
Reply to Anonymous Referee #1 

Referee’s comment 1 

The manuscript is well-written, and the governing equations are clearly presented. Overall the manuscript was 
enjoyable to read, and I learned a lot. The tests were also convincing – as convincing as visual comparisons of 
results can be. In general, the structure of the manuscript is traditional: Introduce new model, explain the basic 
principles and the implementation, and test the model against other models. This is fine, and it provides a 
convenient reference for later work. However, as a reader I would have liked to see a demonstration of what the new 
model can really do – just a sneak peek into the suite of problems that the authors hope to address with this new 
model. There are so many ice models being presented, but it is unfortunately surprisingly rare that we see ice-sheet 
models applied in ways that make us wiser. So, if possible, I encourage the authors to include a demonstration of 
the model toward the end of the manuscript – something that is visually, and intellectually, more appealing than the 
benchmark tests. 
Author’s reply 1 

Thank you for your encouraging feedback. We agree that there is an increasing number of ice models and that it is 
not always clear what the specific contribution of these models to ice dynamics is. The motivation behind 
developing this model is to develop a process-based model that affords the necessary 3D resolution to capture 
englacial strain localisation. This process may be of critical importance in the boundaries of fast flow like the basal 
interface, grounding zones and shear margins. It is also a subtle component of the overall ice dynamics and requires 
a careful assessment of when and why it becomes relevant and which locations on our ice sheets might serve as 
test sites for the model predictions. We are currently working on two follow-up manuscripts applying this code to the 
flow-to-sliding transition and to shear margin stability. As you mention, developing sophisticated models and 
advancing our understanding of ice dynamics are two distinct challenges. The first is a necessary but not a sufficient 
condition for the latter. To do justice to both, we prefer to focus on the numerical methods, benchmarking and 
performance evaluation for this manuscript and leverage this code for advancing our understanding of ice dynamics 
in a separate manuscript that we will submit to a glaciological journal. While we agree that an actual application case 
is more appealing and interesting than benchmarks, we believe that this code can help us make progress on 
important, fundamental questions in glaciology and we prefer to develop this potential fully in our separate 
contributions. We are happy to make preliminary results available to you to demonstrate the value of the code for 
these problem. For this manuscript, we have included a more detailed motivation for this kind of code and more 
extensive reference to the problems for which it is relevant. 

Referee’s comment 2 

Line 36: The GPU-acceleration is very interesting and, as far as I know, rather new in ice-sheet models. However, a 
quick search leads to Brædstrup et al. (2014) “Ice- sheet modelling accelerated by graphic cards” in Computers & 
Geosciences 72, 210- 220. This paper is not cited here, although it covers some of the same challenges and 
principles of GPU-acceleration. 
Author’s reply 2 

Thank you for pointing this out. We indeed overlooked the citation of the work from Brædstrup et al. (2014). 
Changes in the manuscript 2 

We added reference to this work in the revised manuscript at line 61: “We tailor our numerical method to optimally 
exploit the massive parallelism of GPU hardware, taking inspiration from recent successful GPU-based 
implementations of viscous and coupled flow problems (Brædstrup et al., 2014; Omlin, 2017; Räss et al., 2018; 
Duretz et al., 2019; Räss et al., 2019a).” 

Referee’s comment 3 

line 42: Also, regarding GPU-acceleration, it would be good to see reference to other flow problems that have 
successfully been GPU accelerated. What problems and models have inspired the authors? 
Author’s reply 3 

We rephrased in a more explicit way the source of inspiration of the GPU-based FastICE implementation (line 61). 
Changes in the manuscript 3 

Line 61: “We tailor our numerical method to optimally exploit the massive parallelism of GPU hardware, taking 
inspiration from recent successful GPU-based implementations of viscous and coupled flow problems (Brædstrup 
et al., 2014; Omlin, 2017; Räss et al., 2018; Duretz et al., 2019; Räss et al., 2019a).” 



Referee’s comment 4 

line 122: The comment on single-precision calculations leaves me confused. Are the GPU-calculations single 
precision? Or does it depend on the specific GPU architecture? Please clarify. 
Author’s reply 4 

The benchmarks and calculations in this study are performed using double precision arithmetic if not specified 
otherwise. We reported single precision efficiency to show the potential performance gain from reducing the 
arithmetic precision of the calculations. Until recently, it was commonly admitted and implicitly assumed that 
scientific calculations are (and should be) performed using double precision floating point arithmetic. This choice 
goes back a couple of decades ago when hardware was computation-bounded; double precision would provide 
enhanced convergence, thus more efficient calculations, since less floating operations were needed. However, we 
nowadays observe a shift towards memory-bounded hardware and software where transferring memory (numbers) 
is more limiting compared to performing arithmetic operations. Thus single or half precision calculation may become 
interesting as the numbers take twice or four time less amount of memory - which results in factor 2 or 4 
performance increase. Alternatively, similar performance can be observed for a two or four-times increase in the 
numerical grid resolution. Future work may address whether performing calculations using lower arithmetic precision 
but increased numerical grid resolutions can outperform well-established double precision calculations. A detailed 
assessment of the issue may deserve separate publication. 
Changes in the manuscript 4 

Line 257: “The computations in CUDA C shown in the remainder of the paper were performed using double-
precision arithmetic, if not specified otherwise.” 

Referee’s comment 5 

line 163: Braedstrup et al has a nice description of staggered grids and GPU acceleration – must be cited here. 
Author’s reply 5 

Although we do not question the accurate description of the staggered grid from Braestrup et al., they use a Gauss-
Seidel solver in their study, which shows some limitations in terms of parallel implementation. The solve they use 
requires information from neighbouring cells at each iteration which may, when executed in parallel, lead to read/
write conflicts. Our PT solver relies on a fully parallel iteration strategy, which inherently takes care of updating the 
entire field of old values with updated ones thus circumventing the neighbouring cell read/write issues and avoiding 
to rely on a “red-black” type of scheme. We are now citing the suggested work, just not with specific reference to 
the staggered grid setup. 
Changes in the manuscript 5 

— 

Referee’s comment 6 

line 175: Even up-wind advection schemes are going to suffer from numerical diffusion – and high numerical 
resolution is just making it worse. Please discuss this here. 
Author’s reply 6 

True, upwind scheme also suffer from numerical diffusion. To ensure that our numerical results are not confounded 
by numerical diffusion, we set the numerical resolution such that the Grid Peclet number is smaller than the physical 
Peclet number, i.e. � . Limiting numerical diffusion is one motivation for using high numerical resolution 
in our computations. 
Changes in the manuscript 6 

We have added the following clarification to the paragraph on line 183: “To ensure that our numerical results are not 
confounded by numerical diffusion, the Grid Peclet number must be smaller than the physical Peclet number. 
Limiting numerical diffusion is one motivation for using high numerical resolution in our computations.” 

Referee’s comment 7 

line 182: The matrix-free solver using pseudo-time is nicely explained. However, it would be good to see exactly 
how the residuals propagate in the grid. Many similar matrix-free relaxation schemes use multi-grid setups to make 
the residuals decay faster – these could be discussed. 
Author’s reply 7 

nx > LxVx /2



An excellent point, thanks for bringing it up. We have included an additional figure in section 5.5 displaying the 
decay of the residual as function of the damping parameter. 
Multi-Grid configuration are an alternative solution improving residual decay. However, MG methods may generate 
quite some overhead by the addition of multiple grid levels and may hinder performance by restriction and 
prolongation operators. Also, coarser grid may not saturate the GPU and result in a drop of efficiency.  
Changes in the manuscript 7 

Line 247: “The iteration count increases with the numerical problem size for second-order PT solvers scales close to 
ideal multi-grid implementations. However, the main advantage of the PT approach is its conciseness and the fact 
that only one additional read/write operation needs to be included - keeping additional memory transfers to the strict 
minimum.” 

Referee’s comment 8 

Eqn. 15: I believe that theta < 1 is often referred to as under-relaxation. 
Author’s reply 8 

The variable � is a scalar we use to select the fraction of a given nonlinear quantity to be updated each iteration. 
When �=0, we would always use the initial guess, while �=1, we would take 100% of the current nonlinear quantity. 
We usually define theta to be in the range of 1e-2 - 1e-1 in order to account for some time to fully relax the nonlinear 
quantities as the nonlinear problem may not be sufficiently converged at the beginning of the iterations. This 
approach is in a way similar to an under-relaxation scheme.  
Changes in the manuscript 8 

Line 204-209: “We use the scalar […] to select the fraction of a given nonlinear quantity, here the effective viscosity 
[…], to be updated each iteration. When �=0, we would always use the initial guess, while �=1, we would take 
100% of the current nonlinear quantity. We usually define theta to be in the range of […] in order to account for 
some time to fully relax the nonlinear viscosity as the nonlinear problem may not be sufficiently converged at the 
beginning of the iterations. This approach is in a way similar to an under-relaxation scheme and was successfully 
implemented in the ice sheet model development by Tezaur (2015), for example.” 

Referee’s comment 9 

Eqn. 19: Again, I miss information on how the residuals decay in the grid – particularly when using this stabilizing 
scheme. Also, I could not find previous reference to alpha, but I might have missed it. 
Author’s reply 9 

Thank you for pointing out the missing �  definition. We no longer use �  in the manuscript, replacing it explicitly for 
enhanced clarity in Eqn. 19. We have also added a Figure 16 in the new Section 5.5 displaying a) the residuals’ 
convergence history for a 2-D simulation and b) the impact of the “stabilising” scheme as function of the damping 
parameter � in terms of the total number of iteration count to reach convergence threshold. 
Changes in the manuscript 9 

Line 453-458 and Figure 16. 

Referee’s comment 10 

line 299: I can see how the non-dimensional equation makes the implementation simpler, but is it necessary to 
present results in the non-dimensional form? It just makes the output harder to understand. 
Author’s reply 10 

As you point out, presenting results in a non-dimensional form has advantages and drawbacks. Dimensional results 
are more intuitive and easier to compare to observations, but non-dimensional results are more general and can be 
scaled back easily using  the scales provided in Eqns 7 and 9 to various configurations without having to re-run the 
model. Here, we prefer the generality of non-dimensionality since we are looking at generic benchmark cases 
instead of applying our model to a particular field site or comparing against specific field measurements.  
Changes in the manuscript 10 

— 

Referee’s comment 11 

Section 5: There is some repetition of captions in the text. “In Figure 4, we plot. . .”; “Figure 5 shows. . .”; “Figure 6 
shows. . .” etc. This could be skipped to make the text smoother. 
Author’s reply 11 
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Thank you for pointing this out. 
Changes in the manuscript 11 

We re-phrased Section 5.1 and 5.2 avoiding the figure caption repetition for better clarity. Please refer to the revised 
text in Section 5 for updates. 

Referee’s comment 12 

line 308: Why are the benchmark tests performed at different resolutions? Does the GPU-model require order-of-
magnitude more DOFs to yield the same accuracy as the FEM model? The comparisons give leave me with that 
impression, and then what is the advantage of the PT setup? 
Author’s reply 12 

Thank you for raising this important point. The benchmark tests where originally run at higher resolutions with the 
FastICE GPU code since we can afford it. The Elmer/Ice results are obtained on the largest available single-core/
direct solver resolution (or robust iterative solver for the 3D case). The latest results for the benchmark of experiment 
2 show the good agreement among FastICE and Elmer/Ice at comparable resolutions. However, discrepancy 
between low and high numerical grid resolutions suggest that although the two different solution strategies match, 
they both may not fully capture the physics with accuracy at low resolutions in some cases, such as the 3D 
benchmark of Experiment 2. We report this issue in a new Figure 15 in the Section 5.5, showing the convergence 
of the numerical implementation among grid refinement. 
Changes in the manuscript 12 

Lines 441-458: We added a new Section “5.5: Validation of the FastICE numerical implementation” 
 to discuss this topic and a related Figure 15. 

Referee’s comment 13 

line 314: “numerical resolution grid resolution” 
Author’s reply 13 

Thank you for pointing this out. We corrected the sentence. Which now reads: 
Changes in the manuscript 13 

Line 329: “…and used a numerical grid resolution…” 

Referee’s comment 14 

line 333: The authors are right to address the discrepancies between the model results – but why not follow up on 
the idea to pin nodes in the FEM mesh? 
Author’s reply 14 

We re-evaluated the benchmark test case using a comparable numerical grid resolution for our FastICE GPU solver 
and for Elmer/Ice. The result now agree for a particular numerical grid resolution. However, discrepancy with 
previous results suggest that the numerical resolution used to compare the two software may not be sufficient to 
resolve the physical process. To address this second limitation, we provide one additional figure showing the 
convergence of our method with and increase in numerical grid resolution and comparing the results to a high-
resolution “reference” simulation. 
Changes in the manuscript 14 

We updated the Figure 7 with the latest benchmark test results at similar numerical grid resolutions between FastICE 
and Elmer/Ice and adapted the text from Section 5.2. 
Lines 441-458: We added a new Section “5.5: Validation of the FastICE numerical implementation” 
 to discuss this topic and a related new Figure 15. 

Referee’s comment 15 

Fig. 15: The performance diagrams are very convincing – however, the use of widely different DOFs for the FEM and 
PT models in the benchmark tests makes we wonder if the speedup is real? 
Author’s reply 15 

The purpose of these graphs is not to report speed-up versus single-core Matlab or Elmer/ice, but to inform the 
reader about the potential and the scaling of the iterative and matrix-free PT approach to handle large number of grid 
points representative of high-resolutions simulations. In terms of high-performance “desktop” computing - what 
certainly majority of the researcher still rely on - it is fair to compare the range of affordable DOF for the FEM and PT 
implementations. Finally, high resolution calculations affordable with the PT approach may become necessary when 



resolving internal deformation localising into self-consistent formation of boundary layers prone to a sliding-like 
behaviour. 
Changes in the manuscript 15 

— 

Sincerely yours, 

Ludovic Räss, on behalf of the authors.



Reply to Anonymous Referee #2 

Referee’s comment 1 

The authors are correct that there has been little work in performance portability of existing land-ice dycores. One 
reference that is worth mentioning in this area is the following recent work involving the portability of the Albany 
Land-Ice first Order Stokes model of (Tezaur et al. 2015) to GPUs and other next-generation architectures using the 
Kokkos library and programming model: 
J. Watkins, I. Tezaur, I. Demeshko. "A study on the performance portability of the finite element assembly process 
within the Albany land ice solver", E. van Brummelen, A. Corsini, S. Perotto, G. Rozza, eds. Numerical Methods for 
Flows: FEF 2017 Selected Contributions, Elsevier, 2019. 
This paper does not present a full end-to-end workflow that is portable to GPUs, however; it focuses on the 
performance portability of only the finite element assembly time, not the linear solve. It is nonetheless worth adding 
this reference to the bibliography and literature overview. 
Author’s reply 1 

Thank you for suggesting this reference on related topics. We have included it into our manuscript. 
Changes in the manuscript 1 

Line 63: “Our work contributes to the few land-ice dynamical cores targeting many-cores architectures such 
as GPUs (Brædstrup et al., 2014; Watkins et al., 2019)” 

Referee’s comment 2 

The discretization utilized in FastICE is a finite difference one on a staggered Cartesian grid. In recent years, many 
production land-ice models have moved to finite element or finite volume discretisations, as these allow you to use 
unstructured regionally and/or adaptively refined meshes to reduce the total number of dofs in the computation and 
allow the concentration of computational power where it is needed, which is not possible with structured uniform 
Cartesian grids. Moreover, w/ structured uniform Cartesian meshes, one ends up with very crude representations of 
the ice extent and grounding line. I realize that your reason for choosing finite differences was to utilize stencil-based 
techniques for approximating spatial derivatives in a way that is amenable to the GPU hardware. Is there any hope of 
extending the scheme to unstructured grids, perhaps using something like DG? 
Author’s reply 2 

Indeed, many large-scale ice models have moved to finite elements to conform to complex basal topography and 
other geometric complexities arising in the grounding zone or on ice shelfs. The motivation behind FastICE is 
develop a complementary tool to existing approaches that enables us to better model and understand englacial 
instabilities such as thermo-mechanical localisation at the scale of individual field sites. Thermo-mechanical 
localisation arise in a self-consistent way in shear margins, at the grounding zone or in the vicinity of the basal sliding 
interface, but the degree and location of localisation is not known apriori. A body-fitted mesh is hence less valuable 
for our purposes than for problems with fixed geometry. Grid adaptivity could be beneficial and we have used it in 
previous problems that were dominated by singularities (e.g., Suckale et al., 2014). Recent work, however, 
suggests that singularities are blunted dynamically and that the flow field exhibits significant 3D variability throughout 
the entire boundary layer. The goal of FastICE is to better understand the physical processes governing this small-
scale variability by quantifying the observational signature of different processes and comparing these model 
predictions against observational data at the field-site, rather than the regional, scale. You are of course correct in 
pointing out that Cartesian uniform meshes combined with the Finite-difference method enable the numerical 
application to run in parallel on GPUs close to hardware limit, but amenability of our grid setup to the GPU hardware 
is  only one reason for opting for a Cartesian grid. The more important difference is that FastICE is targeting other 
scientific problems than many existing land-ice models. We added it t the discussion. 
Changes in the manuscript 2 

Line 539-543: “To address these limitations, we have developed FastICE, a new parallel GPU-based numerical 
model. The goal of FastICEis to better understand the physical processes that govern englacial instabilities such as 
thermomechanical localisation at the field-site, rather than the regional, scale. It hence targets other scientific 
problems than many existing land-ice models and complements these previous models." 

Referee’s comment 3 

When starting your code, did you consider libraries such as Kokkos and RAJA for performance portability over 
straight-up CUDA? These libraries select the optimal data layout for the hardware used at compile time, thereby 
making a code portable to multiple architectures, including NVIDIA GPUs. Your current implementation relies on 



CUDA, which may be problematic if one wishes to run the code on GPUs not from NVIDIA (e.g. AMD GPUs). This 
may be important in the near future, as there are some planned open science machines coming out soon that are 
expected not to have NVIDIA GPUs. 
Author’s reply 3 

Code portability is an important point, thank you for raising it. FastICE development aligns within a general effort to 
spread high-performance, parallel and super computing to Earth sciences. Usually performance and portability are 
rather opposite as a general and portable implementation may trade off performance, and vice-versa. However, the 
vectorised CUDA indexes could be replaced by explicit loops that can be parallelised using a shared memory 
approach (such e.g. openMP). Regarding various GPU designs, there are active development efforts by the broader 
community of wrappers to enable porting CUDA-based code to AMD or Intel GPUs. 
Changes in the manuscript 3 

— 

Referee’s comment 4 

Pseudo-transient Jacobian-free methods similar in flavor to those proposed here have shown promise for solving the 
Navier-Stokes equations on GPUs. These methods work very well until the problem gets too stiff. In this stiff regime, 
one typically needs to cut the time step substantially, and a preconditioner/matrix is needed, which can be 
expensive on GPUs. Realistic land ice problems are in general very stiff, and one has a hard time developing good 
preconditioners even if one has the Jacobian matrix. The numerical examples described in the test case are very 
simple verification problems. I worry about how the method will perform on realistic problems. It would be good to 
see one such example in the paper to alleviate this concern. Of particular interest would be a test case with floating 
ice (e.g. Antarctica simulation), which can pose a lot of challenges for the solver (see R. Tuminaro, M. Perego, I. 
Tezaur, A. Salinger, S. Price. "A matrix dependent/algebraic multigrid approach for extruded meshes with 
applications to ice sheet modeling", SIAM J. Sci. Comput. 38(5) (2016) C504-C532). Something simpler to try 
before doing Antarctica would be a test case with floating ice, e.g. confined shelf, circular shelf. 
Author’s reply 4 

An important point, thank you for raising it. Stiffness is indeed a concern in ice-sheet modelling, but it is a challenge 
not only for numerical reasons. Rather, it is a reflection of changing physical processes that govern ice flow at 
different scales and also at different locations along outlet glaciers and ice streams. One approach to tackling that 
challenge is to focus on numerical techniques suited specifically for stiff problems. Another is to focus on 
understanding the physical processes that lead to stiff behaviour in the first place and adjust the governing 
equations in suitable ways to represent these. The philosophy behind FastICE is the latter approach. We argue that 
specific locations on ice sheets like shear margins, grounding zones and the basal sliding interface require a multi-
physics approach that could be built into FastICE. You mention the example of ice shelfs, which is of course at the 
heart of the current debate about sea-level-rise projections. There are many challenges in better understanding the 
coupling between ice shelfs, the ocean, and land ice including the ice-cliff instability (which requires a brittle rheology 
and failure model), the vulnerability of ice shelfs to meltwater ponding at the surface (which requires an englacial 
hydrology model), and the dynamics of the grounding zone (which requires a free-boundary model). Needless to 
say, ultimately we need both, better numerical techniques for stiff problems and a better physical understanding. 
Since we focus primarily on the field-site rather than the regional or ice-sheet scale, some of the large-scale 
numerical issues like stiffness are less of a problem for the applications that we are interested in. We clarified the 
motivations behind FastICE and how our model complements existing approaches rather than attempting to replace 
them. 
Changes in the manuscript 4 

Line 245-256: “Many large-scale ice models have moved to finite elements to conform to complex basal topography 
and other geometric complexities arising in the grounding zone or on ice shelves. The motivation behind FastICE is 
develop a complementary tool to existing approaches that enables us to better model and understand englacial 
instabilities such as thermomechanical localisation at the scale of individual field sites. Thermomechanical 
localisation arises in a self-consistent way in shear margins, at the grounding zone or in the vicinity of the basal 
sliding interface, but the degree and location of localisation is not known apriori. A body-fitted mesh is hence less 
valuable for our purposes than for problems with fixed geometry. Grid adaptivity could be beneficial and we have 
used it in previous problems that were dominated by singularities […]. Recent work, however, suggests that 
singularities are blunted dynamically and that the flow field exhibits significant 3-D variability throughout the entire 
boundary layer. The goal of FastICE is to better understand the physical processes governing this small-scale 
variability by quantifying the observational signature of different processes and comparing these model predictions 



against observational data at the field-site, rather than the regional, scale. FastICE is targeting other scientific 
problems than many existing land-ice models.” 

Referee’s comment 5 

Is CUDA unified virtual memory (UVM) utilized in the implementation, or the memory is managed manually? I assume 
the latter, but it would be good to state this in the paper. A lot of implementation rely on CUDA UVM, and I think one 
should move away from that to get the best performance – your paper may make a case for that. 
Author’s reply 5 

Thank you for pointing out the need to clarify memory management. Our implementation does indeed not rely on the 
UVM features from CUDA, because at the time we initiated the work and later on assessed the UVM performance 
(early 2018), UVM was showing about one order of magnitude lower performance. We suspect the internal memory 
handling to be responsible of constantly synchronising host and device memory, which is not needed in our case. 
We clarified this by adding a statement in the Section 3.1. 
Changes in the manuscript 5 

Line 273: “Our implementation does not rely on the CUDA unified virtual memory (UVM) features. UVM avoids to 
explicitly define data transfer between the host (CPU) and device (GPU) arrays but results in about one order of 
magnitude lower performance. We suspect the internal memory handling to be responsible of continuously 
synchronising host and device memory, which is not needed in our case.” 

Referee’s comment 6 

The authors introduce the non-dimensionalization of the governing equations as something that is needed for 
studying the effect of single vs. double precision on the computations (which makes a lot of sense). The study of 
single vs. double precision arithmetic seems not that rigorous to me, however. Most of the cases were run with 
double precision, with a couple run single precision, and the authors don’t really seem to draw any meaningful 
conclusions from these results. The effect of reduced/mixed precision arithmetic in continental scale land ice (and 
more broadly climate) applications is a very interesting research area, which can be formulated as a sensitivity 
problem and could merit its own publication. I suggest the authors either streamline the single vs. double precision 
arithmetic discussion, or cut it from this paper, saving it for a later follow on publication where it can be given the 
proper attention. 
Author’s reply 6 

The choice of arithmetic precision is an important topic and merits an in-depth assessment resulting its own 
publication (see also response 4 to review #1). Our current study does not aim at investigating the effects, benefits 
and drawbacks of various arithmetic precision implementations. Although not in the current spotlight, we still wish to 
highlight the ability of our model to perform using single precision floating point arithmetics. Together with the non-
dimensional for  of the governing equations, the features pave the path for future studies addressing these important 
issues related to lower precision arithmetic and their benefits in light of memory bounded applications. 
Changes in the manuscript 6 

Line 257: “The computations in CUDA C shown in the remainder of the paper were performed using double-
precision arithmetic, if not specified otherwise.” 

Referee’s comment 7 

I am confused about the different resolutions of grids b/w the Elmer/ICE and FastICE computations (e.g. 
experiments 1 and 2). The codes are quite different as are the techniques therein (e.g. different disrcretizations – 
PSPG stabilized FEM for Elmer/ICE vs. staggered finite difference for FastICE) so it’s hard to say which mesh 
resolution in Elmer/ICE will be “comparable” to one in FastICE. You must have had some reason for selecting the 
relative resolutions you considered – can you please explain this here and in the paper? It is difficult to convince the 
reader that the verification is rigorous w/o explaining discrepancies such as this one. 
Author’s reply 7 

You are correct pointing out it is hard to say what are the optimal mesh resolutions in order to compare various 
discretisation and numerical methods. For the benchmark, we decided to employ as large as possible numerical 
resolutions that would still deliver results in “reasonable” (day-scale) wall-times while running on desktop-type of 
computer hardware (single CPU - single GPU). For optimal comparison, we selected rectangular mesh elements 
within the Elmer/Ice FEM framework; we are confident about our choice to be a reasonable comparison involving 
similar regular spatial discretisation. The two solving approaches should deliver similar results independently of the 
numerical implementations. We addressed this in the result section. 



Changes in the manuscript 7 

Line 329-334: “We use higher numerical grid resolution within FastICE as we can afford it. Varying the numerical 
resolution also permits to test both the agreement between to different numerical approaches and convergence. The 
fact that we obtain matching results when increasing grid resolution significantly suggests that we resolve the 
relevant physical processes sufficiently, even at lower resolutions. We report an exception to this trend in the 3-D 
case of Experiment 2.” 

Referee’s comment 8 

Along the lines of the previous comment, I do not like the discrepancies b/w Elmer/ICE and FastICE for experiment 
2. Your theory about the pinning seems plausible, but you should really get to the bottom of this prior to publishing 
this manuscript. 
Author’s reply 8 

We addresses the issue regarding the discrepancy between FastICE and Elmer/Ice in the 3D configuration of 
experiment 2. We repeated the benchmark using similar gird resolution in FastICE than Elmer/Ice and the results 
agree. We are thus confident FastICE reproduces the benchmark tests with similar accuracy than Elmer does. 
However, our original results suggests that the spatial resolution at which the benchmark is performed may not be 
sufficient in order to achieve convergence of the numerical results. We investigated this issue by performing an 
additional test refining the numerical grid resolution from coarse to a reference numerical solution on a fine grid. We 
show convergence of the method among grid refinement. 
Changes in the manuscript 8 

Lines 441-458: We added a new Section “5.5: Validation of the FastICE numerical implementation” 
 to discuss this topic and a related new Figure 15. 

Referee’s comment 9 

Note that Elmer/ICE uses PSPG stabilization for the full Stokes equations rather than using inf-sup stable velocity-
pressure finite elements. This may be worth keeping in mind when making comparisons to Elmer/ICE results. 
Author’s reply 9 

Yes, thank you for pointing this out. 
Changes in the manuscript 9 

— 

Referee’s comment 10 

I would be interested to see still more rigorous verification of FastICE, for example, convergence analyses with grid 
refinement. One can do this on a method of manufactured solutions problem (see W. Leng, L. Ju, M. Gunzburger, 
S. Price. “Manufactured solutions and the verification of three-dimensional Stokes ice-sheet models”, The 
Cryosphere 7 19-29, 2013. for some MMS tests for the full Stokes equations) or by performing a convergence 
study w.r.t. a reference solution on a fine mesh on a canonical test case: ISMIP-HOM, Dome, Circular Shelf, 
Confined Shelf, etc. This is important for creating a culture of verification within the climate modeling community, and 
also to provide evidence that your results are trusted. 
Author’s reply 10 

We agree and support the importance of a culture of verification within the climate modelling community (and 
beyond). We thus provided an additional figure reporting the convergence of our method for a given configuration 
among increase of the numerical grid resolution. We report that our method is first order accurate (expected from the 
finite-difference approximation) with regards to high-resolution reference results in both 2-D and 3-D. 
Changes in the manuscript 10 

Lines 441-458: We added a new Section “5.5: Validation of the FastICE numerical implementation” 
 to discuss this topic and a related new Figure 16. 

Referee’s comment 11 

In my opinion, including the MATLAB and Elmer/ICE results in the computational performance section of the paper is 
somewhat misleading/confusing, given that the runs are only on a single core CPU and not representative of CPU 
hardware capabilities. I am not sure one can make a conclusion from the results that the CPU algorithms are “bad” 
and the GPU ones are “good”. To do a fair comparison you would have to, for instance, take 1 node of a machine 
with CPUs, max it out, and run Elmer/ICE, then repeat the same procedure for 1 node + GPUs, and look at the 



relative CPU times. Are you able to perform a study like this? I strongly suggest that you do this and modify the 
results to have a fair comparison and to avoid misleading the reader. 
Author’s reply 11 

We support your comment and agree one should not jump to conclusions about an algorithm being “bad” or “good” 
based on those single-core CPU results displayed besides GPU-based results. However, those are just facts and 
we want to show what value to expect in our metric for a single-core CPU process. Due to the infinite number of 
possible node configurations, I do not think that one could ever make a relevant comparison. This motivated our 
choice to report the following results. We compared non MPI Elmer/Ice runtime on a desktop machine versus a non 
MPI FastICE runtime on a single desktop GPU, with the drawback that CPU utilisation is not maximised by 
construction while GPU utilisation is. Finally, we are mostly interested to report the scaling of the fastICE runtime with 
increase in problem size rather than to perform and extensive comparison among FastICE and Elmer/Ice as 
performance cannot be fairly compared given the different approaches. 
Changes in the manuscript 11 

— 

Referee’s comment 12 

Ultimately, when you get to “real” ice sheet calculations, you will need a thickness solver, to determine how your 
geometry will change in time. This would need to be coupled with your temperature and velocity equations. Is 
adding the thickness solver the next step? Please sketch out how that will fit in with your algorithm and maintain 
performance on GPUs. 
Author’s reply 12 

Indeed, including a thickness solver could be one way forward. That being said, our primary goal with FastICE is an 
improved process-based understanding of the boundaries of fast flow including shear margins, grounding zones 
and the basal sliding interface instead of focusing on “real” ice-sheet calculations for which several models already 
exist. Recent studies (e.g., Elsworth and Suckale, 2016) have shown that shear margin locations can shift almost 
discontinuously over as little as a few months if their location is governed by subglacial hydrology. These rapid 
adjustments of the sliding interface are an important contributor to the uncertainty in near-term sea-level-rise 
projections and are currently our primary focus. In most locations, with the possible exception of Thwaites Glacier, 
ice thickness will change very little on the monthly to annual time scale. With that scope in mind, a thickness solver 
is less important than integrating multi-physics behavior such as englacial and subglacial hydrology. There is no 
general answer on how these multi-physics components will alter GPU performance and we agree that a careful 
implementation is necessary to maintain scalability. That being said, the pseudo-transient algorithm behind FastICE 
lends itself to the integration of other components and can be tailored to the need of future specific studies. 
Changes in the manuscript 12 



— 

Referee’s comment 13 

On p. 29: you state that you “established that a relatively high spatial numerical resolution is necessary to resolve the 
non-linear and spontaneous localisation of thermomechanically coupled ice flow, including more than 100 grid-
points in the vertical direction”. Can you please expand on this? It doesn’t seem like you really studied the effect of 
vertical resolution in the problems presented, and this study would be more meaningful on more realistic land ice 
geometries than those considered. 100 grid points in the vertical dimension would be a lot more than is currently 
used in practice (most land ice models use on the order of 10 finite elements in the vertical dimension regardless of 
the horizontal spatial resolution although there is some evidence that more layers may be needed for finer resolution 
problems in (Tezaur et al. 2015)). 
Author’s reply 13 

High vertical (and horizontal) resolution will be needed to resolve local stress and pressure gradient arising from 
interaction with non-flat topography or to dynamically capture the localisation of strain and heat in the formation of 
shear-zones such as internal sliding layers (see attached figure). Those results are in consideration for publication in 
a separate study. 
Changes in the manuscript 13 

— 

Referee’s comment 14 

Please address also the following minor comments/typos: 
- p. 1, line 19: you imply that the models in parentheses (Bueler and Brown, 2009; Bassis, 2010; ....) are all 

shallow ice models, which is not true. For instance, the (Perego et al 2012) and (Tezaur et al. 2015) references 
are based on the first order Stokes equations, which are derived using a hydrostatic approximation together with 
the assumption that the ice sheet is thin. The (Bueler and Brown, 2009) reference focuses on the shallow shelf 
approximation, not the shallow ice approximation. A simple fix would be to change “such as shallow ice models” 
to “such as first-order Stokes (refs), shallow shelf (ref) and shallow ice (ref) models”. 

- P. 2, line 43: since you define CPU, you should also define GPU. 
- Title of Section 3 should be “Leveraging”. 
- Title of Section 5.4: should be “Experiment 4” instead of “Experiment 3”. 
- P. 29, like 554: “lever” should be “leverage”. 
Author’s reply 14 
- Thank you for your suggestions. We rephrased that portion of the introduction following your guideline. 
- GPU is defined 6 lines previous to the definition of CPU. 
- To lever (verb), to lever + age (noun), So the verb is to lever and not to leverage (see this link https://

this.isfluent.com/blog/2010/are-you-stupid-enough-to-use-leverage-as-a-verb for further details - apologies for 
the somewhat inappropriate language).  

- Experiment 4 is a variation of Experiment 3. We thus renamed them Experiments 3a and 3b for enhanced 
readability. 

Changes in the manuscript 14 

See previous lines. 

Sincerely yours, 

Ludovic Räss, on behalf of the authors.

https://this.isfluent.com/blog/2010/are-you-stupid-enough-to-use-leverage-as-a-verb
https://this.isfluent.com/blog/2010/are-you-stupid-enough-to-use-leverage-as-a-verb
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Abstract. Accurate predictions of future sea level rise require numerical models that capture the complex thermomechanical

feedbacks in rapidly deforming ice. Shear
::
Ice

::::::
sheets

:::::
loose

:::
the

:::::::
majority

::
of

:::::
their

::::
mass

:::::::
through

:::::
outlet

:::::::
glaciers

:::
or

::
ice

::::::::
streams,

:::::::
corridors

::
of

::::
fast

:::
ice

::::::
moving

::::::::
multiple

:::::
orders

::
of

:::::::::
magnitude

:::::
more

::::::
rapidly

::::
than

:::
the

::::::::::
surrounding

::::
ice.

::::
The

:::::
future

:::::::
stability

::
of

:::::
these

:::::::
corridors

::
of

::::
fast

::::::
moving

:::
ice

:::::::
depends

:::::::::
sensitively

:::
on

:::
the

::::::::
behaviour

::
of

:::::
their

:::::::::
boundaries,

:::::::
namely

::::
shear

:
margins, grounding zones

and the basal sliding interfaceare locations of particular interest
:
, where the stress-field is complex and fundamentally three-5

dimensional. These transition zones
:::::::::
boundaries are prone to thermomechanical localisation, which can be captured numerically

only with high temporal and spatial resolution. Thus, better understanding the coupled physical processes that govern these

boundaries of localised strain
:::
the

:::::::
response

::
of
:::::

these
:::::::::
boundaries

:::
to

::::::
climate

::::::
change

:
necessitates a non-linear, full Stokes model

that affords high resolution and scales well in three dimensions. This paper’s goal is to contribute to the growing toolbox

for modelling thermomechanical deformation in ice by levering GPU accelerators’ parallel scalability. We propose
:::::::
FastICE,10

a numerical model that relies on pseudo-transient iterations to solve the implicit thermomechanical coupling between ice

motion and temperature involving shear-heating and a temperature-dependant ice viscosity. Our method
::::::
FastICE

:
is based

on the finite-difference discretisation, and we implement the pseudo-time integration in a matrix-free way. We benchmark the

mechanical Stokes solver against the finite-element code Elmer/Ice and report good agreement among the results. We showcase

a parallel version of the solver
:::::::
FastICE to run on GPU-accelerated distributed memory machines, reaching a parallel efficiency15

of 93
::
99%. We show that our model is particularly useful for improving our process-based understanding of flow localisation

in the complex transition zones bounding rapidly moving ice.

1 Introduction

The fourth IPCC report (Solomon et al., 2007) revealed
::::::::
concludes

:
that existing ice sheet flow models do not accurately de-

scribe polar ice sheet discharge (e.g., Gagliardini et al., 2013; Pattyn et al., 2008) owing to their inability to simultaneously20

model slow and fast ice flow
::::::
motion (Gagliardini et al., 2013; Bueler and Brown, 2009). This issue results from the fact

that many ice flow models are based on simplified approximations of non-linear Stokes equations, such as shallow ice models

(Bueler and Brown, 2009; Bassis, 2010; Schoof and Hindmarsh, 2010; Goldberg, 2011; Egholm et al., 2011; Pollard and DeConto, 2012; Perego et al., 2012; Tezaur et al., 2015)

1



::::::::
first-order

::::::
Stokes

::::::::::::::::::::::::::::::::
(Perego et al., 2012; Tezaur et al., 2015)

:
,
::::::
shallow

::::
shelf

::::::::::::::::::::::
(Bueler and Brown, 2009)

:::
and

:::::::
shallow

::
ice

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bassis, 2010; Schoof and Hindmarsh, 2010; Goldberg, 2011; Egholm et al., 2011; Pollard and DeConto, 2012)

::::::
models. Shallow ice models are computationally more tractable and describe the motion of large homogeneous portions of ice25

as a function of the basal friction. However, this category of models fails to capture the coupled multi-scale processes that

govern the behaviour of the boundaries of streaming ice, including shear margins, grounding zones and the basal interface.

These boundaries dictate the stability of the current main drainage routes from Antarctica and Greenland, and predicting their

future evolution is critical for understanding polar ice sheet discharge.

Full Stokes models (Gagliardini and Zwinger, 2008; Gagliardini et al., 2013; Jarosch, 2008; Jouvet et al., 2008; Larour et al.,30

2012; Leng et al., 2012, 2014; Brinkerhoff and Johnson, 2013; Isaac et al., 2015) provide a complete mechanical description

of deformation by capturing the entire stress-rate and strain-rate tensor. In three dimensions (3-D), full Stokes calculations

set a high demand on computational resources that requires a parallel and high-performance computing approach to achieve

reasonable times to solution. An added challenge in full Stokes models is ice’s
::
the

:
strongly non-linear thermomechanics . Ice’s

::
of

:::
ice.

:::
Ice

:
viscosity significantly depends on both temperature and strain-rate (Robin, 1955; Hutter, 1983; Morland, 1984),35

which can lead to spontaneous localisation of shear (e.g., Duretz et al., 2019; Räss et al., 2019a). Particularly challenging is the

scale separation associated with localisation, which leads to micro-scale physical interaction generating meso-scale features

such as thermally-activated shear zones or preferential flow paths in macro-scale ice domains. Thus, both high spatial and

temporal resolutions are important for numerical models to capture and resolve spontaneous localisation.

This paper’s main contribution
:::
The

::::
main

:::::::::::
contribution

::
of

::::
this

:::::
paper is to lever the unprecedented parallel performance of40

modern graphical processing units (GPUs) to accelerate the time-to-solution for thermomechanically coupled full Stokes mod-

els in 3-D utilising a pseudo-transient (PT) iterative scheme – FastICE (Räss et al., 2019b). We argue that our numerical model

is particularly useful for advancing our
:::::::
FastICE

:
is
::
a process-based understanding of the boundaries of streaming flow including

:::::
model

:::
that

:::::::
focuses

:::::::::
specifically

:::
on

:::::::::
improving

:::
our

:::::
ability

::
to

:::::
better

::::::
model

:::
and

:::::::::
understand

::::::::::
spontaneous

::::::::
englacial

::::::::::
instabilities

::::
such

::
as

:::::::::::::::
thermomechanical

::::::::::
localisation

::
at

:::
the

::::
scale

::
of

:::::::::
individual

::::
field

::::
sites.

::::::::::::::::
Thermomechanical

::::::::::
localisation

::::
arise

::
in

::
a

::::::::::::
self-consistent45

:::
way

:::
in shear margins, grounding zones and the

::
at

:::
the

:::::::::
grounding

::::
zone

::::
and

::
in

:::
the

:::::::
vicinity

::
of

:::
the

:
basal sliding interface. We

demonstrate our thermomechanical Stokes models’ ability to resolve the spontaneous ice flow localisation in both 2-D and

3-D and on (multiple) GPUs
:
,
::::::
making

:::
our

::::::
model

::::::::::
particularly

::::
well

:::::
suited

:::
for

::::::::
assessing

:::
the

::::::::
complex

:::::::
physical

:::::::::
feedbacks

::
in

:::
the

:::::::::
boundaries

::
of

:::
fast

:::::::
moving

:::
ice.

:::::::
FastICE

::
is

:
a
:::::::::::
complement

::
to

::::::
existing

:::::::
models

::
by

::::::::
providing

::
a
:::::::::::
multi-physics

::::::::
platform

::
for

::::::::
studying

::
the

::::::::
transition

::::::::
between

:::
fast

:::
and

:::::
slow

::
ice

:::::::
motion

:::::
rather

::::
than

:::::::::
addressing

:::
the

:::::::::
large-scale

::::::::
evolution

::
of

:::
the

:::::
entire

:::
ice

::::
sheet.50

Recent trends in the computing industry show a shift from single-core to many-core architectures as an effective way to

increase computational performance. This trend is common to both central processing unit (CPU) and GPU hardware ar-

chitectures (Cook, 2012).
::::
GPUs

:::
are

::::::::
compact,

:::::::::
affordable

::::
and

::::::::
relatively

:::::::::::::
programmable

::::::
devices

::::
that

:::::
offer

::::
high

:::::::::::
performance

:::::::::
throughput

:::::
(close

::
to

::::
TB/s

:::::
peak

:::::::
memory

::::::::::
throughput)

:::
and

:
a
:::::
good

::::
price

::
to

:::::::::::
performance

::::
ratio.

:::::
GPUs

:::::
offer

::
an

::::::::
attractive

:::::::::
alternative

::
to

::::::::::
conventional

::::::
CPUs

:::::
owing

:::
to

::::
their

:::::::::
massively

::::::
parallel

::::::::::
architecture

::::::::
featuring

:::::::::
thousands

::
of

::::::
cores. The programming model55

behind GPUs is based on a parallel principle called Single Instruction Multiple Data (SIMD). This principle entails that ev-

ery single instruction is executed on different data. The same instructions block is executed by every thread. GPUs’ massive

parallelism and the related high performance is achieved by executing thousands of threads concurrently using multi-threading

2



in order to effectively hide latency. Numerical stencil-based techniques such as the finite-difference method allow one to

take advantage of GPU hardware, since spatial derivatives are approximated by differences between two (or more) adjacent60

grid-points. This results in minimal, local and regular memory access patterns. The operations performed on each stencil are

identical for each grid-point throughout the entire computational domain. Combined with a matrix-free discretisation of the

equations and iterative PT updates, the finite-difference stencil evaluation is well suited for the SIMD programming philosophy

of GPUs. Each operation on the GPU assigns one thread to compute the update of a given grid-point. Since on the GPU device,

one core can simultaneously execute several threads, the operation set is executed on the entire computational domain almost65

concurrently.

We tailor our numerical method to optimally exploit the massive parallelism of GPU hardware(Omlin, 2017; Räss et al., 2018; Duretz et al., 2019; Räss et al., 2019a)

. Our
:
,
:::::
taking

:::::::::
inspiration

::::
from

::::::
recent

::::::::
successful

::::::::::
GPU-based

::::::::::::::
implementations

::
of

::::::
viscous

:::
and

:::::::
coupled

::::
flow

::::::::
problems

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Omlin, 2017; Räss et al., 2018; Duretz et al., 2019; Räss et al., 2019a)

:
.
:::
Our

::::
work

::::::::::
contributes

::
to

::
the

::::
few

:::::::
land-ice

::::::::
dynamical

:::::
cores

:::::::
targeting

::::::::::
many-cores

:::::::::::
architectures

::::
such

::
as

:::::
GPUs

::::::::::::::::::::::::::::::::::::
(Brædstrup et al., 2014; Watkins et al., 2019)

:
.
:::
Our

:
numerical implementation relies on an iterative and matrix-free method to solve the mechanical and thermal problems70

using a finite-difference discretisation on a Cartesian staggered grid. We ensure optimal performance, minimising the memory

footprint bottleneck while ensuring optimal data alignment in computer memory. Our accelerated PT algorithm (Frankel, 1950;

Cundall et al., 1993; Poliakov et al., 1993; Kelley and Keyes, 1998; Kelley and Liao, 2013) utilises an analogy of transient

physics to converge to the steady-state problem at every time step. One advantage of this approach is that the iterative stabil-

ity criterion is physically motivated and intuitive to adjust and to generalise. Using transient physics for numerical purpose75

allows us to define local CFL-like criteria in each computational cell to be used to minimise residuals. This approach enables

maximal convergence rate simultaneously in the entire domain and avoids costly global reduction operations from becoming a

bottleneck in parallel computing.

We verify the numerical implementation of our mechanical Stokes solver against available benchmark studies including

EISMINT (Huybrechts and Payne, 1996) and ISMIP (Pattyn et al., 2008). There is only one model inter-comparison that in-80

vestigates the coupled thermomechanical dynamics, EISMINT 2 (Payne et al., 2000). Unfortunately, experiments in EISMINT

2 are usually performed using a coupled thermomechanical first-order shallow ice model (Payne and Baldwin, 2000; Saito

et al., 2006; Hindmarsh, 2006; Bueler et al., 2007; Hindmarsh, 2009; Brinkerhoff and Johnson, 2015) making the comparison

to our full Stokes implementation less immediate. Although thermomechanically coupled Stokes models exist (Zwinger et al.,

2007; Leng et al., 2014; Schäfer et al., 2014; Gilbert et al., 2014; Zhang et al., 2015; Gong et al., 2018), very few studies have85

investigated key aspects of the implemented model, such as convergence among grid refinement and impacts of one-way vs.

two-way couplings, with few exceptions (e.g. Duretz et al., 2019).

We start by providing an overview over the mathematical model, describing ice dynamics and its numerical implementa-

tion. We then discuss GPUs capabilities and explain our GPU implementation. We further report model comparison against a

selection of benchmark studies, followed by sharing the results and performance measurements. Finally, we discuss pros and90

cons of the method, and highlight glaciological contexts in which our model could prove useful. The codes examples based on

the PT method in both MATLAB and CUDA C programming language are available for download from Bitbucket at and from

https://bitbucket.org/lraess/fastice/
:::
and

::::
from

:
http://wp.unil.ch/geocomputing/software/.
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2 The model

2.1 The mathematical model95

We capture the flow of an incompressible, non-linear, viscous fluid – including a temperature-dependent rheology. Since ice is

approximately incompressible, the equation for conservation of mass reduces to:

@vi

@xi
= 0 , (1)

where vi is the velocity component in the spatial direction xi.

Neglecting inertial forces, ice’s flow is driven by gravity and is resisted by internal deformation and basal stress:100

@⌧ij

@xj
� @P

@xi
+Fi = 0 , (2)

where Fi = ⇢g sin(↵)[1,0,�cot(↵)] is the external force. Ice density is denoted by ⇢, g is the gravitational acceleration, and

↵ is the characteristic bed slope. P is the isotropic pressure and ⌧ij is the deviatoric stress tensor. The deviatoric stress tensor

⌧ij is obtained by decomposing the Cauchy stress tensor �ij in terms of deviatoric stress ⌧ij and isotropic pressure P .

In the absence of phase transitions, the temporal evolution of temperature in deforming, incompressible ice is governed by105

advection, diffusion and shear-heating:

⇢c

✓
@T

@t
+ vi

@T

@xi

◆
=

@

@xi

✓
k
@T

@xi

◆
+ ⌧ij ✏̇ij , (3)

where T represents the temperature deviation from the initial temperature T0, c is the specific heat capacity, k is the spatially-

varying thermal conductivity and ✏̇ij is the strain-rate tensor. The term ⌧ij ✏̇ij represents the shear-heating, a source term that

emerges from the mechanical model.110

Shear-heating could locally raise the temperature in the ice to the pressure melting point. Once ice has reached melting point,

any additional heating is converted to latent heat, which prevents further temperature increase. Thus, we impose a temperature

cap at the pressure melting point, following Suckale et al. (2014), by describing the melt production using a heavy-side function

✓(T �Tm): :::::::::
�(T �Tm)::

⇢c

✓
@T

@t
+ vi

@T

@xi

◆
=

@

@xi

✓
k
@T

@xi

◆
+ [1��(T �Tm)]⌧ij ✏̇ij ,

(4)115

where Tm stands for the ice melting temperature. We balance the heat produced by shear-heating with a sink term in regions

where the melting temperature is reached. The volume of produced meltwater can be calculated in a similar way as proposed

by Suckale et al. (2014).
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We approximate the rheology of ice through Glen’s flow law (Glen, 1952; Nye, 1953):

✏̇ij =
1

2

✓
@vi

@xj
+
@vj

@xi

◆

= a0⌧II
n�1 exp

✓
� Q

R(T +T0)

◆
⌧ij ,

(5)120

where a0 is the pre-exponential factor, R is the universal gas constant, Q is the activation energy, n is the stress exponent, and

⌧II is the second invariant of the stress tensor defined by ⌧II =
p
1/2⌧ij⌧ij . Glen’s flow law posits an exponent of n= 3.

At the ice top surface �t(t), we impose the upper surface boundary condition �ijnj =�Patmnj , where nj denotes the

normal unit vector at the ice surface boundary, and Patm the atmospheric pressure. Because atmospheric pressure is negligible

relative to pressure within ice column, we can also use a standard stress-free simplification of the upper surface boundary125

condition �ijnj = 0. On the bottom ice-bedrock interface, we can impose two different boundary conditions. For the parts of

the ice-bedrock interface �0(t) where the ice is frozen to the ground, we impose a zero velocity vi = 0 and thus no sliding

boundary condition. On the parts of ice-bedrock interface �s(t) where the ice is at the melting point, we impose a Rayleigh

friction boundary condition – the so-called linear sliding law – given by:

vini = 0 ,

ni�ijtj =��2
vjtj ,

(6)130

where the parameter �2 denotes a given sliding coefficient, ni denotes the normal unit vector at the ice-bedrock interface,

and tj denotes any unit vector tangential to the bottom surface. On the side or lateral boundaries, we impose either Dirichlet

boundary conditions if the velocities are known, or periodic boundary conditions, mimicking an infinitely extended domain.

2.2 Non-dimensionalisation

For numerical purposes and for ease of generalisation, it is often preferable to use non-dimensional variables. This allows one135

to limit truncation errors (especially relevant for single-precision calculations) and to scale the results to various different initial

configurations. Here, we use two different scale sets, depending on whether we solve the purely mechanical part of the model

or the thermomechanically coupled system of equations.

In the case of an isothermal model, we use ice thickness, H , and gravitational driving stress to non-dimensionalise the

governing equations:140

L=H ,

⌧ = ⇢gLsin(↵), ,

v = 2nA0L⌧
n
,

(7)
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where A0 is the isothermal deformation rate factor and ↵ is the mean bed slope. We can then rewrite the governing equations

in their non-dimensional form as follows:

@v
0
i

@x
0
i

= 0 ,

@⌧
0
ij

@x
0
j

� @P
0

@x
0
i

+F
0
i = 0 ,

✏̇
0
ij =

1

2

 
@v

0
i

@x
0
j

+
@v

0
j

@x
0
i

!
= 2�n

⌧
0
II

n�1
⌧
0
ij ,

(8)

where F
0
i is now defined as F

0
i = [1,0,�cot(↵)]. The model parameters are the mean bed slope ↵ and domain size in each145

horizontal direction, i.e. L0
x and L0

y .

Reducing the thermomechanically coupled equations to a non-dimensional form requires not only length and stress, but also

temperature and time. We choose the characteristic scales such that the coefficients in front of the diffusion and shear-heating

terms in the temperature evolution Eq. (3) reduce to one:

T =
nRT0

2

Q
,

⌧ = ⇢cpT ,

t= 2�n
a
�1

0
⌧
�n exp

✓
Q

RT0

◆
,

L=

s
k

⇢cp
t .

(9)150

These choices entail that the velocity scale in the thermomechanical model is v = L/t. We obtain the non-dimensional (primed-

variables) by using the characteristic scales given in Eq. (9), which leads to:

@v
0
i

@x
0
i

= 0 ,

@⌧
0
ij

@x
0
j

� @P
0

@x
0
i

+F
0
i = 0 ,

@T
0

@t0
+ v

0
i
@T

0

@x
0
i

=
@
2
T

0

@x
0
i
2
+ ⌧

0
ij ✏̇

0
ij ,

✏̇
0
ij =

1

2

 
@v

0
i

@x
0
j

+
@v

0
j

@x
0
i

!

= 2�n
⌧
0
II

n�1
exp

 
nT

0

1+ T 0

T 0
0

!
⌧
0
ij ,

(10)
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where F
0
i is now defined as F

0
i = F [1,0,�cot(↵)] and F = ⇢g sin(↵)L/⌧ . The model parameters are the non-dimensional

initial temperature T
0
0
, the stress exponent n, the non-dimensional force F , the mean bed slope ↵, non-dimensional domain155

height L0
z , and the horizontal domain size L0

x and L0
y (Figure 3). We motivate the chosen characteristic scales by their usage in

other studies of thermomechanical strain localisation (Duretz et al., 2019; Kiss et al., 2019). In the interest of a simple notation,

we will omit the prime symbols on all non-dimensional variables in the remainder of the paper.

2.3 A simplified 1-D semi-analytical solution

We consider a specific 1-D mathematical case where all horizontal derivatives vanish (@/@x= @/@y = 0). The only remaining160

shear stress component ⌧xz and pressure P are determined by analytical integration and are constant in time considering a

fixed domain (Figure 3). We assume that stresses vanish at the surface and we set both horizontal and vertical basal velocity

components to 0. We then integrate the 1-D mechanical equation in the vertical direction and substitute it into the temperature

equation, which leads to:

@T (z, t)

@t
=
@
2
T (z, t)

@z2
+2(1�n)

�
FLz

�(n+1)

✓
1� z

Lz

◆(n+1)

exp

 
nT (z, t)

1+ T (z,t)
T0

!
,

vx(z, t) = 2(1�n)
�
FLz

�n
zZ

0

✓
1� z

Lz

◆n

exp

 
nT (z, t)

1+ T (z,t)
T0

!
dz .

(11)165

Notably, the velocity and shear-heating terms (Eq. 11) are now a function only of temperature and, thus, of depth and time. To

obtain a solution of the coupled system, one only needs to numerically solve for the temperature evolution profile, while the

velocity can then be obtained diagnostically by a simple numerical integration.

2.4 The numerical implementation

We discretise the coupled thermomechanical Stokes equations (Eq. 10) using the finite-difference method on a staggered170

Cartesian grid. Among many numerical methods currently used to solve partial differential equations, the finite-difference

method is commonly used and has been successfully applied in solving a similar equations’ set relating to geophysical problems

in geodynamics (Harlow and Welch, 1965; Ogawa et al., 1991; Gerya, 2009). The staggering of the grid provides second-order

accuracy of the method (Virieux, 1986; Patankar, 1980; Gerya and Yuen, 2003; McKee et al., 2008), avoids oscillatory pressure

modes (Shin and Strikwerda, 1997), and produces simple yet highly compact stencils. The different physical variables are175

located at different locations on the staggered grid. Pressure nodes and normal components of the strain-rate tensor are located

at the cell centres. Velocity components are located at the cell mid-faces (Figure 1), while shear stress components are located

at the cell vertices in 2-D (e.g., Harlow and Welch, 1965). The resulting algorithms are well suited for taking advantage of
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My(i,j+1/2)

My(i,j-1/2)

Mx(i-1/2,j) Mx(i+1/2,j)

C(i,j)

V(i-1/2,j+1/2) V(i+1/2,j+1/2)

V(i-1/2,j-1/2) V(i+1/2,j-1/2)

Figure 1. Setup of the staggered grid in 2-D. Variable C is located at the cell centre, V depicts variables located at cell vertices and Mx and

My represents variables located at cell mid-faces in x or y direction.

modern many-core parallel accelerators, such as graphical processing units (GPUs) (Omlin, 2017; Räss et al., 2018; Duretz

et al., 2019; Räss et al., 2019a). Efficient parallel solvers utilising modern hardware provide a viable solution to resolve the180

computationally challenging coupled thermomechanical full Stokes calculations in 3-D. The power law viscous ice rheology

(Eq. 5) exhibits a non-linear dependence on both the temperature and the strain-rate:

⌘ = ˙✏II
1�n
n exp

 
� T

1+ T
T0

!
, (12)

where ✏̇II is the square root of the second invariant of the strain-rate tensor ✏̇II =
p
1/2✏̇ij ✏̇ij . We regularise the strain-rate and

temperature dependant viscosity ⌘ to prevent non-physical values for negligible strain-rates, ⌘reg = 1/(⌘�1 + ⌘
�1

0
). We use a185

harmonic mean to obtain a naturally smooth transition to background viscosity values at negligible strain-rate ⌘0.

We define temperature on the cell centres within our staggered grid. We discretise the temperature equation’s advection term

using a first-order upwind scheme, doing the physical time integration using either an implicit backward Euler or a Crank-

Nicolson (Crank and Nicolson, 1947) scheme.
::
To

::::::
ensure

::::
that

:::
our

::::::::
numerical

::::::
results

:::
are

:::
not

::::::::::
confounded

::
by

:::::::::
numerical

::::::::
diffusion,

::
the

:::::
Grid

:::::
Peclet

:::::::
number

::::
must

:::
be

::::::
smaller

::::
than

:::
the

::::::::
physical

:::::
Peclet

:::::::
number.

::::::::
Limiting

::::::::
numerical

::::::::
diffusion

::
is
::::
one

:::::::::
motivation

:::
for190

::::
using

::::
high

:::::::::
numerical

::::::::
resolution

::
in
::::
our

:::::::::::
computations.

:

We rely on a pseudo-transient (PT) continuation or relaxation method to solve the system of coupled non-linear partial

differential equations (10) in an iterative and matrix-free way (Frankel, 1950; Cundall et al., 1993; Poliakov et al., 1993; Kelley

8



and Keyes, 1998; Kelley and Liao, 2013). To this end, we reformulate the thermomechanical Eq. (10) in a residual form:

� @vi

@xi
= fp ,

@⌧ij

@xj
� @P

@xi
+Fi = fvi ,

� @T

@t
� vi

@T

@xi
+
@
2
T

@xi
2
+ ⌧ij ✏̇ij = fT ,

(13)195

The right-hand-side terms (fp,fvi ,fT) are the non-linear continuity, momentum and temperature residuals, respectively, and

quantify the magnitude of the imbalance of the corresponding equations.

We augment the steady-state equations with PT terms using the analogy of physical transient processes such as the bulk

compressibility or the inertial terms within the momentum equations (Duretz et al., 2019). This formulation enables us to

integrate the equation forward in pseudo-time ⌧ until we reach the steady-state (i.e. the pseudo-time derivatives vanish). Relying200

on transient physics within the iterative process provides well-defined (maximal) iterative time step limiters. We reformulate

Eq. (10):

� @vi

@xi
=
@P

@⌧p
,

@⌧ij

@xj
� @P

@xi
+Fi =

@vi

@⌧vi

,

� @T

@t
� vi

@T

@xi
+
@
2
T

@xi
2
+ ⌧ij ✏̇ij =

@T

@⌧T
,

(14)

where we introduced the pseudo-time derivatives @/@⌧ for the continuity (@P/@⌧p), the momentum (@vi/@⌧vi), and the

temperature (@T/@⌧T) equation.205

For every non-linear iteration k, we update the effective viscosity ⌘e↵ [k] in the logarithmic space by taking a fraction ✓⌘ of

the actual physical viscosity ⌘[k] using the current strain-rate and temperature solutions fields and a fraction (1� ✓⌘) of the

effective viscosity calculated in the previous iteration ⌘e↵ [k�1]. :
:

⌘e↵
[k] = exp

h
✓⌘ ln

⇣
⌘
[k]
⌘
+(1� ✓⌘) ln

⇣
⌘e↵

[k�1]

⌘i
,. (15)

where
::
We

::::
use

:::
the

::::::
scalar ✓⌘ (0 ✓⌘  1) is a viscosity relaxation factor. This relaxation of the non-linearity allows the210

effective viscosity to iteratively approach its physical value within the pseudo-transient iterations. A similar non-linear viscosity

relaxation approach
:
to

:::::
select

::::
the

::::::
fraction

:::
of

:
a
:::::
given

:::::::::
nonlinear

:::::::
quantity,

::::
here

:::
the

::::::::
effective

::::::::
viscosity

::::
⌘e↵ ,

::
to

::
be

:::::::
updated

:::::
each

:::::::
iteration.

::::::
When

::::::
✓⌘ = 0,

:::
we

::::::
would

::::::
always

:::
use

:::
the

::::::
initial

:::::
guess,

:::::
while

:::::::
✓⌘ = 1,

:::
we

:::::
would

::::
take

::::::
100%

::
of

:::
the

:::::::
current

::::::::
nonlinear

:::::::
quantity.

:::
We

::::::
usually

:::::
define

:::::
theta

::
to

::
be

::
in

:::
the

:::::
range

::
of

:::::::::::
10�2 � 10�1

::
in

::::
order

::
to

:::::::
account

:::
for

::::
some

::::
time

::
to

::::
fully

:::::
relax

:::
the

::::::::
nonlinear

:::::::
viscosity

::
as

:::
the

:::::::::
nonlinear

:::::::
problem

::::
may

:::
not

::
be

::::::::::
sufficiently

:::::::::
converged

::
at

:::
the

::::::::
beginning

:::
of

:::
the

::::::::
iterations.

::::
This

::::::::
approach

::
is

::
in

::
a215

:::
way

::::::
similar

:::
to

::
an

::::::::::::::
under-relaxation

::::::
scheme

::::
and was successfully implemented in the ice sheet model development by Tezaur

et al. (2015). ,
:::
for

::::::::
example.
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The pseudo-time integration of Eq. (14) leads to the definition of pseudo-time steps �⌧p,�⌧vi and �⌧T, for the continuity,

momentum and temperature equations, respectively. Transient physical processes such as compressibility (continuity equation)

or acceleration (momentum equation) dictate the maximal allowed explicit pseudo-time step to be utilised in the transient220

process. Using the largest stable steps allows one to minimise the iteration count required to reach the steady-state:

�⌧p =
2.1ndim⌘

k
e↵
(1+ ⌘b)

max(ni)
,

�⌧vi =
min(�xi)2

2.1ndim⌘
k
e↵
(1+ ⌘b)

,

�⌧T =

✓
2.1ndim

min(�xi)2
+

1

�t

◆�1

,

(16)

where ndim is the number of dimensions, �xi and ni are the grid spacing and the number of grid-points in the i direction

(i= x in 1-D, x,z in 2-D and x,y,z in 3-D), respectively. The physical time step, �t, advances the temperature in time.

The pseudo-time step �⌧T is an explicit Courant-Friedrich-Lewy (CFL) time step that combines temperature advection and225

diffusion. Similarly, �⌧vi is the explicit CFL time step for viscous flow, representing the diffusion of strain-rates with viscosity

as the diffusion coefficient. It is modified to account for the numerical equivalent of a bulk viscosity ⌘b. We choose �⌧p to

be the inverse of �⌧vi to ensure that the pressure update is proportional to the effective viscosity, while the velocity update is

sensitive to the inverse of the viscosity. This interdependence reduces the iterative method’s sensitivity to the variations in the

ice’s viscosity.230

During the iterative procedure, we allow for finite compressibility in the ice, @P/@⌧p, while assuring that the PT iterations

eventually reach the incompressible solution. The relaxation of the incompressibility constraint is analogous to the penalisation

of pressure pioneered by Chorin (1967, 1968), and built on extensively subsequently. Compared to projection-type methods, it

has the advantage that no pressure boundary condition is necessary that will lead to numerical boundary layers (Weinan and

Liu, 1995). We use the parameter ⌘b to balance the divergence-free formulation of strain-rates in the normal stress component235

evaluation, where it is multiplied with the pressure residual fp. Thus, normal stress is given by ⌧ii = 2⌘(✏̇ii + ⌘bfp). With

convergence of the method, the pressure residual fp vanishes and the incompressible form of the normal stresses is recovered.

Combining the residual notation introduced in Eq. (13), with the pseudo-time derivatives in Eq. (14) leading to the update

rules:

P
[k] = P

[k�1] +�P
[k]

,

vi
[k] = vi

[k�1] +�vi
[k]

,

T
[k] = T

[k�1] +�T
[k]

,

(17)240
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Control

Cache

DRAM DRAM

ALU ALU

ALUALU

CPU GPU

Figure 2. Schematic chip representation for both the central processing unit (CPU) and graphical processing unit (GPU) architecture. The

GPU architecture consist of thousands of arithmetic and logical units (ALU). On the CPU, most of the on-chip space is devoted to controlling

units and cache memory, while the number of ALUs is significantly reduced.

where the pressure, velocity and temperature iterative increments represent the current residual [k] multiplied by the pseudo-

time step:

�P
[k] =�⌧pfp

[k]
,

�vi
[k] =�⌧vifvi

[k]
,

�T
[k] =�⌧TfT

[k]
.

(18)

The straight-forward update rule (Eq. 17) is based on a first-order scheme (@/@⌧). In 1-D, it implies that one needs N
2

iterations to converge to the stationary solution, where N stands for the total number of grid-points. This behaviour arises245

because the time step limiter �⌧vi implies a second-order dependence on the spatial derivatives for the strain-rates. In contrast,

a second-order scheme (Frankel, 1950),
�
@
2
/@⌧

2 + @/@⌧
�
:::::::::::::::::

�
 @

2
/@⌧

2 + @/@⌧
�

invokes a wave-like transient physical process

for the iterations. The main advantage is the scaling of the limiter as �x instead of �x
2 in the explicit pseudo-transient time

step definition. We can reformulate the velocity update as:

�vi
[k] =�⌧vifvi

[k] +

✓
1� ⌫

ni

◆
�vi

[k�1] (19)250

where ↵
:
 

:
can be expanded to (1� ⌫/ni) and acts like a damping term on the momentum residual. A similar damping

approach is used for elastic rheology in the FLAC (Cundall et al., 1993) geotechnical software in order to significantly reduce

the number of iterations needed for the algorithm to converge. The optimal value of the introduced parameter ⌫ is found to

be in a range (1 ⌫  10), and it is usually problem-dependent. This approach was successfully implemented in recent PT

developments by Räss et al. (2018, 2019a) and Duretz et al. (2019).
:::
The

:::::::
iteration

:::::
count

::::::::
increases

::::
with

:::
the

:::::::::
numerical

:::::::
problem255

:::
size

:::
for

:::::::::::
second-order

:::
PT

:::::::
solvers

:::::
scales

:::::
close

::
to

:::::
ideal

:::::::::
multi-grid

::::::::::::::
implementations.

:::::::::
However,

:::
the

::::
main

:::::::::
advantage

:::
of

:::
the

:::
PT

:::::::
approach

::
is
:::
its

:::::::::
conciseness

::::
and

:::
the

:::
fact

::::
that

::::
only

:::
one

:::::::::
additional

::::::::
read/write

::::::::
operation

:::::
needs

::
to
:::
be

:::::::
included

:
-
:::::::
keeping

:::::::::
additional

:::::::
memory

:::::::
transfers

::
to

:::
the

:::::
strict

::::::::
minimum.

:

Notably, the PT solution procedure leads to a two-way numerical coupling between temperature and deformation (mechan-

ics), which enables us to recover an implicit solution of the entire system of non-linear partial differential equations. Besides260
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x

z

x

z
y

⌧xz = 0, �zz = 0

Figure 3. Model configuration for the numerical experiments: a) 2-D model and b) 3-D model. Both surface and bed topography are flat but

inclined at a constant angle of ↵. We show both the model coordinate axes and the prescribed boundary conditions.

the coupling terms, rheology is also treated implicitly, i.e. the shear viscosity ⌘ is always evaluated using the current physical

temperature, T , and strain-rate, ✏̇II. Our method is fully local. At no point during the iterative procedure does one need to per-

form a global reduction, nor to access values that are not directly collocated. These considerations are crucial when designing

a solution strategy that targets parallel hardware such as many-core GPU accelerators. We implemented the PT method in the

MATLAB and CUDA C programming languages. Computations in CUDA C can be performed in both double and single pre-265

cision arithmetic. The computations in CUDA C shown in the remainder of the paper were performed using double-precision

arithmetic
:
,
:
if
:::
not

::::::::
specified

::::::::
otherwise.

3 Levering hardware accelerators

3.1 Implementation on graphical processing units

Our GPU algorithm development effort is motivated by the aim to resolve the coupled thermomechanical system of equations270

(Eq. 12-13) with high spatial and temporal accuracy in 3-D. To this end, we exploit the low-level intrinsic parallelism of shared

memory devices, targeting particularly GPUs. A GPU is a massively parallel device originally devoted to render the colour

values for pixels on a screen independently from one another where the latency can be masked by high throughput (i.e. compute

as many jobs as possible in a reasonable time). A schematic representation (Figure 2) highlights the conceptual discrepancy

between GPU and CPU. On the GPU chip, most of the area is devoted to the arithmetic units, while on the CPU, a large area275

of the chip hosts scheduling and control microsystems.

The development of GPU-based solvers requires that one devote
::::::
devotes

:
time to the design of new algorithms that lever

the massively parallel potential of the current GPU architectures. Considerations such as limiting the memory transfers to the

mandatory minimum, avoiding complex data layouts, preferring matrix-free solvers with low memory footprint, and optimal

parallel scalability instead of classical Direct-Iterative solver types (Räss et al., 2019a) are key in order to achieve optimal280

performance.
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Experiment Lx Ly ↵ n �0 LD
x LD

y LD
z

Exp. 1 2-D 10 – 10 3 – 2 km – 200 m

Exp. 1 3-D 10 4 10 3 – 2 km 800 m 200 m

Exp. 2 2-D 10 – 0.1 3 0.1942 10 km – 1 km

Exp. 2 3-D 10 10 0.1 3 0.1942 10 km 10 km 1 km

Table 1. Experiments 1 and 2: Non-dimensional model parameters and the dimensional values
�
D
�

for comparison.

:::
Our

:::::::::::::
implementation

::::
does

::::
not

:::
rely

:::
on

:::
the

::::::
CUDA

::::::
unified

::::::
virtual

:::::::
memory

:::::::
(UVM)

:::::::
features.

:::::
UVM

::::::
avoids

::
to

::::::::
explicitly

::::::
define

:::
data

:::::::
transfer

:::::::
between

:::
the

::::
host

::::::
(CPU)

:::
and

::::::
device

:::::
(GPU)

::::::
arrays

:::
but

:::::
results

:::
in

::::
about

::::
one

:::::
order

::
of

:::::::::
magnitude

:::::
lower

:::::::::::
performance.

:::
We

::::::
suspect

:::
the

:::::::
internal

:::::::
memory

::::::::
handling

::
to

::
be

::::::::::
responsible

::
of

:::::::::::
continuously

::::::::::::
synchronising

::::
host

:::
and

::::::
device

:::::::
memory,

::::::
which

::
is

:::
not

::::::
needed

::
in

:::
our

::::
case.

:
285

3.2 Multi-GPU implementation

We rely on a distributed memory parallelisation using the message passing interface (MPI) library to overcome the on-device

memory limitation inherent to modern GPUs and exploit supercomputers’ computing power. Access to a large number of par-

allel processes enables us to tackle larger computational domains or to refine grid resolution. We rely on domain decomposition

to split our global computational domain into local domains, each executing on a single GPU handled by an MPI process. Each290

local process has its boundary conditions defined by a) physics if on the global boundary or b) exchanged information from

the neighbouring process in case of internal boundaries. We use CUDA-aware non-blocking MPI messages to exchange the

internal boundaries among neighbouring processes. CUDA-awareness allows us to bypass explicit buffer copies on the host

memory by directly exchanging GPU pointers resulting in an enhanced workflow pipe-lining. Our algorithm implementation

and solver requires no global reduction. Thus, there is no need for global MPI communication, eliminating an important po-295

tential scaling bottleneck. Although the proposed iterative and matrix-free solver features a high locality and should scale by

construction, the growing number of MPI processes may deprecate the parallel runtime performance by about 20% owing to

the increasing number of messages and overall machine occupancy (Räss et al., 2019c). We address this limitation by overlap-

ping MPI communication and the computation of the inner points of the local domains using streams, a native CUDA feature.

CUDA streams allow one to assign asynchronous kernel execution and thus enable the overlap between communication and300

computation, resulting in optimal parallel efficiency.

4 The model configuration

To verify the numerical implementation of the developed PT
::::::
FastICE

:
solver, we consider three numerical experiments based

on a box inclined at a mean slope angle of ↵. We perform these numerical experiments on both 2-D and 3-D computational

domains (Figure 3a and 3b, respectively). The non-dimensional computational domains are ⌦2D = [0 Lx]⇥ [0 Lz] and305
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Experiment Lx Ly Lz ↵ n F T0 LD
x LD

y LD
z TD

0

Exp. 3 1-D – – 3 ⇥ 10
5 10 3 2.8 ⇥ 10

�8 9.15 – – 300 m -10 �C

Exp. 3 2-D 10Lz – 3 ⇥ 10
5 10 3 2.8 ⇥ 10

�8 9.15 3 km – 300 m -10 �C

Exp. 3 3-D 10Lz 4Lz 3 ⇥ 10
5 10 3 2.8 ⇥ 10

�8 9.15 3 km 1.2 km 300 m -10 �C

Table 2. Experiment 3: Non-dimensional model parameters and the dimensional values
�
D
�

for comparison

⌦3D = [0 Lx]⇥ [0 Ly]⇥ [0 Lz] for 2-D and 3-D domains, respectively. The difference between the 2-D and the 3-D

configurations lies in the boundary conditions imposed at the base and at the lateral sides. At the surface, the zero stress

�ijnj = 0 boundary condition is prescribed in all experiments. Experiment 2’s model configuration corresponds to the ISMIP

benchmark (Pattyn et al., 2008), where experiment C relates to the 3-D case and experiment D relates to the 2-D case.

Experiments 1 and 2 seek to first verify the implementation of the mechanical part of the Stokes solver, which is the com-310

putationally most expensive part (Eq. 8). For these experiments, we assume that the ice is isothermal and neglect temperature.

We compare our numerical solutions to the solutions obtained by the commonly used finite-element Stokes solver Elmer/Ice

(Gagliardini et al., 2013), which has been thoroughly tested (Pattyn et al., 2008; Gagliardini and Zwinger, 2008). Experiment

3 is a thermomechanically coupled case. The model parameters are the stress exponent n, the mean bed slope ↵ and the two

horizontal distances Lx and Ly in their respective dimensions (x,y), and appear in Table 1. If a linear basal sliding law (Eq. 6)315

is prescribed, the respective 2-D and 3-D sliding coefficients are:

�
2(x) = �0


1+ sin

✓
2⇡x

Lx

◆�
,

�
2(x,y) = �0


1+ sin

✓
2⇡x

Lx

◆
sin

✓
2⇡y

Ly

◆�
,

(20)

where �0 is a chosen non-dimensional constant. Differences may arise depending on the prescribed values for the parameters

↵, Lx, Ly and �0. Experiment 2 represents the ISMIP experiments C and D for L = 10 km (Pattyn et al., 2008), but in our case

using non-dimensional variables.320

The mechanical part of Experiment 3 is analogous to Experiment 2. The boundary conditions are periodic in x and y

directions
:::::
unless

:::::::
specified

:::::::::
otherwise. The thermal problem requires additional boundary conditions in terms of temperature

or fluxes. We set the surface temperature T0 to 0. At the bottom, we set the vertical flux qz to 0 and, on the sides, we impose

periodic boundary conditions. The model parameters used in Experiment 3 are compiled in Table 2. We employ the semi-

analytical 1-D model (Section 2.3) as an independent benchmark for the Experiment 3 calculations.325
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Figure 4. Comparison of the non-dimensional simulation results for the 2-D configuration of Experiment 1. We show a) the horizontal

component of the surface velocity, vx, and b) the vertical component of surface velocity, vz , across the ice slab for both our FastICE model

and Elmer/Ice. For context, the maximum horizontal velocity (vx ⇡ 0.0365) corresponds to ⇡ 174 m/yr. The horizontal distance is 2 km,

while the ice thickness is 200 m. The box is inclined at 10�.

5 Results and performance

5.1 Experiment 1: Stokes flow without basal sliding

We compare our numerical solutions obtained with the GPU-based PT method using a CUDA C implementation
::::::::
(FastICE)

to the reference Elmer/Ice model. We report all the values in their non-dimensional form, and the horizontal axes are scaled

with their aspect ratio. In Figure 4, we plot both horizontal vx and vertical vz :::
We

::::::
impose

:
a
::::::
no-slip

:::::::::
boundary

::::::::
condition

::
on

:::
all330

velocity components at the top surface for Experiment 1 in 2-D. Since the
::::
base

:::
and

::::::::
prescribe

:::::::
free-slip

::::::::
boundary

:::::::::
conditions

:::
on

::
all

:::::
lateral

:::::::
domain

:::::
sides.

:::
We

::::::::
prescribe

:
a
:::::::::
stress-free

:::::
upper

::::::::
boundary

::
in

:::
the

:::::::
vertical

::::::::
direction.

::
In

:::
the

::::
2-D

:::::::::::
configuration

:::::::
(Figure

:::
4),

:::
the

:
horizontal velocity component vanishes at the left and right boundary, vx = 0,

:::
thus

:
the maximum velocity values in the horizontal direction are located in the middle of the slab. We impose a no-slip

boundary condition on all velocity components at the base and prescribe free-slip boundary conditions on all lateral domain335

sides. We prescribe a stress-free upper boundary in the vertical direction. On the left side (x/Lx = 0), the ice is pushed down

(compression); thus, the vertical velocity values were negative. On the right side (x/Lx = 1), the ice is pulled up (extension),

and the vertical velocity values were positive. Our PT GPU-based
:::::::
FastICE results agree well with the numerical solutions

produced by Elmer/Ice. The numerical resolution of the Elmer/Ice model is 1001⇥ 275 grid-points in x and z directions (⇡
8.25⇥105 degrees of freedom (DOF)), while we employed 2047⇥511 grid-points (⇡ 3.13⇥106 DOF) within our PT method.340

:::
We

:::
use

:::::
higher

:::::::::
numerical

::::
grid

::::::::
resolution

::::::
within

:::::::
FastICE

::
to

::::::
jointly

:::::
verify

:::::::::
agreement

::::
with

::::::::
Elmer/Ice

::::
and

:::::::::::
convergence.

:::
The

::::
fact

:::
that

:::
we

::::::
obtain

::::::::
matching

::::::
results

:::::
when

:::::::::
increasing

:::
grid

:::::::::
resolution

:::::::::::
significantly

:::::::
suggests

::::
that

:::
we

::::::
resolve

:::
the

:::::::
relevant

::::::::
physical

::::::::
processes

::::::::::
sufficiently,

::::
even

::
at

::::::::
relatively

::::
low

:::::::::
resolution.

:::
We

::::::
report

::
an

:::::::::
exception

::
to

:::
this

:::::
trend

::
in
::::

the
:::
3-D

::::
case

:::
of

::::::::::
Experiment

::
2. The PT method’s efficiency enables considering the large number of grid-points without affecting the runtime. The DOF

represent three variables in 2-D (vx,vz,P ) and four variables in 3-D (vx,vy,vz,P ) multiplied by the number of grid-points345

involved.

15



Figure 5. Non-dimensional simulation results for the 3-D configuration of Experiment 1. We report a) the horizontal surface velocity compo-

nent vx, c) the horizontal surface velocity component vy , and e) the vertical surface velocity component vz . The black solid line depicts the

position where y = Ly/4. Panels b) d) and f) show the surface velocity components vx,vy and vz , respectively, at y = Ly/4 and compare

them against the results from the Elmer/Ice model.

Figure 5 shows the results for the 3-D configuration of Experiment 1. It plots our computed horizontal vx, vy and vertical

vz velocity components at the top surface (Figure 5a,c,e) and compares them to the reference solution from Elmer/Ice at

y ⇡ Ly/4 (Figure 5b,d,f). We find good agreement between the two model solutions
:
in

:::
the

::::
3-D

:::::::::::
configuration

::
as

::::
well

:::::::
(Figure

::
5). We employed a numerical resolution grid resolution of 319⇥ 159⇥ 119 grid-points in x, y and z directions (⇡ 2.41⇥ 107350

DOF), and used a numerical grid resolution of 61⇥61⇥21 (⇡ 3.1⇥105 DOF) in Elmer/Ice. Scaling our result to dimensional

values (Table 1) results in maximal horizontal velocity (vx) of ⇡ 105 m/yr. The horizontal distance is 2 km in the x-direction

and 800 m in the y-direction, and the ice thickness is 200 m. The box is inclined of 10�.
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Figure 6. Non-dimensional simulation results for the 2-D configuration of Experiment 2. We plot a) the horizontal surface velocity component

vx and b) the vertical surface velocity component vz across the slab for both our FastICE model and Elmer/Ice. In dimensional terms, the

maximum horizontal velocity (vx ⇡ 5.58) corresponds to ⇡ 16.9 m/yr. The horizontal distance is 10 km, while the ice thickness is 1 km.

The box is inclined at 0.1�.

5.2 Experiment 2: Stokes flow with basal sliding

We now
:::
then

:
consider the case where ice is sliding at the base (ISMIP experiments C and D). We prescribe periodic boundary355

conditions at the lateral boundaries and apply a linear sliding law at the base. The top boundary remains stress-free in the

vertical direction. Figure 6 shows the results of the

:::
We

:::::::::
performed

:::
the 2-D simulation of Experiment 2 , where we employed

::::::
(Figure

:::
6)

:::::
using a numerical grid resolution of

511⇥127 grid-points (⇡ 1.95⇥105 DOF) for the PT GPU-based
::::::
FastICE

:
solver and computed the Elmer/Ice solution using a

numerical grid resolution of 241⇥120 (⇡ 8.7⇥104 DOF). We show both vx and vz velocity components at the slab’s surface.360

The two models’ results agree well.

The
::
We

:::::::::
performed

:::
the 3-D simulation results for

::
of Experiment 2 appear in Figure 7. The upper panels (Figure 7a,c,e) show

the spatial pattern in the three surface velocity components vx,vy and vz computed with our PT GPU-based solver. The lower

panels (Figure 7b,d,f) compare the three surface velocity components at y ⇡ Ly/4 computed by our PT GPU-based solver

to Elmer/Ice. We employed )
:::::
using

:
a numerical grid resolution of 256⇥ 256⇥ 64 (⇡ 1.67⇥ 107

:::::::::::
63⇥ 63⇥ 21

::::::::::::
(⇡ 3.33⇥ 105365

DOF) for our PT GPU-based
:::::::
FastICE solver and a numerical grid resolution of 61⇥ 61⇥ 21 (⇡ 3.12⇥ 105 DOF) in the

Elmer/Ice model. In dimensional units, the maximum horizontal velocity (vx) corresponds to ⇡ 16.4 m/yr. The horizontal

distance is 10 km in the x-direction 10 km in the y-direction, and the ice thickness is 1 km. The box is inclined at 0.1�.

We find good agreement between the two numerical implementations, despite some discrepancies in the horizontal velocity

component vy . A potential explanation for the minor mismatch is the fact that the finite-element grid does not exactly coincide370

with the location y = Ly/4 in Elmer/Ice, which may be resolved by specifically pinning nodes of the finite-element mesh.
:
.

Since the flow is mainly oriented in the x direction, the vy velocity component is more than two orders of magnitude smaller

than the vx velocity component. Numerical errors in vy are more apparent than in the leading velocity component vx. We report

a one-order magnitude increase in the time-to-solution in Experiment 2 compared to the Experiment 1 configuration owing to

the periodicity on the lateral boundaries.375
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Figure 7. Non-dimensional simulation results for the 3-D configuration of Experiment 2. We report a) the horizontal surface velocity com-

ponent vx, c) the horizontal surface velocity component vy and e) the vertical surface velocity component vz . The black solid line depicts the

position where y = Ly/4. Panels b) d) and f) show the surface velocity components vx,vy and vz , respectively, at y = Ly/4 and compare

them against the results from the Elmer/Ice model.

:::
We

::::::
employ

:
a
::::::::
matching

:::::::::
numerical

::::::::
resolution

:::::::
between

:::::::
FastICE

::::
and

::::::::
Elmer/Ice

::
in

:::
this

::::::::
particular

::::::::::
benchmark

::::
case.

:::::
Using

::::::
higher

::::::::
resolution

:::
for

:::::::
FastICE

::::::
results

::
in

::::::
minor

::::::::::
discrepancy

:::::::
between

:::
the

::::
two

::::::::
solutions,

::::::::::
suggesting

:::
that

:::
the

:::::::::
resolution

::
in

::::::
Figure

::
7

::
is

:::::::::
insufficient

::
to

::::::
capture

::::::::::
small-scale

:::::::
physical

:::::::::
processes.

:::
We

::::::
discuss

:::
this

:::::
issue

::::
more

::
in
:::::::
Section

:::
5.5

:::::
where

:::
we

:::
test

:::
the

:::::::::::
convergence

::
of

:::
the

:::::::
FastICE

::::::::
numerical

:::::::::::::
implementation

:::::
upon

:::
grid

::::::::::
refinement.

5.3 Experiment 3
::
3a: Thermomechanically coupled Stokes flow without basal sliding380

We first verify that both the 1-D, 2-D and 3-D model configurations from Experiment 3 produce identical results assuming

periodic boundary conditions on all lateral sides. In this case, all the variations in the x or y directions vanish (@/@x and @/@y);
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Figure 8. Non-dimensional simulation results for a) the temperature deviation T and b) the horizontal velocity component vx for the 1-D, 2-D

and 3-D FastICE models at three different non-dimensional times 0.7⇥10
8, 1.4⇥10

8 and 1.9⇥10
8 and compare them to the 1-D reference

model results. We employ a vertical grid resolution nz of 31,95 and 201 grid-points. We sample the 1-D profiles at location x= Lx/2 in

2-D and at x= Lx/2 and y = Ly/2 in 3-D. The shaded areas correspond to the part of the solution that is above the melting temperature,

since we do not account for phase transitions in this case.

thus, both the 2-D and 3-D models reduce to the 1-D problem. We employ a numerical grid resolution of 127⇥127⇥127 grid-

points in x, y and z direction, 127⇥ 127 grid-points in x and z directions and 127 grid-points in the z direction for the 3-D,

2-D and 1-D problems, respectively.385

We ensure that all results collapse onto the semi-analytical 1-D model solution (Section 2.3), which we obtained by ana-

lytically integrating the velocity field and solving the decoupled thermal problem separately (Eq. 11). From a computational

perspective, we numerically solve Eq. 11 using a high spatial and temporal accuracy and therefore minimise the occurrence

of numerical errors. We establish the 1-D reference solution for both the temperature and the velocity profile, solving Eq. 11

on a regular grid, reducing the physical time steps until we converge to a stable reference solution. Our reference simulation390

involves 4000 grid-points and a non-dimensional time step of 5⇥ 105 (using a backward Euler time integration). We reach the

total simulation time of 2.9⇥ 108 within 580 physical time steps.

We report overall good agreement of all model solutions (1-D, 2-D, 3-D and 1-D reference) at the three reported stages for

this scenario (Figure 8). As expected from the 1-D model solution, temperature varies only as a function of time and depth with
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Figure 9. Spatial distribution of a) the temperature deviation from the initial temperature T and b) the horizontal velocity component vx for

the 3-D (left column) and the 2-D (right column) in non-dimensional units. We scale the domain extend with Lz . We compare the numerical

solutions at non-dimensional times 0.7⇥ 10
8, 1.4⇥ 10

8 and 1.9⇥ 10
8.

the highest value obtained close to the base and for longer simulation times. Similarly, the velocity profile is equivalent to the395

1-D profile and the largest velocity value is located at the surface. We only report the horizontal velocity component vx for the

2-D and the 3-D models, since vy and vz feature negligible magnitudes. Thus, we only observe spatial variation in the vertical

z direction. We report the non-dimensional temperature T (Figure 9a) and horizontal velocity vx (Figure 9b) fields for both the

3-D and the 2-D configurations compared at non-dimensional time 0.7⇥108, 1.4⇥108 and 1.9⇥108. The dimensional results

from Experiment 3 correspond to a 300 m thick ice slab inclined at 10� angle with an initial surface temperature of -10�C. The400

maximum initial velocity for the isothermal ice slab corresponds to ⇡ 486 m/yr, while the maximum velocity just before the

melting point is reached corresponds to 830 m/yr. The comparison snapshot times are 1.6, 3.2 and 4.4 years.

The semi-analytical 1-D solution enables us to evaluate the influence of the numerical coupling method and time integration

and to quantify when and why high spatial resolution is required in thermomechanical ice flow simulations. We compare the

1-D semi-analytical reference solution (Eq. 11) to the results obtained with the 1-D PT-based
::::::
FastICE

:
solver for three spatial405

numerical resolutions (nz =31, 95 and 201 grid-points) at three non-dimensional times 1⇥108, 2⇥108 and 2.9⇥108 (Figure

10). The grey area in Figure 10 highlights where the melting temperature is exceeded. Since our semi-analytical reference

solution does not include phase transitions, we also neglect this component in the numerical results. During the early stages

of the simulation, the thermomechanical coupling is still minor and solutions at all resolution levels are in good agreement

with one another and with the reference. The low resolution solution starts to deviate from the reference (Figure 10b) when410

the coupling become more pronounced close to the thermal runaway point (Clarke et al., 1977). The high spatial resolution
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Figure 10. Non-dimensional simulation results for a) the temperature deviation T and b) the horizontal velocity component vx to test

solver performance at three resolutions. The vertical resolutions are LR = 31, MR= 95 and HR= 201 grid-points for low-, mid- and high-

resolution runs, respectively. We compare the results for non-dimensional time 1⇥10
8, 2⇥10

8 and 2.9⇥10
8. The shaded areas correspond

to the part of the solution that is above the melting temperature, since we do not account for phase transitions in this benchmark.

solution is satisfactory at all stages. We conclude that high spatial resolutions is required to accurately capture the non-linear

coupled behaviour in regimes close to the thermal runaway, which is seldom the case in the models reported in the literature.

Thermomechanical strain localisation may significantly impact on the long-term evolution of a coupled system. A recent

study by Duretz et al. (2019) suggested that partial coupling may result in under-estimating the thermomechanical localisation415

compared to the fully coupled approach, as reported in their Figure 8. We compare three coupling methods (Figure 11): (1)

A fully coupled implicit PT method, as described in the numerical section, where the viscosity and the shear-heating term are

implicitly determined by using the current guess. (2) An implicit numerically uncoupled mechanical and thermal model. (3) An

explicit numerically uncoupled mechanical and thermal model. The numerical time integration in physical time is performed

using an implicit backward Euler method for (1) and (2) and a forward Euler explicit time integration method for (3). We utilise420

the identical non-dimensional time step for both the explicit and the implicit numerical time integration. We perform 580 time

steps, reaching a simulation time of 2.9⇥ 108. We employ a vertical grid resolution of nz = 201 grid-points for all models.

The chosen time step for the explicit integration of the heat diffusion equation is below the CFL stability condition given by

�z
2
/2.1 in 1-D, where �z represent the grid spacing in a vertical direction.

Physically, the viscosity and shear-heating terms are coupled and are a function of temperature and strain-rates, but we update425

the viscosity and the shear-heating term based on temperature values from the previous physical time step. Thus, the shear-

heating term can be considered as a constant source term in the temperature evolution equation during the time step, leading

to a semi-explicit rheology. We show the 1-D numerical solutions of (blue) the fully coupled method with a backward Euler

(implicit) time integration and the two uncoupled methods with either (green) backward (implicit) or (red) forward (explicit)

Euler time integration (Figure 11) and compare them to the 1-D reference model solution. Surprisingly, and in contrast to Duretz430

et al. (2019), we observe a good agreement between all methods, suggesting that the different coupling strategies capture the

coupled flow physics with sufficient accuracy given high enough spatial and temporal resolution. However, for a longer-term

evolution, the uncoupled approaches may predict lower temperature and velocity values than the fully coupled approach.
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Figure 11. Non-dimensional simulation results for a) the temperature deviation T and b) the horizontal velocity component vx to evaluate

different numerical time integration schemes. We consider three non-dimensional time 1⇥ 10
8, 2⇥ 10

8 and 2.9⇥ 10
8 and compare our

numerical estimates to the reference model. As before, the shaded areas correspond to the part of the solution that is above the melting

temperature, since we neglect phase transitions in this comparison.

Figure 12. Non-dimensional simulation results for a) the temperature deviation T and b) the horizontal velocity component vx for the 1-D,

2-D and 3-D FastICE models at three non-dimensional times 1⇥10
8, 2⇥10

8 and 2.5⇥10
8 compared to our analytical solution. We sample

the 1-D profiles at location x= Lx/2 in 2-D and at x= Lx/2 and y = Ly/2 in 3-D. The shaded area corresponds to the part of the solution

that is above the melting temperature, approximately 0.35 of the temperature deviation.

5.4 Experiment 3
::
3b: Thermomechanically coupled Stokes flow in a finite domain
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Figure 13. Non-dimensional simulation results of a) the temperature deviation from the initial temperature T and b) the horizontal velocity

component vx for Experiment 3 at three non-dimensional times 1⇥ 10
8, 2⇥ 10

8 and 2.5⇥ 10
8 for both the 2-D and 3-D configurations.

Boundary conditions corresponding to immobile regions in the computational domain may induce localisation of deformation435

and flow observed in locations such as shear margins, grounding zones or bedrock interactions. Dimensionality plays a key

role in such configurations, causing the stress distribution to be variable among the considered directions.

We used the configuration in Experiment 3 to investigate the spatial variations in temperature and velocity distributions

by defining no-slip conditions on the lateral boundaries for the mechanical problem and hindering any heat flux through

those boundaries. We employ a numerical grid resolution of 511⇥ 255⇥ 127 grid-points, 511⇥ 127 grid-points and 201 grid-440

points for the 3-D, 2-D and 1-D case, respectively. We prescribe a non-dimensional time step of 5⇥ 105. We perform 500

numerical time steps and reach a total non-dimensional simulation time of 2.5⇥ 108. We then compare the temperature T

and horizontal velocity component vx at three times obtained with the 1-D, 2-D and 3-D PT GPU-based
::::::
FastICE

:
solver to the

reference solution (Figure 12). We use 1-D profiles for comparison, taken at location x= Lx/2 in the 2-D model and at location

x= Lx/2 and y = Ly/2 in the 3-D model. We also report the temperature variation �T (Figure 13a) and the horizontal velocity445

component vx (Figure 13b) for both the 2-D and 3-D simulations. The melting temperature approximately corresponds to 0.35

of the temperature deviation. The reported results correspond to a 2.3�, 4.6� and 5.8� year evolution.

All three models start with identical initial conditions for the thermal problem, i.e. �T = 0 throughout the entire ice slab.

The difference between the models arises owing to different stress distributions in 1-D, 2-D or 3-D. For instance, the additional

stress components inherent in 2-D and 3-D are in the same order of magnitude as the 1-D shear stress for the considered aspect450

ratio, reducing the horizontal velocity vx in the 2-D and 3-D models. This also impacts on the shear-heating term, reducing

the source term in the temperature evolution equation. In the 1-D configuration, the unique shear stress tensor component is a
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Figure 14. Experiment 3 includes a phase transition owing to melting. We report the evolution in time of non-dimensional temperature

variation �T along a vertical profile picked at location x= Lx/2 within a 2-D run from Experiment 3. For this purpose, we run the 2-D

FastICE models from Experiment 3 for a duration of 2.9⇥ 10
9.

function only of depth. On the other end-member, the 3-D configurations allow for a spatially more distributed stress state. They

lower strain-rates in this scenario and reduce the magnitude of shear-heating in higher dimensions. The spatially heterogeneous

temperature and strain-rate fields in all directions require the utilisation of sufficiently high spatial numerical resolution in all455

directions in order to accurately resolve spontaneous localisation.

We did not consider phase transition in the previous experiments for the sake of model comparison and because the analytical

solution excluded this process. The existence of a phase transition caps the temperature at the pressure melting point in regions

with pronounced shear-heating, as illustrated in 2-D in Figure 14. The simulation represents the thermomechanically coupled

Experiment 3 with no-sliding and heat impermeable walls (similar to Figure 13). Meltwater production consumes excess460

heat generated by shear-heating. Thus, melting provides a physical mechanism that avoids thermal runaway in shear-heating

dominated zones in the ice. The experiment duration in dimensional units is 70 years, and the maximal temperature increase is

10�C upon reaching the melting point.

5.5
::::::::
Validation

::
of
::::
the

:::::::
FastICE

:::::::::
numerical

::::::::::::::
implementation

::
In

:::::
order

::
to

:::::::
confirm

:::
the

::::::::
accuracy

:::
of

:::
the

:::::::
FastICE

:::::::::
numerical

::::::::::::::
implementation,

:::
we

::::::
report

::::::::
truncation

::::::
errors

::::::::::
(L2-norms)

:::::
upon465

::::::::
numerical

::::
grid

::::::::::
refinement.

:::
We

:::::::
consider

::::
both

:::
the

::::
2-D

::::
and

:::
3-D

:::::::::::::
configurations

::
of

::::::::::
Experiment

:
2
:::

for
::::

this
:::::::::::
convergence

:::
test.

::::
We

::::
vary

:::
the

::::::::
numerical

::::
grid

:::::::::
resolution

:::::::
keeping

:::
the

::::::
relative

::::
grid

::::
step

:::::::
�x,�y

::::
(and

:::
�z

::
in
:::::

3-D)
:::::
ratio.

:::
We

:::::
utilise

::
a
:::::::::::::
high-resolution

::::::::
numerical

:::::::::
simulation

::
as

::::::::
reference

:::
and

:::::::
perform

:::::
three

::::::::
additional

::::::::::
simulations

::::::
where

::
we

:::::
keep

:::::::
dividing

:::
the

::::::
number

:::
of

:::
grid

::::::
points
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Figure 15. Evolution of velocity and pressure truncation errors (L2-norm) upon grid refinement for a) the 2-D configuration and b) the 3-D

configuration of the Experiment 2.

::
in

::::
both

::
x,

:
y
::::
(and

::
z
::
in

::::
3-D)

::::::::
direction

::
by

::
a
:::::
factor

::
2.

:::
We

:::::
report

:::
the

:::::::::
L2-norms:

:

||Perr||2 = ||Pref �Pcoarse||2 ,

||vxerr||2 = ||vxref � vxcoarse||2 ,
::::::::::::::::::::::::::

(21)470

::
for

::::
both

:::
the

:::::::
pressure

::
P

:::
and

:::
the

:::::::::
horizontal

:::::
down

::::
slope

:::
vx ::::::

velocity
::::::::::
component

::
on

:
a
::::::::::
logarithmic

:::
plot

:::
for

::::
both

:::
the

:::
2-D

:::::::
(Figure

::::
15a)

:::
and

::::
3-D

::::::::::::
configurations

::::::
(Figure

:::::
15b).

:::
The

::::::::
FastICE

::::::::
numerical

:::::::::::::
implementation

:::::::::
converges

::::
with

:::::::::
increasing

::::::::
numerical

:::::::::
resolution

:::
and

:::
we

:::::
report

:::::
linear

:::::
fitting

::::::
slopes

::
of

::::::
�1.19

::
for

::::::::
pressure

:::
and

::
of

:::::
about

:::::
�1.4

:::
for

::::::::
horizontal

:::::::
velocity

::::::::::
component.

:::
We

::::::::::
additionally

:::::
report

:::
the

::::::::
behaviour

::
of

:::
the

::::::::
residuals’

::::::::
converge

::
as

:::::::
function

::
of

:::
the

::::::::
nonlinear

::::::::
iterations

::::::
n
nonlin

iter :::
for

:::
the

:::::::
FastICE

:::::::::
GPU-based

:::::::::::::
implementation

:::::::
(Figure

::::
16a).

::::
The

:::::::
reported

:::::::::::
convergence

::::::
history

:::::
stands

:::
for

::
a
:::
2-D

::::::::::::
configuration

::
of

:::
the

::::::::::
Experiment475

:
3
::::
and

:
a
:::::::::
numerical

::::
grid

::::::::
resolution

:::
of

::::::::
511⇥ 127

::::
grid

::::::
points.

::::
The

:::::::
optimal

::::::::
damping

::::::::
parameter

:::::
used

::
in

:::
this

::::
case

::
is
::::::
⌫ = 2

::::
(Eq.

:::
19).

:::
We

::::::
further

::::::
report

:::
the

:::::::::
sensitivity

::
of

:::
the

::::::::::
accelerated

:::
PT

::::::
scheme

:::
on

:::
the

:::::::
damping

:::::::::
parameter

::
⌫

::::::
(Figure

:::::
16b).

:::
We

:::::
show

::::
that

:::::::
selecting

:::
the

:::::::
optimal

:::::::
damping

:::::::::
parameter

:::
(in

:::
the

:::::::
reported

::::
case

::::::
⌫ = 2)

::::::
ensures

::
a
::::::
relative

::::
low

:::::::
number

::
of

::::::::
iterations

::
to

::::::::
converge

::::
both

:::
the

::::::
linear

:::
and

::::::::
nonlinear

:::::::::::::::
thermomechanical

::::::::
problem.
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Figure 16. Residual evolution and convergence efficiency of the 2-D FastICE GPU-based implementation for a numerical grid resolution of

511⇥127 grid points targeting a relative nonlinear tolerance of tolnonlin = 1e�8. a) Relative total non-linear residuals f =max(fP ,fvi ,fT )

as function of non-linear iterations and b) the nonlinear iteration count as function of the damping parameter ⌫ (Eq. 19).

5.6 The computational performance480

We used two metrics to assess the performance of the developed
:::::::
FastICE

:
PT algorithm: the effective memory throughput

(MTPe↵ ) and the wall-time. We first compare the effective memory throughput of the vectorised MATLAB CPU implemen-

tation and the single-GPU CUDA C implementation. We employ double-precision (DP) floating-point arithmetic in CUDA

C for fair comparison. Second, we employ the wall-time metric to compare the performance of our various implementations

(MATLAB, CUDA C) and compare these to the time-to-solution of the Elmer/Ice solver.485

We use two methods to solve the linear system in Elmer/Ice. In the 2-D experiments, we use a direct method and in 3-D,

an iterative method. The direct method used in 2-D relies on the UMFPACK routines to solve the linear system. To solve the
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3-D experiments, we employ the available bi-conjugate gradient stabilised method (BICGstab) with an ILU0 preconditioning.

We employ the configuration in Experiment 1 for all the performance measurements. We use an Intel i7 4960HQ 2.6 GHz

(Haswell) four-core CPU to benchmark all the CPU-based calculations. For simplicity, we only ran single-core CPU tests,490

staying away from any CPU parallelisation of the algorithms. Thus, our MATLAB or the Elmer/Ice single-core CPU results

are not representative of the CPU hardware capabilities, and are only reported for reference.

The
::::::
FastICE

:
PT solver relies on evaluating a finite-difference stencil. Each cell of the computational domain needs to access

neighbouring values in order to approximate derivatives. These memory access operations are the performance bottleneck

of the algorithm, making it memory-bounded. Thus, the algorithm’s performance depends crucially on the memory transfer495

speed, and not the rate of the floating-point operations. Memory-bounded algorithms place additional pressure on modern

many-core processors, since the current chip design tends to large flop-to-byte ratios. Over the past years and decades, the

memory bandwidth increase has been much slower compared to the increase in the rate of floating-point operations.

As shown by Omlin (2017) and Räss et al. (2019a), a relevant metric to assess the performance of memory-bounded al-

gorithms is the effective memory throughput (MTPe↵ ) (Eq. 22). The MTPe↵ determines how efficiently data is transferred500

between the main memory and the arithmetic units and is inversely proportional to the execution time:

MTPe↵ =
(nxnynz)niter nIO np

10243 tnt
[GB/s] (22)

where (nxnynz) stands for the total number of grid-points, niter is the total number of numerical iterations performed, np is the

arithmetic precision (single – 4 bytes or double – 8 bytes), tnt is the wall-time in seconds needed to compute the niter iterations,

and nIO is the performed number of memory accesses. It represents the minimum number of memory operations (read-and-505

write or read only) required to solve a given physical problem. For instance, in the mechanical Stokes solver for Experiment

1, we have to update (read-and-write) three arrays (vx,vz and P ) at every iteration in 2-D and four arrays (vx,vy,vz and P ) at

every iteration in 3-D. Thus, the update of the mandatory arrays requires a minimum of six (eight) read-and-write operations

in 2-D (3-D). One additional read-and-write is needed to resolve the non-linear viscosity; thus, nIO = 10 in 2-D case and

nIO = 12 in 3-D.510

We report MTPe↵ values obtained with the PT
:::::::
FastICE algorithm for both the vectorised MATLAB (CPU) and the CUDA

C (GPU) implementations in double-precision arithmetic (Figure 17a). We also show the GPU performance using single-

precision arithmetic (Figure 17a – green diamonds). The results we obtain should be compared to the peak memory throughput

value MTPpeak for the specific hardware used. The MTPpeak reports the memory transfer rates delivered only by performing

memory copy operations with no computations. This value reflects the hardware performance limit and the maximal effective515

memory bandwidth. We measure MTPpeak values for the Intel i7 4960HQ CPU of 20 GB/s, and of 260 GB/s for the Nvidia

Titan X GPU. The single-core vectorised MATLAB CPU implementation achieves about 0.7 GB/s, and the CUDA C imple-

mentation 16 GB/s. Thus, the MATLAB single-core CPU implementation reaches 3.5% of the (CPU) hardware peak value,

and the CUDA C (GPU) implementation at about 6.15% and 11% of the (GPU) hardware peak value using double-precision

and single-precision arithmetic, respectively. Further improvement of the GPU MTPe↵ values can be achieved by optimising520

the GPU code using more on-the-fly calculations and advanced kernel scheduling.
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Figure 17. Performance evaluation of the FastICE mechanical solver in terms of: a) the effective memory throughput MTPe↵ in GB/s and b)

the wall-time (in seconds) to converge the Stokes solver to a relative non-linear tolerance of tolnonlin = 10
�8. We report the results obtained

using a 2-D CPU-based single-core vectorised MATLAB implementation of FastICE, a 2-D and 3-D GPU-based CUDA C implementation of

FastICE and a 2-D (direct) and 3-D (iterative) solver within the Elmer/Ice FEM single-core CPU-based model. The CPU codes are executed

on an Intel i7 4960HQ CPU processor with 8 GB RAM, and the GPU codes are launched on an Nvidia Titan X (Maxwell) GPU with 12 GB

on-board memory. All the computations are performed in double-precision arithmetic, with the only exception for the two single-precision

GPU-based runs depicted with larger red (2-D) and orange (3-D) symbols. The single-core FastICE CPU MATLAB and Elmer/Ice results

are shown for reference; they are not meant for performance comparison because we did not enable multi-threading in MATLAB and did not

have access to a parallel version of Elmer/Ice.
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We investigate the wall-time to solve one time step with the PT GPU-based
::::::
FastICE

:::::
GPU

:
solver for both the 2-D and the

3-D configurations (Figure 17b). We found wall-times of about 15 minutes to solve ⇡ 2.4⇥ 107 DOFs with double-precision

arithmetic and only three minutes when using single-precision arithmetic on a Nvidia Titan X (Maxwell) GPU. In future

investigations, one may consider comparing wall-times obtained by CPU algorithms fully enabling all cores of the CPU against525

wall-times for GPUs within the same price and power consumption range.

The 3-D performance results obtained on various available Nvidia GPUs are summarised in Figure 18). We performed all

the calculations using double-precision arithmetic. We compare the MTPe↵ and wall-time values as functions of the DOF.

We tested GPUs from various price ranges and chip generations, targeting entry-level GPUs such as the Nvidia Quadro P1000

(Pascal), high-end gaming cards such as the Nvidia Titan Black (Kepler) or the Nvidia Titan X (Maxwell), and data-centre-530

class GPU accelerators such as the Nvidia Tesla V100 PCIe (Volta). The MATLAB implementation peak MTPe↵ values are

about 0.46 GB/s, the Quadro P1000 (Pascal) values about 4.3 GB/s, the Titan Black (Kepler) 12.4 GB/s, the Titan X (Maxwell)

16.7 GB/s, and the Tesla V100 (Volta) 83.2 GB/s. The MTPe↵ values directly impact on the wall-time, since the memory

bandwidth was the bottleneck. We solved a 3-D problem involving 511⇥255⇥127 grid-points (6,6⇥107 DOF) in about one

hour on the Titan Black GPU, 40 minutes on the Titan X GPU, and only eight minutes on the Tesla V100 GPU. Notably, at535

this resolution, we employed about 4.5 GB of memory to solve the isothermal Stokes model. The results suggest that more

recent GPUs such as the data-centre Tesla V100 (Volta) offer a significant (order of magnitude higher) performance increase

than entry-level GPU accelerators, such as the Quadro P1000.

We share the performance of the GPU-MPI implementation of our solver
:::::::
FastICE

:
to execute on distributed memory ma-

chines. We achieved
::::::
achieve a weak scaling parallel efficiency of 93

::
99% on the 128 Nvidia Titan X (Maxwell

:::
512

::::::
Nvidia

::::
K80540

::::::
(Kepler) GPUs on the octopus

::::::
Xstream supercomputer at the Swiss Geocomputing Centre, University of Lausanne, Switzerland.

As
::::
Cray

::::::::
CS-Storm

:::::
GPU

:::::::
compute

::::::
cluster

::
at
::::

the
:::::::
Stanford

::::::::
Research

::::::::::
Computing

:::::::
Facility.

:::
As

:::
our baseline, we employed

::
use

:
a

non-MPI single GPU calculation. We then repeated
::::::
repeate the experiment using 1 to 128 MPI

:::
512

::::
MPI

::::::::
processes

:
(thus GPUs)

processes and report the normalised execution time (Figure 19). The effective drop in parallel efficiency is only 4
:
1% involving

1 to 128
:::
512

:
MPI processes. We achieved

::::::
achieve

:
this close-to-optimal parallel efficiency by overlapping MPI message com-545

munication and local domain stencil calculations. We specifically employed a CUDA stream
::::::
employ

:::::::
distinct

::::::
CUDA

:::::::
streams

in order to execute the communication and computation overlap asynchronously. We performed
:::::
repeat similar experiment on

::::
both the volta node, an 8 Nvidia Tesla V100 32 GB (Nvlink Volta) based computer

:::::
GPUs

:::::::
compute node (analogous to Nvidia’s

DGX-1 box) , reporting a
:::
and

:::
the

:::::::
octopus

::::::::::::
supercomputer

:::::::
hosting

:::
128

:::::::::
consumer

:::::::::
electronics

::::::
Nvidia

::::
Titan

::
X
:::::::::
(Maxwell)

::::::
GPUs

:
at
:::
the

::::::
Swiss

::::::::::::
Geocomputing

::::::
Centre,

:::::::::
University

::
of

:::::::::
Lausanne,

:::::::::::
Switzerland.

::
On

:::
the

:::::
volta

:::::
node,

:::
we

:::::
report

:
a
:::::
weak

::::::
scaling

:
parallel550

efficiency of 0.985% for a single MPI process running at 0.99% of the non-MPI reference.
::
On

:::
the

:::::::
octopus

::::::::::::
supercomputer,

:::
we

:::::
report

:
a
:::::::
parallel

::::::::
efficiency

::
of

::::::
95.5%

::::
with

::
an

:::::::
effective

:::::
drop

::
in

::::::
parallel

::::::::
efficiency

::
of

::::
only

::::
2%

::::::::
involving

:
1
::
to

::::
128

::::
MPI

::::::::
processes.

:

29



Figure 18. Performance evaluation of the FastICE mechanical solver in terms of: a) effective memory throughput MTPe↵ in GB/s and b)

wall-time (in seconds) to converge the Stokes solver to a relative non-linear tolerance of tolnonlin = 10
�8. We report the results from a

3-D CPU-based single-core vectorised MATLAB implementation and a 3-D GPU-based CUDA C implementation of FastICE running on

different GPU chip architectures. The CPU codes are executed on an Intel i7 4960HQ CPU processor with 8 GB RAM. The GPU codes were

launched on an Nvidia Titan Black (Kepler) GPU with 6 GB, an Nvidia Titan X (Maxwell) GPU 12 GB, an Nvidia Quadro P1000 (Pascal)

4 GB and an Nvidia Tesla V100 PCIe (Volta) 32 GB.

6 Discussion

Numerically resolving thermomechanical processes in ice is vital for improving our understanding of the complex behaviour

of ice sheets and glaciers
:::::::
physical

::::::::
processes

:::
that

::::::
govern

:::
the

::::::::
transition

::::
from

::::
fast

::
to

::::
slow

:::
ice

::
in

:
a
::::::::
changing

::::::
climate. To date, very555
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Figure 19. MPI weak scaling of the 3-D thermomechnically coupled GPU-based FastICE software. We report the parallel efficiency [-] of the

numerical application on three different Nvidia hardware accelerators, the 1-512 Tesla K80 12 GB data-centre GPUs, the 1-8 Tesla V100 32

GB Nvlink data-centre GPUs and the 1-128 Titan X (Maxwell) 12 GB consumer electronics GPUs. These accelerators are available via the

Xstream supercomputer, the volta node and the octopus supercomputer, respectively. Note that the execution time baseline used to compute

the parallel efficiency represents a non-MPI calculation. We report the highest numerical grid resolution nxyz achieved on each distributed

memory machine.

few studies have investigated the numerical aspects of thermomechanically coupled Stokes solvers (e.g., Duretz et al., 2019).

Existing assessments (e.g., Zhang et al., 2015) usually employed low spatial resolution, and did not address the influence

of the numerical implementation of multi-physics coupling strategies or the role of numerical time integration. To avoid the

significant computational expense of a thermomechanically coupled full Stokes model, many studies relied either on the com-

putationally less expensive shallow ice approximations, linear or linearised Stokes models, or low spatial resolutions. None of560

the approaches have resolved the multi-physics and multi-scale processes governing the boundaries of streaming ice, including

shear margins, grounding zones and the basal interface.

To address these limitations, we have developed a new numerical model
:::::::
FastICE,

:
a
::::

new
:::::::

parallel
::::::::::
GPU-based

:::::::::
numerical

::::::
model.

::::
The

::::
goal

::
of

:::::::
FastICE

:
is
::
to
:::::
better

::::::::::
understand

::
the

:::::::
physical

::::::::
processes

::::
that

::::::
govern

:::::::
englacial

::::::::::
instabilities

::::
such

::
as

:::::::::::::::
thermomechanical

:::::::::
localisation

::
at

:::
the

::::::::
field-site,

:::::
rather

::::
than

:::
the

:::::::
regional,

:::::
scale.

::
It

:::::
hence

:::::
targets

:::::
other

::::::::
scientific

:::::::
problems

::::
than

:::::
many

:::::::
existing

:::::::
land-ice565

::::::
models

:::
and

::::::::::::
complements

::::
these

::::::::
previous

:::::::
models.

:::::::
FastICE

::
is based on an iterative pseudo-transient finite-difference method.

Our discretisation yields to a concise matrix-free algorithm well suited to use the intrinsic parallelism of modern hardware

accelerators such as GPUs. Our choices enable high-resolution 2-D and 3-D thermomechanically coupled simulations to effi-

ciently perform on desktop computers and to scale linearly on supercomputers, both featuring GPU accelerators.

The significant temperature dependence of ice’s shear viscosity leads to pronounced spatial variations in the viscosity, which570

affects the convergence rate of our iterative PT method. Resolving shear flow localisation is challenging in this context, since
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it requires the simultaneous minimisation of errors in locations of the computational domain that are governed by different

characteristic time scales. Our PT approach allows us to capture the resulting spatial heterogeneity and offers a physically-

motivated strategy to locally ensure stability of the iterative scheme using local pseudo-time steps, analogous to diagonal

preconditioning in matrix-based direct approaches. The conciseness and simplicity of the implementation allows us to explore575

influences of various coupling methods and time integrations in a straight-forward way. Similar arguments suggest that the PT

approach is an interesting choice for educational purposes.

We quantify the scalability of our approach through extensive performance tests, where we investigated both the time-to-

solution and the efficiency of exploiting the current hardware capabilities at their maximal capacities. To verify the accuracy

and the coherence of the proposed results, we performed a set of benchmark experiments, obtaining excellent agreement580

with results from the widely used glacier flow model Elmer/Ice. Experiment 3 verifies that, under the assumption of periodic

configurations, both 1-D, 2-D and 3-D models return matching results.

Further, we have tested the accuracy of our numerical solutions for different time integration schemes, including forward

(explicit) and backward (implicit) Euler and different physical time steps. The value of the numerical time step must be chosen

as sufficiently small so as to resolve the relevant physical processes. We limited the maximal time step in the explicit time585

integration scheme by the CFL stability criterion for temperature diffusion. For high spatial numerical resolutions, the CFL-

based time step restriction is sufficient to resolve the coupled thermomechanical process. However, this conclusion is not valid

for low spatial resolutions (e.g., fewer than 20 grid-points). At low resolution, the CFL-based stability condition predicts time

step values larger than the non-dimensional time (2⇥108) needed to raise the temperature. Thus, we did not sufficiently resolve

the physical process. An implicit scheme for the time integration remedies the stability issue, but does not guarantee accuracy.590

Independent of the numerical time integration scheme used, the range of time step values that resolve the coupled physics is

close to the explicit stability criterion.

Our multi-GPU implementation of the thermomechanical PT solver achieved
::::::
FastICE

::::::
solver

:::::::
achieves

:
a close-to-ideal par-

allel efficiency featuring a runtime drop of only 4%
:::
1%

:::
and

:::
2%

:
compared to a single MPI process execution (a 7%

::
on

:::::
1-512

:::::
Nvidia

::::
K80

::::::
GPUs

:::
and

:::
on

:::::
1-128

::::::
Nvidia

::::
Titan

::
X
:::::::::
(Maxwell)

::::::
GPUs,

::::::::::
respectively

:::::::::::
(representing

::
a
:::
1%

:::
and

:::::
4.5%

:
deviation from a595

single non-MPI
:::::
single GPU runtime). We achieve this optimal domain decomposition parallelisation by overlapping commu-

nication and computation using native CUDA streams. This CUDA feature enables asynchronous compute kernel execution.

Similar implementation and parallel scaling results were recently achieved
:::::::
reported

:
for hydro-mechanical couplings (Räss

et al., 2019a, c).
:::::::::::
Discrepancies

::
in

:::
the

:::::::
parallel

::::::::
efficiency

::::::
among

:::
the

:::::
three

:::::
tested

:::::::::
distributed

::::::::
memory

::::::::
machines

::::::
mainly

::::::
results

::::
from

:::
the

:::::::
various

::::::::
hardware

::::
type

::::
and

::::
age,

::
as

::::
well

:::
as

:::
the

:::::
from

:::
the

:::::::::::
interconnect

::::::::::::
specifications.

::::
The

:::::::
Xstream

::::::::::::
supercomputer600

::::::
features

::::::
Nvidia

:::::
Tesla

::::
K80

:::::
GPUs

:::::
based

:::
on

::::::
Kepler

::::
chip

::::::::::
architecture

:::::::
launched

::
in

::::
late

::::
2014

::
as

::::
well

:::
as

::::::::
single-rail

::::::::
Mellanox

:::::
FDR

::::::::
Infiniband

:::::::::::
interconnect.

::::
The

::::::
octopus

:::::::::::
supercomputer

:::::::
features

::::::::
consumer

:::::::::
electronics

::::::
Nvidia

:::::
Titan

::
X

:::::
GPUs

:::::
based

::
on

:::
the

::::::::
Maxwell

:::
chip

:::::::::::
architecture

:::::::
launched

:::
in

:::
mid

:::::
2015

::
as

::::
well

:::
as

:::::::
dual-rail

::::::::
Mellanox

:::::
FDR

:::::::::
Infiniband

:::::::::::
interconnect.

::::
The

::::
volta

::::
node

:::::::
features

::::
latest

::::::
Nvidia

:::::
Tesla

:::::
V100

::::::
GPUs

:::::
based

::
on

:::::
Volta

::::
chip

::::::::::
architecture

::::::::
launched

::
in

::::
mid

::::
2018

::::
and

::::::
Nvlink

::::::::::
technology

::
as

:::::::::
intra-node

::::::::::
interconnect.

::::::
More

:::::
recent

:::::
chip

:::::::::::
architectures

::::::
reduce

:::
the

:::::::
relative

:::::::::::
computation

::::
time

::::
and

::::
may

:::::::
provide

::::
less

:::::
room

:::
for

::::::
hiding605

::
the

:::::
MPI

:::::::::::::
communication.

::::::::
Dual-rail

::::::::::
interconnect

:::::::
doubles

:::
the

:::::::::
inter-node

:::::::::
throughput

::::
and

::::
thus

:::::::
reduces

:::
the

:::::::::::::
communication

::::
time
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:::::
among

:::::::
distinct

:::::::
compute

::::::
nodes.

::::
Note

::::
that

:::::::
Xstream

::::::
features

:::
16

:::::
GPUs

:::
per

::::
node

::::::
which

::::
may

:::::
reduce

:::
the

:::::::::
inter-node

:::::::::::::
communication

::::::::
compared

::
to

:::::::
octopus

:::
that

:::::::
features

:
4
::::::
GPUs

:::
per

:::::
node.

7 Conclusions

We have developed
:
In

::::
this

:::::
study,

:::
we

:::::::
develop

::::::::
FastICE,

:
an iterative solver to efficiently exploit

:::
that

:::::::::
efficiently

:::::::
exploits the610

capabilities of modern hardware accelerators such as GPUs. We report
::::::
achieve

:
rapid execution times on single-GPUs

:::::
single

:::::
GPUs monitoring and optimising memory transfers. We achieved a

::::::
achieve

:
close-to-ideal parallel efficiency (93%

:::
99%

::::
and

:::::
95.5%) on a weak scaling test up to

:::
512

:::
and

:
128 GPUs

::
on

:::::::::::
heterogenous

::::::::
hardware

:
by overlapping MPI communication and

computations. We implemented the coupled thermomechanical PDEs using our iterative PT approach in a straight-forward

way from the mathematical model. The technical advances and utilisation of GPU accelerators enabled us to investigate the615

thermomechanical coupling and to resolve the first-order physics governing the
:::::
enable

:::
us

::
to

:::::::
resolve

:::::::::::::::::
thermomechanically

::::::
coupled

:
ice flow in 3-D on a

::
at high spatial and temporal resolution.

We benchmarked the
:::::::::
benchmark

:
mechanical solver of the coupled model against a community standard

:::::::
FastICE

::::::
against

:::
the

:::::::::
community

:
model Elmer/Icein a set of experiments specifically designed to test the mechanical solver. We further investigated

explicit and
:
,
:::::::
focusing

::::::::::
specifically

::
on

:::::::
explicit

::
as

:::::::
opposed

:::
to implicit coupling and time integration strategies. We report

:::
find620

that the physical time step must be chosen with care. Sufficiently high temporal resolution is mandatory
::::::::
necessary in order

to accurately resolve the coupled physics. Although minor differences arise among uncoupled and coupled approaches, we

observe less localisation for uncoupled models compared to the fully coupled ones.

We established that
::
In

:::::::::
additional

::
to

::::
high

::::::::
temporal

:::::::::
resolution, a relatively high spatial numerical resolution is necessary to

resolve the non-linear and spontaneous localisation of thermomechanically coupled ice flow, including
:
of

:
more than 100 grid-625

points in the vertical direction . We stress that spatial variations in the horizontal plane can significantly impact on the ice flow

dynamic, justifying high spatial numerical resolution in all directions. We finally reported that considering the full 3-D stress

tensor can significantly slow down the process of thermal runaway, which can ultimately be hindered by considering phase

transitions.

GPUs are compact, affordable and relatively programmable devices that offer high performance throughput (close to TB/s630

peak memory throughput) and a good price to performance ratio. GPUs offer an attractive alternative to conventional CPUs

owing to their massively parallel architecture featuring thousands of cores.
:
is
::::::::
necessary

::
to
::::::
resolve

::::::::::::::::
thermomechanical

:::::::::
localisation

::
for

::::::
typical

::::::::
ice-sheet

::::::::::
thicknesses

::
on

:::
the

:::::
order

::
of

::::::::
hundreds

::
of
:::::::

meters. The presented models lever this modern technology and

enable us to gain further process-based understanding of ice-flow localisation. Resolving the coupled processes at very high

spatial and temporal resolutions provides future avenues to address current challenges in accurately predicting ice sheet dy-635

namics.
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Code availability. The FastICE software developed in this study is licensed under GPLv3 free software license. The latest version of the code

is available for download from Bitbucket at https://bitbucket.org/lraess/fastice/ and from http://wp.unil.ch/geocomputing/software/. Past and

future FastICE versions are available from a permanent DOI repository (Zenodo) at https://doi.org/10.5281/zenodo.3461171. The FastICE

software includes code examples based on the PT method in both the MATLAB and CUDA C programming languages. The GPU routines640

run on a CUDA-capable GPU device. The multi-GPU version of the 3-D code requires CUDA-aware MPI to be installed. On the octopus

GPU supercomputer, we have CUDA 10.0 installed and built Open MPI 2.1.5 with CUDA 10.0, GCC 6.5 on a CentOS 6.9 system.
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