result, the I/O time ratios increase to 10.98% and 7.18% for 1-day and 4-day I/O frequencies

respectively. It is expectable that the I/O time of SIO may take higher weight along with more compute PEs as itself is not

scalable and thus I/O workloads may eventually become the major scalability bottlenecks. On the other hand, the I/O ratio in 550

two PIO cases keep their light weights around 1~2% from 720-PEs to 1440-PEs. This indicates parallel I/O could maintain a

satisfied overall scalability in the general simulation cases with typical I/O workloads.

Conclusions

We have implemented parallel netCDF I/O into the FMS framework of the MOM5 ocean model, and presented results which

demonstrate the I/O performance gains relative to single-threaded single-file I/O. We present a procedure for tuning the 555

relevant I/O parameters, which begins with identifying the I/O parameters that are sensitive to overall performance by using a

light-weight benchmark program. We then systematically measure the impact of this reduced list of I/O parameters by running

the MOM5 model at a lower (0.25°) resolution and determine the optimal values for these parameters. This is followed by a

validation of the results in the higher (0.1°) resolution configuration.

Several rules for tuning the parameters across multiple layers of the I/O stack are established to maintain the contiguous access 560

patterns and achieve the optimal I/O performance. At the user application layer, I/O domains were defined to retain more

contiguous I/O access patterns by mapping the scattered grid data to a smaller number of I/O PEs. We achieve the best

performance when there is at least one I/O PE per node, and there can be additional benefits to using multiple I/O PEs per

node, although an excessive number of I/O PEs per node can impede performance.

At the MPI and Lustre levels of the I/O stack, it was found that the number of aggregators used in collective MPI-I/O operations 565

and the number of Lustre stripe counts needed to be consistently restricted to no more than 2 per node in order to facilitate

contiguous access and reduce the number of contentions between PEs.

An I/O profiling tool has been developed to explore overall timings and load balance of individual functions across the I/O

stack. It was determined that the MPI implementation of particular I/O operations in the HDF5 1.8.20 library used by netCDF-

4 caused significant overhead when accessing metadata, and that these issues were largely mitigated in HDF5 570

18

1.10.2. Additional profiling of the PnetCDF 1.9.0 library showed that it did not suffer from such overhead, due to the simpler

structure of the netCDF-3 format.

High-resolution MOM5 benchmarks using the 0.1° configuration were able to confirm that the parallel I/O implementations

can dramatically reduce the write time of diagnostic and restart files. Using parallel I/O enables the scaling of I/O operations

in pace with the compute time and improves the overall performance of MOM5, especially when running an I/O-intensive 575

configuration resembling our benchmark. The parallel I/O implementation proposed in this paper provides an essential solution

that removes any potential I/O bottlenecks in MOM5 at higher resolutions in the future.

Although this work is applied to a model with a fixed regular grid, these results could be applied to a model with an unstructured

mesh. Much of the work required to populate the I/O domains and to define chunked regions is required to produce contiguous

streams of data which are passed to the I/O library. If the data is already stored as contiguous 1D arrays, then the task of 580

dividing the data across I/O servers could be trivial. If more complex data structures are used, such as linked lists, then the

buffering of data into contiguous arrays could add significant overhead to parallel I/O.

An investigation of data compression is not a part of this work, as traditionally it can only be used in serial I/O. We note that

the more recent version of HDF5, 1.10.2, introduced support for parallel compression, and it is expected that the netCDF

library will soon follow. As the I/O layout generally picks up 1 to 2 I/O PE per compute node, it may produce chunks which 585

are too large (i.e., too small number of chunks) for efficient parallel compression. In this sense, the default chunk layout of

netCDF4 should also be considered as it gains acceptable write performance and has suitable chunk sizes more suitable for

parallel compression. Finally, it is explored that parallel I/O could not only largely accelerate I/O intensive model simulations

and but also prompt the scalability of general case with typical I/O workloads.

 590

Code availability

The source code of parallel I/O enabled FMS is available from doi:org/10.5281/zenodo.3700099. The MOM5 code used in the

work is available at https://github.com/mom-ocean/MOM5.git. The core dataset is available as doi:10.1007/s00382-008-0441-

3. Build script, configure files and job scripts are available from dio:org/10.5281/zenodo.3710732.

 595

Author contributions

RY and MW developed the parallel I/O code contributions to FMS. RY carried out all model simulations, as well as

performance profiling and analysis. RY and MW wrote the initial draft of the article. All co-authors contributed to the final

draft of the article. BE supervised the project.

 600

Competing interests

The authors declare that they have no conflict of interest.

Deleted: The source code is available on GitHub at
https://github.com/NOAA-GFDL/FMS/tree/with-parallel-netcdf¶

19

Acknowledgement 605

This work used supercomputing resources provided by National Computational Infrastructure (NCI), the Australian National

University.

References

Bartz C., Chasapis K., Kuhn M., Nerge P. and Ludwig T.: A Best Practice Analysis of HDF5 and NetCDF-4 Using Lustre,

ISC 2015, doi: 10.1007/978-3-319-20119-1_20, 2015 610

Dennis J. M., Edwards J., Loy R., Jacob R., Mirin A. A., Craig A. P. and Vertenstein M.: An application-level parallel I/O

library for Earth system models, The International Journal of High Performance Computing Applications 26, 43-56,

doi:10.1177/1094342011428143, 2011

Dickens P. and Logan J.: Towards a high performance implementation of MPI-IO on the Lustre file system, On the Move to

Meaningful Internet Systems: OTM 2008 LNCS 5331, 870–885, doi: 10.1007/978-3-540-88871-0_61, 2008 615

Edwards J., Dennis J. M., Vertenstein M. and Hartnett E. PIO library, http://ncar.github.io/ParallelIO/index.html, 2019
Griffies S. M.: Elements of the Modular Ocean Model (MOM), GFDL Ocean Group Technical Report No. 7,

NOAA/Geophysical Fluid Dynamics Laboratory, 620, 2012

Howison M., Koziol Q., Knaak D., Mainzer J., and Shalf J.: Tuning HDF5 for Lustre file systems, Proceedings of 2010

Workshop on Interfaces and Abstractions for Scientific Data Storage (IASDS10), 2010. 620

Koldunov, N. V., Aizinger, V., Rakowsky, N., Scholz, P., Sidorenko, D., Danilov, S., and Jung, T., Scalability and some

optimization of the Finite-volumE Sea ice–Ocean Model, Version 2.0 (FESOM2), Geosci. Model Dev., 12, 3991–4012,

https://doi.org/10.5194/gmd-12-3991-2019, 2019.

Li J., Liao W., Choudhary A., Ross R., Thakur R., Gropp W., Latham, Siegel R. A., Gallagher B. and Zingale M.: Parallel

netCDF: A Scientific High-Performance I/O Interface, Proceedings of ACM/IEEE conference on Supercomputing, 39, 2003. 625

Liao W. and Choudhary A.: Dynamically adapting file domain partitioning methods for collective I/O based on underlying

parallel file system locking protocols, Proceedings of the 2008 ACM/IEEE conference on Supercomputing (SC '08),3,2008

Maisonnave, E., Fast, I., Jahns, T., Biercamp, J., Sénési, S., Meurdesoif, Y. and Fladrich, U.: CDI-pio & XIOS I/O servers

compatibility with HR climate models, Technical Report, TR/CMGC/17/52, CECI, UMR CERFACS/CNRS No5318, ,2017

Nisar A., Liao W. K., Choudhary A.: Scaling parallel I/O performance through I/O delegate and caching system. International 630

Conference for High Performance Computing, Networking, Storage and Analysis, SC 2008,1-12, doi:

10.1145/1413370.1413380, 2008

Shan H. and Shalf J.: Using IOR to Analyze the I/O Performance of XT3, Cray User Group Conference, 2007.

Thakur R., Gropp W. and Lusk E.: Data Sieving and Collective I/O in ROMIO, 182-189, 7th Symposium on the Frontiers of

Massively Parallel Computation, doi:10.1109/FMPC.1999.750599, 1999 635

20

Turner A. and McIntosh-Smith S.: Parallel I/O Performance Benchmarking and Investigation on Multiple HPC Architectures,

1.4, ARCHER White Papers, 2017.

Unidata: Network Common Data Form (netCDF) version 4.3.3.1, UCAR/Unidata, doi:10.5065/D6H70CW6,2015

Webb D. J.: An ocean model code for array processor computers, Computers and Geophysics, 22, 569-578, doi: 10.1016/0098-

3004(95)00133-6, 1996. 640

Webb D. J., Coward A. C., Cuevas B. A. de and Gwilliam C. S.: A multiprocessor ocean general circulation model using

message passing, Journal of Atmospheric and Oceanic Technology, 14,175-183, doi:10.1175/1520-0426, 1997

XIOS, http://forge.ipsl.jussieu.fr/ioserver, 2020

Yu W., Vetter J., Canon R. S. and Jiang S.: Exploiting lustre file joining for effective collective IO, Cluster Computing and

the Grid CCGRID 2007, Seventh IEEE International Symposium on, 267– 274, doi: 10.1109/CCGRID.2007.51, 2007 645

 650

Figure 1: A representative decomposition of a global domain. Black squares denote the computational domains of each process, and
yellow boundaries denote the collection of computation domains into a larger I/O domain. The global domain is denoted by the red 655
boundary.

Deleted: Page Break

Formatted: Centred

Deleted:

21

 660

Figure 2. A schematic diagram of 16×15 computation domain () and 4×3 I/O domain () with 12 I/O PEs () in a 240 PE benchmark.
The index of each I/O PE is labelled.

Figure 3. mpp_open time (in sec.) versus I/O layout in different libraries and PE numbers. HDF5 times are generally larger than
in PnetCDF, and the runtime increases as PEs increase from 240 to 960. The I/O layout together with its PE distribution in [PE per 665
node ´ nodes] are labelled in X-axis.

Formatted: Justified

Deleted: ¶

22

Figure 4. mpp_read time (in sec.) versus I/O layout in different libraries and PE numbers. Read operations do not use I/O layout
or parallel I/O, and runtimes are largely independent of layout and library. Read times increase significantly as the number of PEs 670
is increased. The I/O layout together with its PE distribution in [PE per node ´ nodes] are labelled in X-axis.

Figure 5. mpp_write time versus I/O layout for different library and PE numbers. Write time improves greatly as I/O nodes are
increased (grouped curves), and modestly as the I/O PEs per node are increased (across grouped curves). Runtimes are scalarly
reduced as PEs are increased. PnetCDF shows modest improvement over HDF5 performance. The I/O layout together with its PE 675
distribution in [PE per node ´ nodes] are labelled in X-axis.

Deleted: ¶

Deleted: ¶680
Deleted: formats. Runtimes improve

Deleted: scalably

23

Figure 6. mpp_close time versus I/O layout with different libraries and PE numbers. Contentions within the HDF5 library lead to
performance problems, which increase with layout and number of PEs. PnetCDF does not exhibit these issues and close times are 685
negligible. The I/O layout together with its PE distribution in [PE per node ´ nodes] are labelled in X-axis.

Figure 7. Total elapsed time versus I/O layout for different libraries and PE numbers. Higher contention at 960 PEs can overwhelm
the overall performance trends observed at 240 PEs. The I/O layout together with its PE distribution in [PE per node ´ nodes] are 690
labelled in X-axis.

 695

Deleted: ¶
Deleted: formats.

Formatted: English (UK)

Formatted: Normal

Deleted: ¶

!700
!
¶

Deleted: formats.

Formatted: Normal

24

 705

 710
Figure 8. The I/O performance of 240-PE benchmarks with different library/format bindings regarding to the number of aggregator
and stripe count.

25

 715

Figure 9. The I/O performance of different library/format bindings with a variety of aggregators and stripe counts by using 960 PEs. 720

26

 725
Figure 10. The call path flow of a tuned 240-PE benchmark with HDF5 1.8.20/netCDF-4. It is classified into 3 layers i.e. netCDF,
MPI-IO and system I/O functions. The maximum PE time together with the total number of PEs from the invoker are labelled above
each path line and the maximum PE time on each function are labelled within the node block.

 730

4.695
nc__enddef

MAIN

4.695[120]

37.639
nc_close

37.639[240]

0.226
nc_create_par_fortran

0.226[120]

0.655
nc_get_var_double0.655[240]

9.573
nc_get_vara_double

9.573[240]

1.528
nc_get_vara_float

1.528[240]
0.282

nc_get_vara_int
0.282[240]

3.532
nc_open_par_fortran

3.532[240]

1.760
nc_put_var1_double

1.760[120]
29.603

nc_put_vara_double

29.603[120]

2.173
nc_sync

2.173[120]

5.724
MPI_Barrier

3.367[240]

21.828
MPI_File_set_size

20.789[240]

2.071
MPI_File_sync

1.945[240]

13.372
MPI_File_write_at

12.198[120]
12.197[120]

22.990
write12.197[120]

1.573[72]

0.940[120]

0.226
nc_create_par

0.226[120]

0.158[120]
2.264

MPI_File_open
0.158[120]

11.621
MPI_File_read_at_all

8.990[240]
0.362[240]

1.162
MPI_File_set_view

0.416[240]

1.368
read0.362[240]

0.678[15]

0.227[1]

1.292[240]
0.678[15]

0.252[240]
0.212[240]

3.532
nc_open_par

3.532[240]
0.166[240]

2.107[240]

1.206[240]
0.227[1]

2.107[240]

1.206[240]
0.227[1]

0.166
MPI_File_get_size

0.166[240]

2.219
MPI_Allreduce

0.969[120]

25.586
MPI_File_write_at_all0.757[120]

0.433[2]
0.433[2]

11.496[30]

0.113[30]

1.812[120]

1.573[72]

1.573[72]

0.509[120]1.413[120]
24.830[120]

0.113[30]
11.496[30]

0.626[120]

1.039[120]

0.193[120]

0.941[120]
0.940[120]

Deleted: ¶

4.695
nc__enddef

MAIN

4.695[120]

37.639
nc_close

37.639[240]

0.226
nc_create_par_fortran0.226[120]

0.655
nc_get_var_double0.655[240]

9.573
nc_get_vara_double

9.573[240]

1.528
nc_get_vara_float

1.528[240]

0.282
nc_get_vara_int

0.282[240]

3.532
nc_open_par_fortran

3.532[240]

1.760
nc_put_var1_double

1.760[120]
29.603

nc_put_vara_double

29.603[120]

2.173
nc_sync

2.173[120]

5.724
MPI_Barrier

3.367[240]

21.828
MPI_File_set_size

20.789[240]

2.071
MPI_File_sync

1.945[240]

13.372
MPI_File_write_at

12.198[120]

12.197[120]

22.990
write1.573[72]

0.940[120]

12.197[120]

0.226
nc_create_par

0.158[120]

0.226[120]
2.264

MPI_File_open
0.158[120]

11.621
MPI_File_read_at_all

8.990[240]

0.362[240]
1.162

MPI_File_set_view
0.416[240]

1.368
read0.362[240]

0.678[15]

0.227[1]

1.292[240]
0.678[15]

0.252[240]
0.212[240]

3.532
nc_open_par

3.532[240]

0.166[240]

2.107[240]

1.206[240]
0.227[1]

2.107[240]

1.206[240]
0.227[1]

0.166
MPI_File_get_size

0.166[240]

2.219
MPI_Allreduce

0.969[120]

25.586
MPI_File_write_at_all0.757[120]

0.433[2] 0.433[2]

11.496[30]

0.113[30]

1.812[120]

1.573[72]

1.573[72]

0.509[120]1.413[120]
24.830[120]

0.113[30]

11.496[30]

0.626[120]

1.039[120]

0.193[120]

0.941[120]

0.940[120]

Deleted: ¶735

1.337
nc__enddef

MAIN

1.337[120]

17.871
nc_close

17.871[240]

0.240
nc_create_par_fortran

0.240[120]

1.096
nc_get_var_double

1.096[240]

9.803
nc_get_vara_double

9.803[240]

2.388
nc_get_vara_float

2.388[240]

0.339
nc_get_vara_int

0.339[240]

4.394
nc_open_par_fortran

4.394[240]

1.202
nc_put_var1_double

1.202[120]

24.729
nc_put_vara_double24.729[120]

0.267
nc_sync0.267[120]

1.343
MPI_Barrier

1.341[240]

14.934
MPI_File_set_size

14.934[120]

2.159
MPI_File_sync

2.103[240]

22.228
MPI_File_write_at_all

0.266[120]
0.196[18]

10.831
write

10.817[30]
0.196[18]

1.015
read

0.134[30]

0.240
nc_create_par

0.162[120]

0.240[120] 3.267
MPI_File_open

0.162[120]

12.200
MPI_File_read_at_all

8.913[240]

0.341[240]

1.517
MPI_File_set_view

0.713[240]

0.341[240]
0.444[15]

0.140[1]2.104[240]
0.444[15]

0.296[240]0.187[240]

2.312
MPI_Allreduce

0.144[240]

4.394
nc_open_par

4.394[240]

0.118[240]
3.137[240]

1.057[240]
0.140[1]

3.137[240]

1.057[240]

0.140[1]
0.118

MPI_File_get_size
0.118[240]

0.252[120]

0.918[120]

21.641[120]
0.134[30]

10.817[30]
0.489[120]

1.418[120]

0.193[120]

27

Figure 11. The call path flow of tuned 240-PE benchmark with HDF5 1.10.2/netCDF-4. It is classified into 3 layers i.e. netCDF,
MPI-IO and system I/O functions. The maximum PE time together with the total number of PEs from the invoker are labelled
above each path line and the maximum PE time on each function are labelled within the node block.

 740

Figure 12. The callpath flow of tuned 240-PE benchmark with PnetCDF. It is classified into 3 layers i.e. netCDF, MPI-IO and system
I/O functions. The maximum PE time together with the total number of PEs from the invoker are labelled above each path line and
the maximum PE time on each function are labelled within the node block. 745

1.337
nc__enddef

MAIN

1.337[120]

17.871
nc_close17.871[240]

0.240
nc_create_par_fortran

0.240[120]

1.096
nc_get_var_double

1.096[240]

9.803
nc_get_vara_double

9.803[240]

2.388
nc_get_vara_float

2.388[240]

0.339
nc_get_vara_int

0.339[240]

4.394
nc_open_par_fortran

4.394[240]

1.202
nc_put_var1_double

1.202[120]

24.729
nc_put_vara_double24.729[120]

0.267
nc_sync

0.267[120]
1.343

MPI_Barrier
1.341[240]

14.934
MPI_File_set_size

14.934[120]

2.159
MPI_File_sync

2.103[240]

22.228
MPI_File_write_at_all

0.266[120]
0.196[18]

10.831
write

0.196[18]
10.817[30]

1.015
read

0.134[30]

0.240
nc_create_par

0.240[120]
0.162[120] 3.267

MPI_File_open
0.162[120]

12.200
MPI_File_read_at_all

8.913[240]
0.341[240]

1.517
MPI_File_set_view

0.713[240]

0.341[240]
0.444[15]
0.140[1]2.104[240]

0.444[15]

0.296[240]0.187[240]

2.312
MPI_Allreduce

0.144[240]

4.394
nc_open_par

4.394[240]
0.118[240]
3.137[240]
1.057[240]
0.140[1]

3.137[240]

1.057[240]

0.140[1]
0.118

MPI_File_get_size
0.118[240]

0.252[120]

0.918[120]

21.641[120]
0.134[30]
10.817[30]

0.489[120]

1.418[120]

0.193[120]

0.246
nc__enddef

2.668
MPI_File_open

0.245[120]

MAIN

0.246[120]

1.184
nc_close1.184[240]

0.212
nc_create_par_fortran

0.212[120]

1.070
nc_get_var_double

1.070[240]

9.535
nc_get_vara_double

9.535[240]

1.461
nc_get_vara_float

1.461[240]

0.294
nc_get_vara_int

0.294[240]

3.535
nc_open_par_fortran

3.535[240]

1.300
nc_put_var1_double

1.300[120]

20.466
nc_put_vara_double

20.466[120]

0.640
nc_sync

0.640[120]

1.365
MPI_Barrier

0.986[240]

1.207
MPI_File_sync

0.941[240]

0.212
nc_create_par

0.212[120]
0.199[120]

0.199[120]

11.444
MPI_File_read_at_all

9.005[240]

0.245[240]

2.082
MPI_File_set_view

0.388[240]
1.067
read

0.245[240]
0.629[15]
0.132[1]

1.226[240]

0.629[15]

0.248[240]
0.188[240]

3.534
nc_open_par

3.534[240]
0.119[240]
2.260[240]
1.093[240]

0.132[1]

2.260[240]

1.093[240]
0.132[1]

0.119
MPI_File_get_size

0.119[240]

0.916[120]

18.860
MPI_File_write_at_all

0.379[120]

9.610
write

9.610[30]
0.782[120]
18.483[120]
9.610[30]

0.497[120]
0.599[120]

Formatted: Left

Deleted: ¶

Deleted: ¶

0.246
nc__enddef

2.668
MPI_File_open

0.245[120]

MAIN

0.246[120]

1.184
nc_close

1.184[240]

0.212
nc_create_par_fortran

0.212[120]

1.070
nc_get_var_double

1.070[240]

9.535
nc_get_vara_double

9.535[240]

1.461
nc_get_vara_float

1.461[240]

0.294
nc_get_vara_int

0.294[240]

3.535
nc_open_par_fortran

3.535[240]

1.300
nc_put_var1_double

1.300[120]

20.466
nc_put_vara_double

20.466[120]

0.640
nc_sync0.640[120]

1.365
MPI_Barrier

0.986[240]

1.207
MPI_File_sync

0.941[240]

0.212
nc_create_par

0.212[120]
0.199[120]

0.199[120]

11.444
MPI_File_read_at_all

9.005[240]

0.245[240]

2.082
MPI_File_set_view

0.388[240]
1.067
read

0.245[240]

0.629[15]
0.132[1]

1.226[240]

0.629[15]

0.248[240]
0.188[240]

3.534
nc_open_par

3.534[240]
0.119[240]
2.260[240]
1.093[240]

0.132[1]

2.260[240]

1.093[240]

0.132[1]

0.119
MPI_File_get_size

0.119[240]

0.916[120]

18.860
MPI_File_write_at_all

0.379[120]

9.610
write

9.610[30]

0.782[120]

18.483[120]
9.610[30]

0.497[120]
0.599[120]

Formatted: Justified

28

 750
(a) HDF5 1.10.2 (netCDF-4) (b) PnetCDF (netCDF-3)

Figure 13. Time distribution over PEs of major write call path functions, i.e. nc_put_vara_double for netCDF,
MPI_File_write_at_all for MPI-IO and POSIX call write. The benchmark is running on 240 ranks with an I/O layout of
8✕15.

 755

Figure 14. The 960-PE benchmarks with I/O layout =4✕30 and naggr=1 by using serial read (sread) and parallel read (pread)
with the HDF5 1.10.2 and PnetCDF libraries. Serial read times are overall more efficient over a range of stripe counts. 760

Formatted: Normal (Web), Centred

Formatted: Normal

Deleted: ¶

¶765
Deleted: an

Deleted: of

Formatted: Font: 7.5 pt

29

Figure 15. Performance of 720-PE runs with customized chunk layouts in HDF5/netCDF-4. The default chunk layout of
HDF5/netCDF-4 and contiguous layout of PnetCDF/netCDF-3 are shown as references. 770

 775

Table 1. Comparison of write pattern between serial I/O and parallel I/O.

Write Pattern
Number of

Output Files
Run Time

Post-processing

Time

Single-threaded, Single File 1 Long None

Distributed I/O, Single File per I/O Domain I/O domains Moderate Long

Distributed I/O, Single File per PE PEs Short Long

Parallel I/O, Single Shared File 1 Scalable None

 780

0

500

1000

1500

2000

2500

3000

3500

4000

cky=1 cky=3 cky=5 cky=15 ref.

mpp_write (s)

ckx=1 ckx=2

ckx=3 ckx=4

HDF5/NC4 default chunking PnetCDF/NC classic

0

500

1000

1500

2000

2500

3000

3500

4000

cky=1 cky=3 cky=5 cky=15 ref.

Total runtime(s)

ckx=1 ckx=2

ckx=3 ckx=4

HDF5/NC4 default chunking PnetCDF/NC classic

Deleted: ¶
¶

Formatted: Normal

Deleted: File

30

Table 2. The pre-selected parameters at all layers of I/O software stack. 785

Layer Parameter Value

Application
io_layout

(iox ✕ ioy)

iox = 32, 16, 8, 4, 2, 1

ioy = 30,15,5,3

High-level I/O library Data storage layout
netCDF-3: contiguous

netCDF-4: default chunking

MPI-IO

cb_buffer_size 64kB

cb_nodes number of PEs

cb_config_list 1, 2, 4, 8

Lustre
striping_unit 1MB

striping_factor 15, 30, 60, 120, 165(max)

Table 3. The parallel I/O performance benchmark configurations.

Parameters Description

Model Configurations

1-day simulations with diagnostic output enabled.

0.25° model (1440✕1080) for I/O performance tuning

0.1° model (3600✕2700) for validating I/O performance

Output Diagnostic

Diagnostic fields: T, S, u, v, tage

Diagnostic file write frequency:

30 minutes interval for 0.25°, 48 steps, 70GB

5 minutes interval for 0.1°, 288 steps, 2.7TB

Benchmark

PEs 240, 960 for 0.25° model, 720,1440 for 0.1° model

Domain Layout
16✕15 for 240 PEs, 32✕30 for 960 PEs (0.25°)

48✕15 for 720 PEs, 48✕30 for 1440 PEs (0.1°)

I/O library / Format

NetCDF v4.6.1 with the following library/format:

HDF5 v1.8.20 / netCDF-4

HDF5 v1.10.2 / netCDF-4, netCDF-4 classic
PnetCDF v1.9.0 / netCDF-3 (64-bit offsets)

 790

Formatted: Normal

Deleted: ¶
¶
¶

Formatted Table

Deleted: ¶

Formatted Table

Formatted Table

Formatted: Normal

31

Table 4. Serial single-file I/O time in MOM5 by using 240 and 960 PEs. 795

0.25° Model 240 PEs 960 PEs

Time (sec.)
netCDF-3

(PnetCDF 1.9.0)

netCDF-4

(HDF5 1.10.2)

netCDF-3

(PnetCDF 1.9.0)

netCDF-4

(HDF5 1.10.2)

Total runtime 637.82 687.20 629.33 671.95

mpp_open 7.46 6.39 15.62 14.97

mpp_read_meta 3.90 3.73 6.16 4.88

mpp_read 4.58 4.15 2.37 2.43

mpp_write 545.50 592.39 576.92 616.35

mpp_close 0.65 0.96 1.23 2.37

Table 5. The time metrics of 0.1° model in 720-PE and 1440-PE runs with HDF5 1.10.2/netCDF-4 and PnetCDF 1.9.0/netCDF-3.
SIO represents the original serial read and single threaded write; PIO represents the serial read and parallel shared write. All values 800
are taken from the maximum walltime among all PEs.

Library/Format HDF5 1.10.2 (netCDF-4) PnetCDF 1.9.0 (netCDF-3)

PEs 720 (45 nodes) 1440 (90 nodes) 720 (45 nodes) 1440 (90 nodes)

I/O Pattern SIO PIO SIO PIO SIO PIO SIO PIO

Total runtime (sec.) 21689 1624 >18000 889 19726 1387 >18000 782

mpp_open (sec.) 8 51 90 9 16 81

mpp_read (sec.) 25 11 11 15 11 14

mpp_write(sec.) 20826 705 349 18839 526 290

mpp_close(sec.) 8 37 59 0 0 1

Non-I/O Time (sec.) 828 820 380 860 834 396

 805

Deleted: IO

32

Table 6. The time metrics of 0.1° model in 720-PE and 1440-PE runs with less I/O frequencies, i.e. write per 1 day and 4 days in 8-810
day simulations. SIO represents the original single threaded write; PIO represents parallel shared write. The I/O time composes of
contributions from mpp_open, mpp_read, mpp_write and mpp_close. The I/O time ratio is given between the I/O time
and total runtime. All values are taken from the maximum walltime among all PEs.

I/O pattern&Format SIO in netCDF4_classic PIO in netCDF-4 PIO in netCDF-3

I/O frequency 1-day 4-day 1-day 4-day 1-day 4-day

720

PEs

Total runtime (sec.) 8114 7817 7685 7569 7666 7469
I/O time / mpp_write (sec.) 494/453 302/265 75/40 62/27 57/17 49/11

I/O ratio 6.09% 3.87% 0.98% 0.82% 0.74% 0.66%

1440

PEs

Total runtime (sec.) 4118 3743 3547 3578 3518 3549
I/O time / mpp_write (sec.) 452/421 269/238 59/24 48/14 51/14 40/7

I/O time ratio 10.98% 7.18% 1.67% 1.35% 1.45% 1.14%
 815

Formatted Table

