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Abstract. Ice sheets loose the majority of their mass through outlet glaciers or ice streams, corridors of fast ice moving multiple

orders of magnitude more rapidly than the surrounding ice. The future stability of these corridors of fast moving ice depends

sensitively on the behaviour of their boundaries, namely shear margins, grounding zones and the basal sliding interface, where

the stress-field is complex and fundamentally three-dimensional. These boundaries are prone to thermomechanical localisation,

which can be captured numerically only with high temporal and spatial resolution. Thus, better understanding the coupled5

physical processes that govern the response of these boundaries to climate change necessitates a non-linear, full Stokes model

that affords high resolution and scales well in three dimensions. This paper’s goal is to contribute to the growing toolbox for

modelling thermomechanical deformation in ice by levering GPU accelerators’ parallel scalability. We propose FastICE, a

numerical model that relies on pseudo-transient iterations to solve the implicit thermomechanical coupling between ice motion

and temperature involving shear-heating and a temperature-dependant ice viscosity. FastICE is based on the finite-difference10

discretisation, and we implement the pseudo-time integration in a matrix-free way. We benchmark the mechanical Stokes

solver against the finite-element code Elmer/Ice and report good agreement among the results. We showcase a parallel version

of FastICE to run on GPU-accelerated distributed memory machines, reaching a parallel efficiency of 99%. We show that our

model is particularly useful for improving our process-based understanding of flow localisation in the complex transition zones

bounding rapidly moving ice.15

1 Introduction

The fourth IPCC report (Solomon et al., 2007) concludes that existing ice sheet flow models do not accurately describe polar

ice sheet discharge (e.g., Gagliardini et al., 2013; Pattyn et al., 2008) owing to their inability to simultaneously model slow and

fast ice motion (Gagliardini et al., 2013; Bueler and Brown, 2009). This issue results from the fact that many ice flow models

are based on simplified approximations of non-linear Stokes equations, such as first-order Stokes (Perego et al., 2012; Tezaur20

et al., 2015), shallow shelf (Bueler and Brown, 2009) and shallow ice (Bassis, 2010; Schoof and Hindmarsh, 2010; Goldberg,

2011; Egholm et al., 2011; Pollard and DeConto, 2012) models. Shallow ice models are computationally more tractable and

describe the motion of large homogeneous portions of ice as a function of the basal friction. However, this category of models
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fails to capture the coupled multi-scale processes that govern the behaviour of the boundaries of streaming ice, including shear

margins, grounding zones and the basal interface. These boundaries dictate the stability of the current main drainage routes25

from Antarctica and Greenland, and predicting their future evolution is critical for understanding polar ice sheet discharge.

Full Stokes models (Gagliardini and Zwinger, 2008; Gagliardini et al., 2013; Jarosch, 2008; Jouvet et al., 2008; Larour et al.,

2012; Leng et al., 2012, 2014; Brinkerhoff and Johnson, 2013; Isaac et al., 2015) provide a complete mechanical description

of deformation by capturing the entire stress-rate and strain-rate tensor. In three dimensions (3-D), full Stokes calculations

set a high demand on computational resources that requires a parallel and high-performance computing approach to achieve30

reasonable times to solution. An added challenge in full Stokes models is the strongly non-linear thermomechanics of ice. Ice

viscosity significantly depends on both temperature and strain-rate (Robin, 1955; Hutter, 1983; Morland, 1984), which can

lead to spontaneous localisation of shear (e.g., Duretz et al., 2019; Räss et al., 2019a). Particularly challenging is the scale

separation associated with localisation, which leads to micro-scale physical interaction generating meso-scale features such as

thermally-activated shear zones or preferential flow paths in macro-scale ice domains. Thus, both high spatial and temporal35

resolutions are important for numerical models to capture and resolve spontaneous localisation.

The main contribution of this paper is to lever the unprecedented parallel performance of modern graphical processing

units (GPUs) to accelerate the time-to-solution for thermomechanically coupled full Stokes models in 3-D utilising a pseudo-

transient (PT) iterative scheme – FastICE (Räss et al., 2019b). FastICE is a process-based model that focuses specifically on

improving our ability to better model and understand spontaneous englacial instabilities such as thermomechanical localisation40

at the scale of individual field sites. Thermomechanical localisation arise in a self-consistent way in shear margins, at the

grounding zone and in the vicinity of the basal sliding interface, making our model particularly well suited for assessing the

complex physical feedbacks in the boundaries of fast moving ice. FastICE is a complement to existing models by providing

a multi-physics platform for studying the transition between fast and slow ice motion rather than addressing the large-scale

evolution of the entire ice sheet.45

Recent trends in the computing industry show a shift from single-core to many-core architectures as an effective way to

increase computational performance. This trend is common to both central processing unit (CPU) and GPU hardware architec-

tures (Cook, 2012). GPUs are compact, affordable and relatively programmable devices that offer high performance throughput

(close to TB/s peak memory throughput) and a good price to performance ratio. GPUs offer an attractive alternative to con-

ventional CPUs owing to their massively parallel architecture featuring thousands of cores. The programming model behind50

GPUs is based on a parallel principle called Single Instruction Multiple Data (SIMD). This principle entails that every single

instruction is executed on different data. The same instructions block is executed by every thread. GPUs’ massive parallelism

and the related high performance is achieved by executing thousands of threads concurrently using multi-threading in order to

effectively hide latency. Numerical stencil-based techniques such as the finite-difference method allow one to take advantage

of GPU hardware, since spatial derivatives are approximated by differences between two (or more) adjacent grid-points. This55

results in minimal, local and regular memory access patterns. The operations performed on each stencil are identical for each

grid-point throughout the entire computational domain. Combined with a matrix-free discretisation of the equations and iter-

ative PT updates, the finite-difference stencil evaluation is well suited for the SIMD programming philosophy of GPUs. Each
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operation on the GPU assigns one thread to compute the update of a given grid-point. Since on the GPU device, one core can

simultaneously execute several threads, the operation set is executed on the entire computational domain almost concurrently.60

We tailor our numerical method to optimally exploit the massive parallelism of GPU hardware, taking inspiration from recent

successful GPU-based implementations of viscous and coupled flow problems (Omlin, 2017; Räss et al., 2018; Duretz et al.,

2019; Räss et al., 2019a). Our work is most comparable to the few land-ice dynamical cores targeting many-cores architectures

such as GPUs (Brædstrup et al., 2014; Watkins et al., 2019). Our numerical implementation relies on an iterative and matrix-

free method to solve the mechanical and thermal problems using a finite-difference discretisation on a Cartesian staggered65

grid. We ensure optimal performance, minimising the memory footprint bottleneck while ensuring optimal data alignment in

computer memory. Our accelerated PT algorithm (Frankel, 1950; Cundall et al., 1993; Poliakov et al., 1993; Kelley and Keyes,

1998; Kelley and Liao, 2013) utilises an analogy of transient physics to converge to the steady-state problem at every time

step. One advantage of this approach is that the iterative stability criterion is physically motivated and intuitive to adjust and

to generalise. Using transient physics for numerical purpose allows us to define local CFL-like criteria in each computational70

cell to be used to minimise residuals. This approach enables maximal convergence rate simultaneously in the entire domain

and avoids costly global reduction operations from becoming a bottleneck in parallel computing.

We verify the numerical implementation of our mechanical Stokes solver against available benchmark studies including

EISMINT (Huybrechts and Payne, 1996) and ISMIP (Pattyn et al., 2008). There is only one model inter-comparison that in-

vestigates the coupled thermomechanical dynamics, EISMINT 2 (Payne et al., 2000). Unfortunately, experiments in EISMINT75

2 are usually performed using a coupled thermomechanical first-order shallow ice model (Payne and Baldwin, 2000; Saito

et al., 2006; Hindmarsh, 2006; Bueler et al., 2007; Hindmarsh, 2009; Brinkerhoff and Johnson, 2015) making the comparison

to our full Stokes implementation less immediate. Although thermomechanically coupled Stokes models exist (Zwinger et al.,

2007; Leng et al., 2014; Schäfer et al., 2014; Gilbert et al., 2014; Zhang et al., 2015; Gong et al., 2018), very few studies have

investigated key aspects of the implemented model, such as convergence among grid refinement and impacts of one-way vs.80

two-way couplings, with few exceptions (e.g. Duretz et al., 2019).

We start by providing an overview over the mathematical model, describing ice dynamics and its numerical implementa-

tion. We then discuss GPUs capabilities and explain our GPU implementation. We further report model comparison against

a selection of benchmark studies, followed by sharing the results and performance measurements. Finally, we discuss pros

and cons of the method, and highlight glaciological contexts in which our model could prove useful. The codes examples85

based on the PT method in both MATLAB and CUDA C programming language are available for download from Bitbucket at

https://bitbucket.org/lraess/fastice/ and from http://wp.unil.ch/geocomputing/software/.
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2 The model

2.1 The mathematical model

We capture the flow of an incompressible, non-linear, viscous fluid – including a temperature-dependent rheology. Since ice is90

approximately incompressible, the equation for conservation of mass reduces to:

∂vi
∂xi

= 0 , (1)

where vi is the velocity component in the spatial direction xi.

Neglecting inertial forces, ice’s flow is driven by gravity and is resisted by internal deformation and basal stress:

∂τij
∂xj
− ∂P

∂xi
+Fi = 0 , (2)95

where Fi = ρg sin(α)[1,0,−cot(α)] is the external force. Ice density is denoted by ρ, g is the gravitational acceleration, and

α is the characteristic bed slope. P is the isotropic pressure and τij is the deviatoric stress tensor. The deviatoric stress tensor

τij is obtained by decomposing the Cauchy stress tensor σij in terms of deviatoric stress τij and isotropic pressure P .

In the absence of phase transitions, the temporal evolution of temperature in deforming, incompressible ice is governed by

advection, diffusion and shear-heating:100

ρc

(
∂T

∂t
+ vi

∂T

∂xi

)
=

∂

∂xi

(
k
∂T

∂xi

)
+ τij ε̇ij , (3)

where T represents the temperature deviation from the initial temperature T0, c is the specific heat capacity, k is the spatially-

varying thermal conductivity and ε̇ij is the strain-rate tensor. The term τij ε̇ij represents the shear-heating, a source term that

emerges from the mechanical model.

Shear-heating could locally raise the temperature in the ice to the pressure melting point. Once ice has reached melting point,105

any additional heating is converted to latent heat, which prevents further temperature increase. Thus, we impose a temperature

cap at the pressure melting point, following Suckale et al. (2014), by describing the melt production using a heavy-side function

χ(T −Tm):

ρc

(
∂T

∂t
+ vi

∂T

∂xi

)
=

∂

∂xi

(
k
∂T

∂xi

)
+ [1−χ(T −Tm)]τij ε̇ij , (4)

where Tm stands for the ice melting temperature. We balance the heat produced by shear-heating with a sink term in regions110

where the melting temperature is reached. The volume of produced meltwater can be calculated in a similar way as proposed

by Suckale et al. (2014).

We approximate the rheology of ice through Glen’s flow law (Glen, 1952; Nye, 1953):

ε̇ij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
= a0τII

n−1 exp

(
− Q

R(T +T0)

)
τij , (5)

where a0 is the pre-exponential factor, R is the universal gas constant, Q is the activation energy, n is the stress exponent, and115

τII is the second invariant of the stress tensor defined by τII =
√

1/2τijτij . Glen’s flow law posits an exponent of n= 3.
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At the ice top surface Γt(t), we impose the upper surface boundary condition σijnj =−Patmnj , where nj denotes the

normal unit vector at the ice surface boundary, and Patm the atmospheric pressure. Because atmospheric pressure is negligible

relative to pressure within ice column, we can also use a standard stress-free simplification of the upper surface boundary

condition σijnj = 0. On the bottom ice-bedrock interface, we can impose two different boundary conditions. For the parts of120

the ice-bedrock interface Γ0(t) where the ice is frozen to the ground, we impose a zero velocity vi = 0 and thus no sliding

boundary condition. On the parts of ice-bedrock interface Γs(t) where the ice is at the melting point, we impose a Rayleigh

friction boundary condition – the so-called linear sliding law – given by:

vini = 0 ,

niσijtj =−β2vjtj ,

(6)

where the parameter β2 denotes a given sliding coefficient, ni denotes the normal unit vector at the ice-bedrock interface,125

and tj denotes any unit vector tangential to the bottom surface. On the side or lateral boundaries, we impose either Dirichlet

boundary conditions if the velocities are known, or periodic boundary conditions, mimicking an infinitely extended domain.

2.2 Non-dimensionalisation

For numerical purposes and for ease of generalisation, it is often preferable to use non-dimensional variables. This allows one

to limit truncation errors (especially relevant for single-precision calculations) and to scale the results to various different initial130

configurations. Here, we use two different scale sets, depending on whether we solve the purely mechanical part of the model

or the thermomechanically coupled system of equations.

In the case of an isothermal model, we use ice thickness, H , and gravitational driving stress to non-dimensionalise the

governing equations:

L=H ,

τ = ρgLsin(α), ,

v = 2nA0Lτ
n ,

(7)135

where A0 is the isothermal deformation rate factor and α is the mean bed slope. We can then rewrite the governing equations

in their non-dimensional form as follows:
∂v′i
∂x′i

= 0 ,

∂τ ′ij
∂x′j
− ∂P ′

∂x′i
+F ′i = 0 ,

ε̇′ij =
1

2

(
∂v′i
∂x′j

+
∂v′j
∂x′i

)
= 2−nτ ′II

n−1
τ ′ij ,

(8)

where F ′i is now defined as F ′i = [1,0,−cot(α)]. The model parameters are the mean bed slope α and domain size in each

horizontal direction, i.e. L′x and L′y .140
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Reducing the thermomechanically coupled equations to a non-dimensional form requires not only length and stress, but also

temperature and time. We choose the characteristic scales such that the coefficients in front of the diffusion and shear-heating

terms in the temperature evolution Eq. (3) reduce to one:

T =
nRT0

2

Q
,

τ = ρcpT ,

t= 2−na−1
0 τ−n exp

(
Q

RT0

)
,

L=

√
k

ρcp
t .

(9)

These choices entail that the velocity scale in the thermomechanical model is v = L/t. We obtain the non-dimensional (primed-145

variables) by using the characteristic scales given in Eq. (9), which leads to:

∂v′i
∂x′i

= 0 ,

∂τ ′ij
∂x′j
− ∂P ′

∂x′i
+F ′i = 0 ,

∂T ′

∂t′
+ v′i

∂T ′

∂x′i
=
∂2T ′

∂x′i
2 + τ ′ij ε̇

′
ij ,

ε̇′ij =
1

2

(
∂v′i
∂x′j

+
∂v′j
∂x′i

)

= 2−nτ ′II
n−1

exp

(
nT ′

1 + T ′

T ′0

)
τ ′ij ,

(10)

where F ′i is now defined as F ′i = F [1,0,−cot(α)] and F = ρg sin(α)L/τ . The model parameters are the non-dimensional

initial temperature T ′0, the stress exponent n, the non-dimensional force F , the mean bed slope α, non-dimensional domain

height L′z , and the horizontal domain size L′x and L′y (Figure 3). We motivate the chosen characteristic scales by their usage in150

other studies of thermomechanical strain localisation (Duretz et al., 2019; Kiss et al., 2019). In the interest of a simple notation,

we will omit the prime symbols on all non-dimensional variables in the remainder of the paper.

2.3 A simplified 1-D semi-analytical solution

We consider a specific 1-D mathematical case where all horizontal derivatives vanish (∂/∂x= ∂/∂y = 0). The only remaining

shear stress component τxz and pressure P are determined by analytical integration and are constant in time considering a fixed155

domain. We assume that stresses vanish at the surface and we set both horizontal and vertical basal velocity components to 0.

We then integrate the 1-D mechanical equation in the vertical direction and substitute it into the temperature equation, which
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leads to:

∂T (z, t)

∂t
=
∂2T (z, t)

∂z2
+ 2(1−n)

(
FLz

)(n+1)

(
1− z

Lz

)(n+1)

exp

(
nT (z, t)

1 + T (z,t)
T0

)
,

vx(z, t) = 2(1−n)
(
FLz

)n z∫
0

(
1− z

Lz

)n

exp

(
nT (z, t)

1 + T (z,t)
T0

)
dz .

(11)

Notably, the velocity and shear-heating terms (Eq. 11) are now a function only of temperature and, thus, of depth and time. To160

obtain a solution of the coupled system, one only needs to numerically solve for the temperature evolution profile, while the

velocity can then be obtained diagnostically by a simple numerical integration.

2.4 The numerical implementation

We discretise the coupled thermomechanical Stokes equations (Eq. 10) using the finite-difference method on a staggered

Cartesian grid. Among many numerical methods currently used to solve partial differential equations, the finite-difference165

method is commonly used and has been successfully applied in solving a similar equations’ set relating to geophysical problems

in geodynamics (Harlow and Welch, 1965; Ogawa et al., 1991; Gerya, 2009). The staggering of the grid provides second-order

accuracy of the method (Virieux, 1986; Patankar, 1980; Gerya and Yuen, 2003; McKee et al., 2008), avoids oscillatory pressure

modes (Shin and Strikwerda, 1997), and produces simple yet highly compact stencils. The different physical variables are

located at different locations on the staggered grid. Pressure nodes and normal components of the strain-rate tensor are located170

at the cell centres. Velocity components are located at the cell mid-faces (Figure 1), while shear stress components are located

at the cell vertices in 2-D (e.g., Harlow and Welch, 1965). The resulting algorithms are well suited for taking advantage of

modern many-core parallel accelerators, such as graphical processing units (GPUs) (Omlin, 2017; Räss et al., 2018; Duretz

et al., 2019; Räss et al., 2019a). Efficient parallel solvers utilising modern hardware provide a viable solution to resolve the

computationally challenging coupled thermomechanical full Stokes calculations in 3-D. The power law viscous ice rheology175

(Eq. 5) exhibits a non-linear dependence on both the temperature and the strain-rate:

η = ˙εII
1−n
n exp

(
− T

1 + T
T0

)
, (12)

where ε̇II is the square root of the second invariant of the strain-rate tensor ε̇II =
√

1/2ε̇ij ε̇ij . We regularise the strain-rate and

temperature dependant viscosity η to prevent non-physical values for negligible strain-rates, ηreg = 1/(η−1 + η−1
0 ). We use a

harmonic mean to obtain a naturally smooth transition to background viscosity values at negligible strain-rate η0.180

We define temperature on the cell centres within our staggered grid. We discretise the temperature equation’s advection term

using a first-order upwind scheme, doing the physical time integration using either an implicit backward Euler or a Crank-
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My(i,j+1/2)

My(i,j-1/2)

Mx(i-1/2,j) Mx(i+1/2,j)

C(i,j)

V(i-1/2,j+1/2) V(i+1/2,j+1/2)

V(i-1/2,j-1/2) V(i+1/2,j-1/2)

Figure 1. Setup of the staggered grid in 2-D. Variable C is located at the cell centre, V depicts variables located at cell vertices and Mx and

My represents variables located at cell mid-faces in x or y direction.

Nicolson (Crank and Nicolson, 1947) scheme. To ensure that our numerical results are not confounded by numerical diffusion,

the Grid Peclet number must be smaller than the physical Peclet number. Limiting numerical diffusion is one motivation for

using high numerical resolution in our computations.185

We rely on a pseudo-transient (PT) continuation or relaxation method to solve the system of coupled non-linear partial

differential equations (10) in an iterative and matrix-free way (Frankel, 1950; Cundall et al., 1993; Poliakov et al., 1993; Kelley

and Keyes, 1998; Kelley and Liao, 2013). To this end, we reformulate the thermomechanical Eq. (10) in a residual form:

− ∂vi
∂xi

= fp ,

∂τij
∂xj
− ∂P

∂xi
+Fi = fvi ,

− ∂T

∂t
− vi

∂T

∂xi
+
∂2T

∂xi2
+ τij ε̇ij = fT ,

(13)

The right-hand-side terms (fp,fvi
,fT) are the non-linear continuity, momentum and temperature residuals, respectively, and190

quantify the magnitude of the imbalance of the corresponding equations.

We augment the steady-state equations with PT terms using the analogy of physical transient processes such as the bulk

compressibility or the inertial terms within the momentum equations (Duretz et al., 2019). This formulation enables us to

integrate the equation forward in pseudo-time τ until we reach the steady-state (i.e. the pseudo-time derivatives vanish). Relying

on transient physics within the iterative process provides well-defined (maximal) iterative time step limiters. We reformulate195
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Eq. (10):

− ∂vi
∂xi

=
∂P

∂τp
,

∂τij
∂xj
− ∂P

∂xi
+Fi =

∂vi
∂τvi

,

− ∂T

∂t
− vi

∂T

∂xi
+
∂2T

∂xi2
+ τij ε̇ij =

∂T

∂τT
,

(14)

where we introduced the pseudo-time derivatives ∂/∂τ for the continuity (∂P/∂τp), the momentum (∂vi/∂τvi
), and the

temperature (∂T/∂τT) equation.

For every non-linear iteration k, we update the effective viscosity ηeff
[k] in the logarithmic space by taking a fraction θη of200

the actual physical viscosity η[k] using the current strain-rate and temperature solutions fields and a fraction (1− θη) of the

effective viscosity calculated in the previous iteration ηeff
[k−1]:

ηeff
[k] = exp

[
θη ln

(
η[k]
)

+ (1− θη) ln
(
ηeff

[k−1]
)]

. (15)

We use the scalar θη (0≤ θη ≤ 1) to select the fraction of a given nonlinear quantity, here the effective viscosity ηeff , to be

updated each iteration. When θη = 0, we would always use the initial guess, while θη = 1, we would take 100% of the current205

nonlinear quantity. We usually define theta to be in the range of 10−2−10−1 in order to account for some time to fully relax the

nonlinear viscosity as the nonlinear problem may not be sufficiently converged at the beginning of the iterations. This approach

is in a way similar to an under-relaxation scheme and was successfully implemented in the ice sheet model development by

Tezaur et al. (2015), for example.

The pseudo-time integration of Eq. (14) leads to the definition of pseudo-time steps ∆τp,∆τvi
and ∆τT, for the continuity,210

momentum and temperature equations, respectively. Transient physical processes such as compressibility (continuity equation)

or acceleration (momentum equation) dictate the maximal allowed explicit pseudo-time step to be utilised in the transient

process. Using the largest stable steps allows one to minimise the iteration count required to reach the steady-state:

∆τp =
2.1ndimη

k
eff(1 + ηb)

max(ni)
,

∆τvi =
min(∆xi)

2

2.1ndimηkeff(1 + ηb)
,

∆τT =

(
2.1ndim

min(∆xi)2
+

1

∆t

)−1

,

(16)

where ndim is the number of dimensions, ∆xi and ni are the grid spacing and the number of grid-points in the i direction215

(i= x in 1-D, x,z in 2-D and x,y,z in 3-D), respectively. The physical time step, ∆t, advances the temperature in time.

The pseudo-time step ∆τT is an explicit Courant-Friedrich-Lewy (CFL) time step that combines temperature advection and

diffusion. Similarly, ∆τvi is the explicit CFL time step for viscous flow, representing the diffusion of strain-rates with viscosity

as the diffusion coefficient. It is modified to account for the numerical equivalent of a bulk viscosity ηb. We choose ∆τp to
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be the inverse of ∆τvi
to ensure that the pressure update is proportional to the effective viscosity, while the velocity update is220

sensitive to the inverse of the viscosity. This interdependence reduces the iterative method’s sensitivity to the variations in the

ice’s viscosity.

During the iterative procedure, we allow for finite compressibility in the ice, ∂P/∂τp, while assuring that the PT iterations

eventually reach the incompressible solution. The relaxation of the incompressibility constraint is analogous to the penalisation

of pressure pioneered by Chorin (1967, 1968), and subsequently extended by others. Compared to projection-type methods, it225

has the advantage that no pressure boundary condition is necessary that will lead to numerical boundary layers (Weinan and

Liu, 1995). We use the parameter ηb to balance the divergence-free formulation of strain-rates in the normal stress component

evaluation, where it is multiplied with the pressure residual fp. Thus, normal stress is given by τii = 2η(ε̇ii + ηbfp). With

convergence of the method, the pressure residual fp vanishes and the incompressible form of the normal stresses is recovered.

Combining the residual notation introduced in Eq. (13), with the pseudo-time derivatives in Eq. (14) leading to the update230

rules:

P [k] = P [k−1] + ∆P [k] ,

vi
[k] = vi

[k−1] + ∆vi
[k] ,

T [k] = T [k−1] + ∆T [k] ,

(17)

where the pressure, velocity and temperature iterative increments represent the current residual [k] multiplied by the pseudo-

time step:

∆P [k] = ∆τpfp
[k] ,

∆vi
[k] = ∆τvifvi

[k] ,

∆T [k] = ∆τTfT
[k] .

(18)235

The straight-forward update rule (Eq. 17) is based on a first-order scheme (∂/∂τ). In 1-D, it implies that one needs N2

iterations to converge to the stationary solution, where N stands for the total number of grid-points. This behaviour arises

because the time step limiter ∆τvi implies a second-order dependence on the spatial derivatives for the strain-rates. In contrast,

a second-order scheme (Frankel, 1950),
(
ψ∂2/∂τ2 + ∂/∂τ

)
invokes a wave-like transient physical process for the iterations.

The main advantage is the scaling of the limiter as ∆x instead of ∆x2 in the explicit pseudo-transient time step definition. We240

can reformulate the velocity update as:

∆vi
[k] = ∆τvifvi

[k] +

(
1− ν

ni

)
∆vi

[k−1] (19)

where ψ can be expanded to (1−ν/ni) and acts like a damping term on the momentum residual. A similar damping approach

is used for elastic rheology in the FLAC (Cundall et al., 1993) geotechnical software in order to significantly reduce the number

of iterations needed for the algorithm to converge. The optimal value of the introduced parameter ν is found to be in a range245

(1≤ ν ≤ 10), and it is usually problem-dependent. This approach was successfully implemented in recent PT developments
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Figure 2. Schematic chip representation for both the central processing unit (CPU) and graphical processing unit (GPU) architecture. The

GPU architecture consist of thousands of arithmetic and logical units (ALU). On the CPU, most of the on-chip space is devoted to controlling

units and cache memory, while the number of ALUs is significantly reduced.

x

z

x

z
y

τxz = 0, σzz = 0

Figure 3. Model configuration for the numerical experiments: a) 2-D model and b) 3-D model. Both surface and bed topography are flat but

inclined at a constant angle of α. We show both the model coordinate axes and the prescribed boundary conditions.

by Räss et al. (2018, 2019a) and Duretz et al. (2019). The iteration count increases with the numerical problem size for

second-order PT solvers scales close to ideal multi-grid implementations. However, the main advantage of the PT approach is

its conciseness and the fact that only one additional read/write operation needs to be included - keeping additional memory

transfers to the strict minimum.250

Notably, the PT solution procedure leads to a two-way numerical coupling between temperature and deformation (mechan-

ics), which enables us to recover an implicit solution of the entire system of non-linear partial differential equations. Besides

the coupling terms, rheology is also treated implicitly, i.e. the shear viscosity η is always evaluated using the current physical

temperature, T , and strain-rate, ε̇II. Our method is fully local. At no point during the iterative procedure does one need to per-

form a global reduction, nor to access values that are not directly collocated. These considerations are crucial when designing255

a solution strategy that targets parallel hardware such as many-core GPU accelerators. We implemented the PT method in the

MATLAB and CUDA C programming languages. Computations in CUDA C can be performed in both double and single pre-

cision arithmetic. The computations in CUDA C shown in the remainder of the paper were performed using double-precision

arithmetic, if not specified otherwise.
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3 Levering hardware accelerators260

3.1 Implementation on graphical processing units

Our GPU algorithm development effort is motivated by the aim to resolve the coupled thermomechanical system of equations

(Eq. 12-13) with high spatial and temporal accuracy in 3-D. To this end, we exploit the low-level intrinsic parallelism of shared

memory devices, targeting particularly GPUs. A GPU is a massively parallel device originally devoted to render the colour

values for pixels on a screen independently from one another where the latency can be masked by high throughput (i.e. compute265

as many jobs as possible in a reasonable time). A schematic representation (Figure 2) highlights the conceptual discrepancy

between GPU and CPU. On the GPU chip, most of the area is devoted to the arithmetic units, while on the CPU, a large area

of the chip hosts scheduling and control microsystems.

The development of GPU-based solvers requires that one devotes time to the design of new algorithms that lever the mas-

sively parallel potential of the current GPU architectures. Considerations such as limiting the memory transfers to the manda-270

tory minimum, avoiding complex data layouts, preferring matrix-free solvers with low memory footprint, and optimal parallel

scalability instead of classical Direct-Iterative solver types (Räss et al., 2019a) are key in order to achieve optimal performance.

Our implementation does not rely on the CUDA unified virtual memory (UVM) features. UVM avoids the need to explicitly

define data transfers between the host (CPU) and device (GPU) arrays but results in about one order of magnitude lower

performance. We suspect the internal memory handling to be responsible for continuously synchronising host and device275

memory, which is not needed in our case.

3.2 Multi-GPU implementation

We rely on a distributed memory parallelisation using the message passing interface (MPI) library to overcome the on-device

memory limitation inherent to modern GPUs and exploit supercomputers’ computing power. Access to a large number of par-

allel processes enables us to tackle larger computational domains or to refine grid resolution. We rely on domain decomposition280

to split our global computational domain into local domains, each executing on a single GPU handled by an MPI process. Each

local process has its boundary conditions defined by a) physics if on the global boundary or b) exchanged information from

the neighbouring process in case of internal boundaries. We use CUDA-aware non-blocking MPI messages to exchange the

internal boundaries among neighbouring processes. CUDA-awareness allows us to bypass explicit buffer copies on the host

memory by directly exchanging GPU pointers resulting in an enhanced workflow pipelining. Our algorithm implementation285

and solver requires no global reduction. Thus, there is no need for global MPI communication, eliminating an important po-

tential scaling bottleneck. Although the proposed iterative and matrix-free solver features a high locality and should scale by

construction, the growing number of MPI processes may deprecate the parallel runtime performance by about 20% owing to

the increasing number of messages and overall machine occupancy (Räss et al., 2019c). We address this limitation by overlap-

ping MPI communication and the computation of the inner points of the local domains using streams, a native CUDA feature.290

CUDA streams allow one to assign asynchronous kernel execution and thus enable the overlap between communication and

computation, resulting in optimal parallel efficiency.
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Experiment Lx Ly α n β0 LD
x LD

y LD
z

Exp. 1 2-D 10 – 10 3 – 2 km – 200 m

Exp. 1 3-D 10 4 10 3 – 2 km 800 m 200 m

Exp. 2 2-D 10 – 0.1 3 0.1942 10 km – 1 km

Exp. 2 3-D 10 10 0.1 3 0.1942 10 km 10 km 1 km

Table 1. Experiments 1 and 2: Non-dimensional model parameters and the dimensional values
(

D
)

for comparison.

Experiment Lx Ly Lz α n F T0 LD
x LD

y LD
z TD

0

Exp. 3 1-D – – 3 × 105 10 3 2.8 × 10−8 9.15 – – 300 m -10 ◦C

Exp. 3 2-D 10Lz – 3 × 105 10 3 2.8 × 10−8 9.15 3 km – 300 m -10 ◦C

Exp. 3 3-D 10Lz 4Lz 3 × 105 10 3 2.8 × 10−8 9.15 3 km 1.2 km 300 m -10 ◦C

Table 2. Experiment 3: Non-dimensional model parameters and the dimensional values
(

D
)

for comparison

4 The model configuration

To verify the numerical implementation of the developed FastICE solver, we consider three numerical experiments based on

a box inclined at a mean slope angle of α. We perform these numerical experiments on both 2-D and 3-D computational295

domains (Figure 3a and 3b, respectively). The non-dimensional computational domains are Ω2D = [0 Lx]× [0 Lz] and

Ω3D = [0 Lx]× [0 Ly]× [0 Lz] for 2-D and 3-D domains, respectively. The difference between the 2-D and the 3-D

configurations lies in the boundary conditions imposed at the base and at the lateral sides. At the surface, the zero stress

σijnj = 0 boundary condition is prescribed in all experiments. Experiment 2’s model configuration corresponds to the ISMIP

benchmark (Pattyn et al., 2008), where experiment C relates to the 3-D case and experiment D relates to the 2-D case.300

Experiments 1 and 2 seek to first verify the implementation of the mechanical part of the Stokes solver, which is the com-

putationally most expensive part (Eq. 8). For these experiments, we assume that the ice is isothermal and neglect temperature.

We compare our numerical solutions to the solutions obtained by the commonly used finite-element Stokes solver Elmer/Ice

(Gagliardini et al., 2013), which has been thoroughly tested (Pattyn et al., 2008; Gagliardini and Zwinger, 2008). Experiment

3 is a thermomechanically coupled case. The model parameters are the stress exponent n, the mean bed slope α and the two305

horizontal distances Lx and Ly in their respective dimensions (x,y), and appear in Table 1. If a linear basal sliding law (Eq. 6)

is prescribed, the respective 2-D and 3-D sliding coefficients are:

β2(x) = β0

[
1 + sin

(
2πx

Lx

)]
,

β2(x,y) = β0

[
1 + sin

(
2πx

Lx

)
sin

(
2πy

Ly

)]
,

(20)
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Figure 4. Comparison of the non-dimensional simulation results for the 2-D configuration of Experiment 1. We show a) the horizontal

component of the surface velocity, vx, and b) the vertical component of surface velocity, vz , across the ice slab for both our FastICE model

and Elmer/Ice. For context, the maximum horizontal velocity (vx ≈ 0.0365) corresponds to ≈ 174 m/yr. The horizontal distance is 2 km,

while the ice thickness is 200 m. The box is inclined at 10◦.

where β0 is a chosen non-dimensional constant. Differences may arise depending on the prescribed values for the parameters

α, Lx, Ly and β0. Experiment 2 represents the ISMIP experiments C and D for L = 10 km (Pattyn et al., 2008), but in our case310

using non-dimensional variables.

The mechanical part of Experiment 3 is analogous to Experiment 2. The boundary conditions are periodic in x and y

directions unless specified otherwise. The thermal problem requires additional boundary conditions in terms of temperature

or fluxes. We set the surface temperature T0 to 0. At the bottom, we set the vertical flux qz to 0 and, on the sides, we impose

periodic boundary conditions. The model parameters used in Experiment 3 are compiled in Table 2. We employ the semi-315

analytical 1-D model (Section 2.3) as an independent benchmark for the Experiment 3 calculations.

5 Results and performance

5.1 Experiment 1: Stokes flow without basal sliding

We compare our numerical solutions obtained with the GPU-based PT method using a CUDA C implementation (FastICE)

to the reference Elmer/Ice model. We report all the values in their non-dimensional form, and the horizontal axes are scaled320

with their aspect ratio. We impose a no-slip boundary condition on all velocity components at the base and prescribe free-slip

boundary conditions on all lateral domain sides. We prescribe a stress-free upper boundary in the vertical direction.

In the 2-D configuration (Figure 4), the horizontal velocity component vanishes at the left and right boundary, vx = 0, thus

the maximum velocity values in the horizontal direction are located in the middle of the slab. On the left side (x/Lx = 0), the ice

is pushed down (compression); thus, the vertical velocity values were negative. On the right side (x/Lx = 1), the ice is pulled up325

(extension), and the vertical velocity values were positive. Our FastICE results agree well with the numerical solutions produced

by Elmer/Ice. The numerical resolution of the Elmer/Ice model is 1001× 275 grid-points in x and z directions (≈ 8.25× 105

degrees of freedom (DOF)), while we employed 2047× 511 grid-points (≈ 3.13× 106 DOF) within our PT method. We use
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Figure 5. Non-dimensional simulation results for the 3-D configuration of Experiment 1. We report a) the horizontal surface velocity compo-

nent vx, c) the horizontal surface velocity component vy , and e) the vertical surface velocity component vz . The black solid line depicts the

position where y = Ly/4. Panels b) d) and f) show the surface velocity components vx,vy and vz , respectively, at y = Ly/4 and compare

them against the results from the Elmer/Ice model.

higher numerical grid resolution within FastICE to jointly verify agreement with Elmer/Ice and convergence. The fact that we

obtain matching results when increasing grid resolution significantly suggests that we resolve the relevant physical processes330

sufficiently, even at relatively low resolution. We report an exception to this trend in the 3-D case of Experiment 2. The PT

method’s efficiency enables simulations with a large number of grid-points without affecting the runtime. The DOF represent

three variables in 2-D (vx,vz,P ) and four variables in 3-D (vx,vy,vz,P ) multiplied by the number of grid-points involved.

We find good agreement between the two model solutions in the 3-D configuration as well (Figure 5). We employed a

numerical grid resolution of 319× 159× 119 grid-points in x, y and z directions (≈ 2.41× 107 DOF), and used a numerical335

grid resolution of 61× 61× 21 (≈ 3.1× 105 DOF) in Elmer/Ice. Scaling our result to dimensional values (Table 1) results
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Figure 6. Non-dimensional simulation results for the 2-D configuration of Experiment 2. We plot a) the horizontal surface velocity component

vx and b) the vertical surface velocity component vz across the slab for both our FastICE model and Elmer/Ice. In dimensional terms, the

maximum horizontal velocity (vx ≈ 5.58) corresponds to ≈ 16.9 m/yr. The horizontal distance is 10 km, while the ice thickness is 1 km.

The box is inclined at 0.1◦.

in maximal horizontal velocity (vx) of ≈ 105 m/yr. The horizontal distance is 2 km in the x-direction and 800 m in the

y-direction, and the ice thickness is 200 m. The box is inclined at 10◦.

5.2 Experiment 2: Stokes flow with basal sliding

We then consider the case where ice is sliding at the base (ISMIP experiments C and D). We prescribe periodic boundary340

conditions at the lateral boundaries and apply a linear sliding law at the base. The top boundary remains stress-free in the

vertical direction.

We performed the 2-D simulation of Experiment 2 (Figure 6) using a numerical grid resolution of 511× 127 grid-points

(≈ 1.95×105 DOF) for the FastICE solver and computed the Elmer/Ice solution using a numerical grid resolution of 241×120

(≈ 8.7× 104 DOF). We show both vx and vz velocity components at the slab’s surface. The two models’ results agree well.345

We performed the 3-D simulation of Experiment 2 (Figure 7) using a numerical grid resolution of 63×63×21 (≈ 3.33×105

DOF) for our FastICE solver and a numerical grid resolution of 61× 61× 21 (≈ 3.12× 105 DOF) in the Elmer/Ice model. In

dimensional units, the maximum horizontal velocity (vx) corresponds to ≈ 16.4 m/yr. The horizontal distance is 10 km in the

x-direction 10 km in the y-direction, and the ice thickness is 1 km. The box is inclined at 0.1◦.

We find good agreement between the two numerical implementations. Since the flow is mainly oriented in the x direction, the350

vy velocity component is more than two orders of magnitude smaller than the vx velocity component. Numerical errors in vy

are more apparent than in the leading velocity component vx. We report one order-of-magnitude increase in the time-to-solution

in Experiment 2 compared to the Experiment 1 configuration owing to the periodicity on the lateral boundaries.

We employ a matching numerical resolution between FastICE and Elmer/Ice in this particular benchmark case. Using higher

resolution for FastICE results in minor discrepancy between the two solutions, suggesting that the resolution in Figure 7 is355

insufficient to capture small-scale physical processes. We discuss this issue more in Section 5.5 where we test the convergence

of the FastICE numerical implementation upon grid refinement.
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Figure 7. Non-dimensional simulation results for the 3-D configuration of Experiment 2. We report a) the horizontal surface velocity com-

ponent vx, c) the horizontal surface velocity component vy and e) the vertical surface velocity component vz . The black solid line depicts the

position where y = Ly/4. Panels b) d) and f) show the surface velocity components vx,vy and vz , respectively, at y = Ly/4 and compare

them against the results from the Elmer/Ice model.

5.3 Experiment 3a: Thermomechanically coupled Stokes flow without basal sliding

We first verify that both the 1-D, 2-D and 3-D model configurations from Experiment 3 produce identical results assuming

periodic boundary conditions on all lateral sides. In this case, all the variations in the x or y directions vanish (∂/∂x and ∂/∂y);360

thus, both the 2-D and 3-D models reduce to the 1-D problem. We employ a numerical grid resolution of 127×127×127 grid-

points in x, y and z direction, 127× 127 grid-points in x and z directions and 127 grid-points in the z direction for the 3-D,

2-D and 1-D problems, respectively.

We ensure that all results collapse onto the semi-analytical 1-D model solution (Section 2.3), which we obtained by ana-

lytically integrating the velocity field and solving the decoupled thermal problem separately (Eq. 11). From a computational365

17



Figure 8. Non-dimensional simulation results for a) the temperature deviation T and b) the horizontal velocity component vx for the 1-D, 2-D

and 3-D FastICE models at three different non-dimensional times 0.7×108, 1.4×108 and 1.9×108 and compare them to the 1-D reference

model results. We employ a vertical grid resolution nz of 31,95 and 201 grid-points. We sample the 1-D profiles at location x= Lx/2 in

2-D and at x= Lx/2 and y = Ly/2 in 3-D. The shaded areas correspond to the part of the solution that is above the melting temperature,

since we do not account for phase transitions in this case.

perspective, we numerically solve Eq. 11 using a high spatial and temporal accuracy and therefore minimise the occurrence

of numerical errors. We establish the 1-D reference solution for both the temperature and the velocity profile, solving Eq. 11

on a regular grid, reducing the physical time steps until we converge to a stable reference solution. Our reference simulation

involves 4000 grid-points and a non-dimensional time step of 5× 105 (using a backward Euler time integration). We reach the

total simulation time of 2.9× 108 within 580 physical time steps.370

We report overall good agreement of all model solutions (1-D, 2-D, 3-D and 1-D reference) at the three reported stages for

this scenario (Figure 8). As expected from the 1-D model solution, temperature varies only as a function of time and depth with

the highest value obtained close to the base and for longer simulation times. Similarly, the velocity profile is equivalent to the

1-D profile and the largest velocity value is located at the surface. We only report the horizontal velocity component vx for the

2-D and the 3-D models, since vy and vz feature negligible magnitudes. Thus, we only observe spatial variation in the vertical375

z direction. We report the non-dimensional temperature T (Figure 9a) and horizontal velocity vx (Figure 9b) fields for both the

3-D and the 2-D configurations compared at non-dimensional time 0.7×108, 1.4×108 and 1.9×108. The dimensional results
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Figure 9. Spatial distribution of a) the temperature deviation from the initial temperature T and b) the horizontal velocity component vx for

the 3-D (left column) and the 2-D (right column) in non-dimensional units. We scale the domain extend with Lz . We compare the numerical

solutions at non-dimensional times 0.7× 108, 1.4× 108 and 1.9× 108.

from Experiment 3 correspond to a 300 m thick ice slab inclined at 10◦ angle with an initial surface temperature of -10◦C. The

maximum initial velocity for the isothermal ice slab corresponds to ≈ 486 m/yr, while the maximum velocity just before the

melting point is reached corresponds to 830 m/yr. The comparison snapshot times are 1.6, 3.2 and 4.4 years.380

The semi-analytical 1-D solution enables us to evaluate the influence of the numerical coupling method and time integration

and to quantify when and why high spatial resolution is required in thermomechanical ice flow simulations. We compare the

1-D semi-analytical reference solution (Eq. 11) to the results obtained with the 1-D FastICE solver for three spatial numerical

resolutions (nz =31, 95 and 201 grid-points) at three non-dimensional times 1× 108, 2× 108 and 2.9× 108 (Figure 10). The

grey area in Figure 10 highlights where the melting temperature is exceeded. Since our semi-analytical reference solution does385

not include phase transitions, we also neglect this component in the numerical results. During the early stages of the simulation,

the thermomechanical coupling is still minor and solutions at all resolution levels are in good agreement with one another and

with the reference. The low resolution solution starts to deviate from the reference (Figure 10b) when the coupling become

more pronounced close to the thermal runaway point (Clarke et al., 1977). The high spatial resolution solution is satisfactory

at all stages. We conclude that high spatial resolutions is required to accurately capture the non-linear coupled behaviour in390

regimes close to the thermal runaway, which is seldom the case in the models reported in the literature.

Thermomechanical strain localisation may significantly impact on the long-term evolution of a coupled system. A recent

study by Duretz et al. (2019) suggested that partial coupling may result in under-estimating the thermomechanical localisation

compared to the fully coupled approach, as reported in their Figure 8. We compare three coupling methods (Figure 11): (1)
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Figure 10. Non-dimensional simulation results for a) the temperature deviation T and b) the horizontal velocity component vx to test

solver performance at three resolutions. The vertical resolutions are LR = 31, MR = 95 and HR = 201 grid-points for low-, mid- and high-

resolution runs, respectively. We compare the results for non-dimensional time 1×108, 2×108 and 2.9×108. The shaded areas correspond

to the part of the solution that is above the melting temperature, since we do not account for phase transitions in this benchmark.

A fully coupled implicit PT method, as described in the numerical section, where the viscosity and the shear-heating term are395

implicitly determined by using the current guess. (2) An implicit numerically uncoupled mechanical and thermal model. (3) An

explicit numerically uncoupled mechanical and thermal model. The numerical time integration in physical time is performed

using an implicit backward Euler method for (1) and (2) and a forward Euler explicit time integration method for (3). We utilise

the identical non-dimensional time step for both the explicit and the implicit numerical time integration. We perform 580 time

steps, reaching a simulation time of 2.9× 108. We employ a vertical grid resolution of nz = 201 grid-points for all models.400

The chosen time step for the explicit integration of the heat diffusion equation is below the CFL stability condition given by

∆z2/2.1 in 1-D, where ∆z represent the grid spacing in a vertical direction.

Physically, the viscosity and shear-heating terms are coupled and are a function of temperature and strain-rates, but we update

the viscosity and the shear-heating term based on temperature values from the previous physical time step. Thus, the shear-

heating term can be considered as a constant source term in the temperature evolution equation during the time step, leading405

to a semi-explicit rheology. We show the 1-D numerical solutions of (blue) the fully coupled method with a backward Euler

(implicit) time integration and the two uncoupled methods with either (green) backward (implicit) or (red) forward (explicit)

Euler time integration (Figure 11) and compare them to the 1-D reference model solution. Surprisingly, and in contrast to Duretz

et al. (2019), we observe a good agreement between all methods, suggesting that the different coupling strategies capture the

coupled flow physics with sufficient accuracy given high enough spatial and temporal resolution. However, for a longer-term410

evolution, the uncoupled approaches may predict lower temperature and velocity values than the fully coupled approach.

5.4 Experiment 3b: Thermomechanically coupled Stokes flow in a finite domain

Boundary conditions corresponding to immobile regions in the computational domain may induce localisation of deformation

and flow observed in locations such as shear margins, grounding zones or bedrock interactions. Dimensionality plays a key

role in such configurations, causing the stress distribution to be variable among the considered directions.415
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Figure 11. Non-dimensional simulation results for a) the temperature deviation T and b) the horizontal velocity component vx to evaluate

different numerical time integration schemes. We consider three non-dimensional time 1× 108, 2× 108 and 2.9× 108 and compare our

numerical estimates to the reference model. As before, the shaded areas correspond to the part of the solution that is above the melting

temperature, since we neglect phase transitions in this comparison.

Figure 12. Non-dimensional simulation results for a) the temperature deviation T and b) the horizontal velocity component vx for the 1-D,

2-D and 3-D FastICE models at three non-dimensional times 1×108, 2×108 and 2.5×108 compared to our analytical solution. We sample

the 1-D profiles at location x= Lx/2 in 2-D and at x= Lx/2 and y = Ly/2 in 3-D. The shaded area corresponds to the part of the solution

that is above the melting temperature, approximately 0.35 of the temperature deviation.
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Figure 13. Non-dimensional simulation results of a) the temperature deviation from the initial temperature T and b) the horizontal velocity

component vx for Experiment 3 at three non-dimensional times 1× 108, 2× 108 and 2.5× 108 for both the 2-D and 3-D configurations.

We used the configuration in Experiment 3 to investigate the spatial variations in temperature and velocity distributions by

defining no-slip conditions on the lateral boundaries for the mechanical problem and and prescribing zero heat flux through

those boundaries. We employ a numerical grid resolution of 511× 255× 127 grid-points, 511× 127 grid-points and 201 grid-

points for the 3-D, 2-D and 1-D case, respectively. We prescribe a non-dimensional time step of 5× 105. We perform 500

numerical time steps and reach a total non-dimensional simulation time of 2.5× 108. We then compare the temperature T and420

horizontal velocity component vx at three times obtained with the 1-D, 2-D and 3-D FastICE solver to the reference solution

(Figure 12). We use 1-D profiles for comparison, taken at location x= Lx/2 in the 2-D model and at location x= Lx/2 and

y = Ly/2 in the 3-D model. We also report the temperature variation ∆T (Figure 13a) and the horizontal velocity component

vx (Figure 13b) for both the 2-D and 3-D simulations. The melting temperature approximately corresponds to 0.35 of the

temperature deviation. The reported results correspond to a 2.3−, 4.6− and 5.8− year evolution.425

All three models start with identical initial conditions for the thermal problem, i.e. ∆T = 0 throughout the entire ice slab.

The difference between the models arises owing to different stress distributions in 1-D, 2-D or 3-D. For instance, the additional

stress components inherent in 2-D and 3-D are in the same order of magnitude as the 1-D shear stress for the considered aspect

ratio, reducing the horizontal velocity vx in the 2-D and 3-D models. This also impacts on the shear-heating term, reducing

the source term in the temperature evolution equation. In the 1-D configuration, the unique shear stress tensor component is a430

function only of depth. On the other end-member, the 3-D configurations allow for a spatially more distributed stress state. They

lower strain-rates in this scenario and reduce the magnitude of shear-heating in higher dimensions. The spatially heterogeneous
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Figure 14. Experiment 3 includes a phase transition owing to melting. We report the evolution in time of non-dimensional temperature

variation ∆T along a vertical profile picked at location x= Lx/2 within a 2-D run from Experiment 3. For this purpose, we run the 2-D

FastICE models from Experiment 3 for a duration of 2.9× 109.

temperature and strain-rate fields in all directions require the utilisation of sufficiently high spatial numerical resolution in all

directions in order to accurately resolve spontaneous localisation.

We did not consider phase transition in the previous experiments for the sake of model comparison and because the analytical435

solution excluded this process. The existence of a phase transition caps the temperature at the pressure melting point in regions

with pronounced shear-heating, as illustrated in 2-D in Figure 14. The simulation represents the thermomechanically coupled

Experiment 3 with no-sliding and thermally impermeable walls (similar to Figure 13). Meltwater production consumes excess

heat generated by shear-heating. Thus, melting provides a physical mechanism that avoids thermal runaway in shear-heating

dominated zones in the ice. The experiment duration in dimensional units is 70 years, and the maximal temperature increase is440

10◦C upon reaching the melting point.

5.5 Verification of the FastICE numerical implementation

In order to confirm the accuracy of the FastICE numerical implementation, we report truncation errors (L2-norms) upon

numerical grid refinement. We consider both the 2-D and 3-D configurations of Experiment 2 for this convergence test. We

vary the numerical grid resolution keeping the relative grid step ∆x,∆y (and ∆z in 3-D) ratio. We utilise a high-resolution445

numerical simulation as reference and perform three additional simulations where we keep dividing the number of grid points

in both x, y (and z in 3-D) direction by a factor 2. We report the L2-norms:

||Perr||2 = ||Pref −Pcoarse||2 ,

||vxerr||2 = ||vxref − vxcoarse||2 ,
(21)
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Figure 15. Evolution of velocity and pressure truncation errors (L2-norm) upon grid refinement for a) the 2-D configuration and b) the 3-D

configuration of the Experiment 2.

for both the pressure P and the horizontal down slope vx velocity component on a logarithmic plot for both the 2-D (Figure 15a)

and 3-D configurations (Figure 15b). The FastICE numerical implementation converges with increasing numerical resolution450

and we report linear fitting slopes of −1.19 for pressure and of about −1.4 for horizontal velocity component.

We additionally report the behaviour of the residuals’ converge as function of the nonlinear iterations nnonlin
iter for the FastICE

GPU-based implementation (Figure 16a). The reported convergence history stands for a 2-D configuration of the Experiment

3 and a numerical grid resolution of 511× 127 grid points. The optimal damping parameter used in this case is ν = 2 (Eq.

19). We further report the sensitivity of the accelerated PT scheme on the damping parameter ν (Figure 16b). We show that455

selecting the optimal damping parameter (in the reported case ν = 2) ensures a relative low number of iterations to converge

both the linear and nonlinear thermomechanical problem.

5.6 The computational performance

We used two metrics to assess the performance of the developed FastICE PT algorithm: the effective memory throughput

(MTPeff ) and the wall-time. We first compare the effective memory throughput of the vectorised MATLAB CPU implemen-460
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Figure 16. Residual evolution and convergence efficiency of the 2-D FastICE GPU-based implementation for a numerical grid resolution of

511×127 grid points targeting a relative nonlinear tolerance of tolnonlin = 1e−8. a) Relative total non-linear residuals f = max(fP ,fvi ,fT )

as function of non-linear iterations and b) the nonlinear iteration count as function of the damping parameter ν (Eq. 19).

tation and the single-GPU CUDA C implementation. We employ double-precision (DP) floating-point arithmetic in CUDA

C for fair comparison. Second, we employ the wall-time metric to compare the performance of our various implementations

(MATLAB, CUDA C) and compare these to the time-to-solution of the Elmer/Ice solver.

We use two methods to solve the linear system in Elmer/Ice. In the 2-D experiments, we use a direct method and in 3-D,

an iterative method. The direct method used in 2-D relies on the UMFPACK routines to solve the linear system. To solve the465

3-D experiments, we employ the available bi-conjugate gradient stabilised method (BICGstab) with an ILU0 preconditioning.

We employ the configuration in Experiment 1 for all the performance measurements. We use an Intel i7 4960HQ 2.6 GHz

(Haswell) four-core CPU to benchmark all the CPU-based calculations. For simplicity, we only ran single-core CPU tests,
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staying away from any CPU parallelisation of the algorithms. Thus, our MATLAB or the Elmer/Ice single-core CPU results

are not representative of the CPU hardware capabilities, and are only reported for reference.470

The FastICE PT solver relies on evaluating a finite-difference stencil. Each cell of the computational domain needs to access

neighbouring values in order to approximate derivatives. These memory access operations are the performance bottleneck

of the algorithm, making it memory-bounded. Thus, the algorithm’s performance depends crucially on the memory transfer

speed, and not the rate of the floating-point operations. Memory-bounded algorithms place additional pressure on modern

many-core processors, since the current chip design tends to large flop-to-byte ratios. Over the past years and decades, the475

memory bandwidth increase has been much slower compared to the increase in the rate of floating-point operations.

As shown by Omlin (2017) and Räss et al. (2019a), a relevant metric to assess the performance of memory-bounded al-

gorithms is the effective memory throughput (MTPeff ) (Eq. 22). The MTPeff determines how efficiently data is transferred

between the main memory and the arithmetic units and is inversely proportional to the execution time:

MTPeff =
(nxnynz)niter nIO np

10243 tnt
[GB/s] (22)480

where (nxnynz) stands for the total number of grid-points, niter is the total number of numerical iterations performed, np is the

arithmetic precision (single – 4 bytes or double – 8 bytes), tnt is the wall-time in seconds needed to compute the niter iterations,

and nIO is the performed number of memory accesses. It represents the minimum number of memory operations (read-and-

write or read only) required to solve a given physical problem. For instance, in the mechanical Stokes solver for Experiment

1, we have to update (read-and-write) three arrays (vx,vz and P ) at every iteration in 2-D and four arrays (vx,vy,vz and P ) at485

every iteration in 3-D. Thus, the update of the mandatory arrays requires a minimum of six (eight) read-and-write operations

in 2-D (3-D). One additional read-and-write is needed to resolve the non-linear viscosity; thus, nIO = 10 in 2-D case and

nIO = 12 in 3-D.

We report MTPeff values obtained with the FastICE algorithm for both the vectorised MATLAB (CPU) and the CUDA

C (GPU) implementations in double-precision arithmetic (Figure 17a). We also show the GPU performance using single-490

precision arithmetic (Figure 17a – green diamonds). The results we obtain should be compared to the peak memory throughput

value MTPpeak for the specific hardware used. The MTPpeak reports the memory transfer rates delivered only by performing

memory copy operations with no computations. This value reflects the hardware performance limit and the maximal effective

memory bandwidth. We measure MTPpeak values for the Intel i7 4960HQ CPU of 20 GB/s, and of 260 GB/s for the Nvidia

Titan X GPU. The single-core vectorised MATLAB CPU implementation achieves about 0.7 GB/s, and the CUDA C imple-495

mentation 16 GB/s. Thus, the MATLAB single-core CPU implementation reaches 3.5% of the (CPU) hardware peak value,

and the CUDA C (GPU) implementation at about 6.15% and 11% of the (GPU) hardware peak value using double-precision

and single-precision arithmetic, respectively. Further improvement of the GPU MTPeff values can be achieved by optimising

the GPU code using more on-the-fly calculations and advanced kernel scheduling.

We investigate the wall-time to solve one time step with the FastICE GPU solver for both the 2-D and the 3-D configurations500

(Figure 17b). We found wall-times of about 15 minutes to solve ≈ 2.4× 107 DOFs with double-precision arithmetic and only

three minutes when using single-precision arithmetic on a Nvidia Titan X (Maxwell) GPU. In future investigations, one may
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Figure 17. Performance evaluation of the FastICE mechanical solver in terms of: a) the effective memory throughput MTPeff in GB/s and b)

the wall-time (in seconds) to converge the Stokes solver to a relative non-linear tolerance of tolnonlin = 10−8. We report the results obtained

using a 2-D CPU-based single-core vectorised MATLAB implementation of FastICE, a 2-D and 3-D GPU-based CUDA C implementation of

FastICE and a 2-D (direct) and 3-D (iterative) solver within the Elmer/Ice FEM single-core CPU-based model. The CPU codes are executed

on an Intel i7 4960HQ CPU processor with 8 GB RAM, and the GPU codes are launched on an Nvidia Titan X (Maxwell) GPU with 12 GB

on-board memory. All the computations are performed in double-precision arithmetic, with the only exception for the two single-precision

GPU-based runs depicted with larger red (2-D) and orange (3-D) symbols. The single-core FastICE CPU MATLAB and Elmer/Ice results

are shown for reference; they are not meant for performance comparison because we did not enable multi-threading in MATLAB and did not

have access to a parallel version of Elmer/Ice.
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consider comparing wall-times obtained by CPU algorithms fully enabling all cores of the CPU against wall-times for GPUs

within the same price and power consumption range.

The 3-D performance results obtained on various available Nvidia GPUs are summarised in Figure 18. We performed all505

the calculations using double-precision arithmetic. We compare the MTPeff and wall-time values as functions of the DOF.

We tested GPUs from various price ranges and chip generations, targeting entry-level GPUs such as the Nvidia Quadro P1000

(Pascal), high-end gaming cards such as the Nvidia Titan Black (Kepler) or the Nvidia Titan X (Maxwell), and data-centre-

class GPU accelerators such as the Nvidia Tesla V100 PCIe (Volta). The MATLAB implementation peak MTPeff values are

about 0.46 GB/s, the Quadro P1000 (Pascal) values about 4.3 GB/s, the Titan Black (Kepler) 12.4 GB/s, the Titan X (Maxwell)510

16.7 GB/s, and the Tesla V100 (Volta) 83.2 GB/s. The MTPeff values directly impact on the wall-time, since the memory

bandwidth is the bottleneck in FastICE. We solved a 3-D problem involving 511× 255× 127 grid-points (6.6× 107 DOF) in

about one hour on the Titan Black GPU, 40 minutes on the Titan X GPU, and only eight minutes on the Tesla V100 GPU.

Notably, at this resolution, we employed about 4.5 GB of memory to solve the isothermal Stokes model. The results suggest

that more recent GPUs such as the data-centre Tesla V100 (Volta) offer a significant (order of magnitude higher) performance515

increase than entry-level GPU accelerators, such as the Quadro P1000.

We share the performance of the GPU-MPI implementation of FastICE to execute on distributed memory machines. We

achieve a weak scaling parallel efficiency of 99% on the 512 Nvidia K80 (Kepler) GPUs on the Xstream Cray CS-Storm GPU

compute cluster at the Stanford Research Computing Facility. As our baseline, we use a non-MPI single GPU calculation. We

then repeat the experiment using 1 to 512 MPI processes (thus GPUs) and report the normalised execution time (Figure 19).520

The effective drop in parallel efficiency is only 1% involving 1 to 512 MPI processes. We achieve this close-to-optimal parallel

efficiency by overlapping MPI message communication and local domain stencil calculations. We specifically employ distinct

CUDA streams in order to execute the communication and computation overlap asynchronously. We repeat similar experiment

on both the volta node, an 8 Nvidia Tesla V100 32 GB (Nvlink Volta) GPUs compute node (analogous to Nvidia’s DGX-1 box)

and the octopus supercomputer hosting 128 consumer electronics Nvidia Titan X (Maxwell) GPUs at the Swiss Geocomputing525

Centre, University of Lausanne, Switzerland. On the volta node, we report a weak scaling parallel efficiency of 0.985% for a

single MPI process running at 0.99% of the non-MPI reference. On the octopus supercomputer, we report a parallel efficiency

of 95.5% with an effective drop in parallel efficiency of only 2% involving 1 to 128 MPI processes.

6 Discussion

Numerically resolving thermomechanical processes in ice is vital for improving our understanding of the physical processes530

that govern the transition from fast to slow ice in a changing climate. To date, very few studies have investigated the numerical

aspects of thermomechanically coupled Stokes solvers (e.g., Duretz et al., 2019). Existing assessments (e.g., Zhang et al.,

2015) usually employed low spatial resolution, and did not address the influence of the numerical implementation of multi-

physics coupling strategies or the role of numerical time integration. To avoid the significant computational expense of a

thermomechanically coupled full Stokes model, many studies relied either on the computationally less expensive shallow ice535
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Figure 18. Performance evaluation of the FastICE mechanical solver in terms of: a) effective memory throughput MTPeff in GB/s and b)

wall-time (in seconds) to converge the Stokes solver to a relative non-linear tolerance of tolnonlin = 10−8. We report the results from a

3-D CPU-based single-core vectorised MATLAB implementation and a 3-D GPU-based CUDA C implementation of FastICE running on

different GPU chip architectures. The CPU codes are executed on an Intel i7 4960HQ CPU processor with 8 GB RAM. The GPU codes were

launched on an Nvidia Titan Black (Kepler) GPU with 6 GB, an Nvidia Titan X (Maxwell) GPU 12 GB, an Nvidia Quadro P1000 (Pascal)

4 GB and an Nvidia Tesla V100 PCIe (Volta) 32 GB.

approximations, linear or linearised Stokes models, or low spatial resolutions. None of the approaches have resolved the multi-

physics and multi-scale processes governing the boundaries of streaming ice, including shear margins, grounding zones and

the basal interface.
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Figure 19. MPI weak scaling of the 3-D thermomechnically coupled GPU-based FastICE software. We report the parallel efficiency [-] of the

numerical application on three different Nvidia hardware accelerators, the 1-512 Tesla K80 12 GB data-centre GPUs, the 1-8 Tesla V100 32

GB Nvlink data-centre GPUs and the 1-128 Titan X (Maxwell) 12 GB consumer electronics GPUs. These accelerators are available via the

Xstream supercomputer, the volta node and the octopus supercomputer, respectively. Note that the execution time baseline used to compute

the parallel efficiency represents a non-MPI calculation. We report the highest numerical grid resolution nxyz achieved on each distributed

memory machine.

To address these limitations, we have developed FastICE, a new parallel GPU-based numerical model. The goal of FastICE

is to better understand the physical processes that govern englacial instabilities such as thermomechanical localisation at the540

field-site, rather than the regional, scale. It hence targets different scientific problems than many existing land-ice models and

complements these previous models. FastICE is based on an iterative pseudo-transient finite-difference method. Our discreti-

sation yields a concise matrix-free algorithm well suited to use the intrinsic parallelism of modern hardware accelerators such

as GPUs. Our choices enable high-resolution 2-D and 3-D thermomechanically coupled simulations to efficiently perform on

desktop computers and to scale linearly on supercomputers, both featuring GPU accelerators.545

The significant temperature dependence of ice’s shear viscosity leads to pronounced spatial variations in the viscosity, which

affects the convergence rate of our iterative PT method. Resolving shear flow localisation is challenging in this context, since

it requires the simultaneous minimisation of errors in locations of the computational domain that are governed by different

characteristic time scales. Our PT approach allows us to capture the resulting spatial heterogeneity and offers a physically-

motivated strategy to locally ensure stability of the iterative scheme using local pseudo-time steps, analogous to diagonal550

preconditioning in matrix-based direct approaches. The conciseness and simplicity of the implementation allows us to explore

influences of various coupling methods and time integrations in a straight-forward way. The PT approach is an interesting

choice for educational purposes and research problems given its conciseness and efficiency, repsectively.
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We quantify the scalability of our approach through extensive performance tests, where we investigated both the time-to-

solution and the efficiency of exploiting the current hardware capabilities at their maximal capacities. To verify the accuracy555

and the coherence of the proposed results, we performed a set of benchmark experiments, obtaining excellent agreement

with results from the widely used glacier flow model Elmer/Ice. Experiment 3 verifies that, under the assumption of periodic

configurations, both 1-D, 2-D and 3-D models return matching results.

Further, we have tested the accuracy of our numerical solutions for different time integration schemes, including forward

(explicit) and backward (implicit) Euler and different physical time steps. The value of the numerical time step must be chosen560

as sufficiently small so as to resolve the relevant physical processes. We limited the maximal time step in the explicit time

integration scheme by the CFL stability criterion for temperature diffusion. For high spatial numerical resolutions, the CFL-

based time step restriction is sufficient to resolve the coupled thermomechanical process. However, this conclusion is not valid

for low spatial resolutions (e.g., fewer than 20 grid-points). At low resolution, the CFL-based stability condition predicts time

step values larger than the non-dimensional time (2×108) needed to raise the temperature. Thus, we did not sufficiently resolve565

the physical process. An implicit scheme for the time integration remedies the stability issue, but does not guarantee accuracy.

Independent of the numerical time integration scheme used, the range of time step values that resolve the coupled physics is

close to the explicit stability criterion.

Our multi-GPU implementation of the thermomechanical FastICE solver achieves a close-to-ideal parallel efficiency featur-

ing a runtime drop of only 1% and 2% compared to a single MPI process execution on 1-512 Nvidia K80 GPUs and on 1-128570

Nvidia Titan X (Maxwell) GPUs, respectively (representing a 1% and 4.5% deviation from a non-MPI single GPU runtime).

We achieve this optimal domain decomposition parallelisation by overlapping communication and computation using native

CUDA streams. This CUDA feature enables asynchronous compute kernel execution. Similar implementation and parallel

scaling results were recently reported for hydro-mechanical couplings (Räss et al., 2019a, c). Discrepancies in the parallel

efficiency among the three tested distributed memory machines mainly results from the various hardware type and age, as well575

as the from the interconnect specifications. The Xstream supercomputer features Nvidia Tesla K80 GPUs based on Kepler chip

architecture launched in late 2014 as well as single-rail Mellanox FDR Infiniband interconnect. The octopus supercomputer

features consumer electronics Nvidia Titan X GPUs based on the Maxwell chip architecture launched in mid 2015 as well as

dual-rail Mellanox FDR Infiniband interconnect. The volta node features latest Nvidia Tesla V100 GPUs based on Volta chip

architecture launched in mid 2018 and Nvlink technology as intra-node interconnect. More recent chip architectures reduce the580

relative computation time and may provide less room for hiding the MPI communication. Dual-rail interconnect doubles the

inter-node throughput and thus reduces the communication time among distinct compute nodes. Note that Xstream features 16

GPUs per node which may reduce the inter-node communication compared to octopus that features 4 GPUs per node.

7 Conclusions

In this study, we develop FastICE, an iterative solver that efficiently exploits the capabilities of modern hardware accelerators585

such as GPUs. We achieve rapid execution times on single GPUs monitoring and optimising memory transfers. We achieve
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close-to-ideal parallel efficiency (99% and 95.5%) on a weak scaling test up to 512 and 128 GPUs on heterogenous hardware

by overlapping MPI communication and computations. The technical advances and utilisation of GPU accelerators enable us

to resolve thermomechanically coupled ice flow in 3-D at high spatial and temporal resolution.

We benchmark mechanical solver of FastICE against the community model Elmer/Ice, focusing specifically on explicit590

as opposed to implicit coupling and time integration strategies. We find that the physical time step must be chosen with

care. Sufficiently high temporal resolution is necessary in order to accurately resolve the coupled physics. Although minor

differences arise among uncoupled and coupled approaches, we observe less localisation for uncoupled models compared to

the fully coupled ones. In additional to high temporal resolution, a relatively high spatial numerical resolution of more than

100 grid-points in the vertical direction is necessary to resolve thermomechanical localisation for typical ice-sheet thicknesses595

on the order of hundreds of meters. The presented models enable us to gain further process-based understanding of ice-flow

localisation. Resolving the coupled processes at very high spatial and temporal resolutions provides future avenues to address

current challenges in accurately predicting ice sheet dynamics.

Code availability. The FastICE software developed in this study is licensed under GPLv3 free software license. The latest version of the code

is available for download from Bitbucket at https://bitbucket.org/lraess/fastice/ and from http://wp.unil.ch/geocomputing/software/. Past and600

future FastICE versions are available from a permanent DOI repository (Zenodo) at https://doi.org/10.5281/zenodo.3461171. The FastICE

software includes code examples based on the PT method in both the MATLAB and CUDA C programming languages. The GPU routines

run on a CUDA-capable GPU device. The multi-GPU version of the 3-D code requires CUDA-aware MPI to be installed. On the octopus

GPU supercomputer, we have CUDA 10.0 installed and built Open MPI 2.1.5 with CUDA 10.0, GCC 6.5 on a CentOS 6.9 system.
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