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Abstract. The cloud Liquid Water Path (LWP), Ice Water Path (IWP), and precipitation simulated with uniform- 52 

and variable-resolution numerical experiments using the Model for Prediction Across Scales (MPAS) are compared 53 

against Clouds and the Earth’s Radiant Energy System (CERES) and Tropical Rainfall Measuring Mission data. Our 54 

comparison between monthly mean model diagnostics and satellite data focuses on the convective activity regions of 55 

the Tropical Pacific Ocean, extending from the Eastern Tropical Pacific Basin where trade wind boundary layer clouds 56 

develop to the Western Pacific warm pool characterized by deep convective updrafts capped with extended upper-57 

tropospheric ice clouds. Using the scale-aware Grell-Freitas (GF) and Multi-Scale Kain-Fritsch (MSKF) convection 58 

schemes in conjunction with the Thompson cloud microphysics, uniform-resolution experiments produce large biases 59 

between simulated and satellite-retrieved LWP, IWP, and precipitation. Differences in the treatment of shallow 60 

convection lead the LWP to be strongly overestimated when using GF while being in relatively good agreement when 61 

using MSKF compared to CERES data. Over areas of deep convection, uniform- and variable-resolution experiments 62 

overestimate the IWP with both MSKF and GF, leading to strong biases in the top-of-the-atmosphere long- and short-63 

wave radiation relative to satellite-retrieved data. Mesh refinement over the Western Pacific warm pool does not lead 64 

to significant improvement in the LWP, IWP, and precipitation due to increased grid-scale condensation and upward 65 

vertical motions. Results underscore the importance of evaluating clouds, their optical properties, and the top-of-the-66 

atmosphere radiation budget in addition to precipitation when performing mesh refinement global simulations. 67 

1 Introduction 68 

Comparing simulated against observed global cloud liquid and ice water paths (LWP and IWP) remains challenging 69 

because of uncertainties in parameterizing moist processes and cloudiness in global climate and numerical weather 70 

prediction (NWP) models, and errors in retrieving the LWP and IWP from satellite measurements. Cloud simulations 71 

from general circulation models (GCMs) involved in Phase 3 and 5 of the Coupled Model Intercomparison Project 72 

(CMIP3; CMIP5; Meehl et al, 2007; Taylor et al., 2012) display a strong disparity in the simulated LWP (Jiang et al., 73 

2012; Li et al., 2018) and IWP (Li et al., 2012), producing annual mean LWP and IWP overestimated by factors of 2 74 

to 10 compared to satellite data. Satellite observations of the LWP and IWP from passive nadir viewing instruments 75 

such as the Moderate-resolution Imaging Spectroradiometer (MODIS; Minnis et al., 2011), and profiling radar such 76 

as the 94-GHz instrument on the CloudSat satellite (Stephens et al., 2002), also display major differences among 77 

themselves, as discussed in Li et al. (2008) and Waliser et al. (2009). While models and satellite retrievals agree that 78 

the LWP and IWP should be defined as the vertically-integrated liquid and ice water content, including all 79 

nonprecipitating and precipitating hydrometeors, this is not always the case in practice, further challenging a clearly-80 

posed data-data and model-data comparison. Defining the LWP and IWP varies between models, depending on the 81 

complexity of the parameterization of cloud microphysics processes and prognostic versus diagnostic treatment of 82 

falling hydrometeors. Defining the measured LWP and IWP varies between satellite products, depending on the 83 

sensitivity of the observing systems to detect large precipitating particles. While comparing simulated and observed 84 

LWP and IWP may not be as straightforward as comparing the top-of-the-atmosphere (TOA) radiation budget (Dolinar 85 

et al., 2015; Stanfield et al., 2015), it offers a different way to directly diagnose biases in simulated total cloud liquid 86 
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and ice water mass as a first step to help correct deficiencies in parameterizing global scale moist processes and 87 

precipitation. 88 

Before the launch of the CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation mission 89 

(Stephens et al., 2002), global estimates of the LWP and IWP were retrieved principally from satellite radiance 90 

measurements over different spectral intervals (e.g., Alishouse et al., 1990; Greenwald et al., 1993; Minnis et al., 1995; 91 

Platnick et al., 2003). In their critical review of most common methods developed to retrieve cloud and precipitation 92 

properties from satellite radiances, Stephens and Kummerow (2007) identify two main sources of errors. The first 93 

source of errors originates from the mandatory classification between cloudy and cloud-free scenes, and between 94 

precipitating and non-precipitating cloudy scenes. The second source of errors stems from using forward radiative 95 

transfer models that lack details of the vertical distribution of cloudiness and precipitation as well as complexity in 96 

specifying the optical properties of liquid water and ice particles. Estimating the LWP and IWP from CloudSat radar 97 

reflectivity alone presents its own set of challenges for scenes that include precipitating cloud systems due to the high 98 

sensitivity of radar reflectivity to the presence of large particles, for scenes that include mixed-phase and deep 99 

convective clouds, and close to the surface due to ground clutter. Li et al. (2018) show that annual mean maps of 100 

MODIS- and CloudSat-based LWP agree relatively well in tropical and subtropical regions if both data sets exclude 101 

LWP observations for deep convective/precipitating clouds since MODIS is quite insensitive to precipitation. 102 

Stephens and Kummerow (2007) advocate combining satellite-retrieved radar and radiance measurements to help 103 

validate simulated cloud properties and precipitation. In addition to considering the impact of precipitating particles, 104 

Waliser et al. (2009) demonstrate that a well-posed model-data comparison must include a consistent sampling 105 

between model outputs and satellite data to reduce diurnal sampling biases and sensitivity of the sensor and retrieval 106 

algorithm to the particle size when computing the simulated LWP and IWP. 107 

Contemporary climate and NWP GCMs (Giorgetta et al., 2018; Molod et al., 2012; Kay et al., 2015, Skamarock 108 

et al., 2012) categorize moist processes into three distinct parameterizations, one to simulate turbulent mixing in the 109 

Planetary Boundary Layer (PBL) in response to surface forcing and forcing in the free troposphere, one to simulate 110 

subgrid scale shallow and deep convection, and one to include grid-scale cloud microphysics. While coupling between 111 

parameterizations varies between GCMs, it is an established practice to let detrained condensates from convective 112 

updrafts serve as sources for non-convective grid-scale clouds, as precipitating anvils and cirrus outflow. We suggest 113 

that uncertainties in parameterizing moist convection and impact on grid-scale clouds may explain a major part of the 114 

differences in the LWP and IWP simulated between the CMIP3 and CMIP5 GCMs. In recent years, efforts have been 115 

made to develop unified cloud parameterizations to represent all cloud types and alleviate the need to parameterize 116 

complex interactions between stratiform, shallow convective, and deep convective clouds (Guo et al., 2015; Storer et 117 

al., 2015; Thayer et al., 2015). Using the global Model for Prediction Across Scales (MPAS; Skamarock et al., 2012), 118 

Fowler et al. (2016) discuss the sensitivity of simulated precipitation as spatial resolution increases from hydrostatic 119 

to nonhydrostatic scales and suggest to further analyze the associated sensitivity of simulated clouds and TOA 120 

radiation. Results show that as subgrid scale convective motions are increasingly resolved, diagnostic precipitation 121 

from the scale-aware Grell-Freitas (GF; Grell and Freitas, 2014) deep convection scheme decreases while prognostic 122 

precipitation from the WSM6 (Hong and Lim, 2006) cloud microphysics scheme increases over the refined area of 123 
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the variable-resolution mesh. Vertical profiles of the cloud liquid and ice water mixing ratios and cloud fraction 124 

highlight the redistribution of cloud condensates and relative humidity with height in the refined area in response to 125 

decreased contribution of convective detrainment of cloud liquid water and ice. However, Fowler et al. (2016) do not 126 

further address if variations in the vertical profiles of cloud condensates lead to improved LWP, IWP, and cloud optical 127 

properties against satellite-derived data. 128 

The objectives of our research are threefold. First, we want to assert that our suite of PBL, deep and shallow 129 

convection, and cloud microphysics parameterizations tested in MPAS at hydrostatic and nonhydrostatic scales for 130 

medium-range spring forecasts over the Continental United States (Schwartz, 2019; Wong and Skamarock, 2016) can 131 

also be used to produce month-long simulations of tropical convection, narrowing our analysis on the Tropical Pacific 132 

Ocean. In order to broaden our research and possibly generalize our results, we also implemented the scale-aware 133 

MultiScale Kain-Fritsch (MSKF; Glotfelty et al., 2019; Zheng et al., 2016) parameterization of deep and shallow 134 

convection in addition to GF. Second, we want to evaluate the ability of MPAS to simulate the LWP, IWP, cloudiness, 135 

and TOA long- and short-wave radiation against the Clouds and the Earth’s Radiant Energy System (CERES; Wielicki 136 

et al., 1996) Single Scanner FootPrint (SSF; Minnis et al., 2011) data set, and precipitation against the TRMM 137 

Multisatellite Precipitation Analysis (TMPA; Huffman et al., 2007). Our third goal aims at understanding differences 138 

in the LWP, IWP, precipitation, and cloud radiative effects as functions of horizontal resolution with GF and MSKF 139 

using the capability of local mesh refinement developed for MPAS. 140 

In Section 2, we summarize the characteristics of the GF and MSKF parameterizations of deep and shallow 141 

convection. In Section 3, we provide a short description of MPAS, including physics parameterizations used with both 142 

convective parameterizations, the design of our experiments using the uniform- and variable-resolution meshes, and 143 

description of the satellite data sets used to validate our results. In Section 4, we analyze our results in terms of 144 

precipitation and varying contribution of the convective and grid-scale precipitation to the total precipitation as a 145 

function of horizontal resolution. In Section 5, we compare the LWP, IWP, and TOA long- and short-wave radiation 146 

against satellite data. In Section 6, we discuss some of our findings. Finally, in Section 7, we summarize our results 147 

and propose areas of future research. 148 

2 Description of the convective parameterizations 149 

Mass flux-based convective parameterizations distinguish themselves through the use of different triggering 150 

functions to initiate convection, the details of their entraining-detraining cloud models, and formulation of their 151 

closures that control the intensity of convection and computation of the cloud base mass flux. For convective 152 

parameterizations that include deep and shallow convection, criteria that characterize the two kinds of convection 153 

strongly vary. Furthermore, how convective parameterizations account for the dependence of convection on the 154 

horizontal resolution differs in complexity. In this section, we summarize the chief characteristics of GF and MSKF, 155 

including differences in their treatment of deep and shallow convection, and horizontal-scale dependence. 156 
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2.1 The Grell-Freitas (GF) parameterization 157 

The version of GF used in our numerical experiments is that implemented in version 3.8.1 of the Advanced 158 

Research Weather Research Forecast model (Skamarock et al., 2008), as described in Grell and Freitas (2014). Its 159 

properties are first discussed in Grell (1993) and later expanded in Grell and Devenyi (2002) to include stochasticism. 160 

GF treats deep and shallow convection separately by using different initial entrainment rates (7x10-5 m-1 and 1x10-2 161 

m-1 for deep and shallow convection, respectively) to control the depth of convective layers and different closures to 162 

calculate the cloud base mass flux. GF includes an ensemble of closures from well-known convective 163 

parameterizations to compute a mean cloud-base mass flux. For deep convection, these four closures are the AS closure 164 

(Arakawa and Schubert, 1974) that assumes instantaneous equilibrium between the large-scale forcing and subgrid-165 

scale convection; the W closure (Brown, 1979; Frank and Cohen, 1987) that relates the cloud base mass flux to the 166 

grid-scale upward vertical velocity; the MC closure (Krishnamurti et al., 1983) that calculates the cloud base mass 167 

flux as a function of the vertically-integrated vertical moisture advection; and the KF closure (Kain and Fritsch, 1993) 168 

that reduces the convective available potential energy over a prescribed convective time-scale. Qiao and Liang (2015) 169 

analyze the separate and combined impacts of the four closures on the simulated summer precipitation over the United 170 

States coastal oceans. On the one hand, they found that computing the cloud base mass flux using the W and MC 171 

closures led to precipitation patterns and amounts that are in better agreement against TMPA data than those using the 172 

AS and KF closures. On the other hand, they found that the AS and KF closures yield improved diurnal cycle of 173 

precipitation relative to the other two closures. In our numerical experiments, GF gives an equal weight to each closure 174 

to calculate the mean cloud base mass flux for deep convection. As for deep convection, GF includes different closures 175 

for shallow convection. In our numerical experiments using GF, we choose the boundary layer quasi-equilibrium 176 

(BLQE) closure of Raymond (1995) for shallow convection. 177 

Both types of convection transport total water and moist static energy in a conservative manner but neglect to 178 

include ice phase processes in updrafts and downdrafts. In this version of GF, the only feedback between shallow 179 

convection and the large-scale environment is lateral and cloud-top detrainment of water vapor and corresponding 180 

heating, as liquid water formed in shallow updrafts evaporates immediately. Deep convection returns potential 181 

temperature, water vapor, and condensed water tendencies to the environment. Detrained condensed water acts as a 182 

source of liquid water (ice) if the large-scale temperature is warmer (colder) than the prescribed 258 K threshold. 183 

While GF assumes that shallow convective plumes are not deep enough to produce precipitation, the conversion of 184 

liquid water to rain water in deep convective plumes depends on a simple Kessler-type (Kessler, 1969) conversion 185 

threshold and precipitation reaches the surface instantaneously. 186 

As discussed in Grell and Freitas (2014), deep convection includes a simplified representation of the unified 187 

parameterization of deep convection described in Arakawa and Wu (2013). Arakawa and Wu (2013) demonstrate that 188 

mass flux-based convective parameterizations can be modified to work at all resolutions spanning between hydrostatic 189 

and nonhydrostatic scales through the reduction of the convective vertical eddy transport as a quadratic function of 190 

the horizontal fraction of the grid box occupied by convective updrafts. In GF, the convective updraft fraction (s) is 191 
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computed as a simple function of the initial entrainment rate (e  = 7x10-5 m-1 ) and half-width radius (R) of convective 192 

updrafts following Simpson and Wiggert (1969), or 193 

𝝈 = 𝝅𝑹𝟐

𝑨
					and					𝑹 = 	 𝟎.𝟐

𝜺
		 	 	 	 	 	 	 (1)	194 

where A is the area of the grid box. In Eq. (1), s  is not allowed to exceed 0.7, based on the discussion of Grell and 195 

Freitas (2014). As discussed in Fowler et al. (2016), when s  becomes greater than 0.7, s  is set to 0.7 and e is 196 

recalculated using Eq. (1), leading to increased entrainment and decreased convective cloud-tops as A becomes 197 

smaller. Another option would be to turn off deep convection when s  reaches values close to 1, in which case a better 198 

choice for its maximum value may be between 0.9 and 1 (Grell and Freitas, 2014).  Figure 1.a highlights the rapid 199 

decrease in s from 0.7 to 0.3 as spatial resolution decreases from 6 to 9 km. s further decreases from 0.3 to 0.1 for 200 

resolutions between 9 and 16 km, and from 0.1 to 0.05 for resolutions between 16 and 30 km. The (1-s)2 quadratic 201 

function used to scale the mass flux starts to be significant at resolutions greater than 20 km and decreases rapidly to 202 

a minimum value of 0.1 for horizontal grid-spacing smaller than 6 km. Using a maximum value for s ensures that 203 

over the most refined area of the mesh, parameterized deep convection is not completely turned off since deep 204 

convection is not explicitly resolved. Using a variable-resolution mesh varying between 50 km over the coarse area 205 

of the mesh down to 3 km over the refined area of the mesh centered over South America, Fowler et al. (2016) show 206 

that the impact of parameterized deep convection weakens and that of grid-scale cloud microphysics strengthens as 207 

horizontal grid-spacing increases from hydrostatic to nonhydrostatic scales. 208 

 209 
Figure 1: (a) Convective updraft fraction as a function of the mesh resolution used to scale the cloud base mass flux in GF; and (b) 210 
scaling factor as a function of the mesh resolution used to scale the convective time-scale in MSKF. 211 
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2.2 The Multi-Scale Kain-Fritsch (MSKF) parameterization 212 

MSKF is the scale-aware version of the Kain-Fritsch (KF) convective parameterization, first developed by Kain 213 

and Fritsch (1990; 1993), and later updated by Kain (2004) to include, among other improvements, non-precipitating 214 

shallow convection. The trigger function is that used in Fritsch and Chappell (1980), originally tested in Kain and 215 

Fritsch (1992) and recently in Suhas and Zhang (2014). In MSKF, convection may be triggered if the temperature of 216 

a mixed layer is greater than that of the environment. The pressure thickness of that mixed layer must be at least 50 217 

hPa thick and is computed as the sum of adjacent layer depths starting at the layer next to the surface. The mixed layer 218 

temperature is a pressure-weighted function of the temperatures in those adjacent layers after being lifted to the Lifting 219 

Condensation Level (LCL) plus a perturbation temperature linked to the magnitude of the grid-scale vertical motion 220 

at the LCL. Once the base of a potential updraft source layer is found, convection remains activated if the vertical 221 

velocity of an air parcel lifted using the Lagrangian parcel method remains positive for a minimum cloud depth of 3 222 

km, as a test that the convective instability is strong enough for the air parcel to reach the Level of Free Convection 223 

(LFC). If not, the procedure is repeated by moving up to the next model layer until a new updraft source layer is found 224 

or until the search reaches above the lowest 300 hPa of the atmosphere. Further details on the equations used to 225 

compute the perturbation temperature and parcel vertical velocity are found in Kain (2004). 226 

In MSKF, the closure assumption assumes that the Convective Available Potential Energy in a cloud layer is 227 

removed within a time adjustment period following Bechtold et al. (2001). The convective time-scale is defined as the 228 

advective time-scale in the cloud layer with maximum values of 1 h and 0.5 h for deep and shallow convection, 229 

respectively. In contrast to GF, the thermodynamics inside the cloud model includes the ice phase. The condensed 230 

water formed in each cloudy layer is partitioned between liquid water and ice, assuming a linear transition of the cloud 231 

temperature between 268 K and 248 K. A fraction of the condensed water converts to rain, following Ogura and Cho 232 

(1973), and reaches the ground instantaneously. As discussed in Kain (2004), when an updraft source layer is 233 

identified, the classification of a convective cloud layer as deep or shallow depends on the cloud depth. Shallow 234 

convection is activated when all the criteria for deep convection are met, but the depth of the updraft is shallower than 235 

the minimum cloud depth (3 km). This definition implies that shallow and deep convection are not allowed to coexist. 236 

In the case of shallow convection, precipitation formed in updrafts is detrained to the environment as rain or snow, 237 

providing an additional moisture source to the large-scale environment. As in GF, MSKF provides tendencies of 238 

temperature, water vapor, cloud liquid water/ice to the environment, and tendencies of rain and snow from shallow 239 

convection. 240 

MSKF contains many improvements over KF, as summarized in the supplemental material of Glotfelty et al. 241 

(2019). These improvements include subgrid-scale cloud feedbacks to radiation from both shallow and deep 242 

convection leading to more realistic surface downward radiation, as described in Alapaty et al. (2012), and the scale 243 

dependence of fundamental parameters so that MSKF can be used at spatial resolutions varying between hydrostatic 244 

and nonhydrostatic scales. As detailed in Glotfelty et al. (2019) and Zheng et al. (2016), MSKF uses a scale dependent 245 

formulation (b) to the adjustment time-scale (t) for deep and shallow convection based on Bechtold et al. (2008), or 246 

𝝉 = 	 𝑯
𝑾𝒄𝒍

	𝜷					and					𝜷 = 𝟏 + 𝒍𝒏 :𝟐𝟓
∆𝒙
>	 	 	 	 	 (2)	247 
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where H and Wcl are the depth of the convective cloud and cloud-averaged vertical velocity scale, and Dx is the grid 248 

spacing. Figure 1.b highlights the dependence of the b scaling parameter as a function of horizontal resolution. As 249 

many MSKF parameters are optimized for a resolution around 25 km (Kain, 2004), b is equal to 1 at 25 km, ramping 250 

up to values greater than 2.4 for resolutions higher than 6km. Because the adjustment time-scale is proportional to 251 

b (Zheng et al., 2016), it increases as horizontal resolution increases, leading to scale-aware stabilization of the 252 

atmosphere by MSKF. In addition, MSKF includes a new scale-aware formulation of the minimum entrainment rate 253 

using the LCL as a function of the scale-dependent Tokioka parameter (Tokioka et al., 1988), a scale-dependent 254 

conversion rate for liquid water and ice condensates to precipitation, an increased grid-scale velocity expressed in 255 

terms of the subgrid scale updraft mass flux, and elimination of double counting of precipitation in cloudy layers. The 256 

separate and combined impacts of the development of MSKF on high resolution weather forecasts and regional climate 257 

simulations are discussed in Herwehe et al. (2014), Mahoney (2016), He and Alapaty (2018), Zheng et al. (2016), and 258 

Glotfelty et al. (2019). 259 

3 Methodology 260 

3.1 Numerical experiments 261 

We discuss differences in our MPAS results between GF and MSKF configurations on precipitation, cloud 262 

properties, and TOA radiation using 30-day long numerical experiments in MPAS (Skamarock et al., 2012). MPAS 263 

is a global nonhydrostatic atmospheric model developed for NWP and climate studies. The horizontal discretization 264 

uses an unstructured spherical centroidal Voronoi tessellation with a C-grid staggering, as described in Ju et al. (2011), 265 

while the vertical discretization is the height-based hybrid terrain-following coordinate of Klemp (2011). The 266 

dynamical solver integrates the prognostic equations (cast in flux form) for the horizontal momentum, vertical 267 

velocity, potential temperature, dry air density, and scalars using the split-explicit technique of Klemp et al. (2007). 268 

The temporal discretization uses a third-order Runge-Kutta scheme and the explicit time-splitting technique described 269 

in Wicker and Skamarock (2002). We use the monotonic option of the scalar transport scheme of Skamarock and 270 

Gassmann (2011) for horizontal and vertical advection of all moist scalars on the unstructured Voronoi mesh. Finally, 271 

horizontal filtering of the state variables is based on Smagorinsky (1963), as described in Skamarock et al. (2012). For 272 

variable-resolution meshes, the eddy viscosity coefficient is scaled as a function of the inverse mesh density so that 273 

horizontal diffusion is increased in the coarse area relative to the refined area of the mesh. 274 

In MPAS, the computational flow includes three distinct steps. The first step calls the physics parameterizations 275 

that update the surface energy budget and calculate the tendencies of potential temperature, moist species, and zonal 276 

and meridional wind due to long- and short-wave radiation, sub-grid scale convection, condensation and mixing in 277 

the PBL and free troposphere, and gravity wave drag due to orography. The physics parameterizations use the same 278 

input surface boundary conditions and soundings to compute their respective tendencies. Besides GF and MSKF, these 279 

parameterizations are, 280 

• the Noah land surface parameterization described by Chen and Dudhia (2001), 281 
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• the long- and short-wave Rapid Radiative Transfer Model for GCMs (RRTMG) described by Mlawer et al. (1997) 282 

and Iacono et al. (2000), 283 

• the semi-empirical parameterization of the cloud fraction of grid-scale clouds from Xu and Randall (1996) and 284 

convective clouds from Xu and Krueger (1991) for use in the long- and short-wave RRTMG schemes. Following 285 

Xu and Randall (1996), the fractional amount of grid-scale clouds is a function of the relative humidity and grid-286 

averaged condensate mixing ratio of cloud liquid water, ice, and snow. In MSKF, the fractional amount of shallow 287 

and deep convective clouds depends on the convective mass flux. 288 

• the Mellor–Yamada–Nakanishi–Niino (MYNN) Planetary Boundary Layer (PBL) and surface layer scheme 289 

described by Nakanishi and Niino (2009) with many updates described in Olson et al. (2019), and 290 

• the gravity wave-drag parameterization of Hong et al. (2008). 291 

The second step calls the dynamical solver which updates the state variables with their respective diabatic 292 

tendencies in conjunction to applying horizontal and vertical advection. Finally, the third step calls the grid-scale cloud 293 

microphysics parameterization so that at the end of the model time-step, supersaturation has been entirely removed or 294 

the relative humidity does not exceed 100%. Unlike the physics parameterizations listed in step one, the grid-scale 295 

cloud microphysics scheme updates the potential temperature and moist species for the next time-step instead of 296 

providing individual tendencies. The bulk cloud microphysics parameterization of Thompson et al. (THOM; 2004, 297 

2008) is used in all our numerical experiments. THOM includes prognostic equations for temperature, mass mixing 298 

ratio of water vapor, cloud liquid water, rain, cloud ice, snow, and graupel, and number concentration of cloud ice and 299 

rain. We set the number concentration of cloud droplets to 300x106 m-3 over land and 100x106 m-3 over oceans. In 300 

RRTMG, we diagnose the radiative effective radii of cloud liquid water, cloud ice, and snow as functions of the 301 

THOM cloud particle assumptions to add coupling between the cloud microphysics and cloud optical properties, as 302 

discussed in Thompson et al. (2016). 303 

To compare the two convective parameterizations against satellite-derived data at hydrostatic scales, we use a 304 

quasi-uniform resolution mesh for which the mean distance between cell centers is 30 km, corresponding to 655,362 305 

cells. The vertical scale includes 55 layers with monotonically increasing thicknesses varying from 50 meters next to 306 

the surface to 700 meters below 10 km to 1000 meters below the model top over ocean cells. The model top is set at 307 

30 km. The dynamics and physics time-steps are both set to 150 s, and the horizontal diffusion length scale is set to 308 

30 km. Long- and short-wave radiation is called every 15 mins and THOM is cycled twice so that the cloud 309 

microphysics time-step is less than 90 s to ensure computational stability (Thompson, private communication). With 310 

each convection scheme, we have performed a one-month long experiment preceded by a two-day spin-up to simulate 311 

Northern Hemisphere early winter, initializing our experiments with ERA-Interim (Dee et al., 2011) reanalyses for 312 

0000 UTC 29 November 2015. ERA-Interim sea surface temperatures and sea ice fractions are used to update ocean 313 

cells daily. We refer to our quasi-uniform resolution experiments run with GF and MSKF as GFu and MSKFu, 314 

respectively. 315 
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3.2 Sensitivity experiments 316 

Using a variable-resolution mesh spanning between 50 km and 3 km in MPAS, Fowler et al. (2016) demonstrate 317 

that subgrid-scale convection parameterized with GF weakens and grid-scale cloud microphysics parameterized with 318 

WSM6 (Hong and Lim, 2006) strengthens as resolution increases from the coarse to the most refined area of the mesh. 319 

Over the most refined area, grid-scale precipitation contributes a major part to total precipitation, and vertical profiles 320 

of subgrid-scale deep convective heating and drying resemble those obtained with a precipitating shallow convection 321 

scheme. Fowler et al. (2016) suggest investigating the effect of variable resolution on cloud macrophysical properties 322 

and TOA radiation, as grid-scale cloud microphysics parameterizations provide a more physically-based description 323 

of condensation and precipitation over the refined area of the mesh, compared to simpler entraining-detraining cloud 324 

models used in parameterized convection schemes. With the aim to quantify changes in cloud properties and radiation 325 

across scales using GF and MSKF, we repeat the early winter experiments but with a variable-resolution mesh that 326 

spans between 30 km and 6 km and includes 1,622,018 cells. As shown in Fig. 2.a, we center the refined area of the 327 

mesh over the Pacific warm pool defined as the area of the Western Pacific Ocean where sea-surface temperatures 328 

(SSTs) exceed 28.5°C, or between 170°E and 140°W. East of 140°W, the north-south width of warmest SSTs across 329 

the transition zone between the refined and coarse mesh narrows to delineate the location of the ITCZ in the Tropical 330 

Eastern Pacific. West of 170°E, the end of mesh refinement borders the eastern tip of Papua New Guinea. Along the 331 

Equator, the transition zone between nonhydrostatic and hydrostatic scales spans 20° in the meridional direction on 332 

either side of the most refined area of the mesh. 333 
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  334 
Figure 2: (a) Initial sea-surface temperature and refined variable-resolution mesh depicted using isolines of the mean distance 335 
between grid-cell centers (km) over the Tropical Pacific Ocean; and (b) histogram of the number of cells as a function of the mean 336 
distance between grid-cell centers. 337 

Figure 2.b displays a histogram of the mean distance between grid-cell centers. Differences between the initialization 338 

of the variable- and quasi uniform-resolution experiments include a reduced time-step from 150 s to 30 s and a reduced 339 

minimum horizontal diffusion length scale from 30 km to 6 km. Also, THOM is called only once per physics time-340 

step. We refer to our variable-resolution experiments run with GF and MSKF as GFv and MSKFv, respectively. 341 

Differences between GFu, GFv, MSKFu, and MSKFv are listed in Table 1. We acknowledge that running single 30-342 

day long experiments is a non-traditional way to assess the performance of convective parameterizations in an NWP 343 

framework but is needed to provide increased satellite sampling when comparing simulated clouds and precipitation 344 

against observations. Judt (2020) computes the predictability of the atmosphere using global convection-permitting 345 

simulations with the same version of MPAS as in this study, but with a global uniform mesh with a 4 km cell spacing. 346 

Results show that the predictability of the tropics (> 20 days) is longer than that of the extratropics and polar regions 347 

(~ 2 weeks) when deep convection is mostly resolved. Using the Center for Ocean-Land-Atmosphere Studies GCM 348 

with a triangular T63 truncation and the relaxed Arakawa-Schubert parameterization of deep convection (Moorthi and 349 

Suarez, 1992), Strauss and Paolino (2008) demonstrate greater predictability in the tropics than in the extratropics at 350 
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hydrostatic scales. As our comparison between experiments and satellite data focuses on the tropical Pacific Ocean, 351 

we are confident that biases arising during the first 2 weeks persist at longer time-scales and remain clearly depicted 352 

in their monthly means. In order to further assess the robustness of our results, we also compare the 30-day versus 10-353 

day mean LWP, IWP, and precipitation to ensure that biases discussed in Sections 4 and 5 are qualitatively similar as 354 

those observed at shorter time-scales (not shown for brevity). 355 

 GFu MSKFu GFv MSKFv 

No. of cells 655,362 655,362 1,622,018 1,622,018 

Min. cell distance (km) 22.8 22.8 4.4 4.4 

Max. cell distance (km) 31.8 31.8 37.8 37.8 

Time-step (s) 150 150 30 30 

Minimum diffusion length scale (km) 30 30 6 6 

CP GF MSKF GF MSKF 

Table 1: Horizontal mesh resolution, minimum and maximum distance between grid-cell centers, time-step, horizontal diffusion 356 
length scale, and convective parameterization (CP) for numerical experiments with the quasi uniform- and variable-resolution 357 
meshes. 358 

3.3 Satellite data sets 359 

We compare the cloud liquid water path (LWP) and ice water path (IWP), cloud area fraction (CF), and the top-360 

of-the-atmosphere longwave upward (TOALW) and shortwave net (TOASW) radiation simulated in our numerical 361 

experiments against the Edition-4 Single Scanner Footprint (SSF) products from the Clouds and the Earth’s Radiant 362 

Energy System (CERES; Wielicki et al., 1996). Minnis et al. (2011) describe in great details the retrieval of 363 

simultaneous and collocated radiation fluxes and cloud properties from the CERES radiometers and the Moderate-364 

resolution Imaging Spectroradiometer (MODIS) using consistent algorithms and calibration across satellite platforms, 365 

and shared auxiliary input (temperature and humidity profiles). SSF data are available in two different formats. The 366 

first data file format contains one hour of radiation fluxes and cloud properties at the instantaneous CERES 20 km 367 

footprint level from the sun-synchronous afternoon (morning) equatorial crossing time Aqua (Terra) satellites. As 368 

illustrated in Minnis et al. (2011; their Fig. 15), the CF in each SSF is given in terms of a clear fraction, a fraction for 369 

an upper and lower cloud layer separately, and a fraction for an upper layer over a lower layer, although the overlap 370 

CF is not available and set to zero in the Edition 4 release version that we are using. The LWP, IWP, and all other 371 

cloud fields are provided for the lower and upper layers, separately. Figure 3 illustrates two orbits of the Aqua satellite, 372 

one between 00 GMT and 01 GMT, and one between 14 GMT and 15 GMT, showing the TOALW (top panel) and 373 

CF (bottom panel), after gridding the hourly orbital data to a 0.2°x0.2° latitude-longitude grid. Gridded radiation fluxes 374 

and cloud data are means over all SSF data contained inside each rectangular grid, after applying a linear interpolation 375 

to reduce the number of missing values. Missing values, highlighted in gray in all figures, depict rectangular grids that 376 

did not contain radiation and cloud data in any of the SSF inside the 0.2°x0.2° grid. As seen in Fig. 3, our gridding of 377 

the orbital data removes most of the missing data along each orbit, providing a clear depiction of the relationship 378 
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between the TOALW and CF for cloudy and cloud-free grid cells. Areas of high (low) TOALW coincide with areas 379 

of small (large) cloudy areas, but it is also interesting to note that areas of each orbit are characterized as overcast in 380 

conjunction with areas that are not as spatially uniform in TOALW as in CF. 381 

 382 
Figure 3: Orbital paths of the Aqua satellite between 00 GMT-01 GMT and 14 GMT-15 GMT after binning the SSF data onto a 383 
0.2°x0.2° rectangular grid for (a) the TOA all-sky upward long-wave radiation, and (b) the cloudy percent area coverage for 1st 384 
December 2015. 385 

The second data file format (SSF1deg) includes daily and monthly averages of the original SSF orbital data but 386 

interpolated on a 1°x1° latitude-longitude grid. The difficulty in using hourly higher-resolution orbital data instead of 387 

monthly mean lower-resolution 1°x1° latitude-longitude gridded product is that the former are available in two distinct 388 

dynamic layers while the latter is provided at fixed pressure levels and for the atmospheric column. The lower and 389 

upper layers are referred to as dynamic layers because the cloud-top (base) pressure of each layer varies between SSFs 390 

along each orbit. The advantage of using orbital hourly data is that they can be gridded and interpolated to a spatial 391 

resolution close to that of our uniform and variable-resolution numerical experiments prior to computing monthly 392 

mean radiation and cloud fields. We choose the 0.2°x0.2° latitude-longitude gridded hourly data derived from the first 393 

data file format through the entire manuscript. 394 
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In order to best compare the simulated against satellite-derived LWP and IWP, we need to understand the 395 

partitioning of the SSF LWP and IWP between the two cloud layers. In brief, a lower and an upper cloud layer can be 396 

detected simultaneously if they lie adjacent to each other inside an SSF. In that case, the cloud properties for each 397 

layer are reported separately. In the case when an opaque upper cloud layer is detected to be above a lower cloud 398 

layer, it is impossible to identify the two layers separately. Then, only one cloud layer is reported and always classified 399 

as the lower cloud layer, regardless of its cloud-base (top) pressure (Loeb, private communication). Further details on 400 

the cloud classification, including determination of the cloud phase, are found in Geier et al. (2003) and Minnis et al. 401 

(2011). Figure 4 shows the monthly-mean LWP, IWP, and CF for the lower (left panels) and upper (right panels) layer 402 

measured by Aqua for December 2015 over the Tropical Pacific Ocean. Figure S1 is as Fig. 4, but for the Terra satellite 403 

(see supplemental figures). LWP and IWP are in-cloud values meaning that they have not been weighted by CF. The 404 

lower cloud layer includes stratiform clouds that form over colder sea-surface temperatures along the coast of Peru 405 

and off the Baja Peninsula. Over these areas of CF greater than 72% for the lower cloudy layer, CF for the upper cloud 406 

layer is less than 8%, highlighting that a single layer of low-level clouds fills a major fraction of the SSF. Increased 407 

values of CF are seen in conjunction with increased (decreased) values for the LWP (IWP) in the lower cloud layer 408 

indicative of warm-phase clouds, as well seen as off the coast of Peru. High values for the CF and IWP juxtaposed 409 

with lower values for the LWP in the lower cloud layer depict clearly deep convection over the Eastern Pacific Ocean, 410 

ITCZ, and warm pool region. Over areas of deep convection, upper cloud layers are often detected in conjunction with 411 

lower cloud layers within the same SSF but are defined by decreased values for the CF and IWP. For the LWP, the 412 

coexistence of a lower and upper cloud layer is quite infrequent, as seen by the number of missing grid-points in Fig. 413 

4.b (S1.b). Where detected, the LWP in the upper layer exceeds that in the lower layer, indicative of warm-phase 414 

mature thicker cumulus clouds coexisting with developing thinner cumulus clouds in the lower layer. Finally, outside 415 

of the typical stratus cloud regions and either sides of the ITCZ and warm pool region, SSF data reveal extended 416 

regions of warm-phase thinner clouds characteristic of widespread shallow convection over tropical oceans. 417 
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 418 
Figure 4: Monthly-mean cloud liquid water path (LWP, top panels), cloud ice water path (IWP, middle panels), and cloud fraction 419 
(CLD, bottom panels) over the Tropical Pacific Ocean for December 2015 from the Aqua satellite. Panels (a), (c), and (e) are for 420 
the lower cloud layer; panels (b), (d), and (f) are for the upper cloud layer. 421 

Calculating the satellite-retrieved LWP and IWP in an atmospheric column for validation of those from our 422 

numerical simulations is a two-step process. Because simulated LWPs and IWPs are grid-cell mean values and not 423 

local values, we first multiply the SSF LWP and IWP by CF to get their mean values in the lower and upper cloud 424 

layers separately, prior to gridding the hourly orbital data. Second, because the lower and upper layers are defined as 425 

adjacent to each other and never overlap in an SSF, we simply add the grid-cell mean LWP and IWP in the lower layer 426 

to that in the upper layer to compute the total LWP and IWP. Our processing method is simpler than the processing 427 

steps taken by the CERES Science Team to spatially grid and temporally average SSF hourly orbital data to SSF1deg 428 

gridded monthly mean data. Figure 5 compares the monthly-mean 0.2°x0.2° latitude-longitude CF-weighted LWP 429 

and IWP and CF (left panels) against the SSF1deg products (right panels) for December 2015 over the Tropical Pacific 430 

Ocean. The top panels of Fig. 5 show that our method reproduces successfully the geographical patterns and magnitude 431 
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of the LWP over the Tropical Pacific when compared against the SSF1deg data for both months. In contrast, because 432 

our method does not weigh the IWP as a function of height, it systematically overestimates the SSF IWP when 433 

compared against the SSF1deg data, as seen over the ITCZ and South Pacific Convergence Zone (SPCZ) in both 434 

months. 435 

 436 

 437 
Figure 5: Monthly-mean cloudy area-weighted cloud liquid water path (LWP, top panels), cloudy-area weighted cloud ice water 438 
path (IWP, middle panels), and cloud fraction (CLD, bottom panels) over the Tropical Pacific Ocean for December 2015. Panels 439 
(a), (c), and (e) are SSF data; panels (b), d), and (f) are SSF1deg climatological data. 440 

Using ice water content data from the ascending (daytime) and descending (nighttime) portion of CloudSat orbits, 441 

Waliser et al. (2009; Fig. 7) estimate that day-night fluctuations in the ice water content at 215 hPa account for as 442 

much as 13% (20 %) of the annual mean ice water content over the warm pool (Tropical Eastern Pacific), in response 443 

to the diurnal cycle of deep convection over the tropical oceans. Therefore, when computing the monthly-mean CF, 444 

LWP, IWP, TOALW, and TOASW produced with GFu, GFv, MSKFu and MSKFv, we first sample the hourly model 445 
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diagnostics in accordance with the Aqua and Terra satellite orbits in order to reduce biases from different diurnal 446 

sampling between our experiments and SSF data. Because the MODIS-based retrieval of the LWP and IWP is 447 

insensitive to precipitation, and the rain, snow, and graupel mixing ratios are prognostic variables in THOM and fall 448 

through the atmosphere at finite velocities, we infer that the LWP and IWP must include all precipitating and non-449 

precipitating condensates.  450 

In addition to CERES SSF data, we use the monthly-mean precipitation rates from the TRMM Multisatellite 451 

Precipitation Analysis (TMPA Version 7; Huffman et al., 2007) to compare simulated versus observed precipitation 452 

rates, and monthly mean ERA-Interim reanalyses (Dee et al., 2011) to compare simulated versus observed precipitable 453 

water in the lower troposphere. 454 

4 Simulated versus satellite-retrieved precipitation 455 

4.1 Incidence of subgrid-scale shallow and deep convection 456 

Differences in the treatment of interactions between shallow and deep convection in GF and MSKF, as described 457 

in Section 2, are bound to modify the partitioning between shallow and deep convection as spatial resolution increases 458 

over the refined area of the mesh. A useful diagnostic to analyze the response of shallow and deep convection to local 459 

mesh refinement is the incidence of convection. Because shallow convection in both GF and MSKF is non-460 

precipitating, we set the incidence of shallow convection to 100 % when cloud-tops of shallow convective updrafts 461 

are detected, and 0 % otherwise. We set the incidence of deep convection to 100 % when convective precipitation 462 

occurs and 0 % otherwise. Figures 6 and 7 highlight the impact of the horizontal scale dependence of convection on 463 

the monthly-mean incidence of subgrid-scale shallow and deep convection in our uniform- and variable-resolution 464 

experiments for December 2015. 465 

Figure 6 shows that simulated shallow convection occurs over the entire Tropical Pacific, and that its incidence 466 

is about twice as large in GFu and GFv as in MSKFu and MSKFv. In GFu and GFv, incidence in excess of 48 % 467 

covers most of the Tropical Pacific, including the ITCZ and warm pool where GF allows shallow and deep convection 468 

to occur simultaneously. GFu and GFv exhibit highest incidence of shallow convection off the coast of Peru where 469 

persistent low-level stratiform clouds are formed. In contrast, the incidence of shallow convection in MSKFu and 470 

MSKFv never exceeds 32 % over the entire domain and is less than 16 % over the ITCZ and warm pool where shallow 471 

and deep convection are not allowed to coexist in MSKF. The bottom panels highlight differences in the incidence of 472 

shallow convection between GFv and GFu, and MSKFv and MSKFu. Despite the fact that GF does not include a 473 

spatial scale dependence in its formulation of shallow convection, GFv produces reduced shallow convection relative 474 

to GFu over most of the Tropical Pacific, except most notably immediately off the coast of Peru. In contrast to GFv, 475 

MSKFv yields increased incidence of shallow convection over most of the warm pool region. In MSKF, the height of 476 

deep convective clouds decreases as horizontal resolution increases. As the classification between deep and shallow 477 

convection is a function of cloud depth, convective clouds originally defined as deep are reclassified as shallow, 478 

leading to increased incidence of shallow convection in the refined area of the mesh. 479 
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 480 
Figure 6: Monthly-mean incidence of shallow convection (SHALC) over the Tropical Pacific Ocean simulated in GFu and MSKFu 481 
(top panels) and GFv and MSKFv (middle panels), and difference in the incidence of shallow convection between GFv and GFu 482 
(bottom left panel) and MSKFv and MSKFu (bottom right panel) for December 2015. 483 

In Fig. 7, the top and middle panels show that, in contrast to shallow convection, the incidence of deep convection 484 

has the same order of magnitude in GFu and MSKFu, and GFv and MSKFv. The top panels reveal that the incidence 485 

of deep convection is higher in MSKFu than GFu over the ITCZ and warm pool. In MSKFu, a sharp transition between 486 

areas of high and low incidence of deep convection causes areas outside of the ITCZ and warm pool to be mostly void 487 

of deep convection, as seen between 10°N and 30°N. In GFu, the incidence of deep convection is decreased over the 488 

warm pool relative to the ITCZ west of 160°W. Outside of the ITCZ and warm pool, GFu and GFv lead to higher 489 

incidence of deep convection than MSKFu and MSKFv because, in contrast to MSKF, GF allows deep and shallow 490 

convection to coexist in the same grid-cell. Middle panels highlight decreased incidence of subgrid-scale deep 491 

convection inside the refined area of the mesh over the warm pool in both GFv and MSKFv, as we expect clouds to 492 
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be resolved on the higher resolution grid, in conjunction with increased incidence east and west of the refined area. 493 

The decreased incidence in the refined area is more pronounced between MSKFu and MSKFv than between GFu and 494 

GFv whereas the upscaling impact of spatial refinement outside the refined area is greater in GFv than MSKFv. The 495 

scale-aware formulation in GF does not produce the same contrast between the refined and coarse mesh in GFv and 496 

GFu as that in MSKF in MSKFv and MSKFu. Fig. 7.f reveals a reduced incidence in excess of 25 % between MSKFu 497 

and MSKFv starting at resolutions higher than 12 km flanked by increased incidence of deep convection east and west 498 

of the refined area. In contrast, Fig. 7.e displays a longitudinal band of decreased incidence of deep convection between 499 

90°W and the dateline, bordered by increased deep convection north of the equator and south of 10°S. Table 2 lists 500 

the area-averaged incidence of deep and shallow convection for an area inside the refined mesh (REFINED: 0.1°N to 501 

5.1°N; 150°W to 180°W) and an area over the Tropical Eastern Pacific (EAST: 3.1°N to 8.1°N; 90°W to 120°W), as 502 

later shown in Figure 9.a. The REFINED and EAST areas display little variation in the incidence of shallow 503 

convection between GFu (MSKFu) and GFv (MSKFv), but the incidence of shallow convection in GFu and GFv is 504 

much higher than in MSKFu and MSKFv. The incidence of subgrid-scale deep convection is higher in the EAST area 505 

compared to the REFINED area in all four experiments. Over the REFINED area, the incidence of subgrid-scale deep 506 

convection remains about the same between GFu and GFv but strongly decreases between MSKFu and MSKFv. 507 

 508 

 DEEP CONVECTION (%) SHALLOW CONVECTION (%) 

 REFINED EAST REFINED EAST 

GFu 20 30 52 52 

GFv 23 36 47 48 

MSKFu 27 33 14 17 

MSKFv 10 36 17 15 

Table 2: Area-averaged incidence of deep and shallow convection. The REFINED and EAST areas are shown in Figure 9.a. 509 

As described in Section 2, MSKF differentiates shallow from deep convection as a function of the convective 510 

cloud depth. As spatial resolution increases, the scale aware formulation leads to a reduction in the intensity of 511 

convection and depth of convective clouds, mostly deep convection, over the refined area as seen in Fig. 7.f. As the 512 

depth of convective clouds originally classified as precipitating deep convective clouds become shallower, MSKF 513 

reclassifies those same clouds as nonprecipitating shallow clouds, leading to near-equal compensation between the 514 

decreased and increased incidence of deep and shallow convection over the warm pool. In contrast to MSKF, GF 515 

causes precipitating deep convection to become precipitating shallow convection at increased spatial resolution. As 516 

this process occurs in the deep convection scheme and both cloud types precipitate, variations in the incidence of deep 517 

convection between GFu and GFv are small. Further analysis of the response of shallow convection between GFu and 518 

GFv over the refined area is beyond the objectives of this research. 519 
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 520 
Figure 7: As Fig. 6, but for the monthly-mean incidence of deep convection (DEEPC). 521 

4.2 Precipitation rates 522 

Figure 8 shows the monthly-mean convective precipitation rate simulated in GFu and MSKFu (top panels), and 523 

GFv and MSKFv (middle panels). The bottom panels in Figure 8 display the ratio between the convective precipitation 524 

rate simulated in GFv (MSKFv) and GFu (MSKFu) to contrast the impact of the scale aware formulation in GF and 525 

MSKF. The top panels highlight similar geographical patterns of convective precipitation in GFu and MSKFu. 526 

Between 80°W and 160°W, increased convective precipitation is located along the ITCZ, in conjunction with 527 

increased incidence of deep convection, as seen in Figs. 7.a-b. West of 160°W, GFu leads to decreased but more 528 

widespread convective precipitation relative to MSKFu over the warm pool, in conjunction with decreased but more 529 

widespread incidence of convection. In GF, this result infers that while deep convection is not triggered as often over 530 

the warm pool as along the ITCZ, the amount of convective precipitation produced in one time-step is higher over the 531 
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warm pool than along the ITCZ, so that monthly-mean convective precipitation rates remain about the same in both 532 

regions. In Fig. 8, and in agreement with the middle panels of Fig. 7, middle panels display a strong decrease in 533 

convective precipitation in both GFv and MSKFv over the refined area of the mesh. In MSKFv, the strong reduction 534 

in convective precipitation occurs, not only over the most refined area of the mesh, but also where horizontal grid-535 

spacing increases from 6 to 12 km. In GFv, convective precipitation increases sharply as soon as grid-spacing is greater 536 

than 12 km and exceeds that simulated in GFu over the coarse area of the mesh. In GFv, the monthly-mean convective 537 

precipitation rate is higher than that in MSKFv over the most refined area of the mesh but starts to increase more 538 

rapidly between 6 and 12 km than in MSKFv. Differences in increasing convective precipitation across the transition 539 

zone between the refined and coarse areas reflect different impacts of the scale-aware formulation in GF and MSKF. 540 

The bottom panels in Figure 8 show that the ratio in convective precipitation between GFv and GFu has the same 541 

order of magnitude as that between MSKFv and MSKFu over the refined area of the mesh. While it remains as small 542 

in the transition zone as in the refined mesh with MSKF, this ratio increases to values greater than 1 between 6 and 543 

12 km with GF, indicating increased convective precipitation on each side of the refined area in GFv relative to GFu, 544 

as also seen in Figure 8.c. Maps of monthly-mean grid-scale precipitation rates show similar geographical patterns 545 

between GFu and MSKFu. Over the refined area, increased grid-scale precipitation compensates decreased convective 546 

precipitation in both GFv and MSKFv. Over the coarse area, grid-scale precipitation decreases along the ITCZ and 547 

warm pool in GFv while remaining nearly the same in MSKFv (not shown for brevity). 548 
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 549 
Figure 8: Monthly-mean convective (DEEPC) precipitation rate over the Tropical Pacific Ocean simulated in GFu and MSKFu 550 
(top panels), GFv and MSKFv (middle panels), and ratio between the monthly-mean convective precipitation rate in GFv (MSKFv) 551 
and GFu (MSKFu) for December 2015. 552 

The simulated total precipitation rate can be compared to observed TMPA precipitation using Figs. 9 and 10 553 

which show the precipitation rates and differences between simulated and observed precipitation rates, respectively. 554 

Areas of maximum satellite-retrieved precipitation are found over the ITCZ between 130°W and the dateline (Fig. 555 

9.a). Observed precipitation decreases over the warm pool west of the dateline and decreases strongly over the Tropical 556 

Eastern Pacific (between 80ºW and 120ºW) and the SPCZ. The four simulations overestimate precipitation in the 557 

Tropical Eastern Pacific between 80ºW and 120ºW (Figs. 9.b-e) with biases in excess of 11 mm day-1 (Figs. 10.a-d). 558 

The four simulations also overestimate precipitation between 130ºE and 160ºE, or west of the refined area, with biases 559 

about as large as those seen east of the refined area, except for MSKFu. The uniform-grid results (Figs. 9.b-c) display 560 

the highest precipitation rates over the area of warmest SSTs where we expect deepest convection to occur and are in 561 
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reasonable agreement with TMPA data. However, GFu and MSKFu locate the ITCZ south of its observed location 562 

(Figs. 10.a-b), producing a positive bias straddling the Equator and a negative bias north of the Equator. The scale-563 

aware dependence of deep convection in GF leads to decreased total precipitation in GFv compared to GFu over the 564 

entire refined area (Fig. 10.e). In contrast, Fig. 10.f shows that while the scale-aware dependence in MSKF leads to 565 

decreased precipitation in MSKFv over a major fraction of the refined area, it also leads to an improved location of 566 

the simulated ITCZ, as evidenced by increased precipitation north of the Equator. 567 

 568 
Figure 9: Monthly-mean total precipitation rate over the Tropical Pacific Ocean from TMPA data (top panel) and simulated with 569 
GFu and MSKFu (middle panels) and GFv and MSKFv (bottom panels) for December 2015. 570 

Table 3 summarizes the area-mean monthly-mean convective, grid-scale, and total simulated and observed TMPA 571 

precipitation rates over the REFINED and EAST areas. Over the two areas, the simulated total precipitation is about 572 

the same for all four experiments but is underestimated (overestimated) relative to TMPA data over the REFINED 573 

(EAST) areas, respectively. Over the REFINED area, total precipitation decreases by 2.1 mm day-1 between GFu and 574 

GFv and 2.3 mm day-1 between MSKFu and MSKFv, highlighting a near-equal compensation between decreased deep 575 

convective and increased grid-scale precipitation over the most refined area of the mesh. Over the EAST area, total 576 

precipitation increases by 2.7 mm day-1 between GFu and GFv resulting from a 5.3 (2.6) mm day-1 increase (decrease) 577 
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in convective (grid-scale) precipitation. In contrast, total precipitation increases by 1.2 mm day-1 between MSKFu and 578 

MSKFv resulting from a 0.5 (0.6) mm day-1 increase in convective (grid-scale) precipitation. The large (small) increase 579 

in convective precipitation in GFv (MSKFv) over the coarse areas east (and west) of the refined area highlights distinct 580 

upscaling effect of the refined area on the coarse area of the mesh between GFv and MSKFv. 581 

 582 
Figure 10: Monthly-mean precipitation rate difference over the Tropical Pacific Ocean between GFu (MSKFu) and TMPA data 583 
(top panels), GFv (MSKFv) and TMPA data (middle panels), and between GFv (MSKFv) and GFu (MSKFu) (bottom panels) for 584 
December 2015. 585 

In summary, the scale dependence of convection in GF and MSKF produces the same partitioning between 586 

convective and grid-scale precipitation inside the refined area or decreased convective and compensating increased 587 

grid-scale precipitation as horizontal resolution increases. The upscaling impact on convective and grid-scale 588 

precipitation varies between GF and MSKF. As seen in Fig. 8 and Table 3, convective precipitation increases strongly 589 

over the warm pool and Eastern Pacific starting across the transition zones east and west of the refined area in GFv. 590 

In contrast, while the parameterization of the scale dependence of deep convection in MSKF produces a stronger 591 

decrease in convective precipitation in MSKFv than GFv, it produces a smoother transition in convective precipitation 592 

and decreased upscaling effect as spatial resolution reaches 30 km. 593 
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 594 

 CONVECTIVE (mm day-1) GRID-SCALE (mm day-1) TOTAL (mm day-1) 

 REFINED EAST REFINED EAST REFINED EAST 

GFu 10.0 8.7 6.1 3.7 16.1 12.4 

GFv 1.9 14.0 12.1 1.1 14.0 15.1 

MSKFu 10.9 10.6 4.9 4.8 15.8 15.5 

MSKFv 1.7 11.1 11.8 5.4 13.5 16.5 

TMPA     20.7 7.3 

Table 3: Area-averaged convective, grid-scale, and total precipitation rates over the same areas as those described for Table 2. The 595 
REFINED and EAST areas are shown in Figure 9.a. 596 

5 Simulated relative humidity and simulated versus satellite-retrieved LWP and IWP 597 

5.1 Relative humidity 598 

One effect of local mesh refinement is the decreased contribution of parameterized convection compensated by 599 

increased contribution of grid-scale cloud microphysics to condensation processes and cloud formation with 600 

increasing spatial resolution. Therefore, prior to comparing the simulated LWP and IWP against SSF data, we first 601 

investigate differences in relative humidity (RH) between our uniform- and variable-resolution experiments. Figure 602 

11 displays the monthly-mean longitude-pressure cross sections of RH latitudinally-averaged between 5°S and 5°N. 603 

East of 150°W over the Tropical Eastern Pacific, the four experiments display similar vertical distributions of RH, 604 

with relatively lower RH between 700 hPa and 150 hPa and higher RH in the PBL below 700 hPa and in the upper-605 

troposphere above 150 hPa. All four experiments show significant increase in RH west of 150°W across the entire 606 

troposphere, over the warm pool where the warmest SSTs are seen (Fig. 2.a) and deepest convective updrafts are 607 

formed. Comparing GFu against MSKFu over the warm pool shows that GF has stronger drying than MSKF in the 608 

lower troposphere, leading to a lower RH between 850 hPa and 300 hPa in GFu than MSKFu. In addition, GF produces 609 

stronger moistening than MSKF in the upper troposphere leading to a higher RH between 300 hPa and 100 hPa in 610 

GFu than MSKFu. As seen in the bottom panels of Fig. 11, reducing parameterized deep convection while enhancing 611 

grid-scale cloud microphysics produces a higher RH over the refined area in GFv and MSKFv, but without 612 

significantly modifying RH over the coarse area of the mesh. Variations in the vertical distribution of RH at pressures 613 

less than 400 hPa are more pronounced between GFu and GFv than between MSKFv and MSKFu. Because the cloud 614 

fraction (CF) is a function of RH, as described in Xu and Randall (1996; Eq. 1), there is a strong relationship between 615 

the longitude-pressure cross sections of RH and CF, as seen in Fig. S2 (see supplemental figures). The highest CF 616 

coincide with the highest RH at about 100 hPa over the warm pool in all four experiments. As for RH, GFu and GFv 617 

display higher and lower values of CF than MSKFu and MSKFv in the upper and lower troposphere. The top and 618 

bottom panels of Fig. S3 show differences in RH and CF between GFv and GFu, and between MSKFv and MSKFu. 619 

One notable difference is a stronger increase in upper-tropospheric clouds between MSKFu and MSKFv than between 620 
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GFv and GFu, particularly over the refined area of the mesh. While increased grid-scale condensation over the refined 621 

area impacts the entire tropospheric in GFv, it more strongly affects the upper-troposphere in MSKFv. 622 

 623 
Figure 11: Longitude versus pressure cross-section of latitudinally-averaged (between 5°S and 5°N) relative humidity (RH) across 624 
the Tropical Pacific Ocean simulated in GFu and MSKFu (top panels) and GFu and GFv (bottom panels) for December 2015. 625 

To explain the change in RH over the refined area between the uniform- and variable-resolution experiments, we 626 

compare the monthly-mean upward moisture flux at 850 hPa and 200 hPa between MSKFu and MSKFv over the 627 

Tropical Eastern Pacific (Fig. 12). There is a significant decrease in the upward moisture flux between 850 hPa and 628 

200 hPa in conjunction with decreased specific humidity with height in MSKFu and MSKFv (Fig. 11). As seen in the 629 

top panels of Fig. 12, MSKFu yields highest values of the upward moisture flux along the ITCZ and over the warm 630 

pool in association with parameterized deep convection. Outside the ITCZ and warm pool, lower values of the upward 631 

moisture flux at 850 hPa result because of reduced deep convection in conjunction with shallow convection, as seen 632 

over the SPCZ. At increased spatial resolution, convective processes transition from being parameterized to resolved, 633 

producing larger grid-scale vertical velocities, stronger upward moisture flux, and increased grid-scale condensation 634 

through the entire troposphere over the refined area of the mesh. Comparing the bottom versus top panels of Fig. 12 635 

outlines the intensification of vertical moisture transport at both pressure levels over the refined area, leading to the 636 

increased relative humidity with increased spatial resolutions shown in Fig. 11. 637 



 

 

 

27 

 638 
Figure 12: 200 hPa (left panels) and 850 hPa (right panels) monthly-mean upward moisture flux simulated with MSKF over the 639 
Tropical Pacific Ocean for December 2015. Top panels (a) and (b) are for MSKFu and bottom panels (c) and (d) are for MSKFv. 640 
Note the 1x10-2 scaling between 200 hPa and 850 hPa. 641 

5.2 Liquid Water Path (LWP) 642 

Figure 13 displays difference maps between the simulated and satellite-derived LWP, and between GFv (MSKFv) 643 

and GFu (MSKFu). In Fig. 13, the simulated LWP is calculated using only the grid-scale cloud liquid water mixing 644 

ratio from THOM. Separate analyses would show that adding the prognostic grid-scale rain mixing ratio to the 645 

simulated LWP further increases biases when compared against the SSF LWP (not shown for brevity). We also do 646 

not include the contribution of the convective cloud liquid water mixing ratio to the LWP which is small compared to 647 

that from the grid-scale cloud microphysics. Figure 13 highlights that GFu strongly overestimates the LWP over the 648 

ITCZ, and between 20°N (20°S) and the northern (southern) limits of our analysis. As seen in Fig. 6, GFu attempts to 649 

form low-level boundary layer clouds off the coast of Peru but these clouds form too far west from the coast when 650 

compared against observations. This same bias is depicted in Fig 13.a since these low-level boundary layer clouds are 651 

characterized by high LWP. In Fig. 13.b, decreased bias between the MSKFu and SSF LWP reflects that the LWP is 652 

strongly decreased in MSKFu compared to GFu, outside of the areas of low-level boundary layer clouds. If we set 653 

aside that MSKFu is unable to simulate low-level clouds off the Baja Peninsula and coast of Peru, the magnitude and 654 

regional patterns of the LWP simulated in MSKFu is in fairly good agreement with the SSF LWP. Because MSKF 655 

does not allow deep and shallow convection to coexist within the same grid-cell and deep convection dominates 656 

shallow convection over the ITCZ and warm pool, we suggest that detrained cloud water from deep convection as a 657 

source to grid-scale microphysics contributes a major part to the LWP produced by MSKFu. The bottom panels of 658 

Fig. 13 reveal that the mesh refinement impacts the LWP simulated with MSKF more effectively than that simulated 659 
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with GF inside the refined area. This result is in agreement with the stronger increase in RH between MSKFu and 660 

MSKFv than between GFu and GFv at lower levels. MSKFv yields an increased LWP relative to MSKFu over the 661 

entire refined area (Fig. 13.f). MSKFv also has increased LWP compared to MSKFu over the coarse area, but not as 662 

large as that seen over the refined area. Figure 13.e shows that the LWP differences do not have a strong positive or 663 

negative trend inside the refined area, due to the fact that GF allows deep and shallow convection to coexist within 664 

the same grid-cell of deepest convective activity, mainly over the ITCZ and warm pool, and shallow convection does 665 

not account for variations in horizontal grid-spacing. Over the coarse area, an obvious decrease in the LWP between 666 

GFv and GFu is seen over the ITCZ in the Tropical Eastern Pacific as well as along the southern boundary of our 667 

analysis. 668 

 669 
Figure 13: Monthly-mean cloud liquid water path (LWP) difference over the Tropical Pacific Ocean between GFu (MSKFu) and 670 
SSF data (top panels), GFv (MSKFv) and SSF data (middle panels), and monthly-mean LWP difference between GFv (MSKFv) 671 
and GFu (MSKFu) (bottom panels) for December 2015. 672 
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In order to investigate the reasons why the LWP simulated in GFu strongly exceeds that from the SSF products 673 

and MSKFu, we calculate the monthly-mean LWP produced in grid-cells with incidence of deep convection, shallow 674 

convection, and no convection, using LWP hourly outputs from GFu. Separate maps show that a major fraction of the 675 

LWP over convectively active regions such as the ITCZ is actually produced at times when no convection is active or 676 

when only shallow convection is triggered (not shown for brevity). In GF, and in contrast to deep convection, shallow 677 

convection detrains total water as a source of grid-scale water vapor instead of detraining water vapor, cloud liquid 678 

and ice water, separately. Because the detrained total water is treated as a source of water vapor, supersaturation 679 

conditions are more likely to persist and later removed by grid-scale condensation. In contrast, detrainment from deep 680 

convective updrafts acts as a source of liquid water if temperatures are warmer than 258 K. Deep convection in 681 

conjunction with grid-scale condensation contributes the least to the LWP because updrafts are taller and their cloud-682 

top temperatures colder than those from shallow convection, leading to condensation and deposition to occur at levels 683 

where temperatures are colder than 258 K, and where ice phase processes dominate. 684 

The impact of more active shallow convection in GFu (GFv) than in MSKFu (MSKFv) is analyzed using Fig. 14 685 

which shows differences in the monthly-mean precipitable water below 700 hPa between our experiments and ERA-686 

Interim reanalyses. Because varying horizontal resolution does not affect shallow convection, GFv (MSKFv) displays 687 

similar biases as GFu (MSKFu) over the entire analysis domain, including the refined area. Comparing the left versus 688 

right panels of Figure 14 reveals that the precipitable water simulated in GFu (GFv) displays a positive bias whereas 689 

that simulated in MSKFu (MSKFv) displays a negative bias in the lower troposphere relative to ERA-Interim data, 690 

mainly over areas of shallow convection. In GF, the abundance of shallow convection (Figure 6.a, Figure 6.c) 691 

associated with detrained total water acting as a source of grid-scale water vapor promotes the lower troposphere to 692 

stay more humid and cloud liquid water to form more often than actually observed (Figure 13.a, Figure 13.c), north 693 

and south of the ITCZ and warm pool. In MSKF, while shallow convection is as widespread over the Tropical Pacific 694 

Ocean as in GF, it cannot act as a major source of detrained total water to the grid-scale microphysics because it is not 695 

triggered as often as deep convection. In addition, because MSKF partitions detrained water into water vapor, cloud 696 

water, cloud ice, rain, and snow, instead of detraining total water in the form of water vapor as in GF, the amounts of 697 

available water vapor and cloud liquid water are reduced relative to GF. 698 



 

 

 

30 

 699 
Figure 14: Monthly-mean difference between the simulated and ERA-Interim precipitable water below 700 hPa over the Tropical 700 
Pacific Ocean for December 2015. 701 

5.3 Ice Water Path (IWP) 702 

Because MODIS is relatively insensitive to precipitation, the simulated IWP should comprise cloud ice, snow, 703 

and graupel. Because graupel contributes a minor part to the IWP relative to cloud ice and snow and our results 704 

highlight strong biases against SSF data, we do not include graupel in our computation of the simulated IWP. It is also 705 

important to note that because THOM has the propensity to rapidly convert cloud ice to snow (Thompson et al. 2016), 706 

most of the IWP is in the form of snow which falls at higher speeds than cloud ice, enhancing the depth of ice clouds. 707 

Lastly, the middle panels of Fig. 5 show that our gridding of the IWP orbital data produce increased monthly mean 708 

IWP than the official SSF1deg product. This result implies that biases between the simulated and satellite-derived 709 

IWP will be underestimated when using our SSF 0.2ºx0.2º IWP data. Figure 15 shows difference maps between the 710 

simulated and satellite-derived IWP, and between GFv (MSKFv) and GFu (MSKFu). When compared against the SSF 711 

IWP, GFu is the only experiment that mostly underestimates the IWP along the ITCZ and warm pool whereas GFv 712 

yields a strong increase in the IWP over the refined area of the mesh relative to GFu. Both GFu and GFv overestimate 713 

the IWP along the west coast of Central America, as they did for the LWP and precipitation. Comparing MSKFu 714 

(MSKFv) against GFu (GFv) shows that MSKF leads to increased positive biases in the IWP compared to GF over 715 
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the entire ITCZ and warm pool. Increased convective detrainment of cloud ice as a source of grid-scale cloud ice to 716 

THOM in MSKF than in GFv, because partitioning between cloud liquid and ice water starts at warmer temperatures, 717 

may be responsible to the increased IWP. The bottom panels of Figure 15 reveal that increasing spatial resolution 718 

worsens the simulated IWP compared to the SSF IWP over the refined area in GFv and MSKFv. As shown in Fig. 11, 719 

mesh refinement over the warm pool yields higher upper-tropospheric relative humidity leading to increased ice cloud 720 

microphysics. In contrast to GFv, MSKFv displays an increase in the IWP over the coarse area of the mesh, showing 721 

a stronger impact of the refined area on the coarse area of the mesh in MSKFv than GFv in the upper-troposphere. 722 

 723 
Figure 15: As Fig. 13, but for the cloud ice water path (IWP). 724 

5.4 TOA radiation budget 725 

Biases in the LWP and IWP introduce biases in the cloud fraction and cloud optical properties which in turn lead 726 

to biases in the simulated TOALW and TOASW compared to CERES-SSF data. Figures S4, S5, and S6 display the 727 
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monthly-mean CF, TOALW, and TOASW from SSF data for December 2015 and the differences between the model 728 

results and observations. Focusing on areas of deep convection over the ITCZ and warm pool, all four simulations 729 

overestimate CF with larger biases seen in the GF than the MSKF experiments, and larger biases seen in the variable-730 

resolution than the uniform-resolution experiments. All four simulations also overpredict CF along the west coast of 731 

Central America while underpredicting CF over areas of stratiform clouds along the west coast of South America and 732 

Baja Peninsula. The impact of CF biases is that all four experiments underestimate the size of the warm pool and 733 

width of the ITCZ, leading the TOALW (TOASW) to be too high (low) over areas of deep convection. These 734 

differences are clearly linked to the differences noted in the LWP and IWP between MPAS and SSF data. 735 

6 Discussion 736 

When running GFu (MSKFu) and GFv (MSKFv), we set the time-step to be as large as possible to reduce the 737 

computational cost of the various experiments without compromising computational stability. Using decreased time-738 

steps between the quasi- and variable-resolution experiments from 150 s to 30 s implies that it is not possible to directly 739 

compare the mean state of GFv (MSKFv) against that of GFu (MSKFu) in the coarse area of the variable-resolution 740 

mesh, and upscale effects of local mesh refinement. This is in contrast to Sakaguchi et al. (2015) and Hagos et al. 741 

(2013) who constrain the time-step to be the same at all horizontal scales, allowing their study to assess the upscale 742 

effect of mesh refinement across the transition zones between the refined and coarse areas of the mesh, and far from 743 

the refined mesh. In order to understand the increase in convective precipitation east and west of the transition zones 744 

in GFv relative to GFu, we run GFu with the reduced 30 s time-step to quantify the dependence of convective 745 

precipitation to the dynamic time-step. As seen in Fig. S7.a (S7.b), reducing the time-step from 150 s to 30 s strongly 746 

increases convective precipitation over convectively active regions of the Tropical Pacific Ocean, highlighting the 747 

sensitivity of GF to the time-step. Reducing the time-step in MSKFu yields convective precipitation differences that 748 

are not as large as those seen in Fig. S7.b (not shown for brevity). Using the Community Atmosphere Model Version 749 

4 (CAM4) with a T340 spectral truncation and a 5 min time-step, Williamson (2013) demonstrates the dependence of 750 

the removal of supersaturation conditions to the shallow (30 min) and deep (1 h) convective time-scales. While it is 751 

important to point out that the sensitivity studies discussed in Williamson (2013) depend on the CAM4 coupling 752 

between the convective and grid-scale cloud parameterizations and the dynamical core, shorter convective time-scales 753 

relative to the time-step yield faster removal of moist instabilities through vertical motions and condensation. In GF, 754 

the time-scales used in the AS and KF closures are set to the dynamical time-step and 20 min, respectively. While the 755 

contribution of the KF closure decreases by a factor of 5 in response to the decreased time-step, the contribution of 756 

the AS closure is independent of the convective time-scale but will affect the cloud base mass flux through variations 757 

in the cloud work function. In order to further understand the impact of the time-step on increased supersaturation and 758 

convective precipitation in GF, a detailed analysis of the contributions of the dynamics and physics forcing on the AS 759 

cloud work function in MPAS is needed. This is the object of future research. 760 
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7 Summary and future research 761 

Uniform- and variable-resolution experiments with two scale-aware parameterizations of deep convection (GF 762 

and MSKF) in MPAS yield significant biases between the simulated and satellite-derived monthly-mean precipitation 763 

rates, LWP, IWP, and CF over the Tropical Pacific Ocean for December 2015. In turn, biases affect the cloud fraction 764 

and optical properties producing significant differences in the TOALW and TOASW compared to CERES-SSF data. 765 

Tropical precipitation simulated with uniform-resolution experiments is overestimated compared to TMPA, due 766 

to subgrid-scale deep convection. Biases using GF are as large as those using MSKF, and result in part because the 767 

simulated ITCZ is located south of its observed location. Variable-resolution experiments do not produce significant 768 

improvement in simulating precipitation against TMPA. Inside the refined area, decreased convective precipitation 769 

plus compensating increased grid-scale precipitation have the simulated total precipitation to exhibit similar biases 770 

between the uniform- and variable-resolution experiments with GF and MSKF. One major difference in using GF 771 

instead of MSKF is the strong upscaling effect of the refined mesh on the coarse mesh, producing a strong increase in 772 

convective precipitation east and west of the refined mesh. Because deep convection does not exhibit similar behaviour 773 

over the transition zone between the coarse and refined areas of the mesh in MSKF, we plan further to investigate this 774 

difference in convective precipitation in terms of the size of convective updrafts as a function of horizontal resolution 775 

and increased moistening of the lower troposphere from shallow convection. 776 

Differences in the simulated LWP between the uniform- and variable-resolution experiments using GF and MSKF 777 

and against the CERES-SSF LWP highlight the need to revise the treatment of shallow convection to improve warm-778 

phase clouds in both schemes. While experiments using MSKF yield the simulated LWP to be in reasonable agreement 779 

against that from the CERES-SSF product, those using GF yield the simulated LWP to be strongly overestimated. 780 

Analyses show that shallow convection and cloud microphysics processes explain most of the increased LWP in GFu 781 

and GFv compared to MSKFu and MSKFv, and satellite-derived data. We plan to update the GF shallow convection 782 

scheme with that implemented in version 4.1 of the Advanced Research Weather Forecast (WRF) model. Because the 783 

updated scheme includes an improved cloud model that allows water vapor and cloud liquid water to detrain separately 784 

and a fraction of condensed water to precipitate, we will focus on the impact of explicit detrainment of cloud liquid 785 

water and precipitation from shallow convective updrafts on the simulated LWP in GF. Results show that MSKF 786 

underestimates shallow convection, leading the troposphere below 700 hPa to be drier than actually observed. These 787 

results imply that the shallow convection in MSKF needs to be updated or that a separate parameterization of shallow 788 

convection needs to be used in addition to that in MSKF. Using the same parameterization of shallow convection, and 789 

partitioning of the detrained condensed water between cloud liquid water and ice in GF and MSKF, will further provide 790 

understanding in the partitioning of the LWP between subgrid-scale deep and shallow convection. Variable-resolution 791 

experiments strongly overestimate the IWP compared to CERES-SSF data over the refined area of the mesh, leading 792 

to strong biases in the cloud fraction, and TOA long- and short-wave radiation. Because subgrid-scale deep convection 793 

is reduced at increased horizontal resolutions, grid-scale cloud microphysics contributes a major part to biases in the 794 

simulated IWP. 795 

Parameterizing the dependence of subgrid-scale deep convection as a function of horizontal resolution allows the 796 

use of variable-resolution meshes spanning between hydrostatic and nonhydrostatic scales within a global framework 797 
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for regional NWP and climate experiments. Although deep convection is not fully explicitly resolved over the refined 798 

area of the mesh in our variables-resolution experiments, it is substantially reduced relative to that over the coarse area 799 

of the mesh, allowing to contrast the contribution of subgrid-scale convection and cloud microphysics processes. As 800 

horizontal resolution increases from the coarse to refined area of the mesh, deep convection gradually transitions from 801 

parameterized to resolved and cloud microphysics contribute a major part to moist processes over the refined mesh. 802 

Shallow convection coupled with grid-scale microphysics contributes a major part to the low-level cloud liquid water 803 

and mixed-phase clouds whereas grid-scale cloud microphysics contribute a major part to the formation of upper-804 

tropospheric ice clouds over the refined area. Our results show that mesh refinement does not systematically improve 805 

precipitation and clouds over the Tropical Pacific Ocean as grid-scale condensation increases at increased resolutions. 806 

As cloud microphysics processes drive the moisture budget over the refined area of the mesh, we propose to expand 807 

this diagnostic study to a process study by further understanding the cloud microphysics processes that need to be 808 

improved in order to reduce discrepancies between model and observations. In that vein, the recently developed MSKF 809 

that includes a double moment microphysics (Glotfelty et al., 2019) would be useful in a future process study. 810 

 811 

 812 

Code and data availability: The source code used to initialize and run our experiments is based on MPAS-v5.2 which 813 

is freely available from https://github.com/MPAS-Dev/MPAS-Model/releases/tag/v5.2. Modifications to the original 814 

source code and scripts to run the experiments are available from https://doi.org/10.5281/zenodo.3515440 (Fowler, 815 

2019) while initialization files, and outputs from the experiments are located on the NCAR Campaign Storage System. 816 

These files can be made available by contacting the corresponding author. Examples of CERES SSF Aqua and Terra 817 

orbital and gridded data, daily-mean and monthly-mean simulated diagnostics, and post-processing scripts are also 818 

available from https://doi.org/10.5281/zenodo.3515440 (Fowler, 2019).   819 
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