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We would like to thank the two anonymous reviewers and the executive editor for their feedback on our 

manuscript. We have considered all of the comments carefully and addressed them in turn below, with our 

responses in blue-italics. In all of our responses, page numbers and line numbers refer to the revised 

manuscript.   

 

We note that both reviewers suggested only minor revisions to the manuscript, therefore we have made the 

following changes: 

 Extra examples of  13C-enabled models added to Table 1 

 Minor edits to figures 

 Wordsmithing for clarity and adding in additional details (where requested) 

 

 

Executive editor 

 

Dear authors,  

in my role as Executive editor of GMD, I would like to bring to your attention our Editorial version 1.2:  

https://www.geosci-model-dev.net/12/2215/2019/  

This highlights some requirements of papers published in GMD, which is also available on the GMD website 

in the ‘Manuscript Types’ section: http://www.geoscientific-model-

development.net/submission/manuscript_types.html 

In particular, please note that for your paper, the following requirement has not been met in the Discussions 

paper:  

"The main paper must give the model name and version number (or other unique identifier) in the title."  

Please add a version numbers for FAMOUS to the title upon your revised submission to GMD.  

Yours,  

Astrid Kerkweg 

 

The unique identifier for the FAMOUS code and setup used in this manuscript is already included in the title 

of our manuscript (‘XOAVI’), enabling readers to ascertain, reference and access/use the exact combination 

of code, model components, and inputs as is presented here. We realise that this does not follow a more 

conventional versioning (e.g. linear) format, such as ‘FAMOUS v1.1’, however, no such versioning exists for 

FAMOUS (see other FAMOUS publications in the GMD special issue). To give further details (and as 

outlined in Table 3): XOAVI is the unique identifier for the standard transient simulation, which forms the 

basis of our discussions and the core of all our simulations. The unique identifiers for all of the other 

sensitivity simulations presented in our manuscript are also outlined in Table 3, should a reader wish to 

repeat any or all of these simulations in the future. In any case, the unique identifier is already in the title, as 

required, therefore no changes have been made in the revised manuscript. 

  

http://www.geoscientific-model-development.net/submission/manuscript_types.html
http://www.geoscientific-model-development.net/submission/manuscript_types.html
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Reviewer #1 

 

Dentith et al., present the implementation of oceanic stable carbon isotope (13C) in the ocean component of 

the FAMOUS model. The model includes carbon fractionation during air-sea gas exchange, and 

photosynthesis. Three schemes are tested for fractionation during photosynthesis, with the more complex 

schemes not improving the model-data comparison. The oceanic δ13C values are globally higher in the model 

than in observations, probably due to the representation of both the oceanic circulation and marine carbon 

cycle in the model. I agree with the conclusions of the authors that the model should probably be re-tuned for 

both its oceanic circulation and marine carbon cycle. But, before that another quick check of δ13C 

implementation could be done. I support publication of the manuscript once the comments below have been 

taken into account.  

We are confident that our implementation is mathematically correct and that there are no bugs in the code 

because we have already completed extensive checks, including: 

 Verifying that our equations are balanced, and that no carbon (12C or 13C) is being created or 

destroyed. 

 Running with δ13Catm equal to 0 ‰ and no isotopic fractionation effects (all α values set to 1.0). In this 

simulation, the δ13CDIC values remained constant at 0 ‰. 

 Running with δ13Catm equal to -6.5 ‰ and no isotopic effects (all α values set to 1.0). In this simulation, 

the δ13CDIC equilibrated at -6.5 ‰. 

 

P3, L. 5-8 and table 1: the carbon isotopes enabled model LOVECLIM is missing from this list, with 

references Mouchet, 2013 (Radiocarbon) and Menviel et al., 2015 (GBC), as the carbon cycle models and 

carbon isotopes implementation are different in iLOVECLIM and LOVECLIM.  

Our intention was to provide illustrative examples of 13C-enabled models across a range of complexities as 

opposed to a complete list of all 13C-enabled models, but we have added this additional example to Table 1 (p. 

26 – 27). 

 

P3, L9-11: This sentence has to be amended. The list of carbon isotopes enabled models on L. 8 includes 2-

dimensional, 3-dimensional models, OGCMs and AOGCMs; and apart from 3 there are OGCMs with similar 

resolution as the model described here. It thus cannot be suggested that all these models are too simple to 

study abrupt climate changes, moreover when the model presented in this study probably provides similar 

performances/capability to some models in that list (even more so because it focuses on ocean processes, and 

because in this model “sea ice formation and melt do not affect salinity distributions”, p5, L. 16).  

FAMOUS is a full-complexity, ocean-atmosphere General Circulation Model (AOGCM). Even though it 

does not have the high resolution of the more complex models that are cited (e.g. PISCES and CESM), for 

simulations of coupled ocean-atmosphere interactions, and particularly when atmospheric variability is 

important, FAMOUS is an improved model compared to the Earth System Models of Intermediate 

Complexity Models (that do not have a full-primitive equation atmosphere or that have more limited vertical 

resolution in the atmosphere) and the ocean-only models. However, these are specific cases and we agree 

that the highlighted sentence made a crude point that was not well justified. We have therefore removed this 

sentence from the manuscript.  

 

P5, L. 14: suggest to replace “EEP”, by “equatorial Pacific” as simulated primary production is higher both 

in the western and eastern Pacific. Please also modify the end of the sentence as follows: “attributed to 

excessive upwelling in the EEP”.  
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We have revised this sentence to “However, primary production is higher than observed in the equatorial 

Pacific, which is attributed to excessive upwelling in the eastern equatorial Pacific (Palmer and Totterdell, 

2001)” (p. 5, l. 13 – 14.). 

 

From P10, L. 28 to p11, L.2: I would suggest to be really cautious here and eventually add a few 

words/sentences of explanation as it is stated that δ13C is high in the Southern Ocean because of CO2  

outgassing, and high in the EEP because AABW is upwelled. This is of course only true in this experiment 

where no biological fractionation is taken into account. If all processes are taken into account AABW would 

have a low δ13C. Therefore, to account for the quick reader, it might be best to repeat “because there is no 

biological fractionation in this experiment”. In addition, I doubt that “AABW” is upwelled in the EEP. It is 

sufficient to simply state that the upwelled water has a high δ13C value because it is mostly southern-sourced 

waters. But, it is quite surprising to see such high values in the EEP in no-bio-fract. In addition, the model 

δ13C is globally too high in std. The authors investigate thoroughly the impact of fractionation during 

photosynthesis, but could it be a problem linked to gas-exchange parametrization? Is the right hand side of 

Equation 5 really needed? Would plotting δ13C vs PO4 in the model help in confirming that everything is 

correct?  

We have revised the manuscript as suggested: 

“When both the equilibrium and kinetic fractionation effects are included during air-sea gas exchange (no-

bio-fract), the large-scale δ13CDIC distributions are closely related to the SST patterns because of the 

temperature dependence of αaq←g and αDIC←g (Figure 4b). In the absence of biological fractionation, 

relatively high δ13CDIC values (> +2.5 ‰) are simulated in the Southern Ocean due to the combined effect of 

CO2 outgassing and low SSTs, both of which cause 13C enrichment. The δ13CDIC values in the Arctic Ocean 

are comparably low because the model has more extensive sea ice in the Northern Hemisphere than in the 

Southern Hemisphere, which inhibits air-sea gas exchange. The highest values (+3.00 ‰) are simulated in 

the eastern equatorial Pacific where there are high rates of net CO2 outgassing and southern-sourced 

waters, which have a high δ13CDIC signature in this simulation because there is no biological fractionation, 

are upwelled.” (p. 10, l. 21 – 28.) 

 

 The right hand side of the equation 5 is necessary because we are carrying the tracer as a ratio (13C/12C). 

Please see the derivation in Appendix B. 

 

Plotting the simulated δ13C values against the corresponding PO4
3- values, which we have derived using 

Redfield ratios because FAMOUS only contains a single nitrogenous nutrient, suggests that everything is 

correct. The model captures the expected relationship between the two variables, with approximately a -1 ‰ 

change in δ13C per 1 μmol kg-1 change in PO4
3- (Figure R1). 
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Figure R1: δ13C versus PO4

3- during the 1990s in the std simulation (top) and in the GLODAPv.2 data set 

(bottom). The red lines are the linear regression lines for each set of data.   

 

Figure 6 is quite helpful. The profiles are a bit surprising, but are discussed in details and compared with 

Schmittner et al. 2013. Note that the Bern3D and LOVECLIM profiles are also shown in Menviel et al., 

2015, and could help in assessing the accuracy of the latitudinal d13C distributions.  

Menviel et al. (2015) conducted a different set of sensitivity experiments to those presented by us (section 

3.1) and Schmittner et al. (2013). Instead, they conducted a suite of experiments with freshwater forcing in 

the North Atlantic and Southern Oceans, and changes in the wind stress. Thus, whilst interesting, their 

results are not comparable to ours.  

 

Since our original manuscript submission, we have accessed the raw data for the four equivalent simulations 

conducted by Schmittner et al. (2013), which we discuss in section 3.1. We have therefore added these lines 

on to Figure 5 and Figure 6 so that readers can make a direct comparison between the two models. The 

figures and the corresponding captions have therefore be revised as follows:  
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Figure 5: Depth profiles of globally averaged δ13CDIC at the end of the sensitivity experiment spin-up 

simulations (years 9900 to 10,000). The std (black) and no-bio-fract (purple) simulations use the bottom 

axis, whilst the ki-fract-only (red) and no-asgx-fract (blue) simulations use the top axis. The dotted lines are 

the equivalent simulations conducted by Schmittner et al. (2013) with the UVic ESM: std (black) and no-bio 

(purple) on the bottom axis; ki-only (red) and const-gasx (blue) on the top axis. (p. 33) 
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Figure 6: Zonally averaged mean annual surface δ13CDIC at the end of the sensitivity experiment spin-up 

simulations (years 9900 to 10,000). The std (black) and no-bio-fract (purple) simulations use the left-hand 

axis, whilst the ki-fract-only (red) and no-asgx-fract (blue) simulations use the right-hand axis. The dotted 

lines are the equivalent simulations conducted by Schmittner et al. (2013) with the UVic ESM: std (black) 

and no-bio (purple) on the left-hand axis; ki-only (red) and const-gasx (blue) on the right-hand axis. (p. 34) 

 

Figure 3: Why is CaCO3 in grey? Since there is no fractionation during CaCO3 formation, then maybe the 

line from DIC to CaCO3 should be black. There should be an arrow going from DIC to atm. “Atmosphere” 

should in fact be “Atm CO2”.  

 CaCO3 is in grey because the export of CaCO3 in FAMOUS is represented as an instantaneous 

redistribution of alkalinity and carbon at depth (i.e. the model doesn’t actually carry CaCO3 as a 

tracer). This has been clarified in the revised figure caption. 

 The CaCO3 formation line was red because, in reality, this process is affected by isotopic 

fractionation and, in the model, is coded to allow for constant isotopic fractionation. In all of our 

simulations, we have chosen to set αCaCO3 equal to 1.0 because we found that including isotopic 

fractionation during CaCO3 formation has a negligible effect on the δ13CDIC values (as discussed in 

section 2.2). For clarity, we have revised the figure so that this arrow is orange, and amended the 

caption to clarify that the orange arrow represents a process that can include a constant isotopic 

fractionation effect (should future users of the code wish to so), but that this effect has not been 

included in any of the simulations presented in our manuscript. 

 We have revised the figure with an arrow going from the DIC pool to the atmospheric pool, but have 

made it clear in the revised figure caption that the atmosphere doesn’t see the outgassed isotopic 

ratio because atmospheric δ13C is prescribed.   

 We have altered “Atmosphere” to “Atmospheric CO2” to be more accurate. 

 

The figure and the corresponding caption have therefore been updated as follows:  
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Figure 2: Schematic overview of the 13C implementation in FAMOUS. Blue boxes represent permanent 

carbon pools. Grey boxes represent temporary carbon pools (note that CaCO3 is a temporary carbon pool 

because the export of CaCO3 in FAMOUS is represented as an instantaneous redistribution of alkalinity and 

carbon at depth). The orange box represents the prescribed atmospheric carbon pool. The dashed lines 

represent fluxes of 13C/12C. However, note that the outgassed 13C/12C has no effect on δ13Catm because 

FAMOUS does not currently have a fully interactive carbon cycle. Solid lines represent fluxes of 13C. Dot-

dashed lines represent processes that occur below the lysocline (≈ 2500 m below sea level). The dotted line 

represents the reflux of detrital material from the seafloor to the surface layer. Red lines represent 

fractionation effects. The orange line represents isotopic fractionation during calcium carbonate formation 

(αCaCO3), which is included in the code as a user-specified constant. Note that all simulations presented in 

this study were run without fractionation during calcium carbonate formation (i.e. αCaCO3 = 1.0, which is 

equivalent to a fractionation effect of 0 ‰). (p. 30) 

 

Figure 7: The authors might consider modifying this figure as it looks like 3 times the same plot. I 

understand that it might be the point, but maybe best to move some (L95, L97) to SI. The choice of the 

colorbars could be revised: it is hard (impossible) to see any feature in a), and difficult in the right hand side 

panels. Are experiments L95 and L97 described in the methods? It would be helpful to also include them in 

Table 2 

 We have moved the original plot into the supplementary material (now Figure S7) and replaced it in 

the main manuscript with a 4-panel plot containing the observed values, the std simulation corrected 

for the mean surface bias, the std simulation, and the difference between the std and observed 

values: 
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Figure 7: Mean annual surface δ13CDIC during the 1990s: (a) observations from GLODAPv2 (Key et al., 

2015; Olsen et al., 2016), (b) the std simulation corrected for the mean surface bias (0.97 ‰), which is 

calculated as ∑(simulated-observed)/number of observations, (c) the std simulation, and (d) std minus 

GLODAPv2. (p. 35) 

 

 We do not have the same difficulty in seeing the features in the subplots. Perhaps the issue is with 

the low resolution conversion of the figure in the supplied file. We have therefore attached a PDF of 

the figure to this response, which is the resolution that will be supplied for the final manuscript. In 

this version, the colour scale displays the features clearly. We prefer not to change the colour 

scheme because we selected it very carefully: it is colour-blind friendly and the colour gradations 

are easy to interpret. We are not aware of an alternative colour scheme that would improve the 

visualisation of these data.  

 Yes, experiments L95 and L97 are described in the methods (see p. 8, l. 18 – 23 and p. 10, l. 3 – 7). 

We have added these simulations to Table 2 for completeness. 
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Table 2: Overview of the fractionation factors used in the sensitivity experiments. (p. 28) 

Simulation αk αaq←g, αDIC←g αp 

std Standard1 Variable2 Variable (with αPOC←aq calculated as per Eq. (10)) 

ki–fract-only Standard 1 1 

no-asgx-fract 1 1 Variable (with αPOC←aq calculated as per Eq. (10)) 

no-bio-fract Standard Variable 1 

L95 Standard Variable Variable (with αPOC←aq calculated as per Eq. (11)) 

L97 Standard Variable Variable (with αPOC←aq calculated as per Eq. (12)) 
1
 0.99919 

2 Calculated as per Eq. (7 – 8)  
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Reviewer #2 

 

General comments  

This paper presents the inclusion of stable carbon isotopes, i.e. 13C, in the FAMOUS model. The authors 

have evaluated the effect of fractionation by air-sea gas exchange, biology and ocean circulation, and have 

tested different fractionation parameterisations for biology. This is a very useful development of the model 

that will be very valuable for paleo studies. This work is well presented and the reasoning is easy to follow. 

It has already demonstrated its usefulness by showing that the discrepancy between model results and data is 

likely to be due to biases in the simulated climate as well as the biogeochemical model.  

 

My main concern is that this model should not be used as it is for paleo studies but should be re-tuned, 

especially the biogeochemical module, as there are very large disagreements between simulated δ13C and 

data. This is highlighted by the authors and re-tuning the model is clearly out of the scope of this study, but it 

might nonetheless be interesting to have a few additional sensitivity simulations to evaluate how much the 

results could be improved if the biogeochemical model was slightly modified, for example with a modified 

remineralisation, which could potentially help reduce the model-data disagreements.  

As noted by the reviewer, it is beyond the scope of the current study to retune the model, and as this project 

is no longer being funded, we are unable to conduct more simulations for inclusion in this manuscript. 

Nonetheless, we absolutely agree with the reviewer that tuning should be a priority, and have added their 

suggestion to conduct sensitivity studies with the biogeochemical model (in particular, modifying 

remineralisation) to section 3.4, where we discuss retuning the model: “In the first instance, further 

sensitivity studies would provide more insight into the how much our results could be improved by small 

adjustments to the biogeochemistry in the model (e.g. modifying the remineralisation rate and/or the export 

ratio)”. (p. 15, l.33 – p. 16, l. 2) 

 

Specific comments  

Abstract p.1 l. 7: do you mean “carbon isotopic ratios” instead of isotopic ratios?  

Introduction p.2 l.2. The first sentence is almost the same as the first sentence from the abstract: maybe 

change it?  

In the abstract we were referring to isotopic ratios more widely. For example, δ18O can be used as a tracer 

for density, temperature and salinity (Lynch-Stieglitz et al., 1999; Lynch‐Stieglitz et al., 1999); εNd can be 

used as a tracer for water mass provenance (Piotrowski et al., 2004; Rutberg et al., 2000); and 231Pa/230Th 

can be used as a tracer for the rate of overturning and scavenging (Marchal et al., 2000; Henry et al., 2016). 

However, for clarity, and to avoid repetition in the first sentence of the introduction, we have revised the first 

sentence of the abstract to “Ocean circulation and the marine carbon cycle can be indirectly inferred from 

stable and radiogenic carbon isotope ratios (δ13C and ∆14C, respectively), measured directly in the water 

column, or recorded in geological archives such as sedimentary micro-fossils and corals.” (p. 1, l. 7 – 9) 

 

p.2. l.2-10. This is not entirely true for 14C as it also depends on radioactive decay: maybe you could say 

right at the beginning (after giving the percentages) that C14 is not studied here and only keep 12C and 13C in 

this part.  

p2. l.9. You could give the complete definition of δ13C mode explicitly as this is entirely on δ13C inclusion it 

is worth reminding clearly the definition (δ13C =. . .).  

In response to the above two comments, we have revised the manuscript to read “There are three naturally 

occurring carbon isotopes: the stable isotopes 12C (98.9 %) and 13C (1.1 %), and the radioactive isotope 14C 

(1.2×10-10 %), which is also known as radiocarbon (Key, 2001). In this study, we focus on the stable 

isotopes, with 14C being discussed in detail elsewhere (Dentith et al., 2019b), The relative proportions of 12C 
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and 13C in a given oceanic pool (e.g. dissolved inorganic carbon, DIC, or particulate organic carbon, POC) 

are controlled by ocean circulation and mixing, and mass dependent fractionation during biogeochemical 

processes such as air-sea gas exchange (Lynch-Stieglitz et al., 1995; Zhang et al., 1995), photosynthesis 

(e.g. Sackett et al., 1965; Rau et al., 1989; Hollander and McKenzie, 1991; Keller and Morel, 1999), and 

calcium carbonate formation (Emrich et al., 1970; Turner, 1982; Ziveri et al., 2003). This is typically 

reported in delta (δ) notation, which is the heavy to light isotope ratio of a sample relative to a standard in 

per mil (‰) units:  

𝛿 𝐶13 = (

𝐶13

𝐶12⁄
𝑠𝑎𝑚𝑝𝑙𝑒

𝐶13

𝐶12⁄
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

− 1) × 1000.         (1) 

Oceanic δ13C is primarily used to track individual water masses (Curry and Oppo, 2005), study past changes 

in the carbon cycle (e.g. de la Fuente et al., 2017), and investigate changes in ocean circulation on glacial-

interglacial timescales (e.g. Spero and Lea, 2002; Campos et al., 2017). It has also been used to constrain 

air-sea gas exchange rates (Gruber and Keeling, 2001) and to estimate the uptake of anthropogenic carbon 

by the global oceans (Quay et al., 1992, 2003).” (p. 2, l. 2 – 15) 

 

p.3 l. 5-8. You should also include the LOVECLIM model. What about Genie?  

Our intention was to provide illustrative examples of 13C-enabled models across a range of complexities as 

opposed to a complete list of all 13C-enabled models, but we have added these additional examples to Table 1 

(p. 26 – 27). 

 

p.3 l.19. There is an arrow that should be deleted between “studying” and ”complex” .  

This typographical error has been corrected (p. 3, l. 20). 

 

p5. Line 16. Sea ice does not change salinity: this is out of the scope of the study but probably needs to be 

modified in the model. . .  

Acknowledged. We note that an iceberg meltwater is included, however, and have amended the text as 

follows: “…do not affect salinity distributions (an area for future development), although the model does 

include an iceberg meltwater flux (Smith et al., 2008).” (p. 5, l. 15 – 16) 

 

P5. Line 27-28. This seems at odds with what is said later. From what I understand from this paper both the 

physical model AND the biogeochemical model are responsible for carbon isotopes mismatch between 

simulation results and data and disentangling between the two is not done here.  

We can see the possible confusion/contradiction, and have revised the manuscript as follows: 

 Section 2.1 (p. 5, l. 25 – 28): “Previous studies have found that errors in biogeochemical 

simulations are largely driven by biases in the physical ocean circulation (i.e. inaccuracies in the 

climate or ocean model to which the ecosystem model has been coupled; Doney, 1999; Doney et al., 

2004; Najjar et al., 2007). Thus, simulating carbon isotopes in a more complex ecosystem model 

would not necessarily yield substantially better results.” 

 Section 3.4 (p. 15, l. 15 – 19): “In contrast with earlier studies, we have demonstrated that the new 

carbon isotope scheme in FAMOUS is sensitive to biases in both physical and biogeochemical 

processes. The simulated δ13CDIC distributions reflect known physical inaccuracies (such as over-

deep NADW and weak convection in the sub-polar North Pacific Ocean) and have allowed us to 

identify previously undisclosed biogeochemical biases (e.g. in the representation of 

remineralisation). The new tracer therefore offers excellent potential as a holistic tuning target for 

recalibrating FAMOUS in the future.” 
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Results and discussion  

p. 10 l. 15 / Figure 4. I would start with standard results before looking at the sensitivity experiments to be 

able to compare these sensitivity experiments with the standard one. So, on Figure 4 I would add the 

standard simulated δ13C first as (a) and then the other 3 sensitivity simulations as b-d, which would also be 

more coherent with having the 4 simulations on Figure 5.  

We have chosen to present the results of the sensitivity experiments before the standard (std) results because 

this is, first and foremost, a model development study and we want to highlight that our new 13C tracer is 

responding as expected to the physical processes (which have known biases) and the biogeochemical 

processes (where we have identified new biases). We think that beginning with the std results immediately 

raises questions regarding how they compare to observations, and consequently, why the simulated values 

are higher than observed. This would detract from the validation of the new isotope scheme. Therefore, we 

prefer not to restructure the results or figures as suggested. 

 

p.10 line 19. Is this a simulation that you actually did to verify this or just discussion? Please specify.  

We conducted this simulation to verify that our code is correct (i.e. that no carbon is being created or 

destroyed), but we did not include the results in our manuscript because they matched what we expected to 

see (δ13CDIC equilibrating at -6.5 ‰) and so are not very interesting. For clarity, we have revised this 

sentence to “If there is no fractionation during either air-sea gas exchange or photosynthesis, the ocean 

equilibrates at a uniform value of -6.5 ‰, in line with the atmosphere (simulation not shown).” (p. 10, l. 13) 

 

p.11 line 8. Could you quickly remind the reader what this simulation is (to avoid looking for it earlier in the 

text)?  

We have revised this sentence to “When only biological fractionation effects are included (no-asgx-fract), 

δ13CDIC values in the surface ocean range between -7.65 ‰ in the eastern equatorial Pacific and -3.89 ‰ in 

the eastern equatorial Atlantic (Figure 4c), representing a shift of -1.15 ‰ to +2.61 ‰ relative to no 

isotopic fractionation.” (p. 11, l. 3 – 5) 

 

p.14 l.18. Could you test your hypothesis for the cause of the model-data mismatch due to the export ratio 

and remineralisation rate vs biases in ocean circulation by running additional sensitivity experiments? 

Testing the ocean circulation is probably more difficult, but modifying the export ratio and/or 

remineralisation to evaluate if this could have a large contribution to the mismatch is probably easier. 

There is a lot of scope for future tuning and exploration with this model set up, and we are excited to see this 

work carried forward. However, this effort is beyond the scope of this illustrative study. We have, however, 

added these suggestions to section 3.4: “In the first instance, further sensitivity studies would provide more 

insight into the how much our results could be improved by small adjustments to the biogeochemistry in the 

model (e.g. modifying the remineralisation rate and/or the export ratio)”. (p. 15, l.33 – p. 16, l. 2)
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Simulating stable carbon isotopes in the ocean component of the 

FAMOUS General Circulation Model with MOSES1 (XOAVI) 

Jennifer E. Dentith1, Ruza F. Ivanovic1, Lauren J. Gregoire1, Julia C. Tindall1, and Laura F. Robinson2 

1School of Earth and Environment, University of Leeds, Leeds, UK, LS2 9JT  
2School of Earth Sciences, University of Bristol, Bristol, UK, BS8 1RJ 5 

Correspondence to: Jennifer E. Dentith (eejed@leeds.ac.uk) 

Abstract. Isotopic ratios are often utilised as proxies for Ocean circulation and the marine carbon cycle can be indirectly 

inferred from stable and radiogenic carbon isotope ratios (δ13C and ∆14C, respectively), measured directly in the water column, 

or recorded in geological archives such as sedimentary micro-fossils and corals. However, interpreting these records is non-

trivial because they reflect a complex interplay between physical and biogeochemical processes. By directly simulating 10 

multiple isotopic tracer fields within numerical models, we can improve our understanding of the processes that control large-

scale isotope distributions and interpolate the spatiotemporal gaps in both modern and palaeo datasets. We have added the 

stable isotope 13C to the ocean component of the FAMOUS coupled atmosphere-ocean General Circulation Model, which is a 

valuable tool for simulating complex feedbacks between different Earth System processes on decadal to multi-millennial 

timescales. We tested three different biological fractionation parameterisations to account for the uncertainty associated with 15 

equilibrium fractionation during photosynthesis and used sensitivity experiments to quantify the effects of fractionation during 

air-sea gas exchange and primary productivity on the simulated δ13CDIC distributions. Following a 10,000 year pre-industrial 

spin-up, we simulated the Suess effect (the isotopic imprint of anthropogenic fossil fuel burning) to assess the performance of 

the model in replicating modern observations. Our implementation captures the large-scale structure and range of δ13CDIC 

observations in the surface ocean, but the simulated values are too high at all depths, which we infer is due to biases in the 20 

biological pump. In the first instance, the new 13C tracer will therefore be useful for recalibrating both the physical and 

biogeochemical components of FAMOUS.   
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1 Introduction 

Carbon isotopes are often used as proxies for ocean circulation and the marine carbon cycle. There are three naturally 

occurring carbon isotopes: the stable isotopes 12C (98.9 %) and 13C (1.1 %), and the radioactive isotope 14C (1.2×10-10 %), 

which is also known as radiocarbon (Key, 2001). In this study, we focus on the stable isotopes, with 14C being discussed in 

detail elsewhere (Dentith et al., 2019b). The relative proportions of 12C, and 13C and 14C in a given oceanic pool (e.g. dissolved 5 

inorganic carbon, DIC, or particulate organic carbon, POC) are controlled by ocean circulation and mixing, and mass dependent 

fractionation during biogeochemical processes such as air-sea gas exchange (Lynch-Stieglitz et al., 1995; Zhang et al., 1995), 

photosynthesis (e.g. Sackett et al., 1965; Rau et al., 1989; Hollander and McKenzie, 1991; Keller and Morel, 1999), and 

calcium carbonate formation (Emrich et al., 1970; Turner, 1982; Ziveri et al., 2003). This is typically reported in delta (δ) 

notation, which is the heavy to light isotope ratio (R) of a sample relative to a standard in per mil (‰) units: 10 

δ C13 = (

C13

C12⁄
sample

C13

C12⁄
standard

− 1) × 1000.          (1. In 

this study we focus on) 

Oceanic δ13C, which is primarily used to track individual water masses (Curry and Oppo, 2005), study past changes in the 

carbon cycle (e.g. de la Fuente et al., 2017), and investigate changes in ocean circulation on glacial-interglacial timescales (e.g. 

Spero and Lea, 2002; Campos et al., 2017). It has also been used to constrain air-sea gas exchange rates (Gruber and Keeling, 15 

2001) and to estimate the uptake of anthropogenic carbon by the global oceans (Quay et al., 1992, 2003). 

Oceanographic surveys conducted since the 1970s, such as the World Ocean Circulation Experiment (WOCE; Orsi 

and Whitworth III, 2005; Talley, 2007; Koltermann et al., 2011; Talley, 2013), and synthesis projects such as Carbon dioxide 

in the Atlantic Ocean (CARINA; Key et al., 2010), Pacific Ocean Interior Carbon (PACIFICA; Suzuki et al., 2013), and the 

Global Ocean Data Analysis Project (GLODAP; Key et al., 2004, 2015; Olsen et al., 2016), provide an indication of large-20 

scale carbon isotope distributions in the modern oceans. The two main drawbacks of these surveys are that they include 

relatively few measurements from the sub-surface ocean and that there were only a limited number of repeat measurements at 

fixed locations, which were often taken decades apart. These datasets are therefore insufficient for studying transient changes 

in carbon isotope distributions at sub-decadal resolution. 

Geological archives such as corals (e.g. Guilderson et al., 2013) and sediment cores (e.g. Oliver et al., 2010) are used 25 

to extend the record further back in time. However, interpreting isotopic ratios in geological archives is non-trivial because 

they result from a complex interplay between physical processes and biogeochemical processes, both in the water column itself 

and during biomineralisation, which can be difficult to disentangle. 

By including carbon isotopes in climate models, we can fill in the spatiotemporal gaps in both modern and palaeo 

datasets, and improve our understanding of the processes that control their large-scale distributions (Tagliabue and Bopp, 2008; 30 

Schmittner et al., 2013; Menviel et al., 2017). The Ocean Carbon-Cycle Modelling Intercomparison Project (OCMIP) was 

initiated in 1995 with the aim of evaluating the major differences between global ocean carbon cycle models and advancing 
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our understanding of the ocean as a long-term CO2 reservoir (Orr, 1999). Carbon isotopes are not routinely incorporated into 

climate models because of the computational expense associated with the long equilibration between the deep ocean and the 

atmosphere (Bardin et al., 2014). However, since OCMIP produced a legacy of standard input fields (Orr, 1999; Orr et al., 

2000, 2017), carbon isotopes have increasingly been implemented into models of varying complexities to validate physical 

and biogeochemical schemes, to investigate the spatiotemporal variability in isotope distributions, and to reconcile the 5 

interpretation of ocean proxy data. As outlined in Table 1, the community of 13C-enabled models currently includes: 

HAMOCC3.1 (Hofmann et al., 2000), the GFDL modular ocean model (MOM; Murnane and Sarmiento, 2000), CLIMBER-

2 (Brovkin et al., 2002), MoBidiC (Crucifix, 2005), GENIE (Ridgwell et al., 2007), PISCES (Tagliabue and Bopp, 2008), 

LOVECLIM (Mouchet, 2011; Menviel et al., 2015), Bern3D+C (Tschumi et al., 2011), the UVic Earth System Model (ESM; 

Schmittner et al., 2013), iLOVECLIM (Bouttes et al., 2015), CESM (Jahn et al., 2015), and CSIRO Mk3L-COAL (Buchanan 10 

et al., 2019). Most of these are low resolution (3 to 5°), intermediate complexity models that are valuable tools for studying 

changes in ocean biogeochemistry on multi-millennial timescales. However, these models do not provide sufficient complexity 

in the ocean circulation, vertical mixing and atmosphere-ocean interactions to study more abrupt (decadal-to-centennial) 

changes. The more complex models (e.g. PISCES and CESM) provide a more sophisticated representation of physical and 

biogeochemical processes because of increased spatial resolution and/or the inclusion of more carbon pools. However, thesethe 15 

higher complexity models are computationally expensive, for example, at the time of their study, a 6010 year spin-up 

simulation with CESM took over 7 months to run (Jahn et al., 2015). Without employing offline or accelerated spin-up 

techniques (e.g. Lindsay, 2017), the higher complexitythese models are therefore less practical for running the long simulations 

required to fully spin-up the components of the Earth System that evolve on millennial timescales, such as deep ocean 

circulation (England, 1995) and ocean biogeochemical cycles (Falkowski et al., 2000; Key et al., 2004).  20 

Here, we describe the implementation of 13C in the ocean component of the FAMOUS General Circulation Model 

(GCM). FAMOUS is well suited to studying ↨complex interactions between different components of the Earth System on 

decadal to multi-millennial timescales, owing to its reduced spatial resolution and increased timestep relative to the latest 

generation of state-of-the-art GCMs (Sect. 2.1). We use sensitivity experiments to quantify the effects of isotopic fractionation 

during air-sea gas exchange and primary productivity on the simulated δ13CDIC distributions (Sect. 2.3.3 and Sect. 3.1), and 25 

test three different parameterisations for photosynthetic fractionation to account for the uncertainty associated with the relative 

influence of ambient conditions, physiological effects and transport mechanism on the fractionation of carbon isotopes during 

photosynthetic CO2 fixation (Sect. 2.2.2 and Sect. 3.3). We evaluate the overall performance of the model in simulating large-

scale δ13CDIC distributions by comparing to modern observations (Sect. 3.2) and discuss the potential of the new 13C tracer as 

a tuning target for future recalibration work (Sect. 3.4). 30 
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2 Methods 

2.1 Model description 

FAMOUS is a coupled atmosphere-ocean GCM (Jones et al., 2005; Smith et al., 2008; Smith, 2012; Williams et al., 

2013) based on HadCM3 (Gordon et al., 2000; Pope et al., 2000). Both are configurations of the UK Met Office Unified Model 

version 4.5 (Valdes et al., 2017). The quasi-hydrostatic primitive equation atmospheric model is 5° in latitude by 7.5° in 5 

longitude, with 11 vertical levels on a hybrid sigma-pressure coordinate system. The rigid-lid ocean model has a horizontal 

resolution of 2.5° × 3.75° and 20 unevenly spaced vertical levels, which are approximately 10 m thick in the near-surface 

ocean and 600 m thick in the deep ocean. The atmosphere and ocean operate on 1-h and 12-h timesteps, respectively, and are 

coupled once per model day. The model currently includes oxygen (Williams et al., 2014) and chlorofluorocarbons (Pope et 

al., 2000) as optional tracers. At the time of this study, FAMOUS is capable of simulating 400 to 500 model years per wallclock 10 

day on Tier 2 (regional) and Tier 3 (local) High Performance Computers at the University of Leeds, which is more than 5 times 

the run speed of HadCM3. This makes FAMOUS ideal for running long (multi-millennial) simulations (Smith and Gregory, 

2012; Gregoire et al., 2012, 2015) or large (hundred-member) ensembles (Gregoire et al., 2011; Sagoo et al., 2013). Further 

technical documentation can be found in an ongoing special issue in Geoscientific Model Development (http://www.geosci-

model-dev.net/special_issue15.html).  15 

We added 13C as an optional passive tracer into the ocean component of FAMOUS, using the Met Office Surface 

Exchange Scheme (MOSES) version 1 (Cox et al., 1999) generation of the model to evaluate our scheme. Although a newer 

version of the land surface model exists, which includes the terrestrial carbon cycle and interactive vegetation (MOSES2.2; 

Essery et al., 2001, 2003; Williams et al., 2013; Valdes et al., 2017), problems have been identified with its representation of 

Meridional Overturning Circulation (MOC) in multi-millennial simulations with constant pre-industrial boundary conditions 20 

(Dentith et al., 2019a). Specifically, FAMOUS-MOSES2.2 simulates a collapsed Atlantic MOC (AMOC) and a strong, deep 

Pacific MOC when the run length exceeds 6000 years, resulting in spurious ocean tracer distributions. However, our code is 

directly transferable between the different generations of the model, meaning that the isotope system can be extended into the 

terrestrial carbon cycle following additional tuning to improve the physical ocean circulation in FAMOUS-MOSES2 . 

2.1.1 Hadley Centre Ocean Carbon Cycle Model (HadOCC) 25 

 The marine carbon cycle in FAMOUS is modelled by HadOCC, a coupled physical-biogeochemical model that 

simulates air-sea gas exchange, the circulation of DIC, and the cycling of carbon by marine biota (Palmer, 1998; Palmer and 

Totterdell, 2001). The ecosystem model provides a simplified representation of the ocean biological system, with a single 

(nitrogenous) nutrient, a single class of phytoplankton, a single class of (non-migrating) zooplankton, and detritus. Changes in 

the size of these pools are calculated through a series of coupled differential equations that describe primary production, 30 

respiration, mortality, grazing, excretion, and the sinking and remineralisation of detritus. The system is nitrogen limited and 

carbon flows are coupled to the nitrogen flows by stoichiometric ratios that are fixed for each pool of organic matter. In addition 
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to the four biological components, HadOCC also explicitly simulates DIC and alkalinity. Modelled DIC concentrations depend 

upon phytoplankton growth and biological breakdown. Alkalinity is similarly affected by biological processes and is used to 

calculate the proportion of DIC that is in the form of CO2 in the surface waters, and consequently the air-sea CO2 flux. All six 

tracers are advected, diffused, and mixed across all levels, although phytoplankton and zooplankton concentrations are 

negligible below the euphotic zone (approximately the uppermost 100 m of the ocean). Detritus is the only biological tracer 5 

that is subject to sinking, which is parameterised at a constant rate of 10 m day-1. However, there is no representation of 

sediments: any detrital material that reaches the ocean floor is therefore immediately refluxed back to the top layer of the ocean 

to conserve carbon and nitrogen. Calcium carbonate (CaCO3) production is represented as an instantaneous redistribution of 

DIC and alkalinity below the lysocline, the depth of which is spatially and temporally constant (approximately 2500 m below 

sea level).  10 

HadOCC accurately simulates low primary production in the sub-tropical gyres and high production in the regions 

with the greatest nutrient supply: the sub-polar North Pacific and North Atlantic Oceans, and around the Antarctic Convergence 

Zone (Figure 1). However, primary production is higher than observed in the eastern equatorial Pacific, which is attributed to 

excessive upwelling in the modeleastern equatorial Pacific (Palmer and Totterdell, 2001). Production is lower than observed 

northwards of 50° N in the Atlantic and Pacific basins because sea ice formation and melt do not affect salinity distributions 15 

(an area for future development), although the model does include an iceberg meltwater flux (Smith et al., 2008).. 

Consequently, stably stratified, low salinity layers of meltwater, which promote phytoplankton growth, are not represented in 

the model (Palmer and Totterdell, 2001). Furthermore, the simulated production in coastal regions is lower than observed. 

There are three main reasons for this: (1) HadOCC does not simulate riverine input of nutrients, which are a significant source 

of coastal nutrients; (2) most of the coastlines in FAMOUS are directly adjacent to ocean grid cells that are more than 1 km 20 

deep, which dilutes near-surface nutrient concentrations; and (3) upwelling is spread out over several grid points, which causes 

production to be more diffuse than observed (Palmer and Totterdell, 2001).  

The level of representation of ecosystem processes in HadOCC is of intermediate complexity, making it 

computationally faster than more sophisticated ecosystem models that include additional POC species and/or multiple nutrients 

(e.g. PISCES). Previous studies have found that errors in biogeochemical simulations are largely driven by biases in the 25 

physical ocean circulation (i.e. inaccuracies in the climate or ocean model to which the ecosystem model has been coupled; 

Doney, 1999; Doney et al., 2004; Najjar et al., 2007). Thus, simulating carbon isotopes in a more complex ecosystem model 

would not necessarily yield substantially better results.  

2.2 Carbon isotope implementation 

We added 13C to the four carbon pools in HadOCC: DIC, phytoplankton, zooplankton, and detritus (Figure 2). We 30 

assume that modelled DIC is 12C and carry 13C as a ratio (DI13C/DI12C), therefore virtual fluxes are not required to account for 

the dilution or concentration effects of surface freshwater fluxes (Appendix A). We also use model units to minimise the error 

associated with carrying small numbers: 
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𝑀𝑜𝑑𝑒𝑙 𝑢𝑛𝑖𝑡𝑠 =
𝐷𝐼 𝐶13

𝐷𝐼 𝐶12 ×
100

𝐶13

𝐶12⁄
𝑠𝑡𝑑

          (2) 

where 13C/12Cstd = 1.12372×10-2 (Craig, 1957). We account for isotopic fractionation during air-sea gas exchange (Sect. 2.2.1 

and Appendix B) and photosynthesis (Sect. 2.2.2 and Appendix C). Observational estimates suggest that isotopic fractionation 

during CaCO3 formation is between +3 ‰ and -2 ‰ (Ziveri et al., 2003), which is small compared to the other fractionation 

effects (Turner, 1982). Previous 13C isotope implementation studies have therefore assumed either no isotopic fractionation 5 

during CaCO3 production (Schmittner et al., 2013) or prescribed constant values, for example, +1 ‰ (Tagliabue and Bopp, 

2008) or +2 ‰ (Jahn et al., 2015). We conducted sensitivity tests where fractionation during CaCO3 formation was included 

at constant rates of -2 ‰, 0 ‰ and +2 ‰, respectively. After 10,000 years, there was 0.001 ‰ difference in both the mean 

surface ocean δ13CDIC values and the surface standard deviations between all three simulations, and 0.02 ‰ difference between 

the three global volume-weighted integrals. Since these differences are small, we proceeded with the equivalent of no 10 

fractionation during CaCO3 production (αCaCO3 = 1.0).  

2.2.1 Air-sea gas exchange 

The air-sea gas flux of DI12C (F) is calculated as: 

𝐹 = 𝑃𝑉 × (𝐶𝑠𝑎𝑡 − 𝐶𝑠𝑢𝑟𝑓)            (3) 

where Csat is the saturation concentration of atmospheric CO2 (in mol m-3), Csurf is the surface aqueous concentration of CO2 15 

(in mol m-3), and PV is the piston velocity (in cm h-1), which is calculated as:  

𝑃𝑉 = 𝑎 × 𝑢2 × (1 −  𝑎𝑖𝑐𝑒) × (
𝑆𝑐

660
)

−0.5

         (4) 

where a is a tuneable coefficient, u is the wind speed (in m s-1), aice is the fractional ice cover and Sc is the Schmidt number 

for CO2, calculated as a function of sea surface temperature (SST, in °C):   

𝑆𝑐 = 2073.1 − 125.62 × 𝑆𝑆𝑇 + 3.6276 × 𝑆𝑆𝑇2 − 0.043219 × 𝑆𝑆𝑇3.     (5) 20 

The air-sea gas flux of DI13C/DI12C (𝐹13

12

) is calculated as: 

𝐹13

12

=
1

𝐶12 × 𝑃𝑉 × [𝛼𝑘 × 𝛼𝑎𝑞←𝑔 × (𝐶𝑠𝑎𝑡 ×
𝐴13

𝐴12 −
𝐶𝑠𝑢𝑟𝑓×

𝐶13

𝐶12

𝛼𝐷𝐼𝐶←𝑔
) − (

𝐶13

𝐶12 × [𝐶𝑠𝑎𝑡 − 𝐶𝑠𝑢𝑟𝑓])]    (6) 

where 13A/12A and 13C/12C are the 13C/12C ratios of the atmosphere and DIC, respectively, αk is the constant kinetic fractionation 

factor (0.99919), αaq←g is the temperature-dependent fractionation during gas dissolution: 

𝛼𝑎𝑞←𝑔 = 0.9986 − (4.9 × 10−6) × 𝑆𝑆𝑇 ,         (7) 25 

and αDIC←g is the temperature-dependent fractionation between aqueous CO2 and DIC: 

𝛼𝐷𝐼𝐶←𝑔 = 1.01051 − (1.05 × 10−4) × 𝑆𝑆𝑇.         (8) 
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All three fractionation factors are based on the equations of Zhang et al. (1995). However, following Schmittner et al. (2013), 

we neglect the effect that the carbonate fraction (fCO3) has on αDIC←g because this is much smaller (0.05 ‰) than the 

temperature effect (3 ‰). Currently, atmospheric CO2 and δ13C concentrations can either be held constant or prescribed from 

a file that contains a single global weighted-average value per year. 

2.2.2 Photosynthesis 5 

Isotopic fractionation during photosynthesis (αPOC←DIC, herein αp) is calculated as:  

𝛼𝑝 =
𝛼𝑎𝑞←𝑔

𝛼𝐷𝐼𝐶←𝑔
× 𝛼𝑃𝑂𝐶←𝑎𝑞           (9) 

where αPOC←aq is the equilibrium fractionation factor between aqueous CO2 and particulate organic carbon (POC).  

Empirical relationships for the different biogeochemical fractionation effects (αaq←g, αDIC←g and αPOC←aq) have been 

established from laboratory experiments, modern oceans and lakes, and the sedimentary record. However, there are still 10 

uncertainties associated with the parameterisation of αPOC←aq. Early studies investigated a potential temperature dependence 

of the carbon isotope composition of marine phytoplankton. For example, Sackett et al. (1965) proposed that photosynthetic 

fractionation is higher at lower temperatures (0.23 ‰ per °C) after observing that phytoplankton in the Drake Passage had 

more negative δ13C values than those in the tropics. Wong and Sackett (1978) also recorded small temperature effects (-0.13 

to +0.36 ‰ per °C) in 17 species of marine phytoplankton; however, the authors concluded that the 15 ‰ range observed in 15 

their samples was primarily related to different metabolic pathways within the organisms. Numerous studies have suggested 

that the fractionation of carbon isotopes during photosynthetic CO2 fixation relates to aqueous CO2 concentrations (CO2
*) in 

the ambient environment (Popp et al., 1989; Rau et al., 1989; Jasper and Hayes, 1990; Hollander and McKenzie, 1991; Freeman 

and Hayes, 1992). However, these studies assumed that CO2 only enters the phytoplankton by passive diffusion and neglected 

physiological effects, such as phytoplankton growth rate, cell size and geometry, and cell membrane permeability. Taking into 20 

consideration that physiological factors may modify, weaken, or eliminate the relationship between CO2
* and photosynthetic 

fractionation, Rau et al. (1996) proposed a model that accounted for the isotopic composition of the ambient aqueous CO2, 

isotopic fractionation associated with diffusive transport into the cell, and isotopic fractionation associated with enzymatic, 

intracellular fixation. Laws et al. (1995) identified a linear relationship between phytoplankton growth rate, CO2
* and isotopic 

fractionation during photosynthesis, under the assumption that the growth rate is proportional to the net transport of CO2 into 25 

the cell. A later study by Laws et al. (1997), which analysed the same species of marine diatom over a larger range of CO2
*, 

revised this to a non-linear relationship. Burkhardt et al. (1999) and Keller and Morel (1999) additionally included active 

bicarbonate transport in their calculations, recognising that aqueous CO2 is not the only substrate for photosynthetic fixation 

and that processes other than diffusion can contribute to inorganic carbon acquisition. This has been a relatively inactive 

research area in the last 20 years, but there remains no single accepted model for fractionation during photosynthesis.  30 

Consequently, previous carbon isotope implementation studies have used a number of different parameterisations for 

biological fractionation (Table 1), with the choice of scheme largely reflecting the complexity of the simulated biogeochemical 
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and ecosystem processes. It is difficult to compare the success of the different parameterisations used by individual modelling 

groups because inter-model differences in the simulated isotopic distributions predominantly relate to resolution, complexity, 

and biases in the physical ocean circulation and ocean biogeochemistry, as opposed to the choice of fractionation scheme. 

However, Hofmann et al. (2000) tested three different fractionation schemes within a single model. In their study, the 

oversimplified assumption of constant biological fractionation, taken from Maier-Reimer (1993), failed to reproduce the 5 

observed latitudinal gradients in δ13CPOC. Calculating the fractionation as a function of CO2
*, as per Popp et al. (1989), 

successfully replicated the interhemispheric asymmetry in δ13CPOC, but a growth rate dependent fractionation (e.g. Rau et al., 

1996) was required to additionally capture the seasonal variations. Jahn et al. (2015) also demonstrated differences between 

three different fractionation schemes within a single model. In their study, the simple scheme of Rau et al. (1989) produced 

lower δ13CDIC values in the surface ocean and higher δ13CDIC values below 150 m compared to the more complex 10 

parameterisations of Laws et al. (1995) and Keller and Morel (1999). The differences between the intermediate complexity 

formulation (Laws et al., 1995) and the most complex formulation (Keller and Morel, 1999) were small, and the Laws et al. 

(1995) equation was chosen as the default scheme.  

To account for the uncertainty associated with biological fractionation in FAMOUS, we tested three different 

parameterisations for αPOC←aq. In the standard simulation (std), we calculated αPOC←aq according to Popp et al. (1989): 15 

𝛼𝑃𝑂𝐶←𝑎𝑞 = −0.017 log(CO2
*) + 1.0034         (10) 

where CO2
* is the aqueous CO2 concentration (in μmol L-1).  

Both of the alternative parameterisations calculated αPOC←aq as a function of the phytoplankton specific growth rate 

(μ) and CO2
*, representing an increase in complexity relative to the standard scheme. The first was a linear relationship derived 

from the experimental results of Laws et al. (1995): 20 

𝛼𝑃𝑂𝐶←𝑎𝑞 =
−15

(
𝜇

𝐶𝑂2
∗⁄ ) − 15.371

 .           (11) 

The second was a non-linear relationship derived from the experimental results of Laws et al. (1997):  

𝛼𝑃𝑂𝐶←𝑎𝑞 =
1 + (

𝜇
0.225𝐶𝑂2

∗⁄ )

1.0268 + 1.0055(
𝜇

0.225𝐶𝑂2
∗⁄ )

 .          (12) 

Because HadOCC is a relatively simple ecological model, with only a single representation of phytoplankton, we did 

not test more complex schemes, such as those that use phytoplankton type-specific cell parameters (e.g. Burkhardt et al., 1999; 25 

Keller and Morel, 1999).  

2.2.3 Advection 

The default advection scheme in FAMOUS is Quadratic Upstream Interpolation for Convective Kinematics (QUICK)  

with flux limiter (Leonard et al., 1993). This scheme is used to compute the transport of tracers such as temperature, salinity, 

nutrients, and DIC throughout the ocean. For consistency, we use the same advection scheme to calculate 13C concentrations 30 
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in the ocean interior. For greater numerical stability, δ13CDIC is fixed at 0 ‰ in the Hudson Bay and Baltic Sea. With the 

model’s standard preindustrial land-sea mask, these inland bodies of water are isolated from the global oceans, therefore their 

isotope concentrations will not affect large-scale tracer distributions. 

2.3 Simulations 

2.3.1 Spin-up simulation 5 

Carbon isotope simulations must be spun up over multiple millennia (5000 to 15,000 years; Orr et al., 2000) to reach 

steady state because of the long timescale of deep ocean ventilation (Bardin et al., 2014). We therefore ran our spin-up 

simulation for 10,000 years with constant pre-industrial boundary conditions, where δ13Catm was fixed at -6.5 ‰ (Francey et 

al., 1999) and δ13Cocn was initialised at a globally uniform value of 0 ‰. The global volume-weighted integral of δ13CDIC started 

to stabilise after 7000 years, and at the end of the spin-up simulation, the drift was less than 0.001 ‰ yr-1 (Figure S1). 10 

2.3.2 Historical simulation 

A transient simulation for the period 1765 to 2000 CE was initialised from the end of the spin-up simulation to 

generate model output that is directly comparable to modern observations (Figure 3). Atmospheric CO2 concentrations were 

prescribed from the OCMIP-2 files (Orr et al., 2000) and δ13Catm was prescribed from the Law Dome and South Pole ice core 

records (Rubino et al., 2013). The decrease in δ13Catm from -6.5 ‰ in 1750 to approximately -8.0 ‰ in 2000 is due to the Suess 15 

effect. First observed in tree ring records of atmospheric composition, the Suess effect refers to the dilution of 13C in any 

carbon pool due to fossil fuel burning (Suess, 1955; Keeling, 1979). Fossil fuels formed millions of years ago from organic 

matter, which is relatively 13C-depleted due to isotopic fractionation during photosynthesis. Their isotopic signature is therefore 

approximately 20 ‰ lower than that of the ambient atmosphere (Andres et al., 1994, 1996). To act as a control, the spin-up 

simulation was continued for an additional 235 years with constant CO2 and δ13Catm.  20 

2.3.3 Sensitivity experiments 

Five further simulations were conducted to quantify the effects of fractionation during air-sea gas exchange and 

primary productivity on the simulated δ13CDIC distributions. All five simulations were run for 10,000 years with constant pre-

industrial boundary conditions. In each of the simulations, δ13Catm was fixed at -6.5 ‰ and δ13Cocn was initialised at 0 ‰. At 

the end of each of the spin-up simulations, the global volume-weighted δ13CDIC integral was drifting by less than 0.001 ‰ yr-25 

1.  

Three of the simulations were designed to quantify the effects of the individual processes outlined in Sect. 2.2 ( 
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Table 2). In the ki-fract-only simulation, αaq←g, αDIC←g, and αp were all set to 1, therefore only kinetic fractionation 

effects were calculated. In the no-asgx-fract simulation, αk, αaq←g, and αDIC←g were all set to 1 to eliminate the effect of 

fractionation during air–sea gas exchange. Fractionation during photosynthesis continued to be calculated using the std 

biological fractionation scheme, as per Eq. (9 – 10). In the no-bio-fract simulation, αp was set to 1 to remove the effect of 

fractionation during photosynthesis, but fractionation during air-sea gas exchange continued to be calculated as per Eq. (6 – 5 

8).  

The other two simulations were designed to assess the sensitivity of the simulated δ13CDIC distributions to the choice 

of biological fractionation scheme (Sect. 2.2.2). In the L95 simulation, αPOC←aq was calculated using Eq. (11), whilst in the 

L97 simulation, αPOC←aq was calculated using Eq. (12). As with the std simulation, we initialised a 235 year transient simulation 

(with the 13C-Suess effect) from the end of both of these spin-ups to allow the output from all three photosynthetic fractionation 10 

schemes to be compared directly to observations. 

3 Results and discussion  

3.1 Validating the isotope scheme 

Isolating the different fractionation effects allows us to assess the relative contribution of air-sea gas exchange and 

biology to the simulated δ13CDIC distributions, and validate that the new isotope scheme is responding to physical and 15 

biogeochemical processes as expected. If there is no fractionation during either air-sea gas exchange or photosynthesis, the 

ocean equilibrates at a uniform value of -6.5 ‰, in line with the atmosphere. (simulation not shown). Kinetic fractionation has 

only a minor effect on surface ocean δ13CDIC distributions, with simulated δ13CDIC values in the ki-fract-only simulation ranging 

between -6.57 ‰ in the Labrador Sea and -6.42 ‰ in the eastern equatorial Pacific (Figure 4a). This represents a -0.07 ‰ to 

+0.08 ‰ shift relative to no isotopic fractionation. Specifically, there is 13C depletion (low δ13CDIC) in areas of net CO2 20 

invasion, such as the extra-tropics and high latitudes, and 13C enrichment (high δ13CDIC) in the equatorial upwelling zones and 

the deep water formation regions where CO2 is being outgassed. Kinetic fractionation has a negligible effect on the δ13CDIC 

depth profile, with globally averaged δ13CDIC values of -6.4955 ‰ in the surface ocean and -6.5011 ‰ in the abyssal ocean 

(Figure 5).  

When both the equilibrium and kinetic fractionation effects are included during air-sea gas exchange (no-bio-fract), 25 

the large-scale δ13CDIC distributions are closely related to the SST patterns because of the temperature dependence of αaq←g and 

αDIC←g (b).(Figure 4b). In the absence of biological fractionation, relatively high δ13CDIC values (> +2.5 ‰) are simulated in 

the Southern Ocean due to the combined effect of CO2 outgassing and low SSTs, both of which cause 13C enrichment. The 

δ13CDIC values in the Arctic Ocean are comparably low because the model has more extensive sea ice in the Northern 

Hemisphere than in the Southern Hemisphere, which inhibits air-sea gas exchange. The highest values (+3.00 ‰) are simulated 30 

in the eastern equatorial Pacific where there are high rates of net CO2 outgassing and Antarctic Bottom Water 
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(AABW),southern-sourced waters, which hashave a high δ13CDIC signature, in this simulation because there is no biological 

fractionation, are upwelled. Low δ13CDIC values are simulated in the Indian Ocean, with the lowest values (+1.1 ‰) in South 

East Asia, because the sea surface is warmer than at the equivalent latitudes in the Atlantic and Pacific Oceans. The globally 

averaged δ13CDIC values in this simulation range between +2.03 ‰ in the surface ocean and +2.16 ‰ in the deep ocean, with 

a minimum value of +2.00 ‰ at a depth of approximately 200 m (Figure 5). Below approximately 1500 m, the globally 5 

averaged δ13CDIC is near constant with depth, matching the simulated temperature profile. 

In the When only biological fractionation effects are included (no-asgx-fract simulation,), δ13CDIC values in the 

surface ocean range between -7.65 ‰ in the eastern equatorial Pacific and -3.89 ‰ in the eastern equatorial Atlantic (Figure 

4c), representing a shift of -1.15 ‰ to +2.61 ‰ relative to no isotopic fractionation. The asymmetry between these two 

upwelling zones occurs because the waters that are being upwelled from the deep Pacific Ocean are approximately 600 years 10 

older than the equivalent waters in the Atlantic Ocean. They therefore contain a higher percentage of remineralised organic 

matter, which is enriched in 12C. Relatively low δ13CDIC values are also simulated in the Southern Ocean and northeast North 

Atlantic Ocean where older water is mixed upwards from the abyssal ocean to the surface ocean at sites of deep water 

formation. The globally averaged δ13CDIC values in this simulation range between -5.85 ‰ in the productive surface ocean and 

-7.56 ‰ in the abyssal ocean, with a minimum value of -7.86 ‰ at a depth of approximately 1000 m, which corresponds to 15 

the depth of maximum remineralisation in the model (Figure 5). The values change from greater than -6.5 ‰ (enriched in 13C 

relative to no fractionation) to less than -6.5 ‰ (depleted in 13C relative to no fractionation) at a depth of approximately 100 

m, which corresponds to the photic zone.  

The spatial patterns in the std simulation and the no-asgx-fract simulation are closely matched, both in the surface 

ocean (Figure 6) and at depth (Figure 5), demonstrating the importance of biology to the large-scale δ13CDIC distributions. 20 

However, in the surface layer, air-sea gas exchange partly compensates for the biological effects in the Southern Ocean, the 

Northern Hemisphere deep water formation region, and the equatorial upwelling zones, as inferred from the peak surface zonal 

mean δ13CDIC values at 60° S, 55° N and 0° in the no-bio-fract simulation, which correspond with reduced amplitude troughs 

in the std simulation relative to the no-asgx-fract simulation. Similar results pertaining to the relative influence of air-sea gas 

exchange and biology were presented by Schmittner et al. (2013), who concluded that air-sea gas exchange and temperature-25 

dependent fractionation reduce the spatial δ13CDIC gradients that are created by biology. Earlier work by Murnane and 

Sarmiento (2000) and Schmittner et al. (2013) also supports the notion that biology is the dominant factor controlling δ13CDIC 

distributions in the interior ocean. Overall, the sensitivity experiments demonstrate that the new carbon isotope scheme is 

accurately responding to physical and biogeochemical processes in the model, such as temperature, air-sea gas exchange, and 

the biological pump. 30 

3.2 Comparison to observations 

To assess the model performance in representing modern large-scale 13C distributions, we compare the simulated 

mean δ13CDIC values for the 1990s with observations from GLODAP version 2 (v2; Key et al., 2015; Olsen et al., 2016) and 
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the gridded global ocean climatology of Eide et al. (2017). The δ13CDIC values in the std simulation are, on average, 0.97 ‰ 

higher than the GLODAPv2 observations in the surface ocean (Figure 7) and 0.64 ‰ higher globally, with root mean square 

error (RMSE) values of 1.03 ‰ and 0.91 ‰, respectively. However, the simulated range in the surface ocean (3.2 ‰) is in 

excellent agreement with the observed range (3.3 ‰). Specifically, the simulated surface δ13CDIC values are between +1.4 ‰ 

and +4.6 ‰, with a mean value of +2.6 ‰, whilst the observed surface δ13CDIC values range between -0.3 ‰ and +3.0 ‰, with 5 

a mean value of +1.5 ‰.  

Re-examining the results of the sensitivity experiments allows us to ascertain the underlying causes of the model-data 

discrepancy. Schmittner et al. (2013; herein S13) conducted a similar set of simulations with the UVic ESM to elucidate the 

relative influence of biology and air-sea gas exchange on the distribution of oceanic δ13CDIC (see Table 1 in S13). Overall, there 

is good agreement between our ki-fract-only and no-bio-fract simulations and the equivalent simulations in S13 (ki-fract and 10 

no-bio, respectively), both in the surface ocean (Figure 6) and at depth (Figure 5.). However, there is a clear difference between 

the results of our no-asgx-fract simulation and the equivalent simulation in S13 (const-gasx). Specifically, the surface ocean 

zonal mean δ13CDIC values in our no-asgx-fract simulation range between -6.6 ‰ at 60 °S and -5.5 ‰ in the sub-tropics, with 

a local minimum of -5.8 ‰ at the equator (solid blue line in Figure 6().). For comparison, the surface ocean zonal mean values 

in const-gasx range between -8.0 ‰ in the Southern Ocean and -5.75 ‰ in the Southern Hemisphere sub-tropics, with a 15 

localised minimum of -6.25 ‰ at the equator (see Figure 4dotted blue line in Figure 6S13).). Similarly, whilst the globally 

averaged deep ocean δ13CDIC values in our no-asgx-fract simulation have a comparable range (2.01 ‰) to the deep ocean 

values in const-gasx, there is an offset of approximately 1 ‰, with S13 simulating δ13CDIC values of -6.4 ‰ in the surface 

ocean, -8.4 ‰ in the deep ocean, and near constant values below 1000 m (see Figure 5blue lines in Figure 5S13).). Overall, 

the δ13CDIC values in the standard simulation with the UVic ESM are in good agreement with observations, with a global linear 20 

regression r2 value of 0.91 and a global RMSE of 0.33 ‰ (Schmittner et al., 2013; Buchanan et al., 2019). We therefore 

postulate that the offset in the simulated δ13CDIC values in FAMOUS relates to biases in the biological carbon cycle.  

Elucidating the exact cause of δ13CDIC model-data discrepancy is difficult. There are a number of fluxes in to and out 

of the DI13C pool (Figure 2), each of which could have biases that are compounding or reducing the overall δ13CDIC bias. For 

example, if any of the rates of phytoplankton respiration, phytoplankton mortality or zooplankton mortality are too low, the 25 

input of 12C-enriched material back into the DIC pool would be insufficient. Similarly, if the model is not simulating enough 

remineralisation, either as a direct consequence of the parameterised remineralisation rate or as a result of insufficient POC 

export, the input of 12C-enriched material back into the DIC pool would again be too low.  

Primary producers preferentially take up 12C during photosynthesis, therefore higher than observed rates of net 

primary production in the photic zone would increase δ13CDIC. However, if the δ13CDIC discrepancy in FAMOUS was a simple 30 

function of the biases in net primary production, δ13CDIC would be lower than observed in the subtropical gyres, the Indian 

Ocean, and the northern North Atlantic and North Pacific Oceans, and higher than observed in the equatorial upwelling zones 

and the Southern Ocean (Figure 1). Thus, whilst the differences in net primary production could be contributing towards the 

δ13CDIC bias, particularly in the equatorial upwelling zones, they alone cannot explain the unidirectional offset.  
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Alternatively, the fractionation during photosynthesis could be too strong as a result of imbalances in the carbonate 

chemistry (Figure S2). The global mean alkalinity in FAMOUS is 81 μmol kg-1 higher than observed and the mean alkalinity 

in the uppermost 50 m of the ocean is 107 μmol kg-1 too high (Key et al., 2004; Sarmiento and Gruber, 2006). In addition, the 

simulated global mean DIC concentration is 54 μmol kg-1 higher than observed and the mean DIC concentration in the 

uppermost 50 m of the ocean is 96 μmol kg-1 too high (Key et al., 2004; Sarmiento and Gruber, 2006). Furthermore, the mean 5 

ocean temperatures in FAMOUS are warmer than observed, both globally (2.2 °C) and in the uppermost 50 m of the ocean (1 

°C; Sarmiento and Gruber, 2006; Locarnini et al., 2013). Increasing alkalinity increases CO2
*, whilst increasing the temperature 

and DIC concentrations decreases CO2
*. Hence, the overall effect of the carbonate chemistry biases in FAMOUS result in the 

global mean CO2
* being 3.03 μmol L-1 too low and the mean CO2

* in the uppermost 50 m of the ocean being 0.58 μmol L-1 too 

high. In the photic zone, this translates to a simulated αp of 0.97378 compared to an observed αp of 0.97415 using the std 10 

fractionation parameterisation. Thus, we postulate that imbalances in the carbonate chemistry, and the consequent differences 

in αp, are contributing towards the δ13CDIC bias, but the overall effect is small. 

The smallest model-data discrepancies in the surface layer are in the Southern Ocean and the northeast North Atlantic 

Ocean where deep convection mixes 12C-enriched waters upwards (Figure 7). In contrast, in the equatorial upwelling zones, 

the effect of higher than observed primary productivity (increasing δ13CDIC) outweighs the effect of vertical mixing (reducing 15 

δ13CDIC), therefore the overall model-data biases are higher in these regions. Despite the global offset, the model correctly 

simulates lower δ13CDIC values in the Indian Ocean compared to the Atlantic and Pacific Oceans, because the Indian Ocean is 

relatively nutrient poor, both in the model and reality (Figure S3), which limits primary productivity (Figure 1). Similar to 

previous 13C modelling studies (e.g. Hofmann et al., 2000; Tagliabue and Bopp, 2008; Schmittner et al., 2013), FAMOUS also 

accurately simulates the observed latitudinal gradient in mixed layer δ13CPOC, with relatively high values (≈ -20 ‰) in the low 20 

latitudes and relatively low values (≈ - 27 ‰) at high latitudes (Figure 8).  

As observed, δ13CDIC decreases with depth in all basins due to the remineralisation of isotopically light organic matter 

(Figure 9). The maximum remineralisation depth in the model is approximately 1000 m, which is 200 to 500 m shallower than 

observed. In the deep ocean, the highest δ13CDIC values are in the Atlantic basin, with intermediate values in the Indian basin, 

and the lowest values in the Pacific basin, where the waters are older and therefore contain more remineralised organic material 25 

(enriched in 12C). However, there are notable structural differences in the zonal means (Figure 10), which arise due to 

inaccuracies in the physical ocean circulation in FAMOUS. Specifically, FAMOUS does not capture the observed structure in 

the Atlantic basin because, in this generation of the model, the AMOC is characterised by an over-deep North Atlantic Deep 

Water (NADW) cell and insufficient AABW formation (Dentith et al., 2019a). FAMOUS also simulates weak (less than 3 Sv) 

ventilation to depths of 2000 m in the North Pacific Ocean (Dentith et al., 2019a), which prevents the accumulation of old, 30 

12C-enriched (low δ13CDIC) waters at intermediate depths in the Northern Hemisphere. Instead, the oldest carbon in the model 

is in the eastern equatorial Pacific. In addition, the surface winds in the model are weaker than observed (Kalnay et al., 1996), 

resulting in a relatively shallow mixed layer. This promotes the excessive accumulation of high δ13CDIC values in the surface 
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ocean, which is particularly notable in the Southern Hemisphere sub-tropical gyres. These physical model biases are also 

clearly visible in the zonal mean profiles of other tracers, such as nutrients (Figure S4) and DIC (Figure S5). The overall shape 

of the simulated depth profile reaffirms the notion that there are inaccuracies in both the physical and biogeochemical 

components of the model (Figure 9). Below approximately 1000 m, the simulated δ13CDIC values increase with depth in each 

ocean basin, whilst the observed basin averages are near constant with depth. The offset between the simulated and observed 5 

values is greatest in the deep Atlantic Ocean, where too much 13C-enriched water from the shallow ocean is being circulated 

into the abyssal ocean. However, the trend towards increasing δ13CDIC with depth could also be in-part explained by insufficient 

remineralisation in the model. This is supported by lower than observed nutrient concentrations in the deep ocean (Figure S4). 

HadOCC’s global export ratio at 2000 m is within the observed range, but a lack of spatial variation means that the geographic 

distributions are partially incorrect (Palmer and Totterdell, 2001). Hence, we postulate that localised inaccuracies in the export 10 

ratio, together with deficiencies in the parameterisation of the remineralisation rate, are contributing towards the δ13CDIC offset. 

The basin-averaged δ13CDIC bias is smallest in the Pacific Ocean, where the waters are old and therefore have had more time 

to remineralise, thereby partially compensating for the biogeochemical biases. Indeed, the shape of the simulated and observed 

basin-averaged depth profiles are in good agreement below approximately 2000 m in the Pacific Ocean, despite the structural 

differences in the zonal mean. 15 

As outlined in Sect. 3.1, our carbon isotope implementation is sensitive to physical and biogeochemical processes in 

the model. Thus, whilst biases in the overturning circulation and the biological pump are currently limiting the model’s ability 

to accurately represent modern large-scale 13C distributions, the model-data agreement could be improved if the physical and 

ecological components of FAMOUS were recalibrated. This will be discussed further in Sect. 3.4. 

3.3 Biological fractionation parameterisations 20 

Given the uncertainty associated with biological fractionation (Sect. 2.2.2), we tested three different parameterisations 

for equilibrium fractionation during photosynthesis. For all three parameterisations, the total fractionation during 

photosynthesis is greatest in the high latitudes (where SSTs are relatively low and CO2
* is relatively high) and lowest in the 

equatorial regions (where SSTs are relatively high and CO2
* is relatively low; Figure 11). The std parameterisation produces 

the largest range of αp values (between approximately 0.97 and 0.98), whilst the L95 parameterisation produces the smallest 25 

range (between approximately 0.964 and 0.970). The total fractionation during photosynthesis increases with the complexity 

of the parameterisation, with L97 producing the largest overall effect (with a minimum αp of 0.9635). For all three 

parameterisations, αp decreases (i.e. the strength of fractionation increases) with depth in the photic zone, with the largest 

gradient produced by the std parameterisation (Figure S6).  

The large-scale δ13CDIC patterns are very similar for all three photosynthetic fractionation schemes, but the 30 

parameterisations that take the phytoplankton growth rate in account simulate higher surface ocean δ13CDIC values everywhere 

except in the Southern Ocean, the Nordic Seas, and the eastern equatorial regions, where older 13C-depleted waters are mixed 
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upwards from the abyssal ocean during deep water formation and upwelling ().(Figure S7). The differences are amplified when 

using the L97 parameterisation (RMSE = 1.24 ‰, bias = 1.15 ‰), which specifies a non-linear relationship between μ and 

CO2
*, compared to the L95 parameterisation (RMSE = 1.21 ‰, bias = 1.13 ‰), which specifies a linear relationship (Figure 

S7S8). Conversely, the alterative parameterisations decrease δ13CDIC at depth compared to the std simulation, bringing the 

simulated values closer to the observations (Figure 9). Below approximately 500 m depth, the δ13CDIC values are consistently 5 

lower when using the L97 parameterisation compared to the L95 parameterisation. This is due to the preconditioning of δ13CDIC 

and δ13CPOC as a result of fractionation during photosynthesis in the photic zone. In the L95 and L97 simulations, δ13CPOC is 

lower than in the std simulation due to increased uptake of 12C during primary production (lower αp). The latitudinal δ13CPOC 

gradients in the mixed layer in these simulations are lower than observed, with zonal mean values ranging between 

approximately -30 ‰ at the equator and -33 ‰ at 60° N/S (Figure 8). When the POC is remineralised, a relatively low δ13C 10 

signal is therefore being released back into the DIC pool, which causes the δ13CDIC in the deep ocean to be lower than in the 

std simulation. Thus, although the rates of biological exchange and overturning circulation are the same in all three simulations, 

the preconditioning of δ13CDIC and δ13CPOC in the photic zone creates differences between the three simulations at depth. Whilst 

the global RMSE compared to the GLODAPv2 dataset is lower in the L95 and L97 simulations (0.86 ‰ and 0.87 ‰, 

respectively), it is still almost double the RMSE in other models (Buchanan et al., 2019). Overall, increasing the complexity 15 

of the fractionation scheme does not significantly improve the model-data agreement because of the aforementioned physical 

and biogeochemical biases. 

3.4 A new tuning target 

In this studyIn contrast with earlier studies, we have demonstrated that the new carbon isotope scheme in FAMOUS 

is sensitive to both physical and biogeochemical processes. The simulated δ13CDIC distributions therefore reflect known 20 

physical inaccuracies (such as over-deep NADW and weak convection in the sub-polar North Pacific Ocean) and have allowed 

us to identify previously undisclosed biogeochemical biases (e.g. in the representation of remineralisation). The new tracer 

therefore offers excellent potential as a holistic tuning target for recalibrating FAMOUS in the future.  

FAMOUS has previously been tuned both systematically (Jones et al., 2005; Gregoire et al., 2011; Williams et al., 

2013) and manually (Smith et al., 2008). Most recently, Williams et al. (2013) tuned the 20 structural parameters in HadOCC 25 

(coupled to FAMOUS-MOSES2.2) using an objective hypercube technique. Specifically, the parameter set included the C:N 

ratios for the different carbon pools, phytoplankton-specific parameters (e.g. maximum rate of photosynthesis), zooplankton-

specific parameters (e.g. linear and quadratic zooplankton mortality rates), detritus-specific parameters (e.g. shallow and deep 

remineralisation rates), and carbonate-specific parameters (e.g. calcite export ratio). The main diagnostics used to evaluate the 

performance of the ensemble members were December-January-February and June-July-August surface air temperatures, 30 

annual mean total precipitation rate, annual mean nitrate concentrations, and primary productivity. Crucially, this study only 

ran each perturbed parameter simulation for 200 years and neglected to evaluate the strength and structure of the AMOC. The 
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optimal parameter set therefore had small but important imbalances in the surface climate, which caused the AMOC to collapse 

over longer (multi-millennial) timescales (Dentith et al., 20192019a). 

HadOCC has not yet been tuned for the configuration of the model used in our study (FAMOUS-MOSES1). 

Simultaneously recalibrating HadOCC and the physical ocean circulation in this generation of the modelFAMOUS-MOSES1 

could therefore improve the simulated δ13CDIC distributions. In the first instance, further sensitivity studies would provide more 5 

insight into the extent to which our results could be improved by small adjustments to the model’s biogeochemistry (e.g. 

modifying the remineralisation rate and/or the export ratio). Longer term, we propose that the addition of δ13C carbon isotope 

ratios as a tuning targets (both the δ13C presented here and the new ∆14C tracer for FAMOUS discussed by Dentith et al. 

(2019b)target) would improve the work of Williams et al. (2013) because it isthey provide an objective and straightforward 

way of assessing whether the balance between all of the ecological processes in the model is correct. We also suggest that 10 

implementing the radioactive isotope (14C) into FAMOUS would be beneficial for future recalibration work (as well as 

subsequent scientific application of the isotope-enabled model) because it is more sensitive to overturning circulation and air-

sea gas exchange, and less sensitive to the biological pump, than 13C. 

4. Summary 

We have added the stable isotope 13C to the ocean component of the FAMOUS GCM, using the MOSES1 generation 15 

of the model to validate our scheme. We account for fractionation during air-sea gas exchange and photosynthesis, and have 

tested three different parameterisations for the latter. The model captures the range of observed δ13CDIC values in the surface 

ocean, but the simulated values are approximately 1 ‰ too high at all depths. The differences between the three fractionation 

schemes are relatively minor, but when fractionation during photosynthesis accounts for phytoplankton growth rates as 

opposed to just aqueous CO2 concentrations the discrepancies between the model and observations are further increased in the 20 

surface ocean and reduced at depth. The sensitivity experiments suggest that the simulated values are too high because of 

underlying biases in the biological carbon cycle, therefore retuning HadOCC could improve the model-data agreement. Biases 

in the large-scale ocean circulation also inhibit the model’s ability to accurately simulate the large-scale distribution of tracers 

in the deep ocean. Retuning the ocean circulation to improve the representation of the AMOC, in particular, would further 

reduce the model-data discrepancies. Thus, our results emphasise the utility of implementing carbon isotopes in GCMs; the 25 

simulated isotope distributions provide an additional measure against which the physical and biogeochemical model 

performance can be evaluated and offer an extra tuning metric for prospective development work. In the future, we intend to 

implement 14C following the same framework, before usinguse the isotope-enabled model to study ocean circulation and the 

marine carbon cycle in both a modern and palaeo context, for example, at the Last Glacial Maximum (21,000 years ago) and 

during the last deglaciation (21,000 to 11,000 years ago).   30 
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Code availability 

FAMOUS can be obtained from http://cms.ncas.ac.uk/wiki/UmFamous. The code detailing the advances described in this 

paper are available via the Research Data Leeds Repository (Dentith, 2019) under a Creative Commons Attribution 4.0 

International (CC BY 4.0) license. These files are known as code modification (“mod”) files and should be applied to the 

original model code, which can be viewed online at http://cms.ncas.ac.uk/code_browsers/UM4.5/UMbrowser/index.html. All 5 

of the additional modification files that are required to run the simulations described in this manuscript are available in the 

Supplementary Material. These standard FAMOUS updates – some of which have been described by Smith et al. (2008), Smith 

(2012), and Valdes et al. (2017) – and the original model code are protected under UK Crown Copyright. The UM configuration 

(“basis”) files for the simulations described in this paper are also available in the Supplementary Material. 

 10 

Table 3: Overview of the simulations described in this study, as denoted by their unique five letter Met Office UM identifiers 

and the notation used within this manuscript. 

Identifier Simulation Duration 

XOAVB std spin-up 0 to 10,000 years 

XOAVI std transient 1765 to 2000 CE 

XOGNC std control 1765 to 2000 CE 

XOAVD ki-fract-only 0 to 10,000 years 

XOAVE no-bio-fract 0 to 10,000 years 

XOAVF no-asgx-fract 0 to 10,000 years 

XOAVK L95 spin-up 0 to 10,000 years 

XOAVU L95 transient 1765 to 2000 CE 

XOAVL L97 spin-up 0 to 10,000 years 

XOAVW L97 transient 1765 to 2000 CE 
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The data are available via the Research Data Leeds Repository (https://doi.org/10.5518/621).  
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Tables 

Table 1: Overview of existing 13C-enabled models. 

Model Horizontal resolution Levels Tracers αPOC←aq parameterisation 

HAMOCC3.1 3.5° × 3.5° 15 

ALK1, CaCO3, DIC, δ13CDIC, 

DOC2, POC, δ13CPOC, 

phytoplankton, zooplankton, 

PO4
3-, H4SiO4, O2 

Maier-Reimer (1993), 

Popp et al. (1989), 

Rau et al. (1996) 

GFDL MOM 4° × 4° 12 
ALK, DIC, DI13C, DOC, 

DO13C, PO4
3- 

Freeman and Hayes (1992) 

CLIMBER-2 
2.5° × 3 zonally 

averaged basins 
20 

ALK, DIC, DI13C, DI14C, fast 

and slow DOC, DO13C, 

DO14C, PO4
3-

, O2 

Rau et al. (1989) 

MoBidiC 
5° × 3 zonally  

averaged basins 
19 

ALK, DIC, DI13C, 14C, DOC, 

DO13C, PO4
3-

, O2 
Mook (1986) 

GENIE 36 × 36 equal-area grid 8 

49 dissolved tracers and 

isotopic properties, including: 

ALK, DIC, DI13C, DI14C, 

DOC, DO13C, DO14C, DOP3, 

PO4
3-

, O2 

Ridgwell (2001) 

PISCES 

2° × 2°  

(mean with enhanced 

meridional resolution  

at the equator) 

30 

CaCO3, CO3
2-, DIC, 13C (in 

the 3 dissolved and 7 

particulate carbon pools), 

DOC, nanophytoplankon, 

diatoms, mesozooplankton, 

microzooplankton, 2 detrital 

classes, PO4
3-

, NO3, H4SiO4, 

Fe 

Laws et al. (1995) 

LOVECLIM 

(LOCH) 
3° × 3° 20 

ALK, DIC, DIP4, DOM5, 

POM6, phytoplankton 

biomass, 13C (in the 4 carbon 

pools), 14C (in the 4 carbon 

pool), Si, O2 

Jasper et al. (1990) in 

Mouchet (2011),  

Freeman and Hayes (1992) 

in Menviel et al. (2015)  

Bern3D+C 36 cells × 36 cells 32 
ALK, DIC, 13C, 14C, PO4

3-
, 

DOP, O2, SiO2, Fe 
Freeman and Hayes (1992) 
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Table 1 (continued) 

Model Horizontal resolution Levels Tracers 
αPOC←aq 

parameterisation 

UVic 1.8° × 3.6° 19 

ALK, DIC, 13C (in the 5 

carbon pools), phytoplankton 

(nitrogen fixers and other 

phytoplankton), zooplankton, 

detritus, PO4
3-

, NO3, O2 

Popp et al. (1989) 

iLOVECLIM 3° × 3° 20 

ALK, CaCO3, DIC, ∆14C, 

δ13C, DOC, slow DOC, POC, 

phytoplankton, zooplankton, 

PO4
3-

, NO3, O2 

Freeman and  

Hayes (1992) 

CESM 
3° × 3° (development) 

1° × 1° (application) 
60 

ALK, CaCO3, DIC, abiotic 
14C (in the 7 carbon pools), 

biotic 14C (in the 7 carbon 

pools), 13C (in the 7 carbon 

pools), DOC, diazatrophs, 

diatoms, small phytoplankton, 

zooplankton, H4SiO4 

Rau et al. (1989), 

Laws et al. (1995), 

Keller and Morel (1999) 

CSIRO  

Mk3L-COAL 
1.6° × 2.8° 21 

ALK, DIC, DI13C, 14C, 

general phytoplankton, 

diazotrophs, calcifiers, PO4
3-

, 

Fe, NO3, 15NO3, N2O, O2, 

abiotic O2 

Constant 

1 ALK = Alkalinity; 2 DOC = Dissolved Organic Carbon; 3 DOCDOP = Dissolved Organic PhosphatePhosphorus; 4 DIP = 

Dissolved Inorganic Phosphorus; 5 DOM = Dissolved Organic Matter; 6 POM = Particulate Organic Matter 
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Table 2: Overview of the fractionation factors used in the sensitivity experiments. 

Simulation αk αaq←g, αDIC←g αp 

std Standard1 Variable2 Variable (with αPOC←aq calculated as per Eq. (10)) 

ki–fract-only Standard 1 1 

no-asgx-fract 1 1 Variable (with αPOC←aq calculated as per Eq. (10)) 

no-bio-fract Standard Variable 1 

L95 Standard Variable Variable (with αPOC←aq calculated as per Eq. (11)) 

L97 Standard Variable Variable (with αPOC←aq calculated as per Eq. (12)) 
1

 0.99919 

2 Calculated as per Eq. (7 – 8) 

3 With αPOC←aq calculated as per Eq. ()  
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Figures 

 
Figure 1: Mean annual surface primary productivity: (a) observations estimated from surface chlorophyll concentrations using 

the Vertically Generalised Production Model (Behrenfeld and Falkowski, 1997), (b) the std simulation in the 1990s, and (c) 

simulated minus observed. Monthly mean primary productivity data were obtained from the Oregon State University Ocean 5 

Productivity website (http://www.science.oregonstate.edu/ocean.productivity). 

 

http://www.science.oregonstate.edu/ocean.productivity
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Figure 2: Schematic overview of the 13C implementation in HadOCCFAMOUS. Blue boxes represent permanent carbon 

pools. Grey boxes represent temporary carbon pools. (note that CaCO3 is a temporary carbon pool because the export of CaCO3 

in FAMOUS is represented as an instantaneous redistribution of alkalinity and carbon at depth). The orange box represents the 5 
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prescribed atmospheric carbon pool. The dashed line representslines represent fluxes of 13C/12C. However, note that the 

outgassed 13C/12C has no effect on δ13Catm because FAMOUS does not currently have a fully interactive carbon cycle. Solid 

lines represent fluxes of 13C. Dot-dashed lines represent processes that occur below the lysocline (≈ 2500 m below sea level). 

The dotted line represents the reflux of detrital material from the seafloor to the surface layer. Red lines represent fractionation 

effects. The orange line represents isotopic fractionation during calcium carbonate formation (αCaCO3), which is included in the 5 

code as a user-specified constant. Note that all simulations presented in this study were run without fractionation during 

calcium carbonate formation (i.e. αCaCO3 = 1.0)., which is equivalent to a fractionation effect of 0 ‰). 

 

 

 10 

Figure 3: Prescribed atmospheric δ13C values (solid) from the Law Dome and South Pole ice core records (Rubino et al., 2013) 

and prescribed atmospheric CO2 values (dashed) from the OCMIP-2 files (Orr et al., 2000). 
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Figure 4: Mean annual surface δ13CDIC values at the end of the sensitivity experiment spin-up simulations (years 9900 to 

10,000): (a) ki-fract-only, (b) no-bio-fract, and (c) no asgx-fract. 
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Figure 5: Depth profiles of globally averaged δ13CDIC at the end of the sensitivity experiment spin-up simulations (years 9900 

to 10,000). The std (black) and no-bio-fract (purple) simulations use the bottom axis, whilst the ki-fract-only (red) and no-

asgx-fract (blue) simulations use the top axis. The dotted lines are the equivalent simulations conducted by Schmittner et al. 5 

(2013) with the UVic ESM: std (black) and no-bio (purple) on the bottom axis; ki-only (red) and const-gasx (blue) on the top 

axis. 
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Figure 6: Zonally averaged mean annual surface δ13CDIC at the end of the sensitivity experiment spin-up simulations (years 

9900 to 10,000). The std (black) and no-bio-fract (purple) simulations use the left-hand axis, whilst the ki-fract-only (red) and 5 

no-asgx-fract (blue) simulations use the right-hand axis. The dotted lines are the equivalent simulations conducted by 

Schmittner et al. (2013) with the UVic ESM: std (black) and no-bio (purple) on the left-hand axis; ki-only (red) and const-

gasx (blue) on the right-hand axis.  
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Figure 7: Mean annual surface δ13CDIC during the 1990s: (a) observations from GLODAPv2 (Key et al., 2015; Olsen et al., 2016), (b) the std 

simulation corrected for the mean surface bias (0.97 ‰), which is calculated as ∑(simulated-observed)/number of observations, (c) the std 

simulation, (d) std minus GLODAPv2, (e) the L95 simulation corrected for the mean surface bias (1.13 ‰), (f) the L95 simulation, (g) L95 minus 

GLODAPv2, (h) the L97 simulation corrected for the mean surface bias (1.15 ‰), (i) the L97 simulation, and (j) L97 minus GLODAPv2. 5 
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and (d) std minus GLODAPv2.
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Figure 8: Zonally averaged mean annual mixed layer δ13CPOC during the 1990s: observations (Goericke and Fry, 1994; red), 

the std simulation (black), the L95 simulation (grey), and the L97 simulation (blue).   
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Figure 9: Depth profiles of δ13CDIC during the 1990s: (a) Atlantic Ocean, (b) Pacific Ocean, and (c) Indian Ocean. The δ13CDIC 

values in the std (black), L95 (grey) and L97 (blue) simulations are compared to observations (red). Solid lines are used for the 

global dataset, with observations from the gridded climatology produced by Eide et al. (2017). The simulated values have also 

been sub-sampled at the locations where there is a corresponding observation in the GLODAPv2 dataset (Key et al., 2015; 5 

Olsen et al., 2016; dashed). The red shading shows the estimated uncertainty in δ13CDIC observations due to unresolved inter-

calibration between different laboratories (±0.2 ‰; Schmittner et al., 2013; Eide et al., 2017). 
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Figure 10: Zonal mean δ13CDIC during the 1990s in the Atlantic Ocean (left), Pacific Ocean (centre) and Indian Ocean (right): 

(a – c) gridded observations (Eide et al., 2017), (d – f) the std simulation, (g – i) the L95 simulation, and (j – l) the L97 

simulation. 5 
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Figure 11: Mean annual isotopic fractionation during photosynthesis (αp) in the surface ocean at the end of the spin-up 

simulations (years 9900 to 10,000): (a) the std simulation, (b) the L95 simulation, and (c) the L97 simulation.  
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Appendices  

Appendix A: Virtual fluxes 

The standard equation for calculating the virtual flux to account for the dilution or concentration effect of surface freshwater 

fluxes is:  

𝑑 𝐶12

𝑑𝑡
= 𝐶12 ∙

(𝐸−𝑃)

𝑑𝑧
            (A1) 5 

where E is evaporation, P is precipitation, and dz is layer depth. 

As we carry 13C as a ratio (13C/12C), virtual fluxes are not required: 

𝑑(
𝐶13

𝐶12 )

𝑑𝑡
=

𝐶 ∙ 
𝑑13𝐶

𝑑𝑡
− 𝐶 ∙ 

𝑑12𝐶

𝑑𝑡
1312

( 𝐶12 )
2            (A2) 

𝑑(
𝐶13

𝐶12 )

𝑑𝑡
=

1

𝐶12 ∙ [ 𝐶13 ∙
(𝐸−𝑃)

𝑑𝑧
] −

𝐶13

( 𝐶12 )
2 ∙ [ 𝐶12 ∙

(𝐸−𝑃)

𝑑𝑧
]        (A3) 

𝑑(
𝐶13

𝐶12 )

𝑑𝑡
= 0             (A4) 10 

Appendix B: Air-sea gas exchange equations 

The standard equation for calculating the change in DI13C due to air-sea gas exchange is: 

𝑑 𝐶13

𝑑𝑡
= 𝛼𝑘  ∙  𝛼𝑎𝑞←𝑔 ∙ 𝑃𝑉 ∙ (𝐶𝑠𝑎𝑡 ∙

𝐴13

𝐴12 −
𝐶𝑠𝑢𝑟𝑓∙

𝐶13

𝐶12

𝛼𝐷𝐼𝐶←𝑔
 )        (B1) 

where PV is the piston velocity (Eq. (4)), Csat is the saturation concentration of atmospheric CO2 (in mol m-3), Csurf is the 

surface aqueous concentration of CO2 (in mol m-3), αk is the constant kinetic fractionation factor, αaq←g is the temperature-15 

dependent fractionation during gas dissolution (Eq. (7)), αDIC←g is the is the temperature-dependent fractionation between 

aqueous CO2 and DIC (Eq. (8)), and 13A/12A and 13C/12C are the 13C/12C ratios of the atmosphere and DIC, respectively. 

The equation for calculating the change in DI13C/ DI12C due to air-sea gas exchange is: 

𝑑(
𝐶13

𝐶12 )

𝑑𝑡
=

𝐶 ∙ 
𝑑13𝐶

𝑑𝑡
− 𝐶 ∙ 

𝑑12𝐶

𝑑𝑡
1312

( 𝐶12 )
2            (B2) 

𝑑(
𝐶13

𝐶12 )

𝑑𝑡
=

1

𝐶12 ∙ [𝛼𝑘  ∙  𝛼𝑎𝑞←𝑔 ∙ 𝑃𝑉 ∙ (𝐶𝑠𝑎𝑡 ∙
𝐴13

𝐴12 −
𝐶𝑠𝑢𝑟𝑓∙

𝐶13

𝐶12

𝛼𝐷𝐼𝐶←𝑔
 )] −

𝐶13

( 𝐶12 )
2 ∙ [𝑃𝑉 ∙ (𝐶𝑠𝑎𝑡 − 𝐶𝑠𝑢𝑟𝑓) ]   (B3) 20 
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𝑑(
𝐶13

𝐶12 )

𝑑𝑡
=

1

𝐶12  ∙  𝑃𝑉 ∙  [𝛼𝑘  ∙  𝛼𝑎𝑞←𝑔 ∙ (𝐶𝑠𝑎𝑡 ∙
𝐴13

𝐴12 −
𝐶𝑠𝑢𝑟𝑓∙

𝐶13

𝐶12

𝛼𝐷𝐼𝐶←𝑔
) − (

𝐶13

𝐶12  ∙ [𝐶𝑠𝑎𝑡 − 𝐶𝑠𝑢𝑟𝑓])]     (B4) 

Appendix C: Biological equations 

 For consistency with the standard biological tracers, the 13C contents of phytoplankton (13P), zooplankton (13Z) and 

detritus (13D) are carried in mmol-N m-3, with the carbon concentrations and fluxes calculated using fixed stoichiometric ratios. 

The DI13C/DI12C values are therefore converted from a ratio in model units (Eq. (2)) to normalised DI13C concentrations before 5 

entering the soft tissue pump. The conversion is reversed at the end of each timestep. 

C.1 Phytoplankton (P) 

The standard equation for calculating the change in phytoplankton (12P) is: 

𝑑𝑃

𝑑𝑡
= 𝑅𝑃 − 𝐺𝑝 − 𝑚𝑃 − 𝜂𝑃           (C1) 

where RP is the specific growth rate of phytoplankton, Gp represents grazing by zooplankton, mP represents phytoplankton 10 

mortality due to overpopulation, and ηP represents phytoplankton respiration. 

The equation for calculating the change in 13P is: 

𝑑13𝑃

𝑑𝑡
= 𝑅𝑃 ×  

𝐶13

𝐶 
12  ×  𝛼𝑝  − 𝐺𝑝 ×  

𝑃13

𝑃 
12  − 𝑚𝑃 ×  

𝑃13

𝑃 
12 − 𝑛𝑃 ×  

𝑃13

𝑃 
12        (C2) 

where αp is the isotopic fractionation that occurs during photosynthesis (Eq. (9)), 13C/12C is the 13C/12C ratio of DIC, and 13P/12P 

is the 13C/12C ratio of phytoplankton. 15 

The 13P tracer is updated using the forward Euler method:  

𝑃13
(𝑡+∆𝑡) = 𝑃13

(𝑡) + ∆𝑡 × ( 𝑅𝑃(𝑡)
×  

𝐶13

𝐶 
12

(𝑡)
×  𝛼𝑝(𝑡)

 − 𝐺𝑝(𝑡)
×   

𝑃13

𝑃 
12

(𝑡)
 − 𝑚𝑃(𝑡)

×  
𝑃13

𝑃 
12

(𝑡)
− 𝑛𝑃(𝑡)

×  
𝑃13

𝑃 
12

(𝑡)
)  (C3) 

C.2 Zooplankton (Z) 

The standard equation for calculating the change in zooplankton (12Z) is: 

𝑑𝑍

𝑑𝑡
= 𝛽𝑃 × 𝐺𝑃 + 𝛽𝐷 × 𝐺𝐷 − 𝑚𝑍          (C4) 20 

where βP and βD are the assimilation efficiencies associated with zooplankton grazing on phytoplankton (GP) and detritus (GD), 

respectively, and mZ represents zooplankton mortality due to predation and natural causes. 

The equation for calculating the change in 13Z is: 

𝑑13𝑍

𝑑𝑡
= 𝛽𝑃 × 𝐺𝑃 ×  

𝑃13

𝑃 
12 + 𝛽𝐷 × 𝐺𝐷 × 

𝐷13

𝐷 
12 − 𝑚𝑍 × 

𝑍13

𝑍 
12          (C5) 

where 13P/12P, 13D/12D and 13Z/12Z are the isotopic ratios of phytoplankton, detritus and zooplankton, respectively. 25 
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The 13Z tracer is updated using the forward Euler method:  

𝑍13
(𝑡+∆𝑡) = 𝑍13

(𝑡) + ∆𝑡 × ( 𝛽𝑃(𝑡)
× 𝐺𝑃(𝑡) ×  

𝑃13

𝑃 
12

(𝑡)
+ 𝛽𝐷(𝑡) × 𝐺𝐷(𝑡) ×  

𝐷13

𝐷 
12

(𝑡)
− 𝑚𝑍(𝑡) ×

𝑍13

 𝑍 
12

(𝑡)
)   (C6) 

C.3 Dissolved inorganic carbon (DIC, C) 

The standard equation for calculating the change in DI12C is: 

𝑑𝐶

𝑑𝑡
= −𝑅𝑃 + 𝜆𝐷 + (1 − 𝛽𝑃) × 𝐺𝑝 + (1 − 𝛽𝐷) × 𝐺𝐷 + 𝑚𝑍 + 𝑚𝑃 + 𝜂𝑃       (C7) 5 

where RP is the specific growth rate of phytoplankton, λD is detrital remineralisation, which is specified at a constant rate (0.1 

day-1 in the uppermost 250 m of the ocean and 0.02 day-1 at all other depths), βP and βD are the assimilation efficiencies 

associated with zooplankton grazing on phytoplankton (GP) and detritus (GD), respectively, mZ represents zooplankton 

mortality due to predation and natural causes, mP represents phytoplankton mortality due to overpopulation, and ηP represents 

phytoplankton respiration.  10 

The equation for calculating the change in DI13C is: 

𝑑13𝐶

𝑑𝑡
= −𝑅𝑃 × 

𝐶13

𝐶 
12  ×  𝛼𝑝  + 𝜆𝐷 ×  

𝐷13

𝐷12 + (1 − 𝛽𝑃) × 𝐺𝑝 ×  
𝑃13

𝑃12 + (1 − 𝛽𝐷) × 𝐺𝐷 ×  
𝐷13

𝐷12 +  𝑚𝑍 × 
𝑍13

𝑍 
12 + 𝑚𝑃 × 

𝑃13

𝑃 
12 + 𝜂𝑃 ×  

𝑃13

𝑃 
12

             (C8) 

where αp is the isotopic fractionation that occurs during photosynthesis (Eq. (9)) and 13C/12C, 13D/12D, 13P/12P and 13Z/12Z are 

the isotopic ratios of DIC, detritus, phytoplankton and zooplankton, respectively. 15 

The DI13C tracer is updated using the forward Euler method:  

𝐶13
(𝑡+∆𝑡) = 𝐶13

(𝑡) + ∆𝑡 × (−𝑅𝑃(𝑡)
×  

𝐶13

𝐶 
12

(𝑡)
×  𝛼𝑝(𝑡)

 + 𝜆𝐷(𝑡)
× 

𝐷13

𝐷12
(𝑡)

+ (1 − 𝛽𝑃(𝑡)
) × 𝐺𝑝(𝑡)

×  
𝑃13

𝑃12
(𝑡)

+ (1 − 𝛽𝐷(𝑡)
) ×

𝐺𝐷(𝑡)
×  

𝐷13

𝐷12
(𝑡)

+  𝑚𝑍(𝑡)
×  

𝑍13

𝑍 
12

(𝑡)
+ 𝑚𝑃(𝑡)

×  
𝑃13

𝑃 
12

(𝑡)
+ 𝜂𝑃(𝑡)

×  
𝑃13

𝑃 
12

(𝑡)
)     (C9) 

C.4 Detritus (D) 

Unlike the other biological tracers, the standard detritus tracer (12D) is updated using a semi-implicit scheme:   20 

𝐷(𝑡+∆𝑡,𝑘)−𝐷(𝑡,𝑘)

∆𝑡
=

𝑑𝐷

𝑑𝑡 𝑏𝑖𝑜(𝑡,𝑘)
+

𝑑𝐷

𝑑𝑡 𝑠𝑖𝑛𝑘_𝑖𝑛(𝑡+∆𝑡,𝑘−1)
−

𝑑𝐷

𝑑𝑡 𝑠𝑖𝑛𝑘_𝑜𝑢𝑡(𝑡+∆𝑡,𝑘)
      (C10) 

𝐷(𝑡+∆𝑡,𝑘) − 𝐷(𝑡,𝑘) = ∆𝑡 × 𝐷𝑏𝑖𝑜(𝑡,𝑘) + ∆𝑡 ×
𝛾

𝑑𝑧/100
× 𝐷(𝑡+∆𝑡,𝑘−1) − ∆𝑡 ×

𝛾

𝑑𝑧/100
× 𝐷(𝑡+∆𝑡,𝑘)    (C11) 

𝐷(𝑡+∆𝑡,𝑘) + ∆𝑡 ×
𝛾

𝑑𝑧/100
× 𝐷(𝑡+∆𝑡,𝑘) = 𝐷(𝑡,𝑘) + ∆𝑡 × 𝐷𝑏𝑖𝑜(𝑡,𝑘) + ∆𝑡 ×

𝛾

𝑑𝑧/100
× 𝐷(𝑡+∆𝑡,𝑘−1)    (C12) 

𝐷(𝑡+∆𝑡,𝑘) × (1 + ∆𝑡 ×
𝛾

𝑑𝑧/100
) = 𝐷(𝑡,𝑘) + ∆𝑡 × 𝐷𝑏𝑖𝑜(𝑡,𝑘) + ∆𝑡 ×

𝛾

𝑑𝑧/100
× 𝐷(𝑡+∆𝑡,𝑘−1)    (C13) 
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𝐷(𝑡+∆𝑡,𝑘) =
𝐷(𝑡,𝑘)+∆𝑡×𝐷𝑏𝑖𝑜(𝑡,𝑘)+∆𝑡×

𝛾

𝑑𝑧/100
×𝐷(𝑡+∆𝑡,𝑘−1)

1+∆𝑡×
𝛾

𝑑𝑧/100

        (C14) 

𝐷(𝑡+∆𝑡,𝑘) = 𝐷(𝑡,𝑘) +
𝑑𝐷

𝑑𝑡 (𝑡,𝑘)
           (C15) 

𝑑𝐷

𝑑𝑡 (𝑡,𝑘)
= 𝐷(𝑡+∆𝑡,𝑘) − 𝐷(𝑡,𝑘)           (C16) 

𝑑𝐷

𝑑𝑡 (𝑡,𝑘)
=

𝐷(𝑡,𝑘)+∆𝑡×𝐷𝑏𝑖𝑜(𝑡,𝑘)+∆𝑡×
𝛾

𝑑𝑧/100
×𝐷(𝑡+∆𝑡,𝑘−1)

1+∆𝑡×
𝛾

𝑑𝑧/100

− 𝐷(𝑡,𝑘)       (C17) 

where t is the current timestep, k is the model level, dD/dtbio is the change in detritus due to biological effects (Eq. (C19)),  5 

γ is the sinking rate, which is parameterised at 10 m day-1, dz is the depth of the layer (in cm), and D is the detritus concentration. 

Following the same principles, the 13D tracer is updated using: 

𝑑 𝐷13

𝑑𝑡 (𝑡,𝑘)
=

𝐷13
(𝑡,𝑘)+∆𝑡× 𝐷13

𝑏𝑖𝑜(𝑡,𝑘)+∆𝑡×
𝛾

𝑑𝑧/100
× 𝐷13

(𝑡+∆𝑡,𝑘−1)

1+∆𝑡×
𝛾

𝑑𝑧/100

− 𝐷13
(𝑡,𝑘)      (C18) 

C.4.1 Biological effects 

The standard equation for calculating the change in detritus (12D) due to biology is: 10 

𝑑𝐷

𝑑𝑡 𝑏𝑖𝑜
= 𝑚𝑍 + 𝑚𝑃 − 𝜆𝐷 − 𝐺𝐷 − (1 − 𝛽𝑃) × 𝐺𝑝 − (1 − 𝛽𝐷) × 𝐺𝐷      (C19) 

where mZ represents zooplankton mortality due to predation and natural causes, mP represents phytoplankton mortality due to 

overpopulation, λD is detrital remineralisation, which is specified at a constant rate (0.1 day-1 in the uppermost 250 m of the 

ocean and 0.02 day-1 at all other depths), and βP and βD are the assimilation efficiencies associated with zooplankton grazing 

on phytoplankton (GP) and detritus (GD), respectively. 15 

The equation for calculating the change in 13D due to biology is: 

𝑑 𝐷13

𝑑𝑡 𝑏𝑖𝑜
= 𝑚𝑍 ×

𝑍13

𝑍 
12 + 𝑚𝑃 ×

𝑃13

𝑃 
12 − 𝜆𝐷 ×

𝐷13

𝐷 
12 − 𝐺𝐷 ×

𝐷13

𝐷 
12 − (1 − 𝛽𝑃) × 𝐺𝑝 ×

𝑃13

𝑃 
12 − (1 − 𝛽𝐷) × 𝐺𝐷 ×

𝐷13

𝐷 
12   (C20) 

where 13Z/12Z, 13P/12P and 13D/12D are the isotopic ratios of zooplankton, phytoplankton, and detritus, respectively.  

C.4.2 Reflux 

The small amount of detritus that reaches the ocean floor is immediately refluxed back to the surface layer to conserve nitrogen 20 

and carbon. 

𝑑𝐷

𝑑𝑡 𝑠𝑖𝑛𝑘_𝑖𝑛(𝑘=1)
=

𝛾

𝑑𝑧/100
 ∙ 𝐷(𝑘=𝐾𝑀𝑇)          (C21) 

where k is the model level, γ is the sinking rate, which is parameterised at 10 m day-1, dz is the depth of the layer (in cm), D is 

the detritus concentration, and KMT is the maximum depth of the ocean. The same equation applies for 13D. 


