Description and evaluation of the UKCA stratosphere-troposphere chemistry scheme (StratTrop vn 1.0) implemented in UKESM1.

Archibald, Alexander T. ^{1,2,*}, O'Connor, Fiona M. ³, Abraham, N. Luke^{1,2}, Archer-Nicholls, Scott¹, Chipperfield, Martyn P.^{4,5}, Dalvi, Mohit ³, Folberth, Gerd A. ³, Dennison, Fraser ⁴, Dhomse, Sandip S.^{4,5}, Griffiths, Paul T. ^{1,2}, Hardacre, Catherine³, Hewitt, Alan J. ³, Hill, Richard³, Johnson, Colin E.³, Keeble, James^{1,2}, Köhler, Marcus O.^{1,7,†}, Morgenstern, Olaf⁶, Mulcahy, Jane P.³, Ordóñez, Carlos^{3,‡}, Pope, Richard J.^{4,5}, Rumbold, Steven^{3,8}, Russo, Maria R. ^{1,2}, Savage, Nicholas³, Sellar, Alistair³, Stringer, Mark³, Turnock, Steven³, Wild, Oliver⁹ and Zeng, Guang⁶.

- 1) Department of Chemistry, University of Cambridge, Cambridge, UK, CB2 1EW
- 2) NCAS-Climate, University of Cambridge, UK, CB2 1EW
- 3) Met Office Hadley Centre, FitzRoy Road, Exeter, UK, EX1 3PB
- 4) School of Earth and Environment, University of Leeds, Leeds, UK, LS2 9JT.
- 5) National Centre for Earth Observation (NCEO), University of Leeds, Leeds, U.K.
- 6) National Institute of Water & Atmospheric Research Ltd (NIWA), 301 Evans Bay Parade, Greta Point, Wellington, New Zealand.
- 7) Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, U.K.
- NCAS-Climate, Department of Meteorology, University of Reading, Reading, UK, RG6 6BB.
- 9) Lancaster Environment Centre, Lancaster University, Lancaster, UK, LA1 4YQ

([†]) Now at ECMWF, Reading, UK.

([‡]) Now at Departamento de Física de la Tierra y Astrofísica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid 28040, Spain

*Email: ata27@cam.ac.uk

Supplement

Table S1: List of experiments performed during the development of the StratTrop scheme. Eachexperiment was run for 20 years with the last 10 years analysed.

Experiment	Description	Production (Tg/yr)	Loss (Tg/yr)	Net (Tg/yr)	STE (inferred))(Tg)	τO₃ (days)	Burden O3 (Tg)	τCH₄ (years)	Mean [OH] /10 ⁵ cm ⁻³
A	Kinetics: 2005 Photolysis: FJx Emissions: Base ACCMIP Deposition: 2D	5650	4990	661	516 (489)	24.1	411	7.0	11.1

в	Kinetics: 2005; HO ₂ +NO->HONO on. Photolysis: FJx Emissions: Base ACCMIP Deposition: 2D	² 4920	4410	505	558 (573) 25.3	386	8.0	9.43
	Kinetics: 2011;							
	HO ₂ +NO->HONO on.	2						
	Photolysis: FJx Emissions: Base							
С	ACCMIP Deposition: 2D	4920	4200	714	334 (299) 23.5	340	7.9	9.35
	Kinetics: 2005; HO ₂ +NO->HONO on. Photolysis: 2D	2						
	Emissions: Base							
D	Deposition: 2D	3900	3250	649	387 (375) 28.9	343	11.7	6.07
	Kinetics: 2011; HO ₂ +NO->HONO on. Photolysis: FJx Emissions: Base ACCMIP Deposition:	2						
E	Wesley	4850	4200	653	349 (369) 22.8	330	7.7	9.56
F	Kinetics: 2011; HO ₂ +NO->HONO on. Photolysis: FJx Emissions: Base ACCMIP + interactive CH ₄ Deposition: Wesley	² 4630	4180	456	304 (513) 21.1	302	8.0	9.25
<u> </u>	Kinetics: 2011:							
G	HO ₂ +NO->HONO on. Photolysis: FJx Emissions: Base ACCMIP + Biogenic MeOH Deposition: Wesley	2 5000	4330	679	354 (363) 23.0	343	7.5	9.81
	÷				. ,			

н	Kinetics: 2011; HO ₂ +NO->HONO2 on. Photolysis: FJx Emissions: Base ACCMIP + Biogenic MeOH Deposition: Wesley Radiation: Non- interactive ozone.	2 5000	4360	634	412 (421)	23.0	347	7.5	9.81
1	Kinetics: 2011; HO ₂ +NO->HONO2 on. Photolysis: FJx Emissions: Base ACCMIP + Biogenic MeOH Deposition: Wesley Chemistry: LLSF Isoprene (Squire et al., 2014)	4850	4140	708	351 (304)	23.2	333	7.77	9.52
J	Kinetics: 2011; HO ₂ +NO->HONO2 on. Photolysis: FJx Emissions: Base ACCMIP + Biogenic MeOH Deposition: Wesley Chemistry: CheT2 Isoprene (Squire et al., 2014)	4830	4120	707	351 (305)	23.1	330	7.71	9.63
К	Kinetics: 2011; HO ₂ +NO->HONO2 on. Photolysis: FJx Emissions: Base ACCMIP + Biogenic MeOH + 2*Isoprene Deposition: Wesley Chemistry: LLSF Isoprene (Squire et al., 2014)	5270	4560	718	337 (388)	22.5	350	8.65	8.39

	ACCMIP mean	5230.0	4322.0	908.0		22.3	337±23	9.8±1.6	11.1±1.8
Ν	Kinetics: 2011; HO ₂ +NO->HONO ₂ on. Photolysis: FJx Emissions: Base ACCMIP + Biogenic MeOH + 0.5*Soil NOx Deposition: Wesley	4860	4170	682	321 (353)	23.5	338	7.98	9.24
М	Kinetics: 2011; HO ₂ +NO->HONO ₂ on. Photolysis: FJx Emissions: Base ACCMIP + Biogenic MeOH + 0.5*LNOx Deposition: Wesley	4460	3820	642	309 (332)	25.8	304	8.77	8.43
L	Kinetics: 2011; HO ₂ +NO->HONO ₂ on. Photolysis: FJx Emissions: Base ACCMIP + Biogenic MeOH + 0.5*Isoprene Deposition: Wesley Chemistry: LLSF Isoprene (Squire et al., 2014)	4470	3800	664	300 (336)	23.3	309	7.33	10.2

Key: FJx = Fast-JX photolysis; 2D = same photolysis scheme as used in HadGEM2-ES; Base ACCMIP = year 2000 emissions from Lamarque et al. (2010); Biogenic MeOH = climatology of biogenic MeOH emissions from Stavrakou et al. (2011); Deposition 2D = using the deposition scheme as described in Morgenstern et al. (2009); Deposition Wesley = using the Wesley deposition scheme discussed here; Chemistry LLSF isoprene = using the LLSF isoprene chemical mechanism as discussed in Squire et al. (2015); Chemistry CheT2 isoprene = using the CheT2 isoprene chemical mechanism as discussed in Squire et al. (2015);

 ΔO_3 (%)

Figure S1: Comparison of changes in annual average surface ozone across the model simulations outlined in Table S1. Each model simulation was combined to generate an ensemble mean and the panels show the relative % difference {%((simulation;-ensemble mean)/ensemble mean)} for each simulation to the ensemble mean.

Δ OH (%)

Figure S2: Comparison of changes in annual average surface hydroxyl radical across the model simulations outlined in Table S1. Each model simulation was combined to generate an ensemble mean and the panels show the relative % difference {%((simulation, ensemble mean)/ensemble mean)} for each simulation to the ensemble mean.

 Δ PAN (%)

Figure S3: Comparison of changes in annual average surface PAN across the model simulations outlined in Table S1. Each model simulation was combined to generate an ensemble mean and the panels show the relative % difference {%((simulation;-ensemble mean)/ensemble mean)} for each simulation to the ensemble mean.

 Δ HONO₂ (%)

Figure S4: Comparison of changes in annual average surface nitric acid across the model simulations outlined in Table S1. Each model simulation was combined to generate an ensemble mean and the panels show the relative % difference {%((simulation,-ensemble mean)/ensemble mean)} for each simulation to the ensemble mean.

 Δ H₂O₂ (%)

Figure S5: Comparison of changes in annual average surface hydrogen peroxide across the model simulations outlined in Table S1. Each model simulation was combined to generate an ensemble mean and the panels show the relative % difference {%((simulation, ensemble mean)/ensemble mean)} for each simulation to the ensemble mean.

 Δ HCHO (%)

Figure S6: Comparison of changes in annual average surface formaldehyde across the model simulations outlined in Table S1. Each model simulation was combined to generate an ensemble mean and the panels show the relative % difference {%((simulation, ensemble mean)/ensemble mean)} for each simulation to the ensemble mean.

References:

Lamarque, J.-F., Shindell, D. T., Josse, B., Young, P. J., Cionni, I., Eyring, V., Bergmann, D., Cameron-Smith, P., Collins, W. J., Doherty, R., Dalsoren, S., Faluvegi, G., Folberth, G., Ghan, S. J., Horowitz, L. W., Lee, Y. H., MacKenzie, I. A., Nagashima, T., Naik, V., Plummer, D., Righi, M., Rumbold, S. T., Schulz, M., Skeie, R. B., Stevenson, D. S., Strode, S., Sudo, K., Szopa, S., Voulgarakis, A., and Zeng, G.: The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics, Geosci. Model Dev., 6, 179–206, https://doi.org/10.5194/gmd-6-179-2013, 2013.

Morgenstern, O., Braesicke, P., O'Connor, F. M., Bushell, A. C., Johnson, C. E., Osprey, S. M., and Pyle, J. A.: Evaluation of the new UKCA climate-composition model – Part 1: The stratosphere, Geosci. Model Dev., 2, 43–57, https://doi.org/10.5194/gmd-2-43-2009, 2009.

Squire, O. J., Archibald, A. T., Griffiths, P. T., Jenkin, M. E., Smith, D., and Pyle, J. A.: Influence of isoprene chemical mechanism on modelled changes in tropospheric ozone due to climate and land use over the 21st century, Atmos. Chem. Phys., 15, 5123-5143, https://doi.org/10.5194/acp-15-5123-2015, 2015.

Stavrakou, T., Guenther, A., Razavi, A., Clarisse, L., Clerbaux, C., Coheur, P.-F., Hurtmans, D., Karagulian, F., De Mazière, M., Vigouroux, C., Amelynck, C., Schoon, N., Laffineur, Q., Heinesch, B., Aubinet, M., Rinsland, C., and Müller, J.-F.: First space-based derivation of the global atmospheric methanol emission fluxes, Atmos. Chem. Phys., 11, 4873-4898, https://doi.org/10.5194/acp-11-4873-2011, 2011.