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Second Replies to Referee 2 

The authors wish to thank Referee 2 for commenting on the first set of revisions made to the original 
manuscript. The authors hope that this second set of revisions will satisfy the request made by Referee 2. 

In the revised manuscript, all the figures have been restored to their original png resolution. 

Major concern 1: 30-day simulation length 

As suggested, the main author read the study of Ma et al. (2015), and the earlier study of Phillips et al. 
(2004). While Ma et al. (2015) describes an improved method to generate initial conditions for short-term 
climate model hindcast experiments, Phillips et al. (2004) describes CCPP1-ARM2 Parameterization 
Testbed (CAPT) initiative to validate parameterizations developed for climate models using a Numerical 
Weather Prediction (NWP) framework. 

After reading Ma et al. (2015) and Phillips et al. (2004) more carefully, the authors think that the recent 
paper by Judt (2020) is a better reference to justify the robustness of our 30-day experiments, because Judt 
(2020) uses non-hydrostatic MPAS rather than hydrostatic climate models. Using the same version of the 
nonhydrostatic MPAS dynamical core and physics parameterizations, Judt (2020) shows that the tropical 
atmosphere has a longer predictability than the middle latitudes and polar regions (tropics > 20 days; middle 
latitudes and polar regions, a little over 2 weeks), using global convection-permitting 20-day long 
experiments. Judt (2020) also states that “The finding that tropical predictability exceeds that of the 
extratropics supports the results of Strauss and Paolino (2008)”. The authors hope that their changes to the 
text will satisfy the recommendations made by Referee 2. 

 

• References: 

• Judt, F. (2020), Atmospheric predictability of the tropics, middle latitudes, and polar regions explored 
through global storm-resolving simulations. J. Atmos. Sci., 77, 257-276. 

• Ma, H.-Y., Chuang C.C., Klein S.A., Lo, M.-H., Zhang, Y., Xie, S., Zheng, X., Ma, P.-L., Zhang, Y. 
Zhang, and Phillips, T.J. (2015), An improved hindcast approach for evalulation and diagnosis of 
physical processes in global climate models. J. Adv. Model. Earth Syst., 7, 1810-1827. 

• Phillips, T.J.,G.L. Potter, D.L. Williamson, R.T. Cederwall, J.S. Boyle, M. Fiorino, J.J. Hnilo, J.G. 
Olson, S. Xie, and J.-J. Yio (2004), Evaluating parameterizations in general circulation models: Climate 
simulations meets weather prediction, Bull. Am. Meteorol. Soc., 85, 1903-1915. 

• Skamarock, W.C., and Coauthors: A description of the Advanced Research WRF version 3, NCAR 
Tech. Note NCAR/TN-475+STR, 113 pp, 2008. 

• Strauss, D.M., and D. Paolino (2008), Intermediate time error growth and predictability: Tropics versus 
mid-latitudes, Tellus, 61,579-586. 

Major concern 2: Viscosity and timestep sensitivity 

Williamson (2013) demonstrates that the shallow and deep convection parameterizations are unable to 
remove moist instabilities and saturation because their respective prescribed time-scales of 30 min and 1 h 

                                                   

 
1 CCPP: Climate Change Prediction Program. 
2 ARM: Atmospheric Radiation Measurement. 
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are too long compared to the 5 min time-step used in CAM4 with a T340 spectral truncation. As a result, 
the grid-scale cloud microphysics scheme removes all supersaturation, yielding local condensation heating 
with no vertical distribution and producing grid-storms characterized by strong pressure vertical velocity 
and high precipitation. Sensivity experiments that set the shallow and deep convection time-scales to the 
model time-step or increase the model time-step while keeping both convection time-scales to their original 
values lead to increased reduction of supersaturation by the convection parameterizations and removal of 
grid-storm events. Table 1 of Herrington and Reed (2017) shows that  a CAM4 experiment run with a T120 
(~28 km) spectral truncation produces global grid-scale, convective, and total precipitation rates equal to 
2.29, 0.79, and 3.08 mm day-1, respectively, meaning that grid-scale precipitation contributes about 75% to 
total precipitation. 

In GFu and GFv, we unfortunately did not track the contribution of the individual closures to the mean 
cloud base mass flux, but we could certainly add this diagnostic in the future. In GF, the two closures are 
formulated in terms of a convective time-scale are the Arakawa-Schubert (AS) and Kain Fritsch (KF)-like 
closures. The time-scale used in the AS closure is equal to the model time-step whereas the time-scale used 
in the KF closure is set to 20 min. In addition, convective precipitation contributes a major part to the total 
precipitation, as shown in Table 1 and Fig. 8 for both GFu (and MSKFu). Therefore, and in contrast to the 
results of Williamson (2013), GF is strongly active (actually too active) in removing supersaturation, in 
response to convective time-scales that are too short if we assume that the AS and KF closures contribute 
a major part to the total cloud base mass flux. Note that the authors suggest further analysis of the different 
closures used in GF. 

In his first and second review, Referee 2 refers to Hagos et al. (2013), Rauscher et al. (2013), Sakaguchi 
et al. (2015) which discuss the impact of grid refinement using aquaplanet and AMIP experiments with the 
older hydrostatic version of the MPAS dynamical core coupled with the Community Atmospheric Model 
with CAM4 physics). As noted by Referee 2, in all 3 manuscripts, the coarse and refined areas of the global 
mesh have a much lower horizontal resolution than in our manuscript, and their variable-resolution mesh 
does not transition between hydrostatic and nonhydrostatic scales over a narrow transition zone. In addition, 
the Zhang and McFarlane (1995) parameterization of deep convection is scale-invariant. Despite the fact 
that their uniform- and variable-resolution experiments do use the same time-step, Sakaguchi et al. (2015) 
did find statistically significant remote upscale effect in some large-scale circulation variables (see their 
Discussion section, pp. 5568-5569). Therefore, we can argue that remote upscale effects may also occur far 
from the refined area of the mesh in our experiments, but that these remote upscale effects need to be further 
understood. 

We added a discussion section (see Section 6) that discusses the impact of time-step. We hope that this 
added section will provide a better answer to the questions asked by Referee 2.  

Minor comments: 

• Response to Line 194: The first author did try to explain why the maximum value of s is set to 0.7. 
Note that little explanation is provided in Grell and Freitas (2014). We added “… is not allowed to 
exceed 0.7, based on the discussion of Grell and Freitas (2014).” 

• Line 412: As stated in our first reply to Referee 2, “In Fig. 5, the authors were trying to understand the 
difference in the IWP computed from the SSF data (Fig. 5.c) versus that provided in the SSF1deg data 
(Fig. 5.d).”, i.e. the processing method that led to a reduction in the IWP between the SSF and SSF1deg 
data. Differences in the LWP between Fig. 5.a and 5.b are not as large as those seen in the IWP between 
Fig. 5.c and 5.d. Therefore, in addition to the regridding, horizontal interpolation, and time averaging 
of the SSF data to the SSF1deg IWP data, the processing method must have used some kind of weighted 
vertical interpolation that reduces the SSF IWP to the SSF1deg data. Because the authors do not know 
the details of the processing steps, the authors simply added the IWP in the lower and upper layers. 
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• Lines 513-515: In Fig. 8, we added the ratio convective to total precipitation to quantify the change in 
convective precipitation due to mesh refinement between GF and MSKF. The text was modified 
accordingly. 

• We carefully read and corrected the manuscript for tense and typos. 

• Length of the manuscript: For some reasons, MS Word sometimes skips line numbers between pages, 
increasing the total number of lines. This does not increase the number of pages to the manuscript, just 
the total number of lines. 
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Abstract. The cloud Liquid Water Path (LWP), Ice Water Path (IWP), and precipitation simulated with uniform- 53 

and variable-resolution numerical experiments using the Model for Prediction Across Scales (MPAS) are compared 54 

against Clouds and the Earth’s Radiant Energy System (CERES) and Tropical Rainfall Measuring Mission data. Our 55 

comparison between monthly mean model diagnostics and satellite data focuses on the convective activity regions of 56 

the Tropical Pacific Ocean, extending from the Eastern Tropical Pacific Basin where trade wind boundary layer clouds 57 

develop to the Western Pacific warm pool characterized by deep convective updrafts capped with extended upper-58 

tropospheric ice clouds. Using the scale-aware Grell-Freitas (GF) and Multi-Scale Kain-Fritsch (MSKF) convection 59 

schemes in conjunction with the Thompson cloud microphysics, uniform-resolution experiments produce large biases 60 

between simulated and satellite-retrieved LWP, IWP, and precipitation. Differences in the treatment of shallow 61 

convection lead the LWP to be strongly overestimated when using GF while being in relatively good agreement when 62 

using MSKF compared to CERES data. Over areas of deep convection, uniform- and variable-resolution experiments 63 

overestimate the IWP with both MSKF and GF, leading to strong biases in the top-of-the-atmosphere long- and short-64 

wave radiation relative to satellite-retrieved data. Mesh refinement over the Western Pacific warm pool does not lead 65 

to significant improvement in the LWP, IWP, and precipitation due to increased grid-scale condensation and upward 66 

vertical motions. Results underscore the importance of evaluating clouds, their optical properties, and the top-of-the-67 

atmosphere radiation budget in addition to precipitation when performing mesh refinement global simulations. 68 

1 Introduction 69 

Comparing simulated against observed global cloud liquid and ice water paths (LWP and IWP) remains challenging 70 

because of uncertainties in parameterizing moist processes and cloudiness in global climate and numerical weather 71 

prediction (NWP) models, and errors in retrieving the LWP and IWP from satellite measurements. Cloud simulations 72 

from general circulation models (GCMs) involved in Phase 3 and 5 of the Coupled Model Intercomparison Project 73 

(CMIP3; CMIP5; Meehl et al, 2007; Taylor et al., 2012) display a strong disparity in the simulated LWP (Jiang et al., 74 

2012; Li et al., 2018) and IWP (Li et al., 2012), producing annual mean LWP and IWP overestimated by factors of 2 75 

to 10 compared to satellite data. Satellite observations of the LWP and IWP from passive nadir viewing instruments 76 

such as the Moderate-resolution Imaging Spectroradiometer (MODIS; Minnis et al., 2011), and profiling radar such 77 

as the 94-GHz instrument on the CloudSat satellite (Stephens et al., 2002), also display major differences among 78 

themselves, as discussed in Li et al. (2008) and Waliser et al. (2009). While models and satellite retrievals agree that 79 

the LWP and IWP should be defined as the vertically-integrated liquid and ice water content, including all 80 

nonprecipitating and precipitating hydrometeors, this is not always the case in practice, further challenging a clearly-81 

posed data-data and model-data comparison. Defining the LWP and IWP varies between models, depending on the 82 

complexity of the parameterization of cloud microphysics processes and prognostic versus diagnostic treatment of 83 

falling hydrometeors. Defining the measured LWP and IWP varies between satellite products, depending on the 84 

sensitivity of the observing systems to detect large precipitating particles. While comparing simulated and observed 85 

LWP and IWP may not be as straightforward as comparing the top-of-the-atmosphere (TOA) radiation budget (Dolinar 86 

et al., 2015; Stanfield et al., 2015), it offers a different way to directly diagnose biases in simulated total cloud liquid 87 
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and ice water mass as a first step to help correct deficiencies in parameterizing global scale moist processes and 89 

precipitation. 90 

Before the launch of the CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation mission 91 

(Stephens et al., 2002), global estimates of the LWP and IWP were retrieved principally from satellite radiance 92 

measurements over different spectral intervals (e.g., Alishouse et al., 1990; Greenwald et al., 1993; Minnis et al., 1995; 93 

Platnick et al., 2003). In their critical review of most common methods developed to retrieve cloud and precipitation 94 

properties from satellite radiances, Stephens and Kummerow (2007) identify two main sources of errors. The first 95 

source of errors originates from the mandatory classification between cloudy and cloud-free scenes, and between 96 

precipitating and non-precipitating cloudy scenes. The second source of errors stems from using forward radiative 97 

transfer models that lack details of the vertical distribution of cloudiness and precipitation as well as complexity in 98 

specifying the optical properties of liquid water and ice particles. Estimating the LWP and IWP from CloudSat radar 99 

reflectivity alone presents its own set of challenges for scenes that include precipitating cloud systems due to the high 100 

sensitivity of radar reflectivity to the presence of large particles, for scenes that include mixed-phase and deep 101 

convective clouds, and close to the surface due to ground clutter. Li et al. (2018) show that annual mean maps of 102 

MODIS- and CloudSat-based LWP agree relatively well in tropical and subtropical regions if both data sets exclude 103 

LWP observations for deep convective/precipitating clouds since MODIS is quite insensitive to precipitation. 104 

Stephens and Kummerow (2007) advocate combining satellite-retrieved radar and radiance measurements to help 105 

validate simulated cloud properties and precipitation. In addition to considering the impact of precipitating particles, 106 

Waliser et al. (2009) demonstrate that a well-posed model-data comparison must include a consistent sampling 107 

between model outputs and satellite data to reduce diurnal sampling biases and sensitivity of the sensor and retrieval 108 

algorithm to the particle size when computing the simulated LWP and IWP. 109 

Contemporary climate and NWP GCMs (Giorgetta et al., 2018; Molod et al., 2012; Kay et al., 2015, Skamarock 110 

et al., 2012) categorize moist processes into three distinct parameterizations, one to simulate turbulent mixing in the 111 

Planetary Boundary Layer (PBL) in response to surface forcing and forcing in the free troposphere, one to simulate 112 

subgrid scale shallow and deep convection, and one to include grid-scale cloud microphysics. While coupling between 113 

parameterizations varies between GCMs, it is an established practice to let detrained condensates from convective 114 

updrafts serve as sources for non-convective grid-scale clouds, as precipitating anvils and cirrus outflow. We suggest 115 

that uncertainties in parameterizing moist convection and impact on grid-scale clouds may explain a major part of the 116 

differences in the LWP and IWP simulated between the CMIP3 and CMIP5 GCMs. In recent years, efforts have been 117 

made to develop unified cloud parameterizations to represent all cloud types and alleviate the need to parameterize 118 

complex interactions between stratiform, shallow convective, and deep convective clouds (Guo et al., 2015; Storer et 119 

al., 2015; Thayer et al., 2015). Using the global Model for Prediction Across Scales (MPAS; Skamarock et al., 2012), 120 

Fowler et al. (2016) discuss the sensitivity of simulated precipitation as spatial resolution increases from hydrostatic 121 

to nonhydrostatic scales and suggest to further analyze the associated sensitivity of simulated clouds and TOA 122 

radiation. Results show that as subgrid scale convective motions are increasingly resolved, diagnostic precipitation 123 

from the scale-aware Grell-Freitas (GF; Grell and Freitas, 2014) deep convection scheme decreases while prognostic 124 

precipitation from the WSM6 (Hong and Lim, 2006) cloud microphysics scheme increases over the refined area of 125 
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the variable-resolution mesh. Vertical profiles of the cloud liquid and ice water mixing ratios and cloud fraction 126 

highlight the redistribution of cloud condensates and relative humidity with height in the refined area in response to 127 

decreased contribution of convective detrainment of cloud liquid water and ice. However, Fowler et al. (2016) do not 128 

further address if variations in the vertical profiles of cloud condensates lead to improved LWP, IWP, and cloud optical 129 

properties against satellite-derived data. 130 

The objectives of our research are threefold. First, we want to assert that our suite of PBL, deep and shallow 131 

convection, and cloud microphysics parameterizations tested in MPAS at hydrostatic and nonhydrostatic scales for 132 

medium-range spring forecasts over the Continental United States (Schwartz, 2019; Wong and Skamarock, 2016) can 133 

also be used to produce month-long simulations of tropical convection, narrowing our analysis on the Tropical Pacific 134 

Ocean. In order to broaden our research and possibly generalize our results, we also implemented the scale-aware 135 

MultiScale Kain-Fritsch (MSKF; Glotfelty et al., 2019; Zheng et al., 2016) parameterization of deep and shallow 136 

convection in addition to GF. Second, we want to evaluate the ability of MPAS to simulate the LWP, IWP, cloudiness, 137 

and TOA long- and short-wave radiation against the Clouds and the Earth’s Radiant Energy System (CERES; Wielicki 138 

et al., 1996) Single Scanner FootPrint (SSF; Minnis et al., 2011) data set, and precipitation against the TRMM 139 

Multisatellite Precipitation Analysis (TMPA; Huffman et al., 2007). Our third goal aims at understanding differences 140 

in the LWP, IWP, precipitation, and cloud radiative effects as functions of horizontal resolution with GF and MSKF 141 

using the capability of local mesh refinement developed for MPAS. 142 

In Section 2, we summarize the characteristics of the GF and MSKF parameterizations of deep and shallow 143 

convection. In Section 3, we provide a short description of MPAS, including physics parameterizations used with both 144 

convective parameterizations, the design of our experiments using the uniform- and variable-resolution meshes, and 145 

description of the satellite data sets used to validate our results. In Section 4, we analyze our results in terms of 146 

precipitation and varying contribution of the convective and grid-scale precipitation to the total precipitation as a 147 

function of horizontal resolution. In Section 5, we compare the LWP, IWP, and TOA long- and short-wave radiation 148 

against satellite data. In Section 6, we discuss some of our findings. Finally, in Section 7, we summarize our results 149 

and propose areas of future research. 150 

2 Description of the convective parameterizations 151 

Mass flux-based convective parameterizations distinguish themselves through the use of different triggering 152 

functions to initiate convection, the details of their entraining-detraining cloud models, and formulation of their 153 

closures that control the intensity of convection and computation of the cloud base mass flux. For convective 154 

parameterizations that include deep and shallow convection, criteria that characterize the two kinds of convection 155 

strongly vary. Furthermore, how convective parameterizations account for the dependence of convection on the 156 

horizontal resolution differs in complexity. In this section, we summarize the chief characteristics of GF and MSKF, 157 

including differences in their treatment of deep and shallow convection, and horizontal-scale dependence. 158 
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2.1 The Grell-Freitas (GF) parameterization 161 

The version of GF used in our numerical experiments is that implemented in version 3.8.1 of the Advanced 162 

Research Weather Research Forecast model (Skamarock et al., 2008), as described in Grell and Freitas (2014). Its 163 

properties are first discussed in Grell (1993) and later expanded in Grell and Devenyi (2002) to include stochasticism. 164 

GF treats deep and shallow convection separately by using different initial entrainment rates (7x10-5 m-1 and 1x10-2 165 

m-1 for deep and shallow convection, respectively) to control the depth of convective layers and different closures to 166 

calculate the cloud base mass flux. GF includes an ensemble of closures from well-known convective 167 

parameterizations to compute a mean cloud-base mass flux. For deep convection, these four closures are the AS closure 168 

(Arakawa and Schubert, 1974) that assumes instantaneous equilibrium between the large-scale forcing and subgrid-169 

scale convection; the W closure (Brown, 1979; Frank and Cohen, 1987) that relates the cloud base mass flux to the 170 

grid-scale upward vertical velocity; the MC closure (Krishnamurti et al., 1983) that calculates the cloud base mass 171 

flux as a function of the vertically-integrated vertical moisture advection; and the KF closure (Kain and Fritsch, 1993) 172 

that reduces the convective available potential energy over a prescribed convective time-scale. Qiao and Liang (2015) 173 

analyze the separate and combined impacts of the four closures on the simulated summer precipitation over the United 174 

States coastal oceans. On the one hand, they found that computing the cloud base mass flux using the W and MC 175 

closures led to precipitation patterns and amounts that are in better agreement against TMPA data than those using the 176 

AS and KF closures. On the other hand, they found that the AS and KF closures yield improved diurnal cycle of 177 

precipitation relative to the other two closures. In our numerical experiments, GF gives an equal weight to each closure 178 

to calculate the mean cloud base mass flux for deep convection. As for deep convection, GF includes different closures 179 

for shallow convection. In our numerical experiments using GF, we choose the boundary layer quasi-equilibrium 180 

(BLQE) closure of Raymond (1995) for shallow convection. 181 

Both types of convection transport total water and moist static energy in a conservative manner but neglect to 182 

include ice phase processes in updrafts and downdrafts. In this version of GF, the only feedback between shallow 183 

convection and the large-scale environment is lateral and cloud-top detrainment of water vapor and corresponding 184 

heating, as liquid water formed in shallow updrafts evaporates immediately. Deep convection returns potential 185 

temperature, water vapor, and condensed water tendencies to the environment. Detrained condensed water acts as a 186 

source of liquid water (ice) if the large-scale temperature is warmer (colder) than the prescribed 258 K threshold. 187 

While GF assumes that shallow convective plumes are not deep enough to produce precipitation, the conversion of 188 

liquid water to rain water in deep convective plumes depends on a simple Kessler-type (Kessler, 1969) conversion 189 

threshold and precipitation reaches the surface instantaneously. 190 

As discussed in Grell and Freitas (2014), deep convection includes a simplified representation of the unified 191 

parameterization of deep convection described in Arakawa and Wu (2013). Arakawa and Wu (2013) demonstrate that 192 

mass flux-based convective parameterizations can be modified to work at all resolutions spanning between hydrostatic 193 

and nonhydrostatic scales through the reduction of the convective vertical eddy transport as a quadratic function of 194 

the horizontal fraction of the grid box occupied by convective updrafts. In GF, the convective updraft fraction (s) is 195 
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computed as a simple function of the initial entrainment rate (e  = 7x10-5 m-1 ) and half-width radius (R) of convective 199 

updrafts following Simpson and Wiggert (1969), or 200 

𝝈 = 𝝅𝑹𝟐

𝑨
					and					𝑹 = 	 𝟎.𝟐

𝜺
		 	 	 	 	 	 	 (1)	201 

where A is the area of the grid box. In Eq. (1), s  is not allowed to exceed 0.7, based on the discussion of Grell and 202 

Freitas (2014). As discussed in Fowler et al. (2016), when s  becomes greater than 0.7, s  is set to 0.7 and e is 203 

recalculated using Eq. (1), leading to increased entrainment and decreased convective cloud-tops as A becomes 204 

smaller. Another option would be to turn off deep convection when s  reaches values close to 1, in which case a better 205 

choice for its maximum value may be between 0.9 and 1 (Grell and Freitas, 2014).  Figure 1.a highlights the rapid 206 

decrease in s from 0.7 to 0.3 as spatial resolution decreases from 6 to 9 km. s further decreases from 0.3 to 0.1 for 207 

resolutions between 9 and 16 km, and from 0.1 to 0.05 for resolutions between 16 and 30 km. The (1-s)2 quadratic 208 

function used to scale the mass flux starts to be significant at resolutions greater than 20 km and decreases rapidly to 209 

a minimum value of 0.1 for horizontal grid-spacing smaller than 6 km. Using a maximum value for s ensures that 210 

over the most refined area of the mesh, parameterized deep convection is not completely turned off since deep 211 

convection is not explicitly resolved. Using a variable-resolution mesh varying between 50 km over the coarse area 212 

of the mesh down to 3 km over the refined area of the mesh centered over South America, Fowler et al. (2016) show 213 

that the impact of parameterized deep convection weakens and that of grid-scale cloud microphysics strengthens as 214 

horizontal grid-spacing increases from hydrostatic to nonhydrostatic scales. 215 

  216 
Figure 1: a) Convective updraft fraction as a function of the mesh resolution used to scale the cloud base mass flux in GF; and b) 217 
scaling factor as a function of the mesh resolution used to scale the convective time-scale in MSKF. 218 
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2.2 The Multi-Scale Kain-Fritsch (MSKF) parameterization 219 

MSKF is the scale-aware version of the Kain-Fritsch (KF) convective parameterization, first developed by Kain 220 

and Fritsch (1990; 1993), and later updated by Kain (2004) to include, among other improvements, non-precipitating 221 

shallow convection. The trigger function is that used in Fritsch and Chappell (1980), originally tested in Kain and 222 

Fritsch (1992) and recently in Suhas and Zhang (2014). In MSKF, convection may be triggered if the temperature of 223 

a mixed layer is greater than that of the environment. The pressure thickness of that mixed layer must be at least 50 224 

hPa thick and is computed as the sum of adjacent layer depths starting at the layer next to the surface. The mixed layer 225 

temperature is a pressure-weighted function of the temperatures in those adjacent layers after being lifted to the Lifting 226 

Condensation Level (LCL) plus a perturbation temperature linked to the magnitude of the grid-scale vertical motion 227 

at the LCL. Once the base of a potential updraft source layer is found, convection remains activated if the vertical 228 

velocity of an air parcel lifted using the Lagrangian parcel method remains positive for a minimum cloud depth of 3 229 

km, as a test that the convective instability is strong enough for the air parcel to reach the Level of Free Convection 230 

(LFC). If not, the procedure is repeated by moving up to the next model layer until a new updraft source layer is found 231 

or until the search reaches above the lowest 300 hPa of the atmosphere. Further details on the equations used to 232 

compute the perturbation temperature and parcel vertical velocity are found in Kain (2004). 233 

In MSKF, the closure assumption assumes that the Convective Available Potential Energy in a cloud layer is 234 

removed within a time adjustment period following Bechtold et al. (2001). The convective time-scale is defined as the 235 

advective time-scale in the cloud layer with maximum values of 1 h and 0.5 h for deep and shallow convection, 236 

respectively. In contrast to GF, the thermodynamics inside the cloud model includes the ice phase. The condensed 237 

water formed in each cloudy layer is partitioned between liquid water and ice, assuming a linear transition of the cloud 238 

temperature between 268 K and 248 K. A fraction of the condensed water converts to rain, following Ogura and Cho 239 

(1973), and reaches the ground instantaneously. As discussed in Kain (2004), when an updraft source layer is 240 

identified, the classification of a convective cloud layer as deep or shallow depends on the cloud depth. Shallow 241 

convection is activated when all the criteria for deep convection are met, but the depth of the updraft is shallower than 242 

the minimum cloud depth (3 km). This definition implies that shallow and deep convection are not allowed to coexist. 243 

In the case of shallow convection, precipitation formed in updrafts is detrained to the environment as rain or snow, 244 

providing an additional moisture source to the large-scale environment. As in GF, MSKF provides tendencies of 245 

temperature, water vapor, cloud liquid water/ice to the environment, and tendencies of rain and snow from shallow 246 

convection. 247 

MSKF contains many improvements over KF, as summarized in the supplemental material of Glotfelty et al. 248 

(2019). These improvements include subgrid-scale cloud feedbacks to radiation from both shallow and deep 249 

convection leading to more realistic surface downward radiation, as described in Alapaty et al. (2012), and the scale 250 

dependence of fundamental parameters so that MSKF can be used at spatial resolutions varying between hydrostatic 251 

and nonhydrostatic scales. As detailed in Glotfelty et al. (2019) and Zheng et al. (2016), MSKF uses a scale dependent 252 

formulation (b) to the adjustment time-scale (t) for deep and shallow convection based on Bechtold et al. (2008), or 253 

𝝉 = 	 𝑯
𝑾𝒄𝒍

	𝜷					and					𝜷 = 𝟏 + 𝒍𝒏 :
𝟐𝟓
∆𝒙>	 	 	 	 	 (2)	254 



 

 

 

8 

where H and Wcl are the depth of the convective cloud and cloud-averaged vertical velocity scale, and Dx is the grid 255 

spacing. Figure 1.b highlights the dependence of the b scaling parameter as a function of horizontal resolution. As 256 

many MSKF parameters are optimized for a resolution around 25 km (Kain, 2004), b is equal to 1 at 25 km, ramping 257 

up to values greater than 2.4 for resolutions higher than 6km. Because the adjustment time-scale is proportional to 258 

b (Zheng et al., 2016), it increases as horizontal resolution increases, leading to scale-aware stabilization of the 259 

atmosphere by MSKF. In addition, MSKF includes a new scale-aware formulation of the minimum entrainment rate 260 

using the LCL as a function of the scale-dependent Tokioka parameter (Tokioka et al., 1988), a scale-dependent 261 

conversion rate for liquid water and ice condensates to precipitation, an increased grid-scale velocity expressed in 262 

terms of the subgrid scale updraft mass flux, and elimination of double counting of precipitation in cloudy layers. The 263 

separate and combined impacts of the development of MSKF on high resolution weather forecasts and regional climate 264 

simulations are discussed in Herwehe et al. (2014), Mahoney (2016), He and Alapaty (2018), Zheng et al. (2016), and 265 

Glotfelty et al. (2019). 266 

3 Methodology 267 

3.1 Numerical experiments 268 

We discuss differences in our MPAS results between GF and MSKF configurations on precipitation, cloud 269 

properties, and TOA radiation using 30-day long numerical experiments in MPAS (Skamarock et al., 2012). MPAS 270 

is a global nonhydrostatic atmospheric model developed for NWP and climate studies. The horizontal discretization 271 

uses an unstructured spherical centroidal Voronoi tessellation with a C-grid staggering, as described in Ju et al. (2011), 272 

while the vertical discretization is the height-based hybrid terrain-following coordinate of Klemp (2011). The 273 

dynamical solver integrates the prognostic equations (cast in flux form) for the horizontal momentum, vertical 274 

velocity, potential temperature, dry air density, and scalars using the split-explicit technique of Klemp et al. (2007). 275 

The temporal discretization uses a third-order Runge-Kutta scheme and the explicit time-splitting technique described 276 

in Wicker and Skamarock (2002). We use the monotonic option of the scalar transport scheme of Skamarock and 277 

Gassmann (2011) for horizontal and vertical advection of all moist scalars on the unstructured Voronoi mesh. Finally, 278 

horizontal filtering of the state variables is based on Smagorinsky (1963), as described in Skamarock et al. (2012). For 279 

variable-resolution meshes, the eddy viscosity coefficient is scaled as a function of the inverse mesh density so that 280 

horizontal diffusion is increased in the coarse area relative to the refined area of the mesh. 281 

In MPAS, the computational flow includes three distinct steps. The first step calls the physics parameterizations 282 

that update the surface energy budget and calculate the tendencies of potential temperature, moist species, and zonal 283 

and meridional wind due to long- and short-wave radiation, sub-grid scale convection, condensation and mixing in 284 

the PBL and free troposphere, and gravity wave drag due to orography. The physics parameterizations use the same 285 

input surface boundary conditions and soundings to compute their respective tendencies. Besides GF and MSKF, these 286 

parameterizations are, 287 

• the Noah land surface parameterization described by Chen and Dudhia (2001), 288 
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• the long- and short-wave Rapid Radiative Transfer Model for GCMs (RRTMG) described by Mlawer et al. (1997) 289 

and Iacono et al. (2000), 290 

• the semi-empirical parameterization of the cloud fraction of grid-scale clouds from Xu and Randall (1996) and 291 

convective clouds from Xu and Krueger (1991) for use in the long- and short-wave RRTMG schemes. Following 292 

Xu and Randall (1996), the fractional amount of grid-scale clouds is a function of the relative humidity and grid-293 

averaged condensate mixing ratio of cloud liquid water, ice, and snow. In MSKF, the fractional amount of shallow 294 

and deep convective clouds depends on the convective mass flux. 295 

• the Mellor–Yamada–Nakanishi–Niino (MYNN) Planetary Boundary Layer (PBL) and surface layer scheme 296 

described by Nakanishi and Niino (2009) with many updates described in Olson et al. (2019), and 297 

• the gravity wave-drag parameterization of Hong et al. (2008). 298 

The second step calls the dynamical solver which updates the state variables with their respective diabatic 299 

tendencies in conjunction to applying horizontal and vertical advection. Finally, the third step calls the grid-scale cloud 300 

microphysics parameterization so that at the end of the model time-step, supersaturation has been entirely removed or 301 

the relative humidity does not exceed 100%. Unlike the physics parameterizations listed in step one, the grid-scale 302 

cloud microphysics scheme updates the potential temperature and moist species for the next time-step instead of 303 

providing individual tendencies. The bulk cloud microphysics parameterization of Thompson et al. (THOM; 2004, 304 

2008) is used in all our numerical experiments. THOM includes prognostic equations for temperature, mass mixing 305 

ratio of water vapor, cloud liquid water, rain, cloud ice, snow, and graupel, and number concentration of cloud ice and 306 

rain. We set the number concentration of cloud droplets to 300x106 m-3 over land and 100x106 m-3 over oceans. In 307 

RRTMG, we diagnose the radiative effective radii of cloud liquid water, cloud ice, and snow as functions of the 308 

THOM cloud particle assumptions to add coupling between the cloud microphysics and cloud optical properties, as 309 

discussed in Thompson et al. (2016). 310 

To compare the two convective parameterizations against satellite-derived data at hydrostatic scales, we use a 311 

quasi-uniform resolution mesh for which the mean distance between cell centers is 30 km, corresponding to 655,362 312 

cells. The vertical scale includes 55 layers with monotonically increasing thicknesses varying from 50 meters next to 313 

the surface to 700 meters below 10 km to 1000 meters below the model top over ocean cells. The model top is set at 314 

30 km. The dynamics and physics time-steps are both set to 150 s, and the horizontal diffusion length scale is set to 315 

30 km. Long- and short-wave radiation is called every 15 mins and THOM is cycled twice so that the cloud 316 

microphysics time-step is less than 90 s to ensure computational stability (Thompson, private communication). With 317 

each convection scheme, we have performed a one-month long experiment preceded by a two-day spin-up to simulate 318 

Northern Hemisphere early winter, initializing our experiments with ERA-Interim (Dee et al., 2011) reanalyses for 319 

0000 UTC 29 November 2015. ERA-Interim sea surface temperatures and sea ice fractions are used to update ocean 320 

cells daily. We refer to our quasi-uniform resolution experiments run with GF and MSKF as GFu and MSKFu, 321 

respectively. 322 
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3.2 Sensitivity experiments 324 

Using a variable-resolution mesh spanning between 50 km and 3 km in MPAS, Fowler et al. (2016) demonstrate 325 

that subgrid-scale convection parameterized with GF weakens and grid-scale cloud microphysics parameterized with 326 

WSM6 (Hong and Lim, 2006) strengthens as resolution increases from the coarse to the most refined area of the mesh. 327 

Over the most refined area, grid-scale precipitation contributes a major part to total precipitation, and vertical profiles 328 

of subgrid-scale deep convective heating and drying resemble those obtained with a precipitating shallow convection 329 

scheme. Fowler et al. (2016) suggest investigating the effect of variable resolution on cloud macrophysical properties 330 

and TOA radiation, as grid-scale cloud microphysics parameterizations provide a more physically-based description 331 

of condensation and precipitation over the refined area of the mesh, compared to simpler entraining-detraining cloud 332 

models used in parameterized convection schemes. With the aim to quantify changes in cloud properties and radiation 333 

across scales using GF and MSKF, we repeat the early winter experiments but with a variable-resolution mesh that 334 

spans between 30 km and 6 km and includes 1,622,018 cells. As shown in Fig. 2.a, we center the refined area of the 335 

mesh over the Pacific warm pool defined as the area of the Western Pacific Ocean where sea-surface temperatures 336 

(SSTs) exceed 28.5°C, or between 170°E and 140°W. East of 140°W, the north-south width of warmest SSTs across 337 

the transition zone between the refined and coarse mesh narrows to delineate the location of the ITCZ in the Tropical 338 

Eastern Pacific. West of 170°E, the end of mesh refinement borders the eastern tip of Papua New Guinea. Along the 339 

Equator, the transition zone between nonhydrostatic and hydrostatic scales spans 20° in the meridional direction on 340 

either side of the most refined area of the mesh. 341 
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  346 
Figure 2: a) Initial sea-surface temperature and refined variable-resolution mesh depicted using isolines of the mean distance 347 
between grid-cell centers (km) over the Tropical Pacific Ocean; and b) histogram of the number of cells as a function of the mean 348 
distance between grid-cell centers. 349 

Figure 2.b displays a histogram of the mean distance between grid-cell centers. Differences between the initialization 350 

of the variable- and quasi uniform-resolution experiments include a reduced time-step from 150 s to 30 s and a reduced 351 

minimum horizontal diffusion length scale from 30 km to 6 km. Also, THOM is called only once per physics time-352 

step. We refer to our variable-resolution experiments run with GF and MSKF as GFv and MSKFv, respectively. 353 

Differences between GFu, GFv, MSKFu, and MSKFv are listed in Table 1. We acknowledge that running single 30-354 

day long experiments is a non-traditional way to assess the performance of convective parameterizations in an NWP 355 

framework but is needed to provide increased satellite sampling when comparing simulated clouds and precipitation 356 

against observations. Judt (2020) computes the predictability of the atmosphere using global convection-permitting 357 

simulations with the same version of MPAS as in this study, but with a global uniform mesh with a 4 km cell spacing. 358 

Results show that the predictability of the tropics (> 20 days) is longer than that of the extratropics and polar regions 359 

(~ 2 weeks) when deep convection is mostly resolved. Using the Center for Ocean-Land-Atmosphere Studies GCM 360 

with a triangular T63 truncation and the relaxed Arakawa-Schubert parameterization of deep convection (Moorthi and 361 

Suarez, 1992), Strauss and Paolino (2008) demonstrate greater predictability in the tropics than in the extratropics at 362 
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hydrostatic scales. As our comparison between experiments and satellite data focuses on the tropical Pacific Ocean, 364 

we are confident that biases arising during the first 2 weeks persist at longer time-scales and remain clearly depicted 365 

in their monthly means. In order to further assess the robustness of our results, we also compare the 30-day versus 10-366 

day mean LWP, IWP, and precipitation to ensure that biases discussed in Sections 4 and 5 are qualitatively similar as 367 

those observed at shorter time-scales (not shown for brevity). 368 

 GFu MSKFu GFv MSKFv 

No. of cells 655,362 655,362 1,622,018 1,622,018 

Min. cell distance (km) 22.8 22.8 4.4 4.4 

Max. cell distance (km) 31.8 31.8 37.8 37.8 

Time-step (s) 150 150 30 30 

Minimum diffusion length scale (km) 30 30 6 6 

CP GF MSKF GF MSKF 

Table 1: Horizontal mesh resolution, minimum and maximum distance between grid-cell centers, time-step, horizontal diffusion 369 
length scale, and convective parameterization (CP) for numerical experiments with the quasi uniform- and variable-resolution 370 
meshes. 371 

3.3 Satellite data sets 372 

We compare the cloud liquid water path (LWP) and ice water path (IWP), cloud area fraction (CF), and the top-373 

of-the-atmosphere longwave upward (TOALW) and shortwave net (TOASW) radiation simulated in our numerical 374 

experiments against the Edition-4 Single Scanner Footprint (SSF) products from the Clouds and the Earth’s Radiant 375 

Energy System (CERES; Wielicki et al., 1996). Minnis et al. (2011) describe in great details the retrieval of 376 

simultaneous and collocated radiation fluxes and cloud properties from the CERES radiometers and the Moderate-377 

resolution Imaging Spectroradiometer (MODIS) using consistent algorithms and calibration across satellite platforms, 378 

and shared auxiliary input (temperature and humidity profiles). SSF data are available in two different formats. The 379 

first data file format contains one hour of radiation fluxes and cloud properties at the instantaneous CERES 20 km 380 

footprint level from the sun-synchronous afternoon (morning) equatorial crossing time Aqua (Terra) satellites. As 381 

illustrated in Minnis et al. (2011; their Fig. 15), the CF in each SSF is given in terms of a clear fraction, a fraction for 382 

an upper and lower cloud layer separately, and a fraction for an upper layer over a lower layer, although the overlap 383 

CF is not available and set to zero in the Edition 4 release version that we are using. The LWP, IWP, and all other 384 

cloud fields are provided for the lower and upper layers, separately. Figure 3 illustrates two orbits of the Aqua satellite, 385 

one between 00 GMT and 01 GMT, and one between 14 GMT and 15 GMT, showing the TOALW (top panel) and 386 

CF (bottom panel), after gridding the hourly orbital data to a 0.2°x0.2° latitude-longitude grid. Gridded radiation fluxes 387 

and cloud data are means over all SSF data contained inside each rectangular grid, after applying a linear interpolation 388 

to reduce the number of missing values. Missing values, highlighted in gray in all figures, depict rectangular grids that 389 

did not contain radiation and cloud data in any of the SSF inside the 0.2°x0.2° grid. As seen in Fig. 3, our gridding of 390 

the orbital data removes most of the missing data along each orbit, providing a clear depiction of the relationship 391 
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between the TOALW and CF for cloudy and cloud-free grid cells. Areas of high (low) TOALW coincide with areas 394 

of small (large) cloudy areas, but it is also interesting to note that areas of each orbit are characterized as overcast in 395 

conjunction with areas that are not as spatially uniform in TOALW as in CF. 396 

 397 
Figure 3: Orbital paths of the Aqua satellite between 00 GMT-01 GMT and 14 GMT-15 GMT after binning the SSF data onto a 398 
0.2°x0.2° rectangular grid for a) the TOA all-sky upward long-wave radiation, and b) the cloudy percent area coverage for 1st 399 
December 2015. 400 

The second data file format (SSF1deg) includes daily and monthly averages of the original SSF orbital data but 401 

interpolated on a 1°x1° latitude-longitude grid. The difficulty in using hourly higher-resolution orbital data instead of 402 

monthly mean lower-resolution 1°x1° latitude-longitude gridded product is that the former are available in two distinct 403 

dynamic layers while the latter is provided at fixed pressure levels and for the atmospheric column. The lower and 404 

upper layers are referred to as dynamic layers because the cloud-top (base) pressure of each layer varies between SSFs 405 

along each orbit. The advantage of using orbital hourly data is that they can be gridded and interpolated to a spatial 406 

resolution close to that of our uniform and variable-resolution numerical experiments prior to computing monthly 407 

mean radiation and cloud fields. We choose the 0.2°x0.2° latitude-longitude gridded hourly data derived from the first 408 

data file format through the entire manuscript. 409 

In order to best compare the simulated against satellite-derived LWP and IWP, we need to understand the 410 

partitioning of the SSF LWP and IWP between the two cloud layers. In brief, a lower and an upper cloud layer can be 411 
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detected simultaneously if they lie adjacent to each other inside an SSF. In that case, the cloud properties for each 412 

layer are reported separately. In the case when an opaque upper cloud layer is detected to be above a lower cloud 413 

layer, it is impossible to identify the two layers separately. Then, only one cloud layer is reported and always classified 414 

as the lower cloud layer, regardless of its cloud-base (top) pressure (Loeb, private communication). Further details on 415 

the cloud classification, including determination of the cloud phase, are found in Geier et al. (2003) and Minnis et al. 416 

(2011). Figure 4 shows the monthly-mean LWP, IWP, and CF for the lower (left panels) and upper (right panels) layer 417 

measured by Aqua for December 2015 over the Tropical Pacific Ocean. Figure S1 is as Fig. 4, but for the Terra satellite 418 

(see supplemental figures). LWP and IWP are in-cloud values meaning that they have not been weighted by CF. The 419 

lower cloud layer includes stratiform clouds that form over colder sea-surface temperatures along the coast of Peru 420 

and off the Baja Peninsula. Over these areas of CF greater than 72% for the lower cloudy layer, CF for the upper cloud 421 

layer is less than 8%, highlighting that a single layer of low-level clouds fills a major fraction of the SSF. Increased 422 

values of CF are seen in conjunction with increased (decreased) values for the LWP (IWP) in the lower cloud layer 423 

indicative of warm-phase clouds, as well seen as off the coast of Peru. High values for the CF and IWP juxtaposed 424 

with lower values for the LWP in the lower cloud layer depict clearly deep convection over the Eastern Pacific Ocean, 425 

ITCZ, and warm pool region. Over areas of deep convection, upper cloud layers are often detected in conjunction with 426 

lower cloud layers within the same SSF but are defined by decreased values for the CF and IWP. For the LWP, the 427 

coexistence of a lower and upper cloud layer is quite infrequent, as seen by the number of missing grid-points in Fig. 428 

4.b (S1.b). Where detected, the LWP in the upper layer exceeds that in the lower layer, indicative of warm-phase 429 

mature thicker cumulus clouds coexisting with developing thinner cumulus clouds in the lower layer. Finally, outside 430 

of the typical stratus cloud regions and either sides of the ITCZ and warm pool region, SSF data reveal extended 431 

regions of warm-phase thinner clouds characteristic of widespread shallow convection over tropical oceans. 432 
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 433 
Figure 4: Monthly-mean cloud liquid water path (LWP, top panels), cloud ice water path (IWP, middle panels), and cloud fraction 434 
(CLD, bottom panels) over the Tropical Pacific Ocean for December 2015 from the Aqua satellite. Panels a), c), and e) are for the 435 
lower cloud layer; panels b), d), and f) are for the upper cloud layer. 436 

Calculating the satellite-retrieved LWP and IWP in an atmospheric column for validation of those from our 437 

numerical simulations is a two-step process. Because simulated LWPs and IWPs are grid-cell mean values and not 438 

local values, we first multiply the SSF LWP and IWP by CF to get their mean values in the lower and upper cloud 439 

layers separately, prior to gridding the hourly orbital data. Second, because the lower and upper layers are defined as 440 

adjacent to each other and never overlap in an SSF, we simply add the grid-cell mean LWP and IWP in the lower layer 441 

to that in the upper layer to compute the total LWP and IWP. Our processing method is simpler than the processing 442 

steps taken by the CERES Science Team to spatially grid and temporally average SSF hourly orbital data to SSF1deg 443 

gridded monthly mean data. Figure 5 compares the monthly-mean 0.2°x0.2° latitude-longitude CF-weighted LWP 444 

and IWP and CF (left panels) against the SSF1deg products (right panels) for December 2015 over the Tropical Pacific 445 

Ocean. The top panels of Fig. 5 show that our method reproduces successfully the geographical patterns and magnitude 446 
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of the LWP over the Tropical Pacific when compared against the SSF1deg data for both months. In contrast, because 448 

our method does not weigh the IWP as a function of height, it systematically overestimates the SSF IWP when 449 

compared against the SSF1deg data, as seen over the ITCZ and South Pacific Convergence Zone (SPCZ) in both 450 

months. 451 

 452 

 453 
Figure 5: Monthly-mean cloudy area-weighted cloud liquid water path (LWP, top panels), cloudy-area weighted cloud ice water 454 
path (IWP, middle panels), and cloud fraction (CLD, bottom panels) over the Tropical Pacific Ocean for December 2015. Panels 455 
a), c), and e) are SSF data; panels b), d), and f) are SSF1deg climatological data. 456 

Using ice water content data from the ascending (daytime) and descending (nighttime) portion of CloudSat orbits, 457 

Waliser et al. (2009; Fig. 7) estimate that day-night fluctuations in the ice water content at 215 hPa account for as 458 

much as 13% (20 %) of the annual mean ice water content over the warm pool (Tropical Eastern Pacific), in response 459 

to the diurnal cycle of deep convection over the tropical oceans. Therefore, when computing the monthly-mean CF, 460 

LWP, IWP, TOALW, and TOASW produced with GFu, GFv, MSKFu and MSKFv, we first sample the hourly model 461 
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diagnostics in accordance with the Aqua and Terra satellite orbits in order to reduce biases from different diurnal 462 

sampling between our experiments and SSF data. Because the MODIS-based retrieval of the LWP and IWP is 463 

insensitive to precipitation, and the rain, snow, and graupel mixing ratios are prognostic variables in THOM and fall 464 

through the atmosphere at finite velocities, we infer that the LWP and IWP must include all precipitating and non-465 

precipitating condensates.  466 

In addition to CERES SSF data, we use the monthly-mean precipitation rates from the TRMM Multisatellite 467 

Precipitation Analysis (TMPA Version 7; Huffman et al., 2007) to compare simulated versus observed precipitation 468 

rates, and monthly mean ERA-Interim reanalyses (Dee et al., 2011) to compare simulated versus observed precipitable 469 

water in the lower troposphere. 470 

4 Simulated versus satellite-retrieved precipitation 471 

4.1 Incidence of subgrid-scale shallow and deep convection 472 

Differences in the treatment of interactions between shallow and deep convection in GF and MSKF, as described 473 

in Section 2, are bound to modify the partitioning between shallow and deep convection as spatial resolution increases 474 

over the refined area of the mesh. A useful diagnostic to analyze the response of shallow and deep convection to local 475 

mesh refinement is the incidence of convection. Because shallow convection in both GF and MSKF is non-476 

precipitating, we set the incidence of shallow convection to 100 % when cloud-tops of shallow convective updrafts 477 

are detected, and 0 % otherwise. We set the incidence of deep convection to 100 % when convective precipitation 478 

occurs and 0 % otherwise. Figures 6 and 7 highlight the impact of the horizontal scale dependence of convection on 479 

the monthly-mean incidence of subgrid-scale shallow and deep convection in our uniform- and variable-resolution 480 

experiments for December 2015. 481 

Figure 6 shows that simulated shallow convection occurs over the entire Tropical Pacific, and that its incidence 482 

is about twice as large in GFu and GFv as in MSKFu and MSKFv. In GFu and GFv, incidence in excess of 48 % 483 

covers most of the Tropical Pacific, including the ITCZ and warm pool where GF allows shallow and deep convection 484 

to occur simultaneously. GFu and GFv exhibit highest incidence of shallow convection off the coast of Peru where 485 

persistent low-level stratiform clouds are formed. In contrast, the incidence of shallow convection in MSKFu and 486 

MSKFv never exceeds 32 % over the entire domain and is less than 16 % over the ITCZ and warm pool where shallow 487 

and deep convection are not allowed to coexist in MSKF. The bottom panels highlight differences in the incidence of 488 

shallow convection between GFv and GFu, and MSKFv and MSKFu. Despite the fact that GF does not include a 489 

spatial scale dependence in its formulation of shallow convection, GFv produces reduced shallow convection relative 490 

to GFu over most of the Tropical Pacific, except most notably immediately off the coast of Peru. In contrast to GFv, 491 

MSKFv yields increased incidence of shallow convection over most of the warm pool region. In MSKF, the height of 492 

deep convective clouds decreases as horizontal resolution increases. As the classification between deep and shallow 493 

convection is a function of cloud depth, convective clouds originally defined as deep are reclassified as shallow, 494 

leading to increased incidence of shallow convection in the refined area of the mesh. 495 
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 496 
Figure 6: Monthly-mean incidence of shallow convection (SHALC) over the Tropical Pacific Ocean simulated in GFu and MSKFu 497 
(top panels) and GFv and MSKFv (middle panels), and difference in the incidence of shallow convection between GFv and GFu 498 
(bottom left panel) and MSKFv and MSKFu (bottom right panel) for December 2015. 499 

In Fig. 7, the top and middle panels show that, in contrast to shallow convection, the incidence of deep convection 500 

has the same order of magnitude in GFu and MSKFu, and GFv and MSKFv. The top panels reveal that the incidence 501 

of deep convection is higher in MSKFu than GFu over the ITCZ and warm pool. In MSKFu, a sharp transition between 502 

areas of high and low incidence of deep convection causes areas outside of the ITCZ and warm pool to be mostly void 503 

of deep convection, as seen between 10°N and 30°N. In GFu, the incidence of deep convection is decreased over the 504 

warm pool relative to the ITCZ west of 160°W. Outside of the ITCZ and warm pool, GFu and GFv lead to higher 505 

incidence of deep convection than MSKFu and MSKFv because, in contrast to MSKF, GF allows deep and shallow 506 

convection to coexist in the same grid-cell. Middle panels highlight decreased incidence of subgrid-scale deep 507 

convection inside the refined area of the mesh over the warm pool in both GFv and MSKFv, as we expect clouds to 508 
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be resolved on the higher resolution grid, in conjunction with increased incidence east and west of the refined area. 509 

The decreased incidence in the refined area is more pronounced between MSKFu and MSKFv than between GFu and 510 

GFv whereas the upscaling impact of spatial refinement outside the refined area is greater in GFv than MSKFv. The 511 

scale-aware formulation in GF does not produce the same contrast between the refined and coarse mesh in GFv and 512 

GFu as that in MSKF in MSKFv and MSKFu. Fig. 7.f reveals a reduced incidence in excess of 25 % between MSKFu 513 

and MSKFv starting at resolutions higher than 12 km flanked by increased incidence of deep convection east and west 514 

of the refined area. In contrast, Fig. 7.e displays a longitudinal band of decreased incidence of deep convection between 515 

90°W and the dateline, bordered by increased deep convection north of the equator and south of 10°S. Table 2 lists 516 

the area-averaged incidence of deep and shallow convection for an area inside the refined mesh (REFINED: 0.1°N to 517 

5.1°N; 150°W to 180°W) and an area over the Tropical Eastern Pacific (EAST: 3.1°N to 8.1°N; 90°W to 120°W), as 518 

later shown in Figure 9.a. The REFINED and EAST areas display little variation in the incidence of shallow 519 

convection between GFu (MSKFu) and GFv (MSKFv), but the incidence of shallow convection in GFu and GFv is 520 

much higher than in MSKFu and MSKFv. The incidence of subgrid-scale deep convection is higher in the EAST area 521 

compared to the REFINED area in all four experiments. Over the REFINED area, the incidence of subgrid-scale deep 522 

convection remains about the same between GFu and GFv but strongly decreases between MSKFu and MSKFv. 523 

 524 

 DEEP CONVECTION (%) SHALLOW CONVECTION (%) 

 REFINED EAST REFINED EAST 

GFu 20 30 52 52 

GFv 23 36 47 48 

MSKFu 27 33 14 17 

MSKFv 10 36 17 15 

Table 2: Area-averaged incidence of deep and shallow convection. The REFINED and EAST areas are shown in Figure 9.a. 525 

As described in Section 2, MSKF differentiates shallow from deep convection as a function of the convective 526 

cloud depth. As spatial resolution increases, the scale aware formulation leads to a reduction in the intensity of 527 

convection and depth of convective clouds, mostly deep convection, over the refined area as seen in Fig. 7.f. As the 528 

depth of convective clouds originally classified as precipitating deep convective clouds become shallower, MSKF 529 

reclassifies those same clouds as nonprecipitating shallow clouds, leading to near-equal compensation between the 530 

decreased and increased incidence of deep and shallow convection over the warm pool. In contrast to MSKF, GF 531 

causes precipitating deep convection to become precipitating shallow convection at increased spatial resolution. As 532 

this process occurs in the deep convection scheme and both cloud types precipitate, variations in the incidence of deep 533 

convection between GFu and GFv are small. Further analysis of the response of shallow convection between GFu and 534 

GFv over the refined area is beyond the objectives of this research. 535 
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 537 
Figure 7: As Fig. 6, but for the monthly-mean incidence of deep convection (DEEPC). 538 

4.2 Precipitation rates 539 

Figure 8 shows the monthly-mean convective precipitation rate simulated in GFu and MSKFu (top panels), and 540 

GFv and MSKFv (middle panels). The bottom panels in Figure 8 display the ratio between the convective precipitation 541 

rate simulated in GFv (MSKFv) and GFu (MSKFu) to contrast the impact of the scale aware formulation in GF and 542 

MSKF. The top panels highlight similar geographical patterns of convective precipitation in GFu and MSKFu. 543 

Between 80°W and 160°W, increased convective precipitation is located along the ITCZ, in conjunction with 544 

increased incidence of deep convection, as seen in Figs. 7.a-b. West of 160°W, GFu leads to decreased but more 545 

widespread convective precipitation relative to MSKFu over the warm pool, in conjunction with decreased but more 546 

widespread incidence of convection. In GF, this result infers that while deep convection is not triggered as often over 547 

the warm pool as along the ITCZ, the amount of convective precipitation produced in one time-step is higher over the 548 
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warm pool than along the ITCZ, so that monthly-mean convective precipitation rates remain about the same in both 550 

regions. In Fig. 8, and in agreement with the middle panels of Fig. 7, middle panels display a strong decrease in 551 

convective precipitation in both GFv and MSKFv over the refined area of the mesh. In MSKFv, the strong reduction 552 

in convective precipitation occurs, not only over the most refined area of the mesh, but also where horizontal grid-553 

spacing increases from 6 to 12 km. In GFv, convective precipitation increases sharply as soon as grid-spacing is greater 554 

than 12 km and exceeds that simulated in GFu over the coarse area of the mesh. In GFv, the monthly-mean convective 555 

precipitation rate is higher than that in MSKFv over the most refined area of the mesh but starts to increase more 556 

rapidly between 6 and 12 km than in MSKFv. Differences in increasing convective precipitation across the transition 557 

zone between the refined and coarse areas reflect different impacts of the scale-aware formulation in GF and MSKF. 558 

The bottom panels in Figure 8 show that the ratio in convective precipitation between GFv and GFu has the same 559 

order of magnitude as that between MSKFv and MSKFu over the refined area of the mesh. While it remains as small 560 

in the transition zone as in the refined mesh with MSKF, this ratio increases to values greater than 1 between 6 and 561 

12 km with GF, indicating increased convective precipitation on each side of the refined area in GFv relative to GFu, 562 

as also seen in Figure 8.c. Maps of monthly-mean grid-scale precipitation rates show similar geographical patterns 563 

between GFu and MSKFu. Over the refined area, increased grid-scale precipitation compensates decreased convective 564 

precipitation in both GFv and MSKFv. Over the coarse area, grid-scale precipitation decreases along the ITCZ and 565 

warm pool in GFv while remaining nearly the same in MSKFv (not shown for brevity). 566 
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 589 
Figure 8: Monthly-mean convective (DEEPC) precipitation rate over the Tropical Pacific Ocean simulated in GFu and MSKFu 590 
(top panels), GFv and MSKFv (middle panels), and ratio between the monthly-mean convective precipitation rate in GFv (MSKFv) 591 
and GFu (MSKFu) for December 2015. 592 

The simulated total precipitation rate can be compared to observed TMPA precipitation using Figs. 9 and 10 593 

which show the precipitation rates and differences between simulated and observed precipitation rates, respectively. 594 

Areas of maximum satellite-retrieved precipitation are found over the ITCZ between 130°W and the dateline (Fig. 595 

9.a). Observed precipitation decreases over the warm pool west of the dateline and decreases strongly over the Tropical 596 

Eastern Pacific (between 80ºW and 120ºW) and the SPCZ. The four simulations overestimate precipitation in the 597 

Tropical Eastern Pacific between 80ºW and 120ºW (Figs. 9.b-e) with biases in excess of 11 mm day-1 (Figs. 10.a-d). 598 

The four simulations also overestimate precipitation between 130ºE and 160ºE, or west of the refined area, with biases 599 

about as large as those seen east of the refined area, except for MSKFu. The uniform-grid results (Figs. 9.b-c) display 600 

the highest precipitation rates over the area of warmest SSTs where we expect deepest convection to occur and are in 601 

reasonable agreement with TMPA data. However, GFu and MSKFu locate the ITCZ south of its observed location 602 

(Figs. 10.a-b), producing a positive bias straddling the Equator and a negative bias north of the Equator. The scale-603 

aware dependence of deep convection in GF leads to decreased total precipitation in GFv compared to GFu over the 604 

entire refined area (Fig. 10.e). In contrast, Fig. 10.f shows that while the scale-aware dependence in MSKF leads to 605 
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decreased precipitation in MSKFv over a major fraction of the refined area, it also leads to an improved location of 606 

the simulated ITCZ, as evidenced by increased precipitation north of the Equator. 607 

 608 
Figure 9: Monthly-mean total precipitation rate over the Tropical Pacific Ocean from TMPA data (top panel) and simulated with 609 
GFu and MSKFu (middle panels) and GFv and MSKFv (bottom panels) for December 2015. 610 

Table 3 summarizes the area-mean monthly-mean convective, grid-scale, and total simulated and observed TMPA 611 

precipitation rates over the REFINED and EAST areas. Over the two areas, the simulated total precipitation is about 612 

the same for all four experiments but is underestimated (overestimated) relative to TMPA data over the REFINED 613 

(EAST) areas, respectively. Over the REFINED area, total precipitation decreases by 2.1 mm day-1 between GFu and 614 

GFv and 2.3 mm day-1 between MSKFu and MSKFv, highlighting a near-equal compensation between decreased deep 615 

convective and increased grid-scale precipitation over the most refined area of the mesh. Over the EAST area, total 616 

precipitation increases by 2.7 mm day-1 between GFu and GFv resulting from a 5.3 (2.6) mm day-1 increase (decrease) 617 

in convective (grid-scale) precipitation. In contrast, total precipitation increases by 1.2 mm day-1 between MSKFu and 618 

MSKFv resulting from a 0.5 (0.6) mm day-1 increase in convective (grid-scale) precipitation. The large (small) increase 619 

in convective precipitation in GFv (MSKFv) over the coarse areas east (and west) of the refined area highlights distinct 620 

upscaling effect of the refined area on the coarse area of the mesh between GFv and MSKFv. 621 
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 622 
Figure 10: Monthly-mean precipitation rate difference over the Tropical Pacific Ocean between GFu (MSKFu) and TMPA data 623 
(top panels), GFv (MSKFv) and TMPA data (middle panels), and between GFv (MSKFv) and GFu (MSKFu) (bottom panels) for 624 
December 2015. 625 

In summary, the scale dependence of convection in GF and MSKF produces the same partitioning between 626 

convective and grid-scale precipitation inside the refined area or decreased convective and compensating increased 627 

grid-scale precipitation as horizontal resolution increases. The upscaling impact on convective and grid-scale 628 

precipitation varies between GF and MSKF. As seen in Fig. 8 and Table 3, convective precipitation increases strongly 629 

over the warm pool and Eastern Pacific starting across the transition zones east and west of the refined area in GFv. 630 

In contrast, while the parameterization of the scale dependence of deep convection in MSKF produces a stronger 631 

decrease in convective precipitation in MSKFv than GFv, it produces a smoother transition in convective precipitation 632 

and decreased upscaling effect as spatial resolution reaches 30 km. 633 
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 634 

 CONVECTIVE (mm day-1) GRID-SCALE (mm day-1) TOTAL (mm day-1) 

 REFINED EAST REFINED EAST REFINED EAST 

GFu 10.0 8.7 6.1 3.7 16.1 12.4 

GFv 1.9 14.0 12.1 1.1 14.0 15.1 

MSKFu 10.9 10.6 4.9 4.8 15.8 15.5 

MSKFv 1.7 11.1 11.8 5.4 13.5 16.5 

TMPA     20.7 7.3 

Table 3: Area-averaged convective, grid-scale, and total precipitation rates over the same areas as those described for Table 2. The 635 
REFINED and EAST areas are shown in Figure 9.a. 636 

5 Simulated relative humidity and simulated versus satellite-retrieved LWP and IWP 637 

5.1 Relative humidity 638 

One effect of local mesh refinement is the decreased contribution of parameterized convection compensated by 639 

increased contribution of grid-scale cloud microphysics to condensation processes and cloud formation with 640 

increasing spatial resolution. Therefore, prior to comparing the simulated LWP and IWP against SSF data, we first 641 

investigate differences in relative humidity (RH) between our uniform- and variable-resolution experiments. Figure 642 

11 displays the monthly-mean longitude-pressure cross sections of RH latitudinally-averaged between 5°S and 5°N. 643 

East of 150°W over the Tropical Eastern Pacific, the four experiments display similar vertical distributions of RH, 644 

with relatively lower RH between 700 hPa and 150 hPa and higher RH in the PBL below 700 hPa and in the upper-645 

troposphere above 150 hPa. All four experiments show significant increase in RH west of 150°W across the entire 646 

troposphere, over the warm pool where the warmest SSTs are seen (Fig. 2.a) and deepest convective updrafts are 647 

formed. Comparing GFu against MSKFu over the warm pool shows that GF has stronger drying than MSKF in the 648 

lower troposphere, leading to a lower RH between 850 hPa and 300 hPa in GFu than MSKFu. In addition, GF produces 649 

stronger moistening than MSKF in the upper troposphere leading to a higher RH between 300 hPa and 100 hPa in 650 

GFu than MSKFu. As seen in the bottom panels of Fig. 11, reducing parameterized deep convection while enhancing 651 

grid-scale cloud microphysics produces a higher RH over the refined area in GFv and MSKFv, but without 652 

significantly modifying RH over the coarse area of the mesh. Variations in the vertical distribution of RH at pressures 653 

less than 400 hPa are more pronounced between GFu and GFv than between MSKFv and MSKFu. Because the cloud 654 

fraction (CF) is a function of RH, as described in Xu and Randall (1996; Eq. 1), there is a strong relationship between 655 

the longitude-pressure cross sections of RH and CF, as seen in Fig. S2 (see supplemental figures). The highest CF 656 

coincide with the highest RH at about 100 hPa over the warm pool in all four experiments. As for RH, GFu and GFv 657 

display higher and lower values of CF than MSKFu and MSKFv in the upper and lower troposphere. The top and 658 

bottom panels of Fig. S3 show differences in RH and CF between GFv and GFu, and between MSKFv and MSKFu. 659 

One notable difference is a stronger increase in upper-tropospheric clouds between MSKFu and MSKFv than between 660 
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GFv and GFu, particularly over the refined area of the mesh. While increased grid-scale condensation over the refined 664 

area impacts the entire tropospheric in GFv, it more strongly affects the upper-troposphere in MSKFv. 665 

 666 
Figure 11: Longitude versus pressure cross-section of latitudinally-averaged (between 5°S and 5°N) relative humidity (RH) across 667 
the Tropical Pacific Ocean simulated in GFu and MSKFu (top panels) and GFu and GFv (bottom panels) for December 2015. 668 

To explain the change in RH over the refined area between the uniform- and variable-resolution experiments, we 669 

compare the monthly-mean upward moisture flux at 850 hPa and 200 hPa between MSKFu and MSKFv over the 670 

Tropical Eastern Pacific (Fig. 12). There is a significant decrease in the upward moisture flux between 850 hPa and 671 

200 hPa in conjunction with decreased specific humidity with height in MSKFu and MSKFv (Fig. 11). As seen in the 672 

top panels of Fig. 12, MSKFu yields highest values of the upward moisture flux along the ITCZ and over the warm 673 

pool in association with parameterized deep convection. Outside the ITCZ and warm pool, lower values of the upward 674 

moisture flux at 850 hPa result because of reduced deep convection in conjunction with shallow convection, as seen 675 

over the SPCZ. At increased spatial resolution, convective processes transition from being parameterized to resolved, 676 

producing larger grid-scale vertical velocities, stronger upward moisture flux, and increased grid-scale condensation 677 

through the entire troposphere over the refined area of the mesh. Comparing the bottom versus top panels of Fig. 12 678 

outlines the intensification of vertical moisture transport at both pressure levels over the refined area, leading to the 679 

increased relative humidity with increased spatial resolutions shown in Fig. 11. 680 
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 681 
Figure 12: 200 hPa (left panels) and 850 hPa (right panels) monthly-mean upward moisture flux simulated with MSKF over the 682 
Tropical Pacific Ocean for December 2015. Top panels are for MSKFu and bottom panels are for MSKFv. Note the 1x10-2 scaling 683 
between 200 hPa and 850 hPa. 684 

5.2 Liquid Water Path (LWP) 685 

Figure 13 displays difference maps between the simulated and satellite-derived LWP, and between GFv (MSKFv) 686 

and GFu (MSKFu). In Fig. 13, the simulated LWP is calculated using only the grid-scale cloud liquid water mixing 687 

ratio from THOM. Separate analyses would show that adding the prognostic grid-scale rain mixing ratio to the 688 

simulated LWP further increases biases when compared against the SSF LWP (not shown for brevity). We also do 689 

not include the contribution of the convective cloud liquid water mixing ratio to the LWP which is small compared to 690 

that from the grid-scale cloud microphysics. Figure 13 highlights that GFu strongly overestimates the LWP over the 691 

ITCZ, and between 20°N (20°S) and the northern (southern) limits of our analysis. As seen in Fig. 6, GFu attempts to 692 

form low-level boundary layer clouds off the coast of Peru but these clouds form too far west from the coast when 693 

compared against observations. This same bias is depicted in Fig 13.a since these low-level boundary layer clouds are 694 

characterized by high LWP. In Fig. 13.b, decreased bias between the MSKFu and SSF LWP reflects that the LWP is 695 

strongly decreased in MSKFu compared to GFu, outside of the areas of low-level boundary layer clouds. If we set 696 

aside that MSKFu is unable to simulate low-level clouds off the Baja Peninsula and coast of Peru, the magnitude and 697 

regional patterns of the LWP simulated in MSKFu is in fairly good agreement with the SSF LWP. Because MSKF 698 

does not allow deep and shallow convection to coexist within the same grid-cell and deep convection dominates 699 

shallow convection over the ITCZ and warm pool, we suggest that detrained cloud water from deep convection as a 700 

source to grid-scale microphysics contributes a major part to the LWP produced by MSKFu. The bottom panels of 701 

Fig. 13 reveal that the mesh refinement impacts the LWP simulated with MSKF more effectively than that simulated 702 
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with GF inside the refined area. This result is in agreement with the stronger increase in RH between MSKFu and 704 

MSKFv than between GFu and GFv at lower levels. MSKFv yields an increased LWP relative to MSKFu over the 705 

entire refined area (Fig. 13.f). MSKFv also has increased LWP compared to MSKFu over the coarse area, but not as 706 

large as that seen over the refined area. Figure 13.e shows that the LWP differences do not have a strong positive or 707 

negative trend inside the refined area, due to the fact that GF allows deep and shallow convection to coexist within 708 

the same grid-cell of deepest convective activity, mainly over the ITCZ and warm pool, and shallow convection does 709 

not account for variations in horizontal grid-spacing. Over the coarse area, an obvious decrease in the LWP between 710 

GFv and GFu is seen over the ITCZ in the Tropical Eastern Pacific as well as along the southern boundary of our 711 

analysis. 712 

 713 
Figure 13: Monthly-mean cloud liquid water path (LWP) difference over the Tropical Pacific Ocean between GFu (MSKFu) and 714 
SSF data (top panels), GFv (MSKFv) and SSF data (middle panels), and monthly-mean LWP difference between GFv (MSKFv) 715 
and GFu (MSKFu) (bottom panels) for December 2015. 716 
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In order to investigate the reasons why the LWP simulated in GFu strongly exceeds that from the SSF products 718 

and MSKFu, we calculate the monthly-mean LWP produced in grid-cells with incidence of deep convection, shallow 719 

convection, and no convection, using LWP hourly outputs from GFu. Separate maps show that a major fraction of the 720 

LWP over convectively active regions such as the ITCZ is actually produced at times when no convection is active or 721 

when only shallow convection is triggered (not shown for brevity). In GF, and in contrast to deep convection, shallow 722 

convection detrains total water as a source of grid-scale water vapor instead of detraining water vapor, cloud liquid 723 

and ice water, separately. Because the detrained total water is treated as a source of water vapor, supersaturation 724 

conditions are more likely to persist and later removed by grid-scale condensation. In contrast, detrainment from deep 725 

convective updrafts acts as a source of liquid water if temperatures are warmer than 258 K. Deep convection in 726 

conjunction with grid-scale condensation contributes the least to the LWP because updrafts are taller and their cloud-727 

top temperatures colder than those from shallow convection, leading to condensation and deposition to occur at levels 728 

where temperatures are colder than 258 K, and where ice phase processes dominate. 729 

The impact of more active shallow convection in GFu (GFv) than in MSKFu (MSKFv) is analyzed using Fig. 14 730 

which shows differences in the monthly-mean precipitable water below 700 hPa between our experiments and ERA-731 

Interim reanalyses. Because varying horizontal resolution does not affect shallow convection, GFv (MSKFv) displays 732 

similar biases as GFu (MSKFu) over the entire analysis domain, including the refined area. Comparing the left versus 733 

right panels of Figure 14 reveals that the precipitable water simulated in GFu (GFv) displays a positive bias whereas 734 

that simulated in MSKFu (MSKFv) displays a negative bias in the lower troposphere relative to ERA-Interim data, 735 

mainly over areas of shallow convection. In GF, the abundance of shallow convection (Figure 6.a, Figure 6.c) 736 

associated with detrained total water acting as a source of grid-scale water vapor promotes the lower troposphere to 737 

stay more humid and cloud liquid water to form more often than actually observed (Figure 13.a, Figure 13.c), north 738 

and south of the ITCZ and warm pool. In MSKF, while shallow convection is as widespread over the Tropical Pacific 739 

Ocean as in GF, it cannot act as a major source of detrained total water to the grid-scale microphysics because it is not 740 

triggered as often as deep convection. In addition, because MSKF partitions detrained water into water vapor, cloud 741 

water, cloud ice, rain, and snow, instead of detraining total water in the form of water vapor as in GF, the amounts of 742 

available water vapor and cloud liquid water are reduced relative to GF. 743 
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 751 
Figure 14: Monthly-mean difference between the simulated and ERA-Interim precipitable water below 700 hPa over the Tropical 752 
Pacific Ocean for December 2015. 753 

5.3 Ice Water Path (IWP) 754 

Because MODIS is relatively insensitive to precipitation, the simulated IWP should comprise cloud ice, snow, 755 

and graupel. Because graupel contributes a minor part to the IWP relative to cloud ice and snow and our results 756 

highlight strong biases against SSF data, we do not include graupel in our computation of the simulated IWP. It is also 757 

important to note that because THOM has the propensity to rapidly convert cloud ice to snow (Thompson et al. 2016), 758 

most of the IWP is in the form of snow which falls at higher speeds than cloud ice, enhancing the depth of ice clouds. 759 

Lastly, the middle panels of Fig. 5 show that our gridding of the IWP orbital data produce increased monthly mean 760 

IWP than the official SSF1deg product. This result implies that biases between the simulated and satellite-derived 761 

IWP will be underestimated when using our SSF 0.2ºx0.2º IWP data. Figure 15 shows difference maps between the 762 

simulated and satellite-derived IWP, and between GFv (MSKFv) and GFu (MSKFu). When compared against the SSF 763 

IWP, GFu is the only experiment that mostly underestimates the IWP along the ITCZ and warm pool whereas GFv 764 

yields a strong increase in the IWP over the refined area of the mesh relative to GFu. Both GFu and GFv overestimate 765 

the IWP along the west coast of Central America, as they did for the LWP and precipitation. Comparing MSKFu 766 

(MSKFv) against GFu (GFv) shows that MSKF leads to increased positive biases in the IWP compared to GF over 767 
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the entire ITCZ and warm pool. Increased convective detrainment of cloud ice as a source of grid-scale cloud ice to 768 

THOM in MSKF than in GFv, because partitioning between cloud liquid and ice water starts at warmer temperatures, 769 

may be responsible to the increased IWP. The bottom panels of Figure 15 reveal that increasing spatial resolution 770 

worsens the simulated IWP compared to the SSF IWP over the refined area in GFv and MSKFv. As shown in Fig. 11, 771 

mesh refinement over the warm pool yields higher upper-tropospheric relative humidity leading to increased ice cloud 772 

microphysics. In contrast to GFv, MSKFv displays an increase in the IWP over the coarse area of the mesh, showing 773 

a stronger impact of the refined area on the coarse area of the mesh in MSKFv than GFv in the upper-troposphere. 774 

 775 
Figure 15: As Fig. 13, but for the cloud ice water path (IWP). 776 

5.4 TOA radiation budget 777 

Biases in the LWP and IWP introduce biases in the cloud fraction and cloud optical properties which in turn lead 778 

to biases in the simulated TOALW and TOASW compared to CERES-SSF data. Figures S4, S5, and S6 display the 779 
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monthly-mean CF, TOALW, and TOASW from SSF data for December 2015 and the differences between the model 784 

results and observations. Focusing on areas of deep convection over the ITCZ and warm pool, all four simulations 785 

overestimate CF with larger biases seen in the GF than the MSKF experiments, and larger biases seen in the variable-786 

resolution than the uniform-resolution experiments. All four simulations also overpredict CF along the west coast of 787 

Central America while underpredicting CF over areas of stratiform clouds along the west coast of South America and 788 

Baja Peninsula. The impact of CF biases is that all four experiments underestimate the size of the warm pool and 789 

width of the ITCZ, leading the TOALW (TOASW) to be too high (low) over areas of deep convection. These 790 

differences are clearly linked to the differences noted in the LWP and IWP between MPAS and SSF data. 791 

6 Discussion 792 

When running GFu (MSKFu) and GFv (MSKFv), we set the time-step to be as large as possible to reduce the 793 

computational cost of the various experiments without compromising computational stability. Using decreased time-794 

steps between the quasi- and variable-resolution experiments from 150 s to 30 s implies that it is not possible to directly 795 

compare the mean state of GFv (MSKFv) against that of GFu (MSKFu) in the coarse area of the variable-resolution 796 

mesh, and upscale effects of local mesh refinement. This is in contrast to Sakaguchi et al. (2015) and Hagos et al. 797 

(2013) who constrain the time-step to be the same at all horizontal scales, allowing their study to assess the upscale 798 

effect of mesh refinement across the transition zones between the refined and coarse areas of the mesh, and far from 799 

the refined mesh. In order to understand the increase in convective precipitation east and west of the transition zones 800 

in GFv relative to GFu, we run GFu with the reduced 30 s time-step to quantify the dependence of convective 801 

precipitation to the dynamic time-step. As seen in Fig. S7.a (S7.b), reducing the time-step from 150 s to 30 s strongly 802 

increases convective precipitation over convectively active regions of the Tropical Pacific Ocean, highlighting the 803 

sensitivity of GF to the time-step. Reducing the time-step in MSKFu yields convective precipitation differences that 804 

are not as large as those seen in Fig. S7.b (not shown for brevity). Using the Community Atmosphere Model Version 805 

4 (CAM4) with a T340 spectral truncation and a 5 min time-step, Williamson (2013) demonstrates the dependence of 806 

the removal of supersaturation conditions to the shallow (30 min) and deep (1 h) convective time-scales. While it is 807 

important to point out that the sensitivity studies discussed in Williamson (2013) depend on the CAM4 coupling 808 

between the convective and grid-scale cloud parameterizations and the dynamical core, shorter convective time-scales 809 

relative to the time-step yield faster removal of moist instabilities through vertical motions and condensation. In GF, 810 

the time-scales used in the AS and KF closures are set to the dynamical time-step and 20 min, respectively. While the 811 

contribution of the KF closure decreases by a factor of 5 in response to the decreased time-step, the contribution of 812 

the AS closure is independent of the convective time-scale but will affect the cloud base mass flux through variations 813 

in the cloud work function. In order to further understand the impact of the time-step on increased supersaturation and 814 

convective precipitation in GF, a detailed analysis of the contributions of the dynamics and physics forcing on the AS 815 

cloud work function in MPAS is needed. This is the object of future research. 816 
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7 Summary and future research 817 

Uniform- and variable-resolution experiments with two scale-aware parameterizations of deep convection (GF 818 

and MSKF) in MPAS yield significant biases between the simulated and satellite-derived monthly-mean precipitation 819 

rates, LWP, IWP, and CF over the Tropical Pacific Ocean for December 2015. In turn, biases affect the cloud fraction 820 

and optical properties producing significant differences in the TOALW and TOASW compared to CERES-SSF data. 821 

Tropical precipitation simulated with uniform-resolution experiments is overestimated compared to TMPA, due 822 

to subgrid-scale deep convection. Biases using GF are as large as those using MSKF, and result in part because the 823 

simulated ITCZ is located south of its observed location. Variable-resolution experiments do not produce significant 824 

improvement in simulating precipitation against TMPA. Inside the refined area, decreased convective precipitation 825 

plus compensating increased grid-scale precipitation have the simulated total precipitation to exhibit similar biases 826 

between the uniform- and variable-resolution experiments with GF and MSKF. One major difference in using GF 827 

instead of MSKF is the strong upscaling effect of the refined mesh on the coarse mesh, producing a strong increase in 828 

convective precipitation east and west of the refined mesh. Because deep convection does not exhibit similar behaviour 829 

over the transition zone between the coarse and refined areas of the mesh in MSKF, we plan further to investigate this 830 

difference in convective precipitation in terms of the size of convective updrafts as a function of horizontal resolution 831 

and increased moistening of the lower troposphere from shallow convection. 832 

Differences in the simulated LWP between the uniform- and variable-resolution experiments using GF and MSKF 833 

and against the CERES-SSF LWP highlight the need to revise the treatment of shallow convection to improve warm-834 

phase clouds in both schemes. While experiments using MSKF yield the simulated LWP to be in reasonable agreement 835 

against that from the CERES-SSF product, those using GF yield the simulated LWP to be strongly overestimated. 836 

Analyses show that shallow convection and cloud microphysics processes explain most of the increased LWP in GFu 837 

and GFv compared to MSKFu and MSKFv, and satellite-derived data. We plan to update the GF shallow convection 838 

scheme with that implemented in version 4.1 of the Advanced Research Weather Forecast (WRF) model. Because the 839 

updated scheme includes an improved cloud model that allows water vapor and cloud liquid water to detrain separately 840 

and a fraction of condensed water to precipitate, we will focus on the impact of explicit detrainment of cloud liquid 841 

water and precipitation from shallow convective updrafts on the simulated LWP in GF. Results show that MSKF 842 

underestimates shallow convection, leading the troposphere below 700 hPa to be drier than actually observed. These 843 

results imply that the shallow convection in MSKF needs to be updated or that a separate parameterization of shallow 844 

convection needs to be used in addition to that in MSKF. Using the same parameterization of shallow convection, and 845 

partitioning of the detrained condensed water between cloud liquid water and ice in GF and MSKF, will further provide 846 

understanding in the partitioning of the LWP between subgrid-scale deep and shallow convection. Variable-resolution 847 

experiments strongly overestimate the IWP compared to CERES-SSF data over the refined area of the mesh, leading 848 

to strong biases in the cloud fraction, and TOA long- and short-wave radiation. Because subgrid-scale deep convection 849 

is reduced at increased horizontal resolutions, grid-scale cloud microphysics contributes a major part to biases in the 850 

simulated IWP. 851 

Parameterizing the dependence of subgrid-scale deep convection as a function of horizontal resolution allows the 852 

use of variable-resolution meshes spanning between hydrostatic and nonhydrostatic scales within a global framework 853 
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for regional NWP and climate experiments. Although deep convection is not fully explicitly resolved over the refined 855 

area of the mesh in our variables-resolution experiments, it is substantially reduced relative to that over the coarse area 856 

of the mesh, allowing to contrast the contribution of subgrid-scale convection and cloud microphysics processes. As 857 

horizontal resolution increases from the coarse to refined area of the mesh, deep convection gradually transitions from 858 

parameterized to resolved and cloud microphysics contribute a major part to moist processes over the refined mesh. 859 

Shallow convection coupled with grid-scale microphysics contributes a major part to the low-level cloud liquid water 860 

and mixed-phase clouds whereas grid-scale cloud microphysics contribute a major part to the formation of upper-861 

tropospheric ice clouds over the refined area. Our results show that mesh refinement does not systematically improve 862 

precipitation and clouds over the Tropical Pacific Ocean as grid-scale condensation increases at increased resolutions. 863 

As cloud microphysics processes drive the moisture budget over the refined area of the mesh, we propose to expand 864 

this diagnostic study to a process study by further understanding the cloud microphysics processes that need to be 865 

improved in order to reduce discrepancies between model and observations. In that vein, the recently developed MSKF 866 

that includes a double moment microphysics (Glotfelty et al., 2019) would be useful in a future process study. 867 

 868 

 869 

Code and data availability: The source code used to initialize and run our experiments is based on MPAS-v5.2 which 870 

is freely available from https://github.com/MPAS-Dev/MPAS-Model/releases/tag/v5.2. Modifications to the original 871 

source code and scripts to run the experiments are available from https://doi.org/10.5281/zenodo.3515440 (Fowler, 872 

2019) while initialization files, and outputs from the experiments are located on the NCAR Campaign Storage System. 873 

These files can be made available by contacting the corresponding author. Examples of CERES SSF Aqua and Terra 874 

orbital and gridded data, daily-mean and monthly-mean simulated diagnostics, and post-processing scripts are also 875 

available from https://doi.org/10.5281/zenodo.3515440 (Fowler, 2019).   876 
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