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Abstract. A data assimilation system with a four-dimensional local ensemble transform Kalman filter 

(4D-LETKF) is developed to make a new analysis data set for the atmosphere up to the lower 

thermosphere using the Japanese Atmospherics General Circulation model for Upper Atmosphere 10 

Research. The time period from 10 January 2017 to 20 February 2017, when an international radar 

network observation campaign was performed, is focused on. The model resolution is T42L124 which 

can resolve phenomena at synoptic and larger scales. A conventional observation dataset provided by 

National Centers for Environmental Prediction, PREPBUFR, and satellite temperature data from the Aura 

Microwave Limb Sounder (MLS) for the stratosphere and mesosphere are assimilated. First, the 15 

performance of the forecast model is improved by modifying the vertical profile of the horizontal 

diffusion coefficient and modifying the source intensity in the non-orographic gravity wave 

parameterization, by comparing it with radar wind observations in the mesosphere. Second, the MLS 

observational bias is estimated as a function of the month and latitude and removed before the data 

assimilation. Third, data assimilation parameters, such as the degree of gross error check, localization 20 

length, inflation factor, and assimilation window are optimized based on a series of sensitivity tests. The 

effect of increasing the ensemble member size is also examined. The obtained global data are evaluated 

by comparison with the Modern-Era Retrospective analysis for Research and Applications version 2 

(MERRA-2) reanalysis data covering pressure levels up to 0.1 hPa and by the radar mesospheric 

observations which are not assimilated. 25 

1 Introduction 

It is well known that the earth’s climate is remotely coupled: for example, when El Niño occurs, 

convective activity in the tropics strongly affects mid-latitude climate with the appearance of the Pacific-
North American pattern (Horel and Wallace, 1981). Convective activity in maritime continents also 

modulates mid-latitude climates by generating the Pacific-Japan pattern (Nitta, 1987). Most of these 30 

climate couplings between the tropics and mid-latitude regions are caused by the horizontal propagation 

of stationary Rossby waves (Holton and Hakim, 2013). Teleconnection through stratospheric processes 

has also been known. For example, the sea-level pressure in the Arctic rises during El Niño. It was shown 

that this teleconnection occurs by modulation of planetary wave intensity and propagation in the 
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stratosphere (Cagnazzo and Manzini, 2009). It is also well known that the occurrence frequency of 35 

stratospheric sudden warming (SSW), which exerts a strong influence on the Arctic oscillation of sea-

level pressure (Baldwin and Dunkerton, 2001), is high during the easterly phase of the quasi-biennial 

oscillation in the equatorial stratosphere (Holton and Tan, 1980). This is also due to the modulation of the 

propagation of planetary-waves in the stratosphere. Thus, the stratosphere is an important area that brings 

about the remote coupling of climate. 40 

Recently, the presence of interhemispheric coupling through the mesosphere has been reported 

as well. When the temperature in the polar winter stratosphere is high, the temperature in the polar 

summer upper mesosphere is also high with a slight delay (Karlsson et al., 2009). This coupling is clear 

for at least one-month average (Gumbel and Karlsson, 2011). The interhemispheric coupling, which is 

initiated by SSW in the winter hemisphere, occurs at shorter time scales (Körnich and Becker, 2010). 45 

When the SSW occurs in association with the breaking of strong planetary waves originating from the 

troposphere, the westerly wind of the polar night jet significantly weakens or, in strong cases, even turns 

easterly. The critical level filtering of the gravity waves toward the mesosphere is then modulated, and the 

gravity-wave forcing that drives the mesospheric meridional circulation with an upward (downward) 

branch on the equatorial (polar) side becomes weak. Thus, the temperature in the equatorial region 50 

increases and the poleward temperature gradient in the summer hemisphere weakens. The weak wind 

layer above the easterly jet in the summer hemisphere lowers so as to satisfy the thermal wind relation. 

The eastward gravity-wave forcing region near the weak wind layer also descends and the upward branch 

of the meridional circulation, which maintains extremely low temperature in the summer polar upper 

mesosphere, weakens. 55 

However, there are few observational evidences of gravity-wave modulation in the mesosphere. 

The Interhemispheric Coupling Study by Observations and Modeling (ICSOM: http://pansy.eps.s.u-

tokyo.ac.jp/icsom/) is a project to understand mesospheric gravity-wave modulation associated with 

SSWs on a global scale through a comprehensive international observation campaign with a network of 

mesosphere-stratosphere-troposphere (MST), meteor, and medium frequency (MF) radars as well as 60 

complementary optical and satellite-borne instruments. Since 2016, four campaigns have been 

successfully performed.  

In the ICSOM project, we are also proceeding a model study using a gravity-wave permitting 

high-top general atmospheric circulation model (GCM), that covers the entire troposphere and middle 

atmosphere (up to the lower thermosphere), simultaneously. However, this is not easy because the GCMs 65 

including the entire middle atmosphere are not yet sufficiently mature even for relatively low resolutions 

that do not allow explicit gravity-wave simulation (e.g., Smith et al., 2017). Therefore, verification of the 

GCMs by high-resolution observations is necessary. In the ICSOM project, by validating the high-top 

GCM using data from the comprehensive international radar observation campaigns, it is expected to 

reproduce high-resolution global data with high reliability. Using this global data, we plan to confirm 70 

regional representation of gravity wave characteristics detected by each radar and deepen the 

understanding of interhemispheric coupling quantitatively with a resolution of gravity-wave scales. 
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Gravity-wave simulation research using high-resolution GCMs has been performed in the past 

(e.g., Hamilton et al., 1999; Sato et al., 1999, 2009, 2012; Watanabe et al., 2008; Holt et al., 2016). 

However, reproducing gravity-wave fields in the global atmosphere at a specific date and time requires 75 

significant effort (Eckermann et al., 2018; Becker et al., 2004). Data assimilation up to the scale of 

gravity waves is ideal to create global high-resolution grid data sequentially. However, current data-

assimilation schemes work well for geostrophic motions such as Rossby waves but not necessary for 

ageostrophic motions such as gravity waves. Recent studies (Jewtoukoff, et al., 2015; Ehard et al., 2018) 

reported that gravity waves observed in the European Center for Medium-Range Weather Forecast 80 

(ECMWF) operational data are partly realistic in the lower and middle stratosphere, but more validation 

with observation data is necessary. It has also been shown that the difference in horizontal winds between 

reanalysis datasets is quite large in the equatorial region where the Coriolis parameter becomes zero 

(Kawatani et al., 2016). The reasons for this problem may be the insufficient maturity of the models to 

accurately express ageostrophic motions and/or the shortage of observation data including gravity waves 85 

to be assimilated. 

Data assimilation for the mesosphere is particularly not easy partly because the energy ratio of 

Rossby waves and gravity waves is reversed there (Shepherd et al., 2000) and partly because 

observational data for the mesosphere are significantly limited compared to those for the lower 

atmosphere. In addition, it has been shown that, in the upper stratosphere and the mesosphere, Rossby 90 

waves are generated in situ due to baroclinic/barotropic instability caused by wave forcing associated 

with breaking or critical-level absorption of gravity waves propagating from the troposphere (Watanabe et 

al., 2009; Ern et al., 2013; Sato and Nomoto, 2015; Sato et al., 2018). It has been found that gravity waves  

are spontaneously generated in the middle atmosphere from the imbalance of the polar night jet (Sato and 

Yoshiki 2008; Snyder et al., 2007; Shibuya et al., 2017), from an imbalance caused by the wave forcing 95 

due to primary gravity waves (Vadas and Becker, 2018; Hayashi and Sato, 2018) and also by shear 

instability caused by primary gravity-wave forcing (Yasui et al., 2018). The Rossby wave generation in 

the middle atmosphere due to primary gravity-wave forcing is regarded as a compensation problem, 

which makes it difficult to understand the change in the Brewer-Dobson circulation in terms of the 

relative roles of Rossby waves and gravity waves for climate projection with the models (Cohen et al., 100 

2013). However, these instabilities and the in-situ generation of waves in the middle atmosphere could 

significantly affect the momentum and energy budget in the middle atmosphere and above (Sato et al., 

2018; Becker, 2017). Hence, it is necessary to understand the roles of these waves as accurately as 

possible based on credible, high-resolution model simulations validated by high-resolution observations. 

In view of the situation described above, the following method may be one of the best existing 105 

ways to create high-resolution data of the entire middle atmosphere including gravity waves, for 

understanding teleconnection through the mesosphere. First, a data assimilation is performed using a 

high-top but relatively low-resolution model to create grid data of the real atmosphere from the ground to 

the lower thermosphere including only larger-scale phenomena such as Rossby waves. Second, the 

analysis data obtained by the assimilation are used as initial values for a free run of high-resolution GCMs 110 
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to simulate gravity waves. Eckermann et al. (2018) and Becker and Vadas (2018) have performed 

pioneering studies on the effectiveness of such free runs.  

Reanalysis data over a long time period are produced using modern data assimilation schemes 

and released by meteorological organizations for climate analysis. These include the ECMWF interim 

reanalysis (ERA-Interim; Dee et al., 2011) and the fifth reanalysis (ERA5; Hersbach et al., 2018) 115 

produced by a four-dimensional (4D)-variational assimilation scheme (Var); MERRA (Rienecker et al., 

2011) and the following version 2 (MERRA-2; Gelaro et al., 2017) by the National Aeronautics and 

Space Administration (NASA) by a three-dimensional (3D)-Var; the National Centers for Environmental 

Prediction (NCEP) Climate Forecast System Reanalysis (CFSR; Saha et al., 2010) and the Climate 

Forecast System version 2 (CFSv2; Saha et al., 2014); and the Japanese 55-year reanalysis (JRA-55; 120 

Kobayashi et al., 2015) by a 4D-Var. The ERA-Interim and JRA-55 cover up to a pressure of 0.1 hPa, the 

NCEP/CFSR and NCEP/CFSv2 up to 0.266 hPa, and MERRA, MERRA2 and ERA5 up to 0.1 hPa. 

However, global data of the middle and upper mesosphere to the lower thermosphere are not created 

regularly. As stated above, considering the importance of ageostrophic motions in the mesosphere and 

lower thermosphere (MLT), the data assimilation used for such meteorological organizations may not 125 

work very well for the middle stratosphere and above (Polavarapu et al., 2005). Therefore, in recent years, 

significant efforts have been made to assimilate data using GCMs which include the MLT region. 

Currently, the data available for studying the MLT region come from the Aura Microwave Limb Sounder 

(Aura MLS; beginning in 2004), Thermosphere Ionosphere Mesosphere Energetics and Dynamics 

(TIMED) Sounding of the Atmosphere using Broadband Emission Radiometry (SABER; beginning in 130 

2002), and the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave 

Imager/Sounder (SSMIS; Swadley et al., 2008). 

Global data of the atmosphere including the MLT region is valuable from the following 

viewpoints. First, it can improve prediction of the polar stratosphere (e.g., Hoppel et al., 2008; 2013, 

Polavarapu et al., 2005). It seems that anomalies in the MLT region start about one week earlier than 135 

stratospheric anomalies such as SSWs, propagating down to the troposphere. Thus, better understanding 

of the MLT physics and chemistry has a potential to improve long-range weather forecasts. Second, it is 

possible to quantitatively understand the transport of minor species from the MLT region (e.g., Hoppel et 

al., 2008; Polavarapu et al., 2005). For example, high-energy particles originating from the upper 

atmosphere contribute to the production of NOx which modulates the ozone chemistry in the stratosphere. 140 

Thus, the quantitative evaluation of the transport of such species is important for the prediction of the 

ozone layer. Third, it contributes to space-weather prediction, particularly for the prediction of the near-

space environment (e.g., Hoppel. et al., 2013). Atmospheric waves excited in the lower and middle 

atmosphere, including gravity waves, Rossby waves, and tides, are main drivers of the general circulation 

in the height range of 100–150 km in the lower thermosphere (e.g., Akmaev, 2011; Miyoshi and Yigit, 145 

2019). Thus, it is important to examine the properties of these waves in the mesosphere. Last but not least, 

it is interesting to understand middle atmosphere processes as a pure science (e.g., Hoppel et al., 2008). 
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The first attempt to create analysis data for the whole middle atmosphere using data assimilation 

was made by a Canadian group. They employed 3D-Var using the Canadian Middle Atmosphere Model 

(CMAM) with full interactive chemistry and nonlocal thermodynamic equilibrium (non-LTE) radiation 150 

(Polavarapu et al., 2005; Nezlin et al., 2009). The assimilation of the data in the troposphere and 

stratosphere has been shown to improve the analysis of large-scale phenomena (zonal wavenumber s < 

10) in the mesosphere (Nezlin et al., 2009). The daily mean time series from their data assimilation are 

validated by radar observations (Xu et al., 2011). Sankey et al. (2007) used the CMAM to carefully 

discuss the effectiveness of digital filters in the data assimilation. A series of studies at the Naval 155 

Research Laboratory (NRL) is remarkable. Hoppel et al. (2008) performed the first mesospheric data 

assimilation at the Advanced Level Physics and High-Altitude (ALPHA) prototype of the Navy 

Operational Global Atmospheric Prediction System (NOGAPS) using a 3D-Var assimilation system 

(NAVDAS). After that, they introduced a 4D-Var to assimilate data using the NRL Navy Global 

Environmental Model (NAVGEM), a successor of NOGAPS (Hoppel et al., 2013). In this system, the 160 

SSMIS data was also assimilated along with the SABER and Aura MLS data. The calculation of the 

background error covariance matrix was accelerated by introducing ensemble forecasts, and assimilation 

shocks to the model were reduced by using digital filters (McCormack et al., 2017; Eckermann et al., 

2018). Global data with short time intervals were made by combining model forecasts with the 

assimilation products, and both short-term and annual variations of diurnal migrating tides were 165 

successfully captured (McCormack et al, 2017; Dhadley et al., 2018; Eckermann et al., 2018). These 

assimilation data products are utilized for the study of the quasi-two-day waves and five-day waves, as 

well as tides (Eckermann et al., 2009; Pancheva et al., 2016; Eckermann et al., 2018), and for observation 

projects such as Deep Propagating Gravity Wave Experiment (DEEPWAVE; Fritts et al., 2016). A data 

assimilation study using the Whole Atmosphere Community Climate Model (WACCM) at the National 170 

Center for Atmospheric Research (NCAR) has been also conducted. Pedatella et al. (2014b) applied a 

Data Analysis Research Testbed (DART) Ensemble adjustment Kalman Filter (EAKF), which is a 3D-

Var combined with a statistical scheme, to the WACCM and made analysis data for the largest recorded 

SSW event, which occurred in 2009. They indicated that better analysis of the mesosphere requires 

assimilation of the mesospheric observational data. Similar discussion was made by Sassi et al. (2018) 175 

using the Specified Dynamics (SD)-WACCM, in which a nudging method was implemented. The reality 

of the analysis highly depends on the model’s performance in the MLT region. One of the critical 

components to determine the MLT region in the model is gravity wave parameterizations (Pedatella et al., 

2014a; Smith et al., 2017). According to Pedatella et al. (2018), the analysis of the SSW in 2009 by the 

WACCM using DART showed that the expression of the downward transport of chemical components by 180 

the data assimilation is better than by the nudging method.  

Nowadays whole-atmosphere models covering the surface to the exosphere have been developed 

(Akmaev, 2011). Data-assimilation or data-nudging studies using a whole-atmosphere model has been 

performed focusing on the SSW in 2009. These include studies using the whole atmosphere data 

assimilation system (WDAS), which includes the whole atmosphere model and a 3D-Var analysis system 185 
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(Wang et al., 2011), the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) 

with a nudging method (Jin et al., 2012), and SD-WACCM (Chandran et al., 2013; Sassi et al., 2013). 

Outputs from a long-term run using GAIA, which was nudged to the reanalysis data up to the lower 

stratosphere, were used for a momentum budget analysis in the whole middle atmosphere, and the 

importance of in-situ generation of gravity waves and Rossby waves in the middle atmosphere was 190 

suggested (Sato et al., 2018; Yasui et al., 2018). 

Although most 4D data assimilation studies described above used 4D-Var, the method using an 

ensemble Kalman filter is also possible. The 4D-Var codes need to be developed for each model. In 

contrast, the 4-Dimensional Local Ensemble Transform Kalman Filter (4D-LETKF) developed by 

Miyoshi and Yamane (2007), which is a statistical assimilation method, is versatile and can thus be 195 

implemented in any model relatively easily. This study develops an assimilation system using the 4D-

LETKF with a GCM with a top in the lower thermosphere. As the first step of the ICSOM project, we 

used a low-resolution version of the GCM and examined the best parameters of the assimilation system 

for the middle atmosphere (i.e., the atmosphere up to the turbopause [~100 km]), as no studies employ the  

4D-LETKF to assimilate data for such a high atmospheric region. The observation datasets used for the 200 

data assimilation are Aura MLS (v.4.2) temperature, which covers the whole stratosphere and mesosphere, 

and NCEP PREPBUFR, which is a standard dataset for the troposphere and lower stratosphere. The target 

time period is from January to February 2017, which includes the second ICSOM observation campaign. 

On 1 February 2017, the criteria of the major SSW were satisfied. The structure of this paper is as follows. 

Section 2 describes the forecast model, observation data, and data assimilation system. Section 3 presents 205 

the results of the parameter assessment. Section 4 presents the results of analysis regarding fields in the 

middle atmosphere in ICSOM-2 using data from the best parameter setting. Section 5 gives the summary 

and concluding remarks. 

2 Methodology  

2.1 Forecast Model 210 

We used the Japanese Atmospheric GCM for Upper Atmosphere Research (Watanabe and Miyahara, 

2009) as a forecast model, which we refer to as “JAGUAR” in this paper. This model has a high model 

top of approximately 150 km and is based on the T213L256 middle atmosphere GCM developed for the 

Kanto project (Watanabe et al., 2008) and the Kyushu-GCM (e.g., Yoshikawa and Miyahara, 2005). This 

model uses important physical parameterizations for the MLT region such as radiative transfer processes, 215 

including non-LTE and solar-radiative heating due to molecular oxygen and ozone. The effects of ion-

drag, chemical heating, dissipation heating, and molecular diffusion are also parameterized in the model. 

In this study, a standard-resolution JAGUAR with a triangularly truncated spectral resolution of T42 

corresponding to a horizontal resolution of about 300 km (a latitudinal interval of 2.8125 degrees) is used 

for the assimilation. The model has 124 vertical layers with a uniform vertical spacing of approximately 1 220 

km in the middle atmosphere and 100–800 m in the troposphere (see Figure A1 of Watanabe et al., 2015 
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for the vertical layers). Unlike a high-resolution JAGUAR, which resolves a certain portion of gravity 

waves (Watanabe and Miyahara, 2009), gravity waves are sub-grid scale phenomena for a standard-

resolution JAGUAR. For this reason, both orographic (McFarlane, 1987) and non-orographic (Hines, 

1997) gravity wave parameterizations are used. The wave-source distribution of non-orographic 225 

parameterization is given based on the results of a gravity-wave-resolving high-resolution GCM 

(Watanabe, 2008), and the intensity of the source is treated as one of the tuning parameters. Horizontal 

diffusion is set as an e-folding time of 0.9 days for the minimum resolved wave length in the troposphere 

and stratosphere, and it exponentially increases with increasing height over the MLT region. In this study, 

the vertical profile of horizontal diffusion above the stratopause is also treated as one of the tuning 230 

parameters. The monthly ozone mixing ratio from United Kingdom Universities Global Atmospheric 

Modeling Programme (UGAMP; Li and Shine, 1999) and monthly sea surface temperature and sea ice 

concentration from Met Office Hadley Centre's sea ice and sea surface temperature data set (HadISST; 

Rayner et al., 2003) are linearly interpolated in time and used as boundary conditions. 

 235 

2.2 Measurements used in the assimilation 

2.2.1 PREPBUFR 

One of the observation data used for the assimilation is the PREPBUFR global observation dataset 

compiled by the National Centers for Environmental Prediction and archived at the University 

Corporation for Atmospheric Research (https://rda.ucar.edu/datasets/ds337.0/) which includes surface 240 

pressure as a function of longitude and latitude, and temperature, wind, and humidity as functions of 

longitude, latitude, and pressure (or height) from radiosondes, aircrafts, wind profilers, and satellites. 

Ground-based observations are mainly distributed in the height range from the ground to the lower 

stratosphere, and approximately 70% of the data are taken at stations located in the Northern Hemisphere. 

Since May 1997, daily data has been uploaded with a delay of several days. The number of data per one 245 

assimilation step (every 6 h) is 1,000-20,000 for balloon-borne radiosonde measurements, ~1,000 for 

aircraft measurements, ~40,000 for satellite wind measurements, ~10,000 for meteorological radar 

measurements, ~50,000 for measurements at the ground, and ~500,000 for sea scatterometer 

measurements.  

The observation errors provided in the PREPBUFR dataset as a function of the type of 250 

measurements and altitude1 were used in the data assimilation. For example, the observation errors in 

radiosonde temperature data are 1.2 K at 1000 hPa, 0.8 K at 100 hPa, and 1.5 K at 10 hPa. The horizontal 

resolution of the GCM used in this study is not sufficient to represent the fine structure captured by these 

observations. Representativeness errors, which come from the difference in resolutions between 

individual measurements and the model, could degrade the data assimilation performance. If 255 

representation errors are random and large numbers of observations are assimilated, their impact could be 
 

1 http://www.emc.ncep.noaa.gov/mmb/data_processing/obserror.htm 
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negligible. Because substantial numbers of observations are available within a model grid cell in a data 

assimilation cycle in our analysis, the observation data were thinned before assimilation to reduce the 

computational cost of the data assimilation analysis. Original data from aircraft and satellite winds are 

trimmed by taking one in every four consecutive data. Radiosonde data at the standard pressure levels of 260 

1000, 925, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, and 10 hPa were used for the data 

assimilation. These settings are the same as the ALERA2 (Enomoto et al., 2013) 

2.2.2 Aura MLS 

The MLS instrument onboard the Aura satellite was launched in 2004. The satellite takes the polar orbit 

14 times a day. Vertical profiles of several atmospheric parameters are retrieved from a limb sounding of 265 

the thermal emissions of the atmosphere. We used temperature data (v.4.2) retrieved from the radiation of 

oxygen (O2; 118GHz) and oxygen isotope O18O; 239GHz) of Aura MLS (Livesey et al., 2018) for the 

assimilation. The data are distributed at 55 vertical layers from 261 to 0.001 hPa at ~ 2 km intervals. The 

estimated retrieval errors are ~ 0.5 K at 261–10 hPa, ~ 1 K at 10–0.3 hPa, ~ 2 K for 0.3–0.04 hPa, and ~ 3 

K for 0.04–0.001 hPa. For the observation operator, we included weighting functions (called “averaging 270 

kernels”) to consider the vertical sensitivity of the measurements. The weighting functions at the equator 

and at 70˚N are available on the Aura MLS mission website (https://mls.jpl.nasa.gov/data/ak/). Assuming 

that the measurement vertical sensitivity is invariant for a wide area, the averaging kernel for the equator 

and that for 70˚N are respectively applied to the latitudinal range of 40˚S–40˚N and the remaining high 

latitude regions (i.e., 40˚N–90˚N and 40˚S–90˚S). 275 

The horizontal intervals of the Aura MLS observation data along the track, which is almost 

parallel to the meridional direction, are approximately 2˚, and so two or three profiles are included in the 

area represented by a grid point of the forecast model. Note that the horizontal intervals of the Aura MLS 

observation data between subsequent orbits are approximately 30 degrees, which is much coarser than the 

model resolution. To reduce the computational cost of the data assimilation, the observations are 280 

horizontally averaged for the along-track direction to reduce the resolution comparable to the forecast 

model resolution before the assimilation, without considering any correlation between individual 

observation errors. Errors in the retrievals in some parameters can be correlated in space, but their 

quantitative estimates are difficult. The measurement error is used as the diagonal component of the 

observation error covariance matrix. Moreover, this average is effective to remove gravity waves that 285 

cannot be resolved by the current model. We have confirmed the importance of the averaging by 

comparing the results with and without the averaging (not shown). 

It has been suggested that the Aura MLS data includes observation bias (e.g., Randel et al., 

2016). In this study, a bias correction is performed and the effect of the bias correction on the analysis 

data is examined. In addition to the retrieval quality flag information, a gross error check was applied in 290 

the quality control to exclude observations that are far from the first guess. The best settings for the gross 

error check are considered to be different between the mesosphere and lower atmosphere because of the 
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different growth rates of model error in a specific period of time (e.g., a data assimilation window). Thus, 

the appropriate degrees of the gross error check are also examined. 

2.3 Data assimilation system 295 

The 4D-LETKF (Miyoshi and Yamane, 2007) is used as a data assimilation method. This method is an 

extension of the 3D-LETKF (Hunt et al., 2007) which includes the dimension of time (4-D ensemble 

Kalman filter; Hunt et al., 2004). The base of the program used in this study has already been applied to 

many types of forecast models, such as the Global Spectral Model (GSM; Miyoshi and Sato, 2007), the 

Atmospheric GCM for Earth Simulator (AFES; Miyoshi et al., 2007), and the Non-hydrostatic 300 

Icosahedral Atmospheric Model (NICAM; Terasaki et al., 2015). 

This section introduces the formulas used in the 4D-LETKF. The analyses, forecasts, and 

observations are denoted by 𝐱𝐱𝑎𝑎, 𝐱𝐱𝑓𝑓, and 𝐲𝐲𝑜𝑜, respectively. The optimal value of 𝐱𝐱𝑎𝑎 is derived from 𝐱𝐱𝑓𝑓 and 

𝐲𝐲𝑜𝑜 by the following equation: 

𝐱𝐱𝑎𝑎 = 𝐱𝐱𝑓𝑓 + 𝐊𝐊(𝐲𝐲𝑜𝑜 − 𝐇𝐇𝐱𝐱𝑓𝑓) = 𝐱𝐱𝑓𝑓 + 𝐊𝐊𝐊𝐊, (1) 305 

where, 𝐊𝐊 is a weighting function, 𝐝𝐝 (≡ 𝐲𝐲𝑜𝑜 − 𝐇𝐇𝐱𝐱𝑓𝑓) is the innovation, and 𝐇𝐇 is an observation operator that 

converts the model space variables into observational space variables. For assimilating MLS retrievals, 

the observation operator includes the averaging kernel and the spatial operator. The second term on the 

right-hand side represents data assimilation corrections (i.e., increments). Using the differences from the 

true value (𝐱𝐱𝑡𝑡 ), δ𝐱𝐱𝑎𝑎 = 𝐱𝐱𝑎𝑎 − 𝐱𝐱𝑡𝑡 , δ𝐱𝐱𝑓𝑓 = 𝐱𝐱𝑓𝑓 − 𝐱𝐱𝑡𝑡 , and δ𝐲𝐲𝑜𝑜 = 𝐲𝐲𝑜𝑜 − 𝐇𝐇𝐱𝐱𝑡𝑡 , so Eq. (1) can be rewritten as 310 

follows: 

𝛿𝛿𝐱𝐱𝑎𝑎 = 𝛿𝛿𝐱𝐱𝑓𝑓 + 𝐊𝐊(𝛿𝛿𝐲𝐲𝑜𝑜 − 𝐇𝐇𝛿𝛿𝐱𝐱𝑓𝑓) = (𝐈𝐈 − 𝐊𝐊𝐊𝐊)𝛿𝛿𝐱𝐱𝑓𝑓 + 𝐊𝐊𝛿𝛿𝐲𝐲𝑜𝑜, (2) 

where 𝐈𝐈 is an identity matrix. The analysis error covariance is defined as 

𝐏𝐏𝑎𝑎 ≡  〈𝛿𝛿𝐱𝐱𝑎𝑎(𝛿𝛿𝐱𝐱𝑎𝑎)T〉 = (𝐈𝐈 − 𝐊𝐊𝐊𝐊)𝐏𝐏𝑓𝑓(𝐈𝐈 − 𝐊𝐊𝐊𝐊)T + 𝐊𝐊𝐊𝐊𝐊𝐊T , (3) 

where 𝐏𝐏𝑓𝑓 ≡ 〈𝛿𝛿𝐱𝐱𝑓𝑓(𝛿𝛿𝐱𝐱𝑓𝑓)T〉 is the forecast error covariance and 𝐑𝐑 ≡ 〈𝛿𝛿𝐲𝐲𝑜𝑜(𝛿𝛿𝐲𝐲𝑜𝑜)T〉 is the observation error 315 

covariance. The correlation between the forecast error and the observation error is supposed to be zero 

(〈𝛿𝛿𝐱𝐱𝑓𝑓(𝛿𝛿𝐲𝐲𝑜𝑜)T〉 = 0). The optimal 𝐱𝐱𝑎𝑎  should minimize the summation of the analysis error covariance 

(tr(𝐏𝐏𝑎𝑎)). This means that  

∂
∂𝐊𝐊

tr(𝐏𝐏𝑎𝑎) = 0. (4) 

Solving Eq. (4) with respect to the weight matrix 𝐊𝐊 yields 320 

𝐊𝐊 = 𝐏𝐏𝑓𝑓𝐇𝐇T(𝐇𝐇𝐏𝐏𝑓𝑓𝐇𝐇T + 𝐑𝐑)−1 (5) 

and the analysis 𝐱𝐱𝑎𝑎 is derived by Eq. (1). The weight matrix 𝐊𝐊 is called the “Kalman gain”. Using 𝐊𝐊, the 

analysis error covariance 𝐏𝐏𝑎𝑎 is rewritten as 

𝐏𝐏𝑎𝑎 = (𝐈𝐈 − 𝐊𝐊𝐊𝐊)𝐏𝐏𝑓𝑓 , (6) 

which gives the relationship 𝐊𝐊 = 𝐏𝐏𝑎𝑎𝐇𝐇T𝐑𝐑−1. 325 

The size of 𝐏𝐏𝑓𝑓 and 𝐏𝐏𝑎𝑎 is the square of the degree of freedom in the model. Thus, for systems 

with huge degrees of freedom, such as GCMs, the calculation of 𝐏𝐏𝑓𝑓  and 𝐏𝐏𝑎𝑎  requires a large 

computational cost. This problem is avoided by replacing the forecast, analysis and each error with the 
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mean and variance for 𝑚𝑚 members of an ensemble. This is called the “Ensemble Kalman Filter (EnKF; 

Evensen, 2003). The ensemble mean 𝐱𝐱� and background error covariance matrix 𝐏𝐏 are written as follows: 330 

𝐱𝐱� =
1
𝑚𝑚
�𝐱𝐱𝑖𝑖

𝑚𝑚

𝑖𝑖=1

, (7) 

𝐏𝐏 = 〈δ𝐱𝐱(𝛿𝛿𝐱𝐱)T〉 ≈
1

𝑚𝑚− 1
�(𝐱𝐱𝑖𝑖 − 𝐱𝐱�)(𝐱𝐱𝑖𝑖 − 𝐱𝐱�)T
𝑚𝑚

𝑖𝑖=1

=
1

𝑚𝑚 − 1
�𝛿𝛿𝐱𝐱𝑖𝑖(𝛿𝛿𝐱𝐱𝑖𝑖)T
𝑚𝑚

𝑖𝑖=1

. (8) 

However, with a limited number of ensembles, the forecast error tends to be underestimated in a system 

with a large degree of freedom. A variety of methods have been proposed to overcome this problem (e.g., 

Whitaker et al., 2008). In our study, the forecast ensemble perturbation (δ𝐱𝐱𝑓𝑓) is multiplied by the factor 𝐹𝐹, 335 

which is a little larger than 1 (𝐹𝐹 = 1 + Δ; Δ is called an “inflation factor”). 

𝛿𝛿𝐱𝐱𝑖𝑖
𝑓𝑓 ← (1 + Δ) 𝛿𝛿𝐱𝐱𝑖𝑖

𝑓𝑓 (9) 

is employed and the Δ value is optimized. 

The Kalman gain is simply written by using 𝐄𝐄, which is the root of 𝐏𝐏. Using 

√𝑚𝑚 − 1𝐄𝐄 ≡ [𝛿𝛿𝐱𝐱1 | … |𝛿𝛿𝐱𝐱𝑚𝑚], (10) 340 

𝐊𝐊 = 𝐏𝐏𝑓𝑓𝐇𝐇T(𝐇𝐇𝐏𝐏𝑓𝑓𝐇𝐇T + 𝐑𝐑)−1 = 𝐄𝐄𝑓𝑓(𝐇𝐇𝐄𝐄𝑓𝑓)T[𝐇𝐇𝐄𝐄𝑓𝑓(𝐇𝐇𝐄𝐄𝑓𝑓)T + (𝑚𝑚 − 1)𝐑𝐑]−1 (11) 

is derived. Further manipulation yields another expression of 𝐊𝐊: 

𝐊𝐊 = 𝐄𝐄𝑓𝑓[(𝑚𝑚 − 1) 𝐈𝐈 + (𝐇𝐇𝐄𝐄𝑓𝑓)T𝐑𝐑−1𝐇𝐇𝐄𝐄𝑓𝑓]−1(𝐇𝐇𝐄𝐄𝑓𝑓)T𝐑𝐑−1. (12)

To reduce the calculation cost, the inverse matrix of Eq. (11) or eq. (12) with a smaller size is chosen. 

Usually, as the number of the ensemble is much smaller than the number of observations, Eq (14) is used. 345 

The LETKF treats the analysis error covariance matrix, 

𝐏𝐏�𝑎𝑎 ≡ [(𝑚𝑚 − 1) 𝐈𝐈 + (𝐇𝐇𝐄𝐄𝑓𝑓)T𝐑𝐑−1𝐇𝐇𝐄𝐄𝑓𝑓]−1 (13) 

in the ensemble space. The relationship between this matrix in the ensemble space and the analysis error 

covariance matrix in the model space is expressed as 𝐏𝐏𝑎𝑎 = 𝐄𝐄𝑓𝑓𝐏𝐏�𝑎𝑎(𝐄𝐄𝑓𝑓)T , and 𝐄𝐄𝑎𝑎 = 𝐄𝐄𝑓𝑓(𝐏𝐏�𝑎𝑎)
1
2  is the 

ensemble update. In this way, the analysis 𝐱𝐱𝑖𝑖𝑎𝑎 is obtained as 350 

𝐱𝐱𝑖𝑖𝑎𝑎 = 𝐱𝐱�𝑎𝑎 + 𝛿𝛿𝐱𝐱𝑖𝑖𝑎𝑎 = 𝐱𝐱�𝑓𝑓 + 𝛿𝛿𝐱𝐱𝑖𝑖𝑎𝑎 + 𝐄𝐄𝑓𝑓𝐏𝐏�𝑎𝑎(𝐇𝐇𝐄𝐄𝑓𝑓)T𝐑𝐑−1𝐝𝐝 . (14) 

Using the shape of the 𝑁𝑁 × 𝑚𝑚 matrix, where 𝑁𝑁 is the number of the variables, Eq. (14) is written as  

[𝐱𝐱1𝑎𝑎|⋯ |𝐱𝐱𝑚𝑚𝑎𝑎 ] = [𝐱𝐱�𝑓𝑓|⋯ �𝐱𝐱�𝑓𝑓] + 𝐄𝐄𝑓𝑓𝐖𝐖, (15) 

where 

𝐖𝐖 = (𝐏𝐏�𝑎𝑎)
1
2 + � 𝐏𝐏�𝑎𝑎(𝐇𝐇𝐄𝐄𝑓𝑓)T𝐑𝐑−1𝐝𝐝|⋯ |𝐏𝐏�𝑎𝑎(𝐇𝐇𝐄𝐄𝑓𝑓)T𝐑𝐑−1𝐝𝐝�. (16) 355 

To avoid unrealistic correction caused by remote observations with the use of a limited ensemble size, a 

weighting function based on the distance from the analysis point is multiplied by the observation error. 

This method is called “localization”. The calculation is independently performed at each grid so it can be 

performed in parallel with high computational efficiency. The length of localization is also a setting 

parameter of the data assimilation system and the sensitivity of the assimilation performance to this 360 

parameter is examined in Section 3.3.2. 
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When an analysis ensemble is derived, each ensemble takes its own time evolution calculated by 

the forecast model, and the forecast at the next step is derived by 

𝐱𝐱𝑖𝑖,𝑡𝑡+1
𝑓𝑓 = 𝑀𝑀�𝐱𝐱𝑖𝑖,𝑡𝑡𝑎𝑎 �. (17) 

In this way, the forecast and analysis steps are repeated through the data assimilation cycles. 365 

Here we extend to a 4-D analysis. By the modification of the observation operator, the 

observation at any time (𝑗𝑗2) can be assimilated as the information of time development from the target 

time (𝑗𝑗1). One such assimilation is called the 4D-EnKF (Hunt et al., 2004). 

The forecast at the time step 𝑗𝑗1 is written as a weighted mean of forecast ensembles: 

𝐱𝐱𝑗𝑗1
𝑓𝑓 = [𝐱𝐱1,𝑗𝑗1

𝑓𝑓 |⋯ |𝐱𝐱𝑚𝑚,𝑗𝑗1
𝑓𝑓 ] 𝐰𝐰 ≡ 𝐗𝐗𝑗𝑗1

𝑓𝑓 𝐰𝐰. (18) 370 

The weighting matrix 𝐰𝐰 is unknown but is calculated by the pseudo-inverse matrix: 

𝐰𝐰 = �(𝐗𝐗𝑗𝑗1
𝑓𝑓 )T𝐗𝐗𝑗𝑗1

𝑓𝑓 �
−1

(𝐗𝐗𝑗𝑗1
𝑓𝑓 )T𝐱𝐱𝑗𝑗1

𝑓𝑓 . (19) 

On the other hand, the (unknown) forecast at the time step 𝑗𝑗2 is also written as a weighted mean of 

forecast ensembles: 

𝐱𝐱𝑗𝑗2
𝑓𝑓 = 𝐗𝐗𝑗𝑗2

𝑓𝑓 𝐰𝐰. (20) 375 

Substituting Eq. (16) into this equation, the following formula is obtained: 

𝐱𝐱𝑗𝑗2
𝑓𝑓 = 𝐗𝐗𝑗𝑗2

𝑓𝑓 𝐰𝐰 = 𝐗𝐗𝑗𝑗2
𝑓𝑓 �(𝐗𝐗𝑗𝑗1

𝑓𝑓 )T𝐗𝐗𝑗𝑗1
𝑓𝑓 �

−1
(𝐗𝐗𝑗𝑗1

𝑓𝑓 )T𝐱𝐱𝑗𝑗1
𝑓𝑓 . (21) 

Finally, the modified observation operator to assimilate the observation at time step 𝑗𝑗2 to the forecast at 

time step 𝑗𝑗1 is written as follows: 

𝐇𝐇′ = 𝐇𝐇𝐗𝐗𝑗𝑗2
𝑓𝑓 �(𝐗𝐗𝑗𝑗1

𝑓𝑓 )T𝐗𝐗𝑗𝑗1
𝑓𝑓 �

−1
(𝐗𝐗𝑗𝑗1

𝑓𝑓 )T. (22) 380 

Appendix A explains that directly assimilating the observation at a certain time step by the modified 

observation operator is the same as assimilating at the time of observation and then calculating the time 

evolution after the assimilation. Thus, this method is regarded as a kind of 4D assimilation including the 

information of the time development. Another advantage of this method is that future observations can be 

assimilated, as is similar to the Kalman smoother. In this study, this extended LETKF with 4D 385 

assimilation is used. The time interval (called the “assimilation window”) between the observations and 

the analysis is one of the setting parameters. 

The EnKF initial condition is obtained using the time-lagged method as follows. First, a six-

month free-run is performed from a climatological restart file for 1st of June. The results from the free run 

over about ten days with a center of 1st of January are used as the initial condition for each ensemble 390 

member on 1st of January. For the runs with 30 ensemble members, 30 initial conditions at a time interval 

of 6 h are used. For runs with 90 and 200 ensemble members, the time intervals for the initial conditions 

are taken 4 h and 2 h, respectively. The analysis data for the first 10 days of the assimilation are regarded 

as a spin-up, and, hence, are not used to examine the assimilation performance. 

 395 
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2.4 The method of parameter validation in the data assimilation system 

As already mentioned, the parameter set of data assimilation usually made for the troposphere and 

stratosphere is not necessarily appropriate for the analysis when the MLT region are included. This is 

because the dominant physical processes and scales of motions could be different (e.g., Shepherd et al., 

2000; Watanabe et al., 2008). This section describes the parameters that should be optimized for the data 400 

assimilation system for the whole neutral atmosphere from the troposphere up to the lower thermosphere. 

The relevance criteria of the data assimilation for each parameter are also described. 

The parameters included in the data assimilation system are divided into two categories. The first 

category includes two parameters describing the GCM: the horizontal diffusion coefficient and the factor 

of gravity wave source intensity in the gravity wave parameterization. The second category includes five 405 

parameters related to the data assimilation: the degree of gross error check, the localization length, the 

inflation factor, the length of assimilation window, and the number of ensembles. The sensitivity of the 

performance of assimilation is tested by changing one parameter among the standard set of the parameters 

as shown in Table 1. Finally, the performance of the assimilation with the best set of parameters is 

confirmed.  410 

The criteria used for the evaluation of the data assimilation for each parameter setting are 

observation minus forecast (OmF) and observation minus analysis (OmA) in the observational space. One 

more criterion for examining the quality of data assimilation is χ2, which was introduced by Ménard and 

Chang (2000): 

χ2 = tr(𝐘𝐘𝐘𝐘T), 𝐘𝐘 =
1
√𝑚𝑚

�𝐲𝐲 − 𝐻𝐻(𝐱𝐱�𝑏𝑏)�(𝐇𝐇𝐄𝐄𝑏𝑏(𝐇𝐇𝐇𝐇𝑏𝑏)T + 𝐑𝐑)−
1
2. 415 

The parameter χ2 describes the consistency between the innovation with the covariance matrices for the 

model forecast and the observations. The χ2  values should be close to 1 if the background and 

observation errors are properly specified in the assimilation system. The χ2 values higher (lower) than 1 

mean that the background or observation error has been underestimated (overestimated) against the 

innovation in the observational space. 420 

3 Results 

In this section, two types of parameter sensitivity experiments are performed. One is a parameter tuning 

of the forecast model to reduce the systematic biases of the model in the MLT region. The other is an 

optimization of parameters related to the data assimilation module. Table 1 summarizes the experiments 

that we performed, and the best parameter set among them shown as “Ctrl”. The grounds for regarding 425 

this parameter set as the best are described in detail in the following subsections. It is also worth noting 

that we tested many other parameter sets than shown in Table 1 which did not work due to computational 

instability. 
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3.1 Forecast model improvement 

To reduce the model bias in the mesosphere, the vertical profile of the horizontal diffusion coefficient and 430 

the gravity wave source intensity in the non-orographic gravity wave parameterization are examined by 

comparing observations in the summertime Antarctic mesosphere. Here, the zonal wind observed by an 

MST radar called the PANSY radar in the Antarctic (Sato et al., 2014) is used as a reference of the 

mesospheric wind. Note that the temporal and longitudinal variation of the dynamical field is relatively 

small in January and February in the summertime Antarctic mesosphere. The model performance may 435 

depend on the parameters describing the MLT processes although we used default values of the model for 

this study. For example, climatological concentrations of chemical species are used for the calculation of 

the radiative heating rate, although the O3 and NO concentrations are affected by the solar activity in a 

short time scale. The effects of ion-drag are neglected because it is important mainly above the height of 

~200 km. The chemical heating caused by the recombination of the atomic oxygen is incorporated using a 440 

global mean vertical profile of its density, and we neglected spatial and temporal changes. 

3.1.1 Horizontal diffusion coefficient 

The downscale energy cascade from resolved motions to unresolved turbulent motions is represented by 

numerical diffusion in most atmospheric models. A fourth-order horizontal diffusion scheme is used in 

the present version of the JAGUAR to prevent the accumulation of energy at the minimum wavelength. 445 

However, it is difficult to directly constrain the horizontal diffusion coefficient with observational data. In 

the present study, the horizontal diffusion coefficient is set to be constant up to the lower mesosphere and 

then exponentially increase above to reproduce realistic temperature and wind structures. As the 

horizontal diffusion in the model top is sufficiently strong to damp small-scale disturbances including 

(resolved) gravity waves, a sponge layer, which is usually included at the uppermost layers of GCMs, is 450 

not used in the model.  

To optimize the tuning parameters of the forecast model, a series of free-run experiments with 

three different profiles of horizontal diffusion coefficients are performed. The impact of the difference in 

the horizontal diffusion coefficient is examined focusing on the zonal mean zonal wind field. All 

experiments are started with the same initial conditions, which are obtained from a free-run simulation 455 

with climatological external conditions (hereafter referred to as “the climatological simulation”). 

Figure 1 shows the three vertical profiles of the horizontal diffusion coefficient. The horizontal 

axis denotes the e-folding time at the highest resolved wavenumber (total wavenumber n = 42). Note that 

a smaller value on the horizontal axis means stronger horizontal diffusion. The standard diffusion profile 

of the JAGUAR is denoted by “A”: the horizontal diffusion coefficient is constant below ~65 km (0.1 460 

hPa), and rapidly increases above. For this setting, we found synoptic-scale disturbances with large 

amplitudes which are not observed in the free runs around 0.1 hPa. To reduce the amplitudes of the waves, 

we performed experiments using two other vertical profiles of the horizontal diffusion coefficient denoted 

by “B” and “C”. The diffusion in the B and C profiles is stronger than A below ~60 km, but the increase 

in the diffusion for B is small compared to A. The diffusion for B is smaller than A above ~105 km. We 465 
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also performed model runs with other diffusion profiles. We show results of the first (B) and second best 

(C) profiles as well as the default one. 

A free run was performed using the model with each diffusion coefficient profile. The model 

fields at 00:00UTC 5 January of the climatological simulation were used for the same initial condition for 

the three free-run experiments. The results are examined for the zonal mean model fields averaged over 470 

40 days from 00:00 January 12 to 23:59 February 20 at 68.4°S as shown in Figure 2. Zonal winds 

observed by the PANSY radar (69.0°S, 39.6°E) and zonal mean zonal winds calculated from the 

geopotential height of the MLS observation in 67.5–72.5°S assuming the gradient wind balance are also 

plotted for comparison. We confirmed that similar results are obtained if we take a slightly different 

latitude and/or a slightly wider latitude range for the model and MLS data. The interannual variation such 475 

as the SSW in the northern latitude winter, and the interannual variation such as the QBO in the equatorial 

region is large. In contrast, it is expected that the interannual and longitudinal variations in the southern 

hemisphere in summer are relatively small because the Carney and Drazin’s theorem indicates that 

planetary waves from the troposphere cannot propagate in the westward background wind in the middle 

atmosphere. This is the reason why we compared the observation and model only for the southern 480 

hemisphere. 

It is also worth noting that the vertical axis in Figure 2 denotes the geometric altitude. The log-

pressure height vertical coordinate commonly used in GCM studies is approximately 5 km higher than the 

geometric height in the upper mesosphere at high latitudes. This difference is taken into account using the 

model’s geopotential height as the vertical coordinate for comparison with the radar wind data, which are 485 

obtained as a function of geometric height. 

The zonal wind for the experiment with the A profile is more eastward above 87 km and more 

westward below 85 km, than observations. As a result, the vertical shear below 87.5 km is unrealistically 

strong. In contrast, the results of the experiments with the B and C diffusion profiles show similar profiles 

as the observations. The difference between the B and C experiments is observed in the vertical shear of 490 

zonal wind in the displayed upper mesosphere, which is large for B and small for C. The vertical shear is 

more realistic for B, although the wind magnitude itself is more realistic for C. We take B because this 

experiment has zero wind layer around 87 km, which is absent in the C experiment, as the zero-wind 

layer is an important feature observed in the upper mesosphere. We expect that the model with the B 

diffusion coefficient profile produces realistic vertical wind shear and, hence, potentially produces 495 

realistic wind fields including the zero-wind layer using the data assimilation. 

Figure 2d shows the results of the data assimilation experiments with the B and C diffusion 

profiles for the time period of 12 January to 20 February 2017. The best set of the parameters except for 

the diffusion profiles in the data assimilation, which will be shown later in detail, was used for these 

experiments. The results from the B experiment are more realistic in the vertical shear and the location of 500 

the zero-wind layer than those of the C experiment, although the difference is not large. Further 

comparison is performed for the latitude-height cross section of zonal mean zonal wind and Eliassen and 

Palm (E-P) flux (Figure 3) from the data assimilation with the B (left) and C (right) diffusion profiles. 
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The meridional structures for the zonal mean zonal wind and the E-P flux in the stratosphere are similar 

below ~70 km. The difference is observed above. The zonal mean zonal wind and E-P flux are strongly 505 

damped above 70 km for C because of strong diffusion given there. This is probably unrealistic. The 

vertically fine structure is observed for the E-P flux in mid-latitude and high latitude regions from 90–100 

km, which is probably not real but due instead to numerical instability. From these results, we concluded 

that the best profile of the horizontal diffusion coefficient is B. 

3.1.2 Gravity wave source intensity 510 

The source intensity in the model’s non-orographic gravity wave parameterization is tuned as well. The 

amplitude of upward propagating gravity waves increases with increasing altitude due to an exponential 

decrease of the atmospheric density. In the upper mesosphere, breaking gravity waves cause strong 

forcing to the background winds, which maintains the weak wind layer near the mesopause (Fritts and 

Alexander, 2003). As the gravity waves, which affect the mesosphere most in the summer, are non-515 

orographically generated, we tuned the source intensity of non-orographic gravity wave parameterization. 

It is expected that high source intensity lowers the wave breaking level and hence lowers the weak wind 

layer around the mesopause. 

Figure 4a compares vertical profiles of the zonal mean zonal wind at 68.37°S averaged for the 

time period of 12 January to 20 February from free runs with different source intensities of the non-520 

orographic gravity wave parameterization. The original source intensity is denoted by P1.0 and the 

modified intensities are 0.5 and 0.7 times the original source intensity, denoted by P0.5 and P0.7, 

respectively. The PANSY radar and MLS observations are plotted for comparison similar to Fig. 2. 

Results of the climatological simulation are used as the initial condition for the free run, which is the 

same as for the free run experiments with different horizontal diffusion coefficients. 525 

As we expected, the zonal mean zonal wind is weaker and the height of the zero-wind layer is 

lower for stronger source intensity. It seems that the zonal wind is weaker and the zero-wind layer is 

lower for P1.0 than those in the observations. 

Figure 4d shows the results of the data assimilation experiments with P0.5, P0.7, and P1.0 for the 

time period of 12 January to 20 February 2017. For these experiments, the best set of the parameters 530 

except for the source intensity was used in the data assimilation that will be shown later in detail. 

Although all the profiles are consistent with observations within the standard deviation range, the profile 

for P0.7 is the most similar to observations in terms of the magnitude and the height of the zero-wind 

layer. From these results, we determined that the best source intensity is 0.7 times the original one (i.e., 

P0.7).  535 

3.2 Aura MLS bias correction 

According to the Aura MLS data quality document (Livesey et al., 2018), the MLS temperature data has a 

bias compared to the SABER ones as a function of the pressure, which is -5 to +1 K for pressure levels of 

1–0.1 hPa, -3 to 0 K for 0.1–0.01 hPa, and -10 K for 0.001 hPa. Thus, before performing the data 
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assimilation, the MLS observation bias was removed as much as possible. Previous studies treated the 540 

bias correction in various ways: Hoppel et al. (2008) used bias-corrected SABER (v.1.06) data using the 

MLS data (v.2.2). Eckermann et al. (2009) used SABER (v.1.07) and MLS (v.2.2) temperatures for their 

assimilation in which the SABER (v.1.07) temperatures at altitudes below 2.7 hPa were bias-corrected 

using the mean difference from MLS (v.2.2), and the MLS temperatures above 2 hPa were bias-corrected 

using the mean difference relative to other satellite, suborbital and analysis temperatures. Note these 545 

studies used different version of the SABER data (v.1.0X) from that we used (v.2.0). Pedatella et al. 

(2014b) did not perform the bias correction. Pedatella et al. (2016) adjusted the SABER temperatures to 

account for the bias between SABER (v.2.0) and MLS (v.2.2) temperatures. Eckermann et al. (2018) 

performed a bias correction for the MLS temperatures (v.4.0) above 5 hPa using the mean difference 

between MLS and SABER (v.2.0) temperatures, and the SABER temperatures for the pressure levels 550 

from 68 to 5 hPa using the mean difference between MLS and SABER. McCormack et al. (2017) and 

Pedatella et al. (2018) do not state explicitly whether or not a bias correction is applied, so it is not clear 

which bias correction was performed in their studies. We confirmed that the bias estimated in this study is 

similar to the globally-averaged mean differences between MLS temperature and other correlative data 

sets shown in the Data quality document (Liversey et al., 2018) at each height 555 

In this study, first, the MLS observation bias is estimated as a function of the calendar day at 

each latitude and each pressure in a range of 177.838 hPa to 0.001 hPa. As the reference for the correction, 

we used the TIMED SABER temperature data (v. 2.0), which are considered to have little observation 

bias, at least in the altitude range from 85–100 km, as confirmed by Xu et al., (2006), who used data from 

the sodium lidar at Colorado State University, providing the absolute value of the temperature. Xu et al., 560 

(2006) attributed the disagreement below 85 km to high photon noise contaminating the lidar 

observations. Thus, we used the SABER temperature data for the Aura MLS bias estimation in the height 

range of 10–100 km. 

The observation view of SABER is altered every ~60 days by switching between northward (50° 

S–82°N) and southward (82°S–50°N) view modes. Thus, the latitudinal coverage of the SABER data is 565 

narrow compared to the MLS data. However, both datasets overlap for a long time period sufficient for 

statistical comparison between them. 

The bias is estimated using data from 2005 to 2015. The original vertical resolution of MLS (~1–

5 km) is coarser than that of SABER (~0.5 km). First, the vertical mean of the SABER data 

corresponding to the vertical resolution at each of the 55 height levels of MLS data is obtained. Next, by 570 

linear interpolation, data at the grid of 25˚ (longitude) × 5˚ (latitude) at a time interval of 3 h are made for 

each of MLS and SABER data. The MLS and SABER data made at a 3 h interval have a lot of missing 

values because observations are sparse. These missing values are not used for the bias calculation. This 

means that the bias was estimated using MLS and SABER data at nearly the same local time. Whereas the 

longitudinal variation of the bias is small —1 K at the most—, there is large annual variation in addition 575 

to the dependence on latitude and height. Thus, the MLS bias 𝑇𝑇bias is obtained as a function of the latitude 

(y), height (z), and calendar day (t). 
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𝑇𝑇bias(𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝑇𝑇mean(𝑦𝑦, 𝑧𝑧) + 𝐴𝐴(𝑦𝑦, 𝑧𝑧) cos �2𝜋𝜋
𝑡𝑡

365
� + 𝐵𝐵(𝑦𝑦, 𝑧𝑧) sin �2𝜋𝜋

𝑡𝑡
365

�,  

where 𝑇𝑇mean represents the annual mean and the coefficients A and B are estimated by the least-squares 

method. 580 

Figure 5 shows the estimated MLS bias as a function of calendar day and latitude at 10, 1, 0.1, 

and 0.01 hPa. The MLS bias shows a strong dependence on the altitude and latitude and has an annual 

cycle with amplitudes of 2 to 4 K. Figure 6 shows the vertical profiles of global mean Aura MLS bias 

along with the bias reported in the data quality document (Liversey et al., 2018). For example, the global 

mean MLS biases estimated by the present study are -1.6±0.7 K at 56.2 hPa, 2.0±1.4 K at 1 hPa, and -585 

3.8±1.1 K at 0.316 hPa. These are comparable to the biases described in the data quality document, which 

are -2 to 0K at 56.2 hPa, 0 to 5 K at 1 hPa, and -7 to 4 K at 0.316. This consistency indicates the validity 

of using the SABER data as a reference to estimate the MLS bias. 

To evaluate the effect of the bias correction, data assimilation was performed using the MLS 

data with and without bias correction. Figure 7 compares the latitude and pressure section of the zonal 590 

mean temperature and zonal wind between the two analyses. The difference in zonal mean temperature 

between the two (Figure 7c) resembles the corrected bias (Figure 7d). In contrast, the difference in the 

zonal mean zonal wind is not very large (Figure 7g). This is because the latitudinal difference in the bias, 

which largely affects the zonal mean zonal wind through the thermal wind balance, is not large compared 

to the vertical difference. In our study, the bias correction of the MLS data is made before the data 595 

assimilation, as in standard assimilation-parameter setting. 

 

3.3 Data assimilation setting optimization for 30 ensemble members 

A series of sensitivity tests were performed to obtain the best values of each parameter in the data 

assimilation system with 30 ensemble members. This number of members is practical for the data 600 

assimilation up to the lower thermosphere with current supercomputer technology. The examined 

assimilation parameters are the gross error coefficient, localization length, inflation coefficient, and 

assimilation window length. The best parameter set obtained by the sensitivity tests is denoted by “Ctrl” 

in Table 1.  There are six assimilation parameters to be examined. We performed assimilation run with 

almost all combinations of the parameters. Several parameter settings did not work due to computational 605 

instability. We found a parameter set which provide best assimilation results in our system. This best 

parameter set is placed as the control setting (Ctrl) and the parameter dependence of the assimilation 

performance is examined by using the results in which one of the parameters is changed from the Ctrl 

set.Section 3.3.5 gives a short summary of the data assimilation setting optimization for 30 ensemble 

members. 610 
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3.3.1 Gross error coefficient 

The gross error check is a method of quality control (QC) for the observation data used for the 

assimilation. In this method, an observation is assimilated only if its OmF is smaller than expected, 

assuming that the forecast model provides a reasonable representation of the true atmosphere. In many 

previous studies, observations are not assimilated when the OmF exceeds 3–5 times the observational 615 

error for the troposphere and stratosphere. However, this criterion may not be suitable for the mesosphere 

and lower thermosphere, in which the systematic bias and predictability of the model is likely higher and 

lower, respectively (e.g., Pedatella et al., 2014a). Thus, the maximal allowable difference between the 

MLS observations and model forecasts normalized by the observational error, which is called the “gross 

error coefficient”, is set at 20 (hereafter referred to as the “G20”) for the MLS measurements as a control 620 

experiment of the present study, whereas it is set at 5 for the PREPBUFR dataset as in previous studies 

such as Miyoshi et al. (2007). Consequently, this setting uses most of the MLS observations to correct the 

model forecast. To investigate the effect of the enlarged gross error check coefficient, the result for the 

G20 is compared to the experiment with the gross error coefficient of 5 also for the MLS measurement 

(G5). Note that the other parameters beside the gross error coefficient are taken to be the same for the 625 

G20 (Ctrl) and G5 (see Table 1). 

Figure 8 compares the histograms of the OmF (a gray curve) and OmA (a black curve) for the 

G20 (left) and G5 (right) experiments at 0.1, 1, and 10 hPa. For both settings, the mean OmF values are 

slightly negative, whereas both the mean bias and standard deviations of the OmA are smaller than those 

of the OmF at most pressure levels. As expected, the OmF is more widely distributed for the G20 than for 630 

the G5. This reflects the inclusion of more observations for the assimilation with the G20. Although the 

OmF distribution for the G20 is close to the normal distribution, the distribution of for the G5 seems 

distorted, probably by an overly strict selection of observations close to the model forecasts, which can be 

seen from the number of assimilated observations, as indicated by the area of the histogram in Figure 8, 

which is only a half or a third the number for the G20.  635 

Figure 9 shows vertical profiles of the mean OmF, OmA, and χ2  (see section 2.4). Absolute 

values of the mean OmA are smaller than those of the mean OmF at almost all levels for both the G20 

and G5 experiments. Note that the bias of the OmA is smaller than the standard deviation as shown in 

Figure 8, as an example. The absolute values of the mean OmF for the G20 are 1.5–2 times larger than 

those for the G5, implying that more observations that deviate largely from the forecasts are assimilated 640 

for the G20. It is worth noting that the absolute value of the mean OmF tends to increase with height, 

indicating that the forecast is less reliable in the upper stratosphere and mesosphere. The χ2 values with 

the G20 are larger than those with the G5 at all levels, reflecting a larger OmF for the G20. Generally 

speaking, such large χ2 values with the G20 suggest that optimizing observation error and forecast spread 

is required. However, considering the current immature stage of the forecast model performance in the 645 

upper mesosphere and above, we dared to permit the large χ2 values with the G20, as it allows us  to use a 

large number of observations which are sparse in the upper stratosphere and mesosphere. In fact, the 

correlation between our analysis and observation is greatly improved for the G20 compared with the G5 
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(shown later in Figure 15). It will be shown later that the χ2  values are improved by taking a larger 

number of ensemble members. 650 

3.3.2 Localization length 

In the LETKF, the observation error is weighted with the inverse shape of Gaussian function 

(observational localization) of the distance (𝑑𝑑) between the location of the observation and the grid point:  

𝑅𝑅′ = 𝑅𝑅 ⋅ exp �
𝑑𝑑2

2𝐿𝐿2
� , (23) 

where 𝑅𝑅  and 𝑅𝑅′  are the original and modified observation error covariances, respectively, and 𝐿𝐿  is a 655 

horizontal length scale which describes the distance to which the observation is effective in the 

assimilation. The parameter 𝐿𝐿 is called the “localization length”, which is one of the key parameters that 

determine the LETKF performance. For a forecast model with a high degree of freedom, as in the present 

study, a small number of ensemble members may cause sampling errors in the forecast error covariance at 

a long distance (e.g., Miyoshi et al., 2014). The localization is introduced to reduce such spurious 660 

correlations at long distances.  

A sensitivity test is performed by taking L =300 km (L300), L =600 km (L600, Ctrl), and L 

=1000 km (L1000) without changing the other parameters (see Table 1). For the vertical localization 

length, we used the same setting for all experiments. It is defined by the inverse of Gaussian function (eq. 

23), with L =0.6 and 𝑑𝑑 = ln(𝑝𝑝obs/𝑝𝑝0) − ln(𝑝𝑝grid/𝑝𝑝0), where 𝑝𝑝obs , 𝑝𝑝grid , and 𝑝𝑝0  are pressures of the 665 

observation, grid point, and surface, respectively. Figure 10 shows the vertical profiles of the mean OmF, 

OmA, and χ2 for the L300, L600 (Ctrl), and L1000. The magnitude of the mean OmF is largest for the 

L1000 below 0.3 hPa and for the L300 above between the three experiments. The OmA values are 

distributed around zero for L600, whereas they tend to be negative for the L1000, particularly at lower 

levels, and tend to be positive for the L300, particularly at upper levels. The χ2 values are smallest for the 670 

L300 and largest for the L1000. 

This result suggests that the best localization length depends on the height. To see the height 

dependence in a different way, the root mean square (RMS) of the temperature difference from the (bias-

corrected) MLS observations was calculated for each experiment at each height. Results are shown in 

Table 2 for typical levels of 10 hPa, 1 hPa, 0.1 hPa, 0.01 hPa and 0.005 hPa in the stratosphere and 675 

mesosphere. A smaller RMS means that observations are better assimilated. The RMS is smallest for the 

L300 at lower levels of 10 hPa and 1 hPa, for the L600 at 0.1 hPa, and for the L1000 at upper levels of 

0.01 hPa and 0.005 hPa, suggesting that optimal localization length depends on the height.  

Based on the results, we employed the L600 as the best L to obtain better analysis for all levels 

from the stratosphere to the upper mesosphere. Our assimilation does not necessarily provide the best 680 

analysis data for a limited height region, but it does assure that the analysis has a sufficient, nearly 

uniform quality for the whole middle atmosphere. 
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3.3.3 Inflation coefficient 

To avoid possible underestimations in the forecast error covariances due to the small number of 

ensembles used in the assimilation, a covariance inflation technique is employed [see Eq. (9)]. The 685 

inflation coefficient is generally set to ∼10% for the tropospheric system (e.g., Miyoshi et al., 2007; 

Miyoshi and Yamane, 2007; Hunt et al., 2007). We tested three different inflation coefficients, namely, 

7% (I7), 15% (I15, Ctrl), and 25% (I25). Note again that the sensitivity test was conducted by changing 

the inflation coefficient only (see Table 1). 

Figure 11 shows meridional cross sections of the zonal mean ensemble spread of temperature for 690 

each assimilation run. The ensemble spread for the I7 is about 1 K at most in the mesosphere and lower 

thermosphere, which is smaller than the observation accuracy (1–3 K). In contrast, the ensemble spreads 

for the I15 and I25 are distributed in the range of the observation accuracy. The necessity of larger 

inflation coefficient is likely due to the large diffusion coefficient in the upper mesosphere and lower 

thermosphere used in the forecast model (Figure 1). However, a larger inflation coefficient leads to an 695 

unrealistically thin vertical structure of ensemble spreads in the lower mesosphere, which is conspicuous 

for the I25 (Figure 11). Figure 12 shows the time series of the global mean temperature spreads for 

respective settings at 0.01 hPa and 10 hPa. The temperature spreads vary slightly in time and seem stable 

after 13 January for both pressure levels. 

The vertical profiles of the mean OmF, OmA, and χ2 for the I7, I15, and I25 are shown in Figure 700 

13. The absolute value of the OmF and OmA is the smallest for the I15 at most altitudes. The χ2 values 

are also small for the I15 at most altitudes. Thus, we employed the best inflation coefficient of 15 % (i.e., 

I15).  

Interestingly, the range of the best inflation coefficient also depends on the height from a 

viewpoint of  χ2: The χ2 values for the I15 are similar to those for the I25 but smaller than the I5 above 705 

0.2 hPa, whereas they are similar to those for the I7 but smaller than the I25 below 0.2 hPa. 

3.3.4 Assimilation window length 

The length of the assimilation window, which is a time duration of forecast and observation to be 

assimilated during one assimilation cycle, is also examined. When the assimilation window is set to 6 h, 

the forecast is first performed for 𝑡𝑡 = 0–9 h, and next the analysis at 𝑡𝑡 = 6  h is obtained by the 710 

assimilation using the forecasts and observations for the time period of 𝑡𝑡 =3–9 h in the assimilation. Note 

that this assimilation scheme uses future information to obtain the analysis at a certain time. The obtained 

analysis is used as an initial condition for the next forecast for 9 h (i.e., 𝑡𝑡 = 6–15 h). By repeating these 

processes of forecast and assimilation, an analysis is obtained every 6 h. Thus, the length of assimilation 

window determines the length of the forecast run as well as the analysis interval.  715 

A longer window has the advantage that more observations are assimilated at once, while taking 

the predicted physically balanced time evolution of dynamical fields into account. However, the longer 

forecast length may increase model errors. Moreover, the 4D-EnKF assumes a linear time evolution of the 
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dynamical field during the assimilation window length. Thus, variations with strong nonlinearity or with 

timescales shorter than the assimilation window length are not taken into account. We tested assimilation 720 

windows of 3 h (W3), 6 h (W6, Ctrl), and 12 h (W12) (see Table 1). The W12 (W3) assimilation was 

performed using the forecasts for 𝑡𝑡 = 6–18 h (𝑡𝑡 = 2–4 h) out of the forecast run over 18 (4) hours and the 

corresponding observations. 

Figure 14 shows the vertical profiles of the mean OmF, OmA, and χ2 for the three assimilations. 

The OmF for the W3 (W12) is calculated using the forecast for 3 (12) h, while for the other experiments, 725 

whose assimilation window is 6 h, the forecast for 6 h is used. The mean OmF and OmA values for the 

W6 and W12 are larger than for the W3, suggesting larger forecast errors in longer windows. There are 

two possible reasons: First, forecast error is generally larger for longer forecast time at a certain parameter 

setting. Second, relatively short-period disturbances such as quasi-two day waves are dominant 

particularly in the mesosphere (e.g., Pancheva et al., 2016), which requires a short assimilation window 730 

for their expression. However, χ2 is significantly larger for the W3 than for the W6 and W12 particularly 

below 0.2 hPa, suggesting that the 3 h window may have been too short to develop forecast error spreads 

sufficiently, especially for the lower atmosphere. Based on these results, the length of 6 h is regarded as 

the best assimilation window. 

3.3.5 Comparison of a series of sensitivity tests for data assimilation with 30 ensemble members 735 

In sections 3.3.1 to 3.3.4, a series of sensitivity tests for each parameter in the data assimilation system 

with 30 ensemble members was performed as shown in Table 1. Figure 15 shows the time series of the 

zonal mean temperatures at 70˚N for 500 hPa, 10 hPa, 1 hPa, and 0.1 hPa for the time period of 15 

January to 20 February 2017, from respective the assimilation tests shown in Table 1 (black curves). Grey 

curves represent the time series from the MERRA-2. Using the time series shown in Figure 16, the RMSs 740 

of the differences and correlations between the time series of each run and MERRA-2 are calculated and 

are summarized in Table 3. The criteria of the major SSW were satisfied on 1 February.  

The Ctrl time series is also quite similar to that of MERRA-2 in spite of the small number of 

ensemble members, including drastic temperature change during the major SSW event, although a warm 

bias of ∼4 K  is observed at 0.1 hPa before and after the cooling time period associated with the warming 745 

at 10 hPa. It is worth noting that the G5 has significant warm bias: ∼4 K at 10 hPa from 31 January to 5 

February during the warming event, a significant warm bias of ∼10 K at 1 hPa on 23 January when a 

sudden temperature drop was observed, and a significant warm bias of ∼10 K at 0.1 hPa before and after 

the cooling time period (i.e., before 27 January and after 6 February). Such significantly large biases are 

probably due to the model bias, because they are not observed for the Ctrl run, in which a much larger 750 

number of observations were assimilated.  
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3.4 The effect of ensemble size and an estimate of the optimal ensemble size for the data 
assimilation in the middle atmosphere 

The EnKF statistically estimates the forecast error covariance using ensembles. A large ensemble size 

(i.e., a large number of ensemble members) is favorable because it reduces the sampling error of the 755 

covariance and improves the quality of the analysis. However, the ensemble size has a practical limit 

related to the allowable computational resources. An ensemble size of ~ 30 is usually used in the 

operational weather forecasting. Here, the minimum optimal ensemble size is estimated by performing 

additional experiments with 90 (M90) and 200 (M200) members and comparing them with the Ctrl 

experiment of 30 members (M30, Ctrl). No assimilation parameters, except for the ensemble size, are 760 

changed in the M90 and M200 experiments (see Table 1). Note that the best values of the assimilation 

parameters for the larger ensemble sizes may be different from those for Ctrl. For example, a larger 

ensemble size may allow to take a larger localization length. However, further investigation was not made 

because much computational cost is required. 

Figure 16 shows the vertical profiles of the mean OmF, OmA, and 𝜒𝜒2 for the M30 (Ctrl), M90, 765 

and M200. The OmFs for the M90 and M200 are significantly smaller than for the M30, particularly 

below 0.1 hPa (by ~50%), while the OmAs are comparable for the three runs. The difference between the 

OmFs of the M90 and M200 runs is small. Although the 𝜒𝜒2 values are ~6–17 for M30, they are ~3–4 for 

M90 and ~1–2 for M200, which are close to the optimal values of 𝜒𝜒2. The reduced values of 𝜒𝜒2 by 

increasing the ensemble size are remarkable compared with those by optimizing the other parameters 770 

(Section 3.3). However, the M90 and M200 both require such large computational costs, as already stated, 

that they are not available for long-term reanalysis calculations. The time series obtained from the M90 

and M200 are also shown in Figure 15. Both time series agree well with the MERRA-2 time series and do 

not have even slight warm bias observed at 0.1 hPa in the Ctrl time series.  

In the following, an attempt is made to estimate the minimum number of ensemble members as a 775 

function of height using forecasts of ensemble members from the M200 experiment because 90 is a 

sufficient number for high quality assimilation, judged from the similarity of the performances of the  

M90 and M200 runs. Figure 17 shows the correlation coefficient of forecasts at each longitude for a 

reference point of 180°E for 40°N at 10 hPa and 0.01 hPa that are computed using 12, 25, 50, and 100 

members randomly chosen from the M200 forecasts at 0600 UTC, 21 January 2017. The longitudinal 780 

profile of the correlation coefficient for 200 members is also shown. The correlation generally reduces as 

the distance from the reference point increases with large ripples for the results of ensemble sizes smaller 

than 50, although the correlation profile near the reference point is expressed for all the members. Large 

ripples reaching ±0.6 observed for 12 members are considered spurious correlations caused by the under-

sampling. In contrast, the correlation coefficients for 100 and 200 ensemble members are generally 785 

smaller than 0.2 except for a meaningfully high correlation region around the reference point. We 

performed the same analysis for other latitudes and heights, and obtained similar results (not shown). 

The RMS of the spurious correlation in the region outside the meaningful correlation region is 

used to estimate the minimum optimal number of ensemble members. The RMS is examined as a function 
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of the number of ensemble members. Each edge longitude of the meaningful correlation region is 790 

determined where the correlation falls below 0.1 nearest the reference point, which are 171.6°E and 

171.6°W for 10 hPa and 149.1°E and 146.2°W for 0.01 hPa, for the case shown in Figure 17. Note that 

the threshold value 0.1 to determine the edge longitude is arbitrary and is used as one of several possible 

appropriate values. The RMS of the spurious correlation is calculated by taking each longitude and 

latitude as a reference point. Figure 18 shows the results at 40°N and 0.01 hPa as a function of the number 795 

of ensemble members as an example. Different curves denoted by the same thin line show the results for 

different longitudes. The thick curve shows mean RMS for all longitudes. Similar results were obtained at 

other latitudes (not shown). The mean RMS decreases as the number of ensemble members increases and 

falls to 0.1 for 91 ensemble members. Again, the choice of 0.1 is arbitrary, but from this result, we can 

estimate the minimum optimal ensemble size at 91. In a similar way, the minimum number of optimal 800 

ensemble members is estimated as a function of the latitude and height. 

Figure 19 shows the minimum optimal number of ensemble members as a function of the height 

for 40°S, the equator, and 40°N. Roughly speaking, 100 members are sufficient below 80 km for all 

displayed latitudes except for 50 km at the equator. The minimum optimal number of ensemble members 

above 80 km is larger than 100 and close to 150. From this result, more than 150 ensemble members 805 

likely give an optimal estimation of the forecast error covariance for the middle atmosphere. However, it 

is important to note that even if the number of ensemble members is smaller than 150, using the 

localization as examined in section 3.3.2 will minimize the effect of the spurious error covariance due to 

under-sampling, as understood from the good performance of the Ctrl assimilation using 30 ensemble 

members. 810 

4 Validation of the assimilation 

4.1 Comparison with other reanalysis data 

This paper gives the first results of the 4D-LETKF applied to the GCM that includes the MLT region. 

Thus, to examine the performance of our assimilation system, the best result obtained from the M200 run 

among the assimilation experiments is compared with MERRA-2 as one of the standard reanalysis 815 

datasets. First, we calculated the spatial correlation of the geopotential height anomaly from the zonal 

mean as a function of the pressure level and time (Figure 20). The correlation is higher than 0.9 between 

∼900 hPa and ∼1 hPa. The top height with the high correlation varies with time. This time variation may 

be related to the model predictability, although such a detailed analysis is beyond the scope of the present 

paper. The reduction of correlation near the ground is likely due to the difference in the resolution of 820 

topography.  

Next, the zonal mean zonal wind and temperature in the latitude-height section from our analysis 

and MERRA-2 are shown for the time periods before the major warming onset (i.e., 21–25 January) and 

after (i.e., 1–5 February) (Figure 21). A thick horizontal bar shows the 0.1 hPa level up to which 

MERRA-2 pressure level data are provided. The overall structures of the two datasets are similar: The 825 
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stratopause in the northern polar region is located at a height of ∼50 km (∼40 km) in the early (later) 

period. In the northern hemisphere, an eastward jet is observed at ∼63°N in the wide height range of 20–

53 km in the early period. A characteristic westward jet associated with the SSW is observed in the later 

period in both datasets. The spatial structure and magnitude of the westward jet are both quite similar. In 

the southern hemisphere, a summer westward jet is clearly observed in both sets of data. The poleward tilt 830 

with height and a maximum of ∼−70 m s-1 of the jet also accord well. A relatively large difference is 

observed around 55 km in the equatorial region. The eastward shear with height seems much stronger in 

MERRA-2 than in our analysis. As the geostrophic balance does not hold in the equatorial region, it may 

be difficult to reproduce wind by assimilation of only temperature data. This may be the reason for the 

large discrepancy observed in the equatorial upper stratosphere between the two datasets. 835 

4.2 Comparison with MST and meteor radar observations 

The winds obtained from the M200 assimilation experiment are also compared with wind observations by 

meteor radars at Longyearbyen (78.2°N, 16.0°E; Hall et al., 2002) at 91 km and Kototabang (0.2°S, 

100.3°E; Batubara et al., 2011) at 92 km, and by the PANSY radar at Syowa Station (69.0°S, 39.6°E) at 

85 km. Note that these radar observations were not assimilated and thus can be used for validation as 840 

independent reference data. Table 4 gives a brief description of these data. Figure 22 shows the time 

series of zonal wind and meridional wind observed at each site (black) and corresponding 6-hourly data 

from our data assimilation analysis (red). A 6-h running mean was made for the time series of the radar 

data, although the time intervals of original data are much shorter.  

Strong fluctuations with time-varying amplitudes are observed for both zonal and meridional 845 

radar winds for each station. The dominant time period is longer at Kototabang in the equatorial region 

than that of ~12 h at Longyearbyen in the Arctic. The amplitudes of the meridional wind fluctuations 

there are larger than those of zonal wind fluctuations at Kototabang. These characteristics are consistent 

with the wind fluctuations estimated by our assimilation system. However, there are significant 

differences: The time variation of the amplitudes do not accord well with observations. Differences in the 850 

phases of the oscillations between observations and estimations are sometimes small and sometimes large.  

In contrast, some consistency is observed for relatively long period variations (periods longer 

than several days). At Longyearbyen, the slowly varying zonal wind component is slightly positive before 

31 January and significantly positive from 1–6 February, while the slowly varying meridional wind tend 

to be significantly negative in the time period of 28–31 January. At Kototabang, the slowly varying zonal 855 

wind tends to be slightly negative before 29 January and almost zero afterward, while the slowly varying 

meridional wind is almost zero throughout the displayed time period. At Syowa Station, the slowly 

varying zonal wind tended to be negative from 23–30 January and after 2–5 February, while the slowly 

varying meridional wind tends to be positive from 24–31 January.  

There are several plausible causes for the discrepancy in short period variations. First, there may 860 

be room to improve the model performance to reproduce such short period variations. Second, the Aura 

MLS provides data along a sun-synchronous orbits, and hence fluctuations associated with migrating 
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tides may be hard for it to capture. Third, a large local increment added by the assimilation of the MLS 

data may cause spurious waves in the model. Fourth, there may be inertia-gravity waves with large 

amplitudes in the upper mesosphere (e.g., Sato et al., 2017; Shibuya et al., 2017) which cannot be 865 

captured with the relatively low-resolution GCM.   

5 Summary and concluding remarks 

A new advanced data assimilation system employing a 4D-LETKF method for the height region from the 

surface to the lower thermosphere has been developed using a GCM with a very high top which we called 

“JAGUAR”. Observation data from NCEP PREPBUFR and Aura MLS that covered the whole neutral 870 

atmosphere up to the lower thermosphere were used for the assimilation. The time period focused on by 

the present study was 10 January to 28 February 2017. This period includes a major SSW event that 

occurred on 1 February in the Arctic, for which an international observation campaign for the troposphere, 

stratosphere, and mesosphere was performed using a radar network. 

Before optimizing parameters of the data assimilation system, the vertical profile of the 875 

horizontal dissipation and source intensity of the non-orographic gravity wave parameterization used in 

JAGUAR were tuned by comparing them to the vertical profiles of gradient winds estimated from the 

MLS temperature and horizontal winds observed by the PANSY radar. The observation bias in the MLS 

temperature data was estimated using the SABER temperature data and subsequently corrected. 

By performing a series of sensitivity experiments, the best values of the other parameters were 880 

obtained for the data assimilation system using 30 ensemble members as a practical assimilation system 

for the middle atmosphere. The best parameter set is called the “Ctrl” experiment in Table 1. The 

optimized value for each parameter in the assimilation of the atmospheric data up to the lower 

thermosphere was different from those used for the standard model covering the troposphere and 

stratosphere. There are several possible reasons for these differences: First, the model performance is not 885 

very mature for the MLT region. Second, the amount of observation data and observable quantities are 

limited for the MLT region. Third, dominant disturbances (and dynamics as well) are different from those 

in the lower atmosphere. Because of the first and second reasons, it is better to take larger gross error 

check coefficient in order to include a larger percentage of the observation data. It was shown that the 

optimal localization length depends on the height: Smaller localization length is better for lower heights. 890 

Thus, the best length for the middle of the model altitude range (i.e., 0.1 hPa) was employed in the best 

parameter set. It was also shown that the inflation factor should be larger than for the standard model, 

although overly large factors do not give stable ensemble spreads. A shorter assimilation window seemed 

better for the MLT region, which is probably due to the dominance of short-period disturbances, such as 

quasi-two day waves and tides. However, shorter assimilation windows have a problem. The amount of 895 

available observation data becomes small and the analysis thus tends to be more reflected by the model 

forecasts that are not as mature as those for the lower atmosphere. 
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In addition, a minimum optimal number of ensemble members was examined using the results 

with an assimilation system of 200 ensemble members, based on the erroneous ripple of correlation 

function. The minimum optimal number of ensemble members slightly depends on the height: about 100 900 

members below 80 km and 150 members above. It should be noted, however, that introduction of the 

finite localization length to the assimilation may work to avoid spurious correlation at distant locations 

even with a lower number of ensemble members than the optimal number.  

The validity of the data obtained from our assimilation system was examined by comparing the 

MERRA-2 reanalysis dataset which has the highest top among the currently available reanalysis datasets. 905 

The correlation was greater than ~0.95 up to 1 hPa, depending on time. A comparison with radar 

observations in the upper mesosphere was also performed. The time variation of horizontal winds with 

periods longer than several days obtained from our assimilation system was consistent with the radar 

observations. However, the accordance of fluctuations with short wave periods, particularly shorter than 

one day, was not adequate with their slight dependence on the latitude.  910 

Nevertheless, the analysis data from our assimilation system will be useful for the study of the 

detailed dynamical processes in the middle atmosphere, a part of which is measured by a limited number 

of observation instruments. An international observation campaign by an MST radar network has been 

performed to capture modulation of the stratosphere and mesosphere including gravity waves initiated by 

the major SSW in the Arctic including the event that the present study focused on. The low-resolution 915 

analysis product from the assimilation system developed in the present study will be used as an initial 

condition for a high-resolution JAGUAR model to simulate the real atmosphere including gravity waves. 

In future work, we plan to use more observation data in the middle atmosphere for the 

assimilation. These include satellite data, such as temperature observation data from the SABER, radiance 

data from the SSMIS, and Global Navigation Satellite System (GNSS) radio occultation data, and also 920 

wind data from radars in the mesosphere. We also plan to examine the impact of assimilating these data 

with observation system simulation experiments using simulation data from a high-resolution GCM. 

Predictability of the GCM will also be studied in the near future. 

Code availability 

The source codes for the data assimilation are available for the editor and reviewers. The copyright of the 925 

code for LETKF belongs to Takemasa Miyoshi, and the related code can be accessed from 

https://github.com/takemasa-miyoshi/letkf (last access: 9 October 2019). 

Data availability 

Meteor radar data from Kototabang are available at the Inter-university Upper atmosphere Global 

Observation NETwork (IUGONET) site (http://www.iugonet.org). Meteor radar data from Longyearbyen 930 

are available by request from the National Institute of Polar Research by contacting Masaki Tsutsumi 
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(tutumi@nipr.ac.jp). The PANSY radar observational data are available at the project website, 

http://pansy.eps.s.u-tokyo.ac.jp. NCEP PREPBUFR data are available from 

https://rda.ucar.edu/datasetsds337.0/ (accessed 26 Apr 2017). Aura MLS data, which are compiled and 

archived by NASA, were also used for the data assimilation (available from 935 

https://acdisc.gesdisc.eosdis.nasa.gov/data/Aura_MLS_Level2/, accessed 21 Jul 2019). 

Appendix A 

Here we show the equivalence of the two methods, namely, the calculation of time development after the 

data assimilation and the 4D data assimilation with the calculation of time development. The case of 𝑗𝑗2 =

𝑗𝑗1 + 1, that is, 𝐱𝐱𝑗𝑗2 = 𝐌𝐌𝐱𝐱𝑗𝑗1  is considered. In the first method, the analysis 𝐱𝐱𝑗𝑗1𝑎𝑎  and the analysis error 940 

covariance matrix 𝐏𝐏𝑗𝑗1𝑎𝑎  at the time step 𝑗𝑗1 are written using (7) and (8): 

𝐱𝐱𝑗𝑗1𝑎𝑎 = 𝐱𝐱𝑗𝑗1
𝑓𝑓 + 𝐏𝐏𝑗𝑗1𝑎𝑎𝐇𝐇T𝐑𝐑−1�𝐲𝐲 − 𝐇𝐇𝐱𝐱𝑗𝑗1

𝑓𝑓 �, (A1) 

𝐏𝐏𝑗𝑗1𝑎𝑎 = �𝐈𝐈 − 𝐏𝐏𝑗𝑗1
𝑓𝑓𝐇𝐇T�𝐇𝐇𝐏𝐏𝑗𝑗1

𝑓𝑓𝐇𝐇T + 𝐑𝐑�
−1
𝐇𝐇�𝐏𝐏𝑗𝑗1

𝑓𝑓 . (A2) 

Using the model forecast matrix 𝐌𝐌, 𝐱𝐱𝑗𝑗2𝑎𝑎  and 𝐏𝐏𝑗𝑗2𝑎𝑎  at the next time step 𝑗𝑗2 are obtained: 

𝐱𝐱𝑗𝑗2𝑎𝑎 = 𝐌𝐌𝐱𝐱𝑗𝑗1𝑎𝑎 = 𝐌𝐌𝐱𝐱𝑗𝑗1
𝑓𝑓 + 𝐌𝐌𝐏𝐏𝑗𝑗1𝑎𝑎𝐇𝐇T𝐑𝐑−1�𝐲𝐲 − 𝐇𝐇𝐱𝐱𝑗𝑗1

𝑓𝑓 �, (A3) 

𝐏𝐏𝑗𝑗2𝑎𝑎 = 𝐌𝐌𝐌𝐌𝑗𝑗1𝑎𝑎 𝐌𝐌T = 𝐌𝐌�𝐈𝐈 − 𝐏𝐏𝑗𝑗1
𝑓𝑓𝐇𝐇T�𝐇𝐇𝐏𝐏𝑗𝑗1

𝑓𝑓𝐇𝐇T + 𝐑𝐑�
−1
𝐇𝐇�𝐏𝐏𝑗𝑗1

𝑓𝑓𝐌𝐌T. (A4) 

In the second method, the analysis 𝐱𝐱𝑗𝑗2𝑎𝑎  is written as 945 

𝐱𝐱𝑗𝑗2𝑎𝑎 = 𝐱𝐱𝑗𝑗2
𝑓𝑓 + 𝐏𝐏𝑗𝑗2𝑎𝑎𝐇𝐇′T𝐑𝐑−1 �𝐲𝐲 − 𝐇𝐇′𝐱𝐱𝑗𝑗2

𝑓𝑓
� , (A5) 

where 𝐇𝐇′ is the observation operator at the time step 𝑗𝑗2 and is related to 𝐇𝐇:  

𝐇𝐇′ = 𝐇𝐇𝐌𝐌−1.  (A6) 950 

By substituting this formula into Eq. (A5), the analysis 𝐱𝐱𝑗𝑗2𝑎𝑎  is written as 

𝐱𝐱𝑗𝑗2𝑎𝑎 = 𝐌𝐌𝐱𝐱𝑗𝑗1
𝑓𝑓 + 𝐏𝐏𝑗𝑗2𝑎𝑎 (𝐇𝐇𝐌𝐌−1)T𝐑𝐑−1�𝐲𝐲 − 𝐇𝐇𝐇𝐇−1𝐱𝐱𝑗𝑗2

𝑓𝑓 � 

= 𝐌𝐌𝐱𝐱𝑗𝑗1
𝑓𝑓 + 𝐏𝐏𝑗𝑗2

𝑓𝑓 (𝐌𝐌−1)𝑇𝑇𝐇𝐇T𝐑𝐑−1�𝐲𝐲 − 𝐇𝐇𝐇𝐇−1𝐱𝐱𝑗𝑗2
𝑓𝑓 � 

= 𝐌𝐌𝐱𝐱𝑗𝑗1
𝑓𝑓 +  𝐌𝐌𝐏𝐏𝑗𝑗1

𝑓𝑓𝐇𝐇T𝐑𝐑−1�𝐲𝐲 − 𝐇𝐇𝐱𝐱𝑗𝑗1
𝑓𝑓 � 955 

=  𝐌𝐌𝐱𝐱𝑗𝑗1𝑎𝑎 , 

which is identical to Eq. (A3). 

 Similarly, the analysis error covariance 𝐏𝐏𝑗𝑗2𝑎𝑎  is written as 

𝐏𝐏𝑗𝑗2𝑎𝑎 = �𝐈𝐈 − 𝐏𝐏𝑗𝑗2
𝑓𝑓𝐇𝐇′T�𝐇𝐇′𝐏𝐏𝑗𝑗2

𝑓𝑓𝐇𝐇′T + 𝐑𝐑�
−1
𝐇𝐇′�𝐏𝐏𝑗𝑗2

𝑓𝑓  (A7),  

which is transformed using Eq. (A6) to 

𝐏𝐏𝑗𝑗2𝑎𝑎 = �𝐈𝐈 − 𝐏𝐏𝑗𝑗2
𝑓𝑓 (𝐇𝐇𝐇𝐇−𝟏𝟏)T�𝐇𝐇𝐇𝐇−𝟏𝟏𝐏𝐏𝑗𝑗2

𝑓𝑓 (𝐇𝐇𝐇𝐇−1)T + 𝐑𝐑�
−1
𝐇𝐇𝐇𝐇−1�𝐌𝐌𝐌𝐌𝑗𝑗1

𝑓𝑓𝐌𝐌T 960 

= �𝐈𝐈 − 𝐏𝐏𝑗𝑗2
𝑓𝑓𝐌𝐌−T𝐇𝐇T�𝐇𝐇𝐇𝐇−1𝐏𝐏𝑗𝑗2

𝑓𝑓𝐌𝐌−T𝐇𝐇T + 𝐑𝐑�
−1
𝐇𝐇𝐇𝐇−1�𝐌𝐌𝐌𝐌𝑗𝑗1

𝑓𝑓𝐌𝐌T 

= �𝐈𝐈 − 𝐌𝐌𝐏𝐏𝑗𝑗1
𝑓𝑓𝐇𝐇T�𝐇𝐇𝐏𝐏𝑗𝑗1

𝑓𝑓𝐇𝐇T + 𝐑𝐑�
−1
𝐇𝐇𝐇𝐇−1�𝐌𝐌𝐌𝐌𝑗𝑗1

𝑓𝑓𝐌𝐌T 
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= 𝐌𝐌�𝐈𝐈 − 𝐏𝐏𝑗𝑗1
𝑓𝑓𝐇𝐇T�𝐇𝐇𝐏𝐏𝑗𝑗1

𝑓𝑓𝐇𝐇T + 𝐑𝐑�
−1
𝐇𝐇�𝐏𝐏𝑗𝑗1

𝑓𝑓𝐌𝐌T 

= 𝐌𝐌𝐌𝐌𝑗𝑗1𝑎𝑎𝐌𝐌T, 

which is identical to Eq. (A4). 965 

These relations can be derived for any 𝑗𝑗2 other than 𝑗𝑗2 = 𝑗𝑗1 + 1. 
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Table 1: Parameter settings for sensitivity tests. Bold faces show the difference from the control (the first line) 
The control setting is equivalent to DB, P0.7, G20, L600, I15, W6, and M30. 

 Diffusion 

coeff. 

GWP source 

intensity 

Gross error 

check for MLS 

Localization 

length (km) 

Inflation 

coeff. (%) 

Window 

length (h) 

Number of 

members 

Ctrl B 0.7 20 600 15 6 30 

DC C 0.7 20 600 15 6 30 

P0.5 B 0.5 20 600 15 6 30 

P1 B 1.0 20 600 15 6 30 

G5 B 0.7 5 600 15 6 30 

L300 B 0.7 20 300 15 6 30 

L1000 B 0.7 20 1000 15 6 30 

I7 B 0.7 20 600 7 6 30 

I25 B 0.7 20 600 25 6 30 

W3 B 0.7 20 600 15 3 30 

W12 B 0.7 20 600 15 12 30 

M90 B 0.7 20 600 15 6 90 

M200 B 0.7 20 600 15 6 200 
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Table 2: The localization length dependence of the root mean square (RMS) difference [K] between the 
analysis temperature and the MLS temperature observation. The averaged data for the time period of 12 1280 
January to 20 February 2017 is shown. 

Height (hPa) L300 L600 (Ctrl) L1000 

0.005 10.1 8.6 8.3 

0.01 11.6 9.2 9.0 

0.1 6.8 5.5 6.4 

1 3.8 4.1 5.9 

10 2.1 2.6 3.6 
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Table 3: The bias of the time series of zonal mean temperature at 70 °N for the time period from 15 January to 
20 February 2017 from each assimilation experiment and from MERRA-2 (see Figure 15). The RMS of the 
differences between the time series of each experiment and MERRA-2, as well as the correlation (Corr) 1285 
between the time series from each experiment and from MERRA-2, are also shown. Results for (a) 500 hPa, 
(b) 10 hPa, (c) 1 hPa, and (d) 0.1 hPa are shown. The numerals showing better performance than Ctrl are bold 
faced 

 (a) 500hPa  (b) 10hPa  (c) 1.0hPa  (d) 0.1hPa 

 RMS Corr 
 

RMS Corr  RMS Corr  RMS Corr 

Ctrl 0.808 0.928 
 

1.635 0.994  3.358 0.954  4.069 0.959 

DC 0.787 0.914 
 

1.602 0.995  3.888 0.944  4.566 0.944 

P0.5 1.009 0.912 
 

1.729 0.989  3.630 0.951  4.599 0.943 

P1 1.062 0.926 
 

1.813 0.993  4.579 0.926  5.051 0.957 

G5 0.826 0.929 
 

2.295 0.990  5.140 0.923  8.870 0.848 

L300 0.987 0.951 
 

1.535 0.995  3.030 0.956  8.014 0.949 

L1000 1.700 0.397 
 

2.385 0.980  5.941 0.915  3.812 0.951 

I7 1.023 0.810 
 

1.694 0.995  3.548 0.965  7.028 0.970 

I25 0.835 0.956 
 

2.022 0.986  4.593 0.922  4.239 0.900 

W3 1.005 0.915 
 

1.809 0.988  3.506 0.950  3.385 0.946 

W12 1.321 0.720 
 

2.110 0.992  3.759 0.946  6.853 0.956 

M90 0.794 0.976 
 

1.570 0.996  2.381 0.970  2.408 0.973 

M200 0.879 0.961 
 

1.500 0.997  1.932 0.977  2.333 0.975 
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Table 4: Location, radar type, and vertical resolution used for the comparison with the analysis. “MST radar” 1290 
stands for the Mesosphere-Stratosphere-Troposphere radar. 

Station Radar type 
Vertical 

resolution 

Time interval Organization 

Longyearbyen 

(78.2˚N, 16.0˚E) 
Meteor radar 2km 30 min NIPR 

Kototabang 

(0.2˚S, 100.3˚E) 
Meteor radar 2km 1 h Kyoto University 

Syowa Station 

(69.0˚S, 39.6˚E) 

MST radar 

(The PANSY radar) 
300m 30 min 

The University 

of Tokyo/ NIPR 
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Figure 1: The vertical profiles of the horizontal diffusion coefficients given in the forecast model. The profile B 
was used for the data assimilation.   1295 
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Figure 2: Vertical profiles of the zonal mean zonal wind averaged for the time period of 12 January to 20 
February from free runs with different horizontal diffusions (A: green curves, B: red curves, and C: blue 
curves) for (a) 2016, (b) 2017, and (c) 2018. PANSY radar and MLS observations are also shown by black solid 1300 
curves and dashed curves, respectively. Gray shading denotes the range of standard deviation for the PANSY 
radar observation during the time period. (d) Results of the data assimilation with the Ctrl parameter set for 
2017.   
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Figure 3: The meridional cross sections of the zonal mean zonal wind [(a) and (b)], the meridional component 1305 
of E-P flux [(c) and (d)], and the vertical component of E-P flux [(e) and (f)]. (a), (c), and (e) [(b), (d), and (f)] 
obtained using the results of the data assimilation for DB (Ctrl) [DC], and averaged for the time period of 12 
January to 20 February 2017. Contour intervals are 10 m s-1 for (a) and (b), 50 m2s-2 for (c) and (d), and 0.2 
m2s-2 for (e) and (f).   
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Figure 4: The vertical profiles of the zonal mean zonal wind averaged for the time period of 12 January to 20 
February from free runs with gravity-wave parameterization of different source intensities (P0.5: green curves, 
P0.7: red curves, and P1.0: blue curves) for (a) 2016, (b) 2017, and (c) 2018. PANSY radar and MLS 
observations are also shown by black solid curves and dashed curves respectively. Gray shading denotes the 1315 
range of standard deviation for the PANSY radar observation during the time period. (d) Results of the data 
assimilation with the Ctrl parameter set for 2017.   
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Figure 5: The day-latitude section of MLS bias at (a) 10 hPa, (b) 1 hPa, (c) 0.1 hPa, and (d) 0.01 hPa. The 
contour intervals are 0.5 K.  1320 
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Figure 6: The vertical profile of the global average of the Aura MLS temperature bias (the solid black curve) 
with standard deviation (gray shading). Error bars denote reported bias (Livesey et al., 2018).   
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Figure 7: The meridional cross sections of zonal mean temperature [(a) and (b)] and zonal wind [(e) and (f)]. 1325 
The results (a) and (e) [(b) and (f)] from the assimilating Aura MLS data without [with] bias correction which 
are averaged for the time period of 12 January to 20 February 2017. (c) [(g)] The difference between (a) and 
(b) [(e)–(f)]. (d) The corrected bias for the same time period. Contour intervals are 10 K for (a) and (b), 2 K for 
(c) and (d), 10 m s-1 for (e) and (f), and 5 m s-1 for (g).   
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 1330 
Figure 8: Histogram of the OmF (thin curves) and OmA (thick curves) at 0.1 hPa [(a) and (b)], 1 hPa [(c) and 
(d)], and 10 hPa [(e) and (f)]. (a), (c), and (e) [(b), (d), and (f)] are the results from G20 [G5] for the time period 
of 12 January to 20 February 2017.   
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 1335 
Figure 9: The vertical profiles of the global mean (a) OmF and OmA, and (b) 𝛘𝛘𝟐𝟐. The gray (black) curves 
denote the OmF (OmA) in (a). Dashed and solid curves denote results from the G5 and G20 (Ctrl), respectively. 
Plotted are an average for the time period of 12 January to 20 February 2017.   
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Figure 10: The vertical profiles of the global mean (a) OmF and OmA, and (b) 𝛘𝛘𝟐𝟐. The bray (black) curves 1340 
denote the OmF (OmA) in (a). Dashed, solid, and dotted curves denote results from L300, L600 (Ctrl), and 
L1000, respectively. Plotted are an average for the time period of 12 January to 20 February 2017.   
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Figure 11: The meridional cross section of the zonal mean ensemble spread of temperature [K] for (a) I7, (b) 
I15 (Ctrl), and (c) I25 averaged for the time period of 12 January to 20 February 2017. 1345 
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Figure 12 The time series of the global mean temperature spread for (a) 0.01hPa and (b) 10hPa. Dashed, solid 
and dotted curves denote results from I7, I15 (Ctrl), and I25, respectively.  
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Figure 13: The vertical profiles of the global mean (a) OmF and OmA, and (b) 𝛘𝛘𝟐𝟐. The gray (black) curves 1350 
denote the OmF (OmA) in (a). Dashed, solid, and dotted curves denote results from I7, I15 (Ctrl), and I25, 
respectively. Plotted are an average for the time period of 12 January to 20 February 2017.   
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Figure 14: The vertical profiles of the global mean (a) OmF and OmA, and (b) 𝛘𝛘𝟐𝟐. The gray (black) curves 
denote the OmF (OmA) in (a). Dashed, solid, and dotted curves denote results from W3, W6 (Ctrl), and W12, 1355 
respectively. Plotted are an average for the time period of 12 January to 20 February 2017.   
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Figure 15: The time series of the zonal mean temperature at 70˚N for (a) 500hPa, (b) 10hPa, (c) 1hPa, and (d) 
0.1hPa. The black curves show the results from each parameter setting (see Table 1). The right axis is given for 
the result of Ctrl, and the other curves are vertically shifted by (a) 5K, (b) 15K, (c) 10K, and (d) 15K. The gray 1360 
curves shows the time series calculated using MERRA-2 as a reference.  
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Figure 16: The vertical profiles of the global mean (a) OmF and OmA, and (b) 𝛘𝛘𝟐𝟐. The gray (black) curves 
denote the OmF (OmA) in (a). Dashed, solid, and dotted curves denote results from M30 (Ctrl), M90, and 
M200, respectively. Plotted are an average for the time period of 12 January to 20 February 2017.  1365 
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Figure 17: An example of ensemble correlation of temperature. Results for 40˚N, 10hPa (a) and 0.01hPa (b). 
Each curve shows the results of the 200 (a thick solid curve), 100 (thick dashed), 50 (thin solid), 25 (thin 
dashed), and 12 (thick grey) ensembles. We performed the same analysis for other latitudes and heights, and 
obtained similar results.  1370 
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Figure 18: An example of the RMS of spurious correlation. Results for 40˚N, 0.01 hPa, 0600 UTC, 21 January 
2017, as a function of the number of ensembles. The gray curves show the results of respective longitude, and a 
black curve shows the average. A dashed line shows the number of members for which the mean RMS is 0.1 
(i.e., 91).  1375 
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Figure 19: The vertical profiles of the minimum number of required ensemble members that were estimated 
from the RMS of spurious correlation. The black, dark gray, and light gray curves show the results for the 
equator, 40˚N, and 40˚S, respectively.  
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 1380 
Figure 20: The zonal mean of the spatial correlation of the geopotential height anomaly from the zonal mean 
between the analysis (M200) and MERRA-2. Contours of 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.97, and 0.99 are shown.  
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Figure 21: The meridional cross section of the zonal mean temperature [(a), (b), (e), (f), (i), and (j)] and zonal 
wind [(c), (d), (g), and (h)]. (a), (c), (e), (g), and (i) [(b), (d), (f), (h), and (j)] averaged for the time period of 21–1385 
25 January 2017 [1–5 February 2017]. (a), (b), (c), and (d) [(e), (f), (g), and (h)] are the results of the data 
assimilation (M200), and (i) and (j) are the results of the Aura MLS data. The contour intervals are 10 K for 
(a), (b), (e), (f), (i), and (j) and 10 m s-1 for (c), (d), (g), and (h). 
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Figure 22: The time series of the zonal (left column) and meridional (right column) wind from 6-hourly 
analysis (red curves) and from observation (black curves) (a) and (b) by a meteor radar at Longyearbyen in 
the Arctic at a height of 91 km, (c) and (d) by a meteor radar at Kototabang near the equator at 92km, and (e) 
and (f) by the PANSY radar at Syowa Station in the Antarctic at 85 km. Although the time intervals of the 
radar observation data are 1 h for meteor radars and 30 min for the PANSY radar, the 6-h running mean time 1395 
series are plotted. 
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