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Abstract. The full Stokes equations are solved by a finite element method for simulation of large ice sheets and glaciers. The

simulation is particularly sensitive to the discretization of the grounding line which separates the ice resting on the bedrock

and the ice floating on water and is moving in time. The boundary conditions at the ice base are enforced by Nitsche’s method

and a subgrid treatment of the elements in the discretization close to the grounding line. Simulations with the method in two

dimensions for an advancing and a retreating grounding line illustrate the performance of the method. It is implemented in the5

two dimensional version of the open source code Elmer/ICE.

1 Introduction

Simulation with ice sheet models is a tool to assess the future sea-level rise (SLR) due to melting of continental ice sheets

and glaciers Hanna et al. (2013) and to reconstruct the ice sheets of the past DeConto and Pollard (2016); Stokes et al. (2015)

for comparison with measurements and validation of the models. In the models, the predictions are particularly sensitive to10

the numerical treatment of the grounding line (GL) Durand and Pattyn (2015). The GL is the line where the ice sheet leaves

the solid bedrock and becomes an ice shelf floating on water driven by buoyancy. It is important to know the GL position to

be able to quantify the ice discharge into the sea and as an indicator if the ice sheet is advancing or retreating Konrad et al.

(2018). The distance that the GL moves may be long over palaeo time scales. It is shown in Kingslake et al. (2018) that the GL

has retreated several hundred km on West Antarctica during the last 11,500 years and then advanced again after the isostatic15

rebound of the bed. The sensitivity, long time intervals, and long distances require a careful treatment of the GL neighborhood

by the numerical method to discretize the model equations.

The most accurate ice model is based on the full Stokes (FS) equations. A simplification of the FS equations by integrating

in the depth of the ice is the shallow shelf (or shelfy stream) approximation (SSA) MacAyeal (1989). The computational

advantage with SSA is that the dimension of the problem is reduced by one. It is often used for simulation of the interaction20

between a grounded ice sheet and a marine ice shelf. Several other simplifications exist with the same advantages as the SSA

but with slightly different solutions. Another simplification is the shallow ice approximation (SIA) suitable for ice sheets where

vertical shear stresses determine the ice flow Weis et al. (1999).

When the ice rests on the ground and is affected by frictional forces on the bed, the ice flow is dominated by vertical shear

stresses. Longitudinal stresses are dominant when the ice is floating on water. The GL is in the transition zone with a gradual25
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change of the stress field. A SSA model for a two dimensional (2D) ice is analyzed in Schoof (2007) where there is a switch

in the friction coefficient at the GL from being positive in the grounded ice to zero in the floating ice. The stability of steady

state GL solutions depends on the geometry of the slope, see Schoof (2007). It is stable in a downward slope and unstable in

an upward slope. In the zone between the grounded ice and the floating ice, it is necessary to use the FS equations Docquier

et al. (2011); Schoof (2011); Schoof and Hindmarsh (2010); Wilchinsky and Chugunov (2000) unless the ice is moving rapidly30

on the ground with low basal friction and the SSA equations are accurate both upstream and downstream of the GL. The

solution to the linearized FS equations close to the GL is investigated using perturbation theory in Schoof (2011). The effect of

perturbations in the topography and the friction coefficient on the surface velocity and height is studied in Cheng and Lötstedt

(2019). The sensitivity to the perturbations increases close to the GL because the velocity of the ice increases and the thickness

decreases there.35

The evolution of the GL in simulations is sensitive to the ice model, the basal friction model, and numerical parameters. In

a major effort MISMIP Pattyn et al. (2013, 2012), different ice models and implementations solve the same ice flow problems

and the predicted GL steady state and transient GL motion are compared. The results depend on the model equations and the

mesh resolution Pattyn et al. (2013). The prediction of the GL and the SLR is different for different ice equations such as FS

and SSA also in Pattyn and Durand (2013). Including equations with vertical shear stress at the GL such as the FS equations40

seems to be crucial. The friction laws at the ice base depend on the effective pressure, the basal velocity, and distance to the GL

in different combinations in Brondex et al. (2017); Gagliardini et al. (2015); Gladstone et al. (2017); Leguy et al. (2014). The

GL position and the SLR vary considerably depending on the choice of friction model. Given the friction model, the results

are sensitive to its model parameters too Gong et al. (2017).

Parameters in the numerical methods also influence the GL migration. It is observed in Durand et al. (2009b) that the mesh45

resolution along the ice bed has to be fine to obtain reliable solutions with FS in GL simulations. The GL is then located

in a node of the fixed mesh. A mesh size below 1 km is necessary in Larour et al. (2019) to resolve the features at the GL.

The SIA and SSA equations model the ice close to the GL in Docquier et al. (2011). The transient response of the GL is

compared with the FS equations and adaptive meshes in 2D and the SSA equations in Drouet et al. (2013). The flotation

condition determines where the GL is in Docquier et al. (2011); Drouet et al. (2013). It is based on Archimedes’ principle for50

an ice column immersed in water. Another adaptive mesh method is developed for the SSA equations in 1D in Gladstone et al.

(2010a). The accuracy of the method is evaluated in simulations of the GL migration. Adaptive meshes for a finite volume

discretization of an approximation of the FS equations are employed in Cornford et al. (2013) to study the GL retreat and loss

of ice in West Antarctica. The FS solutions of benchmark problems in Pattyn et al. (2013) computed by FEM implementations

in Elmer/ICE Gagliardini et al. (2013) and FELIX-S Leng et al. (2012) are compared in Zhang et al. (2017). The differences55

between the codes are attributed to different treatment of a friction parameter at the GL and different assignment of grounded

and floating nodes and element faces.

A subgrid model introduces an inner structure in the discretization element or mesh volume where the GL is. Such a model

for the GL is tested in Gladstone et al. (2010b) for the 1D SSA equation where the flotation condition for the ice defines the

position of the GL. The GL migration is determined by the 2D SSA equations discretized by the finite element method (FEM)60
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in Seroussi et al. (2014). Subgrid models at the GL are compared to a model without an internal structure in the element.

The conclusion is that sub-element parameterization is necessary. A shallow approximation to FS with subgrid modeling on

coarse meshes is compared to FS in Feldmann et al. (2014) with similar results for the GL migration. Subgrid modeling and

adaptivity are compared in Cornford et al. (2016) for a vertically integrated model. The stability of the GL in solutions with

FS and fine meshes in 2D are compared in Durand et al. (2009a) to the theory in Schoof (2007) with good agreement. A fine65

mesh resolution is necessary for converged GL positions with FS in Durand et al. (2009a, b). The purpose of a subgrid model

is to avoid such fine meshes.

The fine mesh resolution needed in GL simulations with the FS equations would require large computational efforts in 3D to

solve the equations in long time intervals. Since the GL moves long distances in palaeo simulations, a dynamic mesh refinement

and coarsening of the mesh following the GL is necessary. The alternative pursued here is to introduce a subgrid modeling with70

FEM in the mesh elements where the GL is located and keep the mesh size coarser. The subgrid model is restricted to one

element in a 2D ice and is therefore computationally inexpensive. In an extension to 3D, the subgrid model would be applied

along a 1D line of elements in 3D. The results with numerical modeling will always depend on the mesh resolution but can be

more or less sensitive to the mesh spacing and time steps. Our subgrid modeling is aiming at improving the accuracy in GL

simulations for a static mesh size.75

We solve the FS equations in 2D with the Galerkin method implemented in Elmer/ICE Gagliardini et al. (2013). The bound-

ary conditions are imposed by Nitsche’s method in the weak formulation of the equations Nitsche (1971); Reusken et al.

(2017); Urquiza et al. (2014). The linear Stokes equations are solved in Chouly et al. (2017a) with Nitsche’s treatment of the

boundary conditions. They solve the equations for the displacement but here we solve for the velocity using similar numerical

techniques to weakly impose the Dirichlet boundary conditions. A subgrid discretization is proposed and tested for the element80

where the GL is located. The position of the GL within the element is determined by theory developed for the linearized FS in

Schoof (2011).

The paper is organized as follows. Section 2 is devoted to the presentation of the mathematical model of the ice sheet

dynamics. In Sect. 3 the numerical discretization is presented while the subgrid modeling around the GL is found in Sect. 4.

We present the numerical results in Sect. 5. The extension to 3D is discussed in Sect. 6 and finally some conclusions are drawn85

in Sect. 7.

2 Ice model

2.1 The full Stokes (FS) equations

We use the FS equations in 2D with coordinates x = (x,z)T for modeling of the flow of an ice sheet Hutter (1983). These

nonlinear partial differential equations (PDEs) in the interior of the ice Ω are given by90



∇ ·u = 0,

−∇ ·σ = ρg,
(1)
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where the stress tensor is σ = 2η(u)τ(u)− pI. The symmetric strain rate tensor is defined by

τ(u) =
1
2

(∇u +∇uT ) =


 τ11 τ12

τ12 τ22


 , (2)

I is the identity matrix, and the viscosity is defined by Glen’s flow law

η(u) =
1
2

(A(T ′))−
1
n τ

1−n
n

e , τe =

√
1
2

tr(τ(u)τ(u)). (3)95

Here u = (u,w)T is the vector of velocities, ρ is the density of the ice, p denotes the pressure, and the gravitational accel-

eration in the z-direction is denoted by g. The rate factor A(T ′) describes how the viscosity depends on the pressure melting

point corrected temperature T ′. For isothermal flow assumed here, the rate factor A is constant. Finally, n is usually taken to

be 3.

2.2 Boundary conditions100
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Figure 1. A two dimensional schematic view of a marine ice sheet.

At the boundary Γ of the ice we define the normal outgoing vector n and tangential vector t, see Figure 1. In a 2D case

considered here, y is constant in the figure. The upper boundary is denoted by Γs and the lower boundary is Γb. At Γs and Γbf ,

the floating part of Γb, we have that

σn = fs. (4)

4

https://doi.org/10.5194/gmd-2019-244
Preprint. Discussion started: 16 September 2019
c© Author(s) 2019. CC BY 4.0 License.



The ice is stress-free at Γs, fs = 0, and fs =−pwn at the ice/ocean interface Γbf where pw is the water pressure. Let105

σnt = t ·σn, σnn = n ·σn, ut = t ·u.

Then for the slip boundary Γbg , the part of Γb where the ice is grounded, we have a friction law for the sliding ice

σnt +β(u,x)ut = 0, un = n ·u = 0, −σnn ≥ pw. (5)

The type of friction law is determined by the friction coefficient β. There is a balance between σnn and pw at Γbf and the

contact is friction-free, β = 0,110

σnt = 0, −σnn = pw. (6)

The GL is located where the boundary condition switches from β > 0 and un = 0 on Γbg to β = 0 and a free un on Γbf . In 2D,

the GL is the point (xGL,zGL) between Γbg and Γbf .

With the ocean surface at z = 0, pw =−ρwgzb where ρw is the density of sea water, zb is the z-coordinate of Γb, and g is

the gravitation constant.115

2.3 The free surface equations

The boundaries Γs and Γb are time-dependent and move according to two free surface equations. The boundary Γbg follows

the fixed bedrock with coordinates (x,b(x)).

The z-coordinate of the free surface position zs(x,t) at Γs (see Fig. 1) is the solution of an advection equation

∂zs

∂t
+us

∂zs

∂x
−ws = as, (7)120

where as denotes the net surface accumulation/ablation of ice and us = (us,ws)T the velocity at the free surface in contact

with the atmosphere. Similarly, the z-coordinate for the lower surface zb of the floating ice at Γbf satisfies

∂zb

∂t
+ub

∂zb

∂x
−wb = ab, (8)

where ab is the net accumulation/ablation at the lower surface and ub = (ub,wb)T the velocity of the ice at Γbf . On Γbg ,

zb = b(x).125

The thickness of the ice is denoted by H = zs− zb and depends on (x,t).

2.4 The solution close to the grounding line

The 2D solution of the FS equations in Eq. (1) with a constant viscosity, n= 1 in Eq. (3), is expanded in small parameters in

Schoof (2011). The solutions in different regions around the GL are connected by matched asymptotics. Upstream of the GL at

the bedrock, x < xGL, the leading terms in the expansion satisfy a simple equation in scaled variables close to the GL. Across130
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the GL, u, the flux of ice uH , and the depth integrated normal or longitudinal stress τ11 in Eq. (2) are continuous. By adding

higher order terms, it is shown that the upper surface slope is continuous and Archimedes’ flotation condition

Hρ=−zbρw (9)

is not satisfied immediately downstream of the GL. A rapid variation in the vertical velocity w in a short interval at the GL

causes oscillations in the upper surface as observed also in FS simulations in Durand et al. (2009a).135

In (Schoof, 2011, Ch. 4.3), the solution to the FS in 2D is expanded in two parameters ν and ε. The aspect ratio of the ice ν

is the quotient between a typical scale of the height of the ice H and a length scale L, ν =H/L, and ε is ν times the quotient

between the longitudinal and the shear stresses τ11 and τ12 in Eq. (2). If ν5/2� ε� 1 then in a boundary layer close to the

GL and x < xGL the leading terms in the solution in scaled variables satisfy

τ22− p= σ22 = ρg(z− zs). (10)140

On floating ice τ22−p+pw = 0 and the flotation criterion Eq. (9) is fulfilled, and on the bedrock τ22−p+pw < 0, see Eq. (4)

and (6).

Introduce the notation

χ(x,z) = τ22− p+ pw = ρg(z− zs(x))− ρwgzb(x), (11)

and approximate zs and zb linearly in x in the vicinity of xGL and let Hbw be the thickness of the ice below the water surface.145

Then

χ(x,zb) =−g(ρH − ρwHbw) (12)

is linear in x. If x < xGL then χ < 0 in the neighborhood of xGL on Γbg and if x > xGL then χ= 0 and Eq. (9) holds true on

Γbf . In numerical experiments with the linear FS (n= 1) in Nowicki and Wingham (2008), χ(x,zb) in the original variables

varies linearly in x for x < xGL. In Sect. 4, χ(x,zb) is used to estimate the GL position.150

3 Discretization by FEM

In this section we state the weak form of Eq. (1) and introduce the spatial FEM discretization used for Eq. (1) and give the

time-discretization of Eq. (7) and (8).

3.1 The weak form of the FS equations

We start by defining the mixed weak form of the FS equations. Introduce k = 1 + 1/n, k∗ = 1 +n and the spaces155

V k = {v : v ∈ (W 1,k(Ω))2}, Qk∗ = {q : q ∈ Lk∗(Ω)}, (13)
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see, e.g. Chen et al. (2013); Martin and Monnier (2014). The weak solution (u,p) of Eq. (1) is obtained as follows. Find

(u,p) ∈ V k ×Qk∗ such that for all (v, q) ∈ V k ×Qk∗ the equation

A((u,p),(v, q)) +BΓ(u,p,v) +BN (u,v, q) = F (v), (14)

is satisfied, where160

A((u,p),(v, q)) =
∫

Ω

2η(u)τ(u) : τ(v) dx− b(u, q)− b(v,p),

b(u, q) =
∫

Ω

q∇ ·u dx,

BΓ(u,p,v) =
∫

Γbg

(−σnn(u,p)n ·v +βu ·v) ds,

BN (u,v, q) =−
∫

Γbg

σnn(v, q)n ·u ds+ γ0

∫

Γbg

1
h

(n ·u)(n ·v) ds,

F (v) =
∫

Ω

ρg ·v dx−
∫

Γbf

pwn ·v ds.

The last term in BN is added in the weak form in Nitsche’s method Nitsche (1971) to impose the Dirichlet condition un = 0

weakly on Γbg . It can be considered as a penalty term. The size of the positive parameter γ0 depends on the application and h

is a measure of the mesh size on Γb. The first term in BN symmetrizes the boundary term BΓ +BN on Γbg and vanishes when

un = 0.165

3.2 The discretized FS equations

We employ linear Lagrange elements with Galerkin Least Square (GLS) stabilization Franca and Frey (1992); Helanow and

Ahlkrona (2018) to avoid spurious oscillations in the pressure using the standard setting in Elmer/ICE Gagliardini et al. (2013)

approximating solutions in the spaces V k and Mk∗ in Eq. (13).

The mesh is constructed from a footprint mesh on the bottom surface and then extruded with the same number of layers in170

the vertical direction according to the thickness of the ice. To simplify the implementation in 2D, the footprint mesh on the

bottom surface consists of N + 1 nodes xi, i= 0, . . . ,N, with a constant mesh size ∆x.

In general, the GL is somewhere in the interior of an element Ei = [xi, xi+1] and it crosses the element boundaries as it moves

forward in the advance phase and backward in the retreat phase of the ice. The advantage with Nitsche’s way of formulating

the boundary conditions is that if xGL ∈ Ei then the boundary integral over Ei can be split into two parts in Eq. (14) such that175
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[xi, xGL] ∈ Γbg and [xGL, xi+1] ∈ Γbf as follows
∫

Ei

BΓ +BN ds

=
∫

[xi,xGL]

−(σnn(u,p)n ·v +σnn(v, q)n ·u)

+βu ·v +
γ0

h
(n ·u)(n ·v) ds+

∫

[xGL,xi+1]

pwn ·v ds. (15)

There is a change of boundary conditions in the middle of the element Ei where the GL is located. With a strong formulation

of un = 0 the basis functions in V s share this property and the condition changes from the grounded node xi where the basis

function satisfies un = 0 and the floating node at xi+1 with a free un without taking the position of the GL inside Ei into180

account.

The resulting system of non-linear equations form a nonlinear complementarity problem Christensen et al. (1998). The

distance d between the base of the ice and the bedrock at time t and at x is d= zb(x,t)− b(x)≥ 0. If d > 0 on Γbf then the

ice is not in contact with the bedrock and σnn +pw = 0 and if σnn +pw < 0 on Γbg then the ice and the bedrock are in contact

and d= 0. Hence, the complementarity relation in the vertical direction is185

zb(x,t)− b(x)≥ 0, σnn + pw ≤ 0,

(zb(x,t)− b(x))(σnn + pw) = 0 on Γb.
(16)

The contact friction law is such that β > 0 when x < xGL and β = 0 when x > xGL. The complementarity relation along the

slope at x is then the non-negativity of d and

β ≥ 0, β(x,t)(zb(x,t)− b(x)) = 0 on Γb. (17)

In particular, these relations are valid at the nodes x= xj , j = 0,1, . . . ,N .190

The complementarity condition also holds for un and σnn such that

σnn + pw ≤ 0,

un(σnn + pw) = 0 on Γb,
(18)

without any sign constraint on un except for the retreat phase when the ice leaves the ground and un < 0.

Similar implementations for contact problems using Nitsche’s method are found in Chouly et al. (2017a, b), where the

unknowns in the PDEs are the displacement fields instead of the velocity in Eq. (1). Analysis in Chouly et al. (2017a) suggests195

that Nitsche’s method for the contact problem can provide a stable numerical solution with an optimal convergence rate.

The nonlinear equations for the nodal values of u and p are solved by Newton iterations. The system of linear equations in

every Newton iteration is solved iteratively by using the Generalised Conjugate Residual (GCR) method in Elmer/ICE. The

condition on dj in a node xj is used for a so called grounded mask, which is computed at each timestep and not changed during

the nonlinear iterations.200
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3.3 Discretization of the advection equations

The advection equations for the moving ice boundary in Eq. (7) and (8) are discretized in time by a finite difference method and

in space by FEM with linear Lagrange elements for zs and zb. A stabilization term is added, making the spatial discretization

behave like an upwind scheme in the direction of the velocity as implemented in Elmer/ICE.

The advection equations Eq. (7) and Eq. (8) are integrated in time by a semi-implicit method of first order accuracy. Let205

c= s or b. Then the solution is advanced from time tn to tn+1 = tn + ∆t with the timestep ∆t by

zn+1
c = zn

c + ∆t(an
c −un

c

∂zn+1
c

∂x
+wn

c ). (19)

The spatial derivative of zc is approximated by FEM. A system of linear equations is solved at tn+1 for zn+1
c . This time

discretization and its properties are discussed in Cheng et al. (2017).

A stability problem in zb is encountered in the boundary condition at Γbf in Durand et al. (2009a). It is solved by expressing210

zb in pw at Γbf with a damping term in Durand et al. (2009a). An alternative interpretation of the idea in Durand et al. (2009a)

and an explanation follow below.

The relation between un and ut at Γbf and ub = u(x,zb(x)) is

ub =


 ub

wb


=


 zbx

−1


 un√

1 + z2
bx

+


 1

zbx


 ut√

1 + z2
bx

, (20)

where zbx denotes ∂zb/∂x. Insert ub and wb from Eq. (20) into Eq. (8) to obtain215

∂zb

∂t
= ab−un

√
1 + z2

bx, (21)

Instead of discretizing Eq. (21) explicitly at tn with un−1
n to determine pn

w, the base coordinate is updated implicitly

zn
b = zn−1

b + ∆t
(
an

b −un
n

√
1 + z2

bx

)
(22)

in the solution of Eq. (14).

Assume that zbx is small. The timestep restriction in Eq. (22) is estimated by considering a 2D slab of the floating ice of220

width ∆x and thickness H . Newton’s law of motion yields

Mu̇n =Mg−∆xpw,

whereM = ∆x(zs−zb)ρ is the mass of the slab. Divide byM , integrate in time for un(tm), letm= n or n−1, and approximate

the integral by the trapezoidal rule for the quadrature to obtain

un(tm) =

tm∫

0

g+
gρw

ρ

zb

zs− zb
ds

≈ gtm +
gρw

ρ

m∑

i=0

αi
zi
b

zi
s− zi

b

∆t,
225
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αi = 0.5, i= 0,m, αi = 1, i= 1, . . . ,m− 1.

Then insert um
n into Eq. (22). All terms in um

n from timesteps i < m are collected in the sum ∆tFm−1. Then Eq. (22) can be

written

zn
b = zn−1

b −∆t2
gρw

2ρ
zm
b

zm
s − zm

b

+ ∆t
(
an

b − gtm−∆tFm−1
)
. (23)230

For small changes in zb in Eq. (23), the explicit method with m= n− 1 is stable when ∆t is so small that

|1−∆t2
gρw

2Hρ
| ≤ 1. (24)

When H = 100 m on the ice shelf, ∆t < 6.1 s which is far smaller than the stable steps for Eq. (19). Choosing the implicit

scheme with m= n, the bound on ∆t is

1/|1 + ∆t2
gρw

2Hρ
| ≤ 1, (25)235

i.e. there is no bound on positive ∆t for stability but accuracy will restrict ∆t.

Much longer stable timesteps are possible at the surface and the base of the ice with a semi-implicit method Eq. (19) and

a fully implicit method Eq. (22) compared to an explicit method. For example, the timestep for the problem in Eq. (19) with

1 km mesh size can be up to a couple of months. Therefore, we use the scheme in Eq. (19) for Eq. (7) and (8) and the scheme

in Eq. (22) for Eq. (21) and pw as in Durand et al. (2009a). The difference between the approximations of zb in Eq. (19) and240

(22) is of O(∆t2).

4 Subgrid modeling around grounding line

The basic idea of the subgrid method for the FS equations in this paper follows the GL parameterization for SSA in Seroussi

et al. (2014) and the analysis for FS in Schoof (2011). The GL is located at the position where the ice is on the ground and

the flotation criterion is perfectly satisfied such that σnn =−pw. In the Stokes equations, the hydrostatic assumption may not245

be valid, so the exact GL position can not be determined by simply checking the total thickness of the ice H against the depth

below sea levelHbw =−zb. Instead, the flotation criterion is computed by comparing the water pressure with the normal stress

component orthogonal to the boundary as indicated by the first order analysis in Sect. 2.4. The indicator is here defined by

χ(x) = σnn + pw which vanishes on the floating ice and is approximately τ22− p+ pw and negative on the ground since the

slope of the bedrock is small.250

Typically, at the lower surface of the floating ice where zb(x,t)> b(x), as the blue line in Fig. 2, the boundary conditions

are given by Eq. (6), and where the ice is in contact with the bedrock, as the red line in Fig. 2, the boundary conditions

are given by Eq. (5). However, there is another case as shown in Fig. 3 when the net force at xi is pointing inward, namely

σnn(xi)+pw(xi)> 0. Then, the floating boundary condition Eq. (6) should be imposed up until the node xi−1. This can happen

at some point due to the low spatial and temporal resolutions, but the node xi will move upward as long as u ·n< 0, or the net255
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force switches signs and the condition transforms into the case in Fig. 2 when σnn(xi) + pw(xi)< 0. Denote the situation in

Fig. 2 by case i, and the one in Fig. 3 by case ii. We call the node ‘grounded’ when it is in contact with the bedrock with net

force from the ice pointing outward (σnn + pw < 0), and ‘floating’ when the net force is pointing inward (σnn + pw ≥ 0). The

element which contains both grounded and floating nodes is called the GL element and the grounded node in it is called the

last grounded node and the floating one is called the first floating node.260

In coarse meshes, the true position of the GL is generally not in one of the nodes, but usually between the last grounded and

the first floating nodes. Instead of refining the mesh around GL, which would lead to very small time steps for stability reasons,

we will here introduce a subgrid model for the GL element.

We let χ(x) = σnn(x)+pw(x) and assume that it is linear as in Eq. (11) to determine the position of the GL, xGL, in the GL

element. In case ii, the GL is located between xi−1 and xi even though the whole element [xi−1,xi] is geometrically grounded.265

The equation χ(xGL) = 0 is solved by linear interpolation between χ(xi−1)< 0 and χ(xi)> 0 yielding a unique solution

satisfying xi−1 < xGL < xi, depicted as the red dot in the lower panel of Fig. 3.

There is a more complicated situation in case i, where χ(xi)< 0 but χ(xi+1) = 0 due to the floating boundary condition. A

correction of χ is made by using χ̃(x) = σnn(x) + pb(x) where pb(x) =−ρwgb(x) is the water pressure on the bedrock. For

x > xi, we have b(x)< zb(x) and pb(x)> pw(x). Therefore, χ̃(xi+1)> χ(xi+1) = 0 and χ̃(xi) = χ(xi)< 0. Then, a linear270

interpolation between χ̃(xi) and χ̃(xi+1) guarantees a unique solution of χ̃(xGL) = 0 in the GL element [xi,xi+1], see Fig. 2.

In case ii, pb can also be used since pb(x) = pw(x) as long as the element is on the bedrock.

Conceptually, the linear interpolation of the function χ̃(x) can be considered separately by looking at the two linear functions

σnn(x) and pb(x). As the GL always rests on the bedrock, pb(xGL) = pw(xGL) is actually an exact representation of the water

pressure imposed on the ice at GL, although geometrically zb(xGL) may not coincide with b(xGL), especially on coarse275

meshes. This also leads to the fact that the interpolated normal stress σnn(xGL,zb(xGL)) is a first order approximation of the

normal stress at the exact GL position (xGL, b(xGL)).

This correction is not necessary when the GL is advancing since the implicit treatment of the bottom surface is equivalent to

additional water pressure at the stress boundary as discussed in Sect. 3.3.

After the GL position is determined, the domains Γbg and Γbf are separated at xGL as in Eq. (15) and the integrals are280

calculated with a high-order integration scheme as in Seroussi et al. (2014) to achieve a better resolution within the element

shown in Figures 2 and 3. For a smoother transition of β atGL, the slip coefficient is multiplied by 1/2 at the whole GL element

before integrating using the high order scheme.

The penalty term from Nitsche’s method restricts the motion of the element in the normal direction. It should only be

imposed on the element which is fully on the ground. On the contrary, in case i, the GL element [xi,xi+1] is not in contact with285

the bedrock as in Fig. 2, so only the floating boundary condition should be used on the element [xi,xi+1]. Additionally, the

implicit representation of the bottom surface in Eq. (22) also implies that the case ii with retreating GL should be merged to

case i since the surface is leaving the bedrock and the normal velocity should not be forced to zero. To summarize, Nitsche’s

penalty term should be imposed on all the fully grounded elements and partially on the GL element in the advance phase.
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xi =Last Grounded

xi+1 =First Floating

β ≥ 0

β = 0

β > 0

β = 0

Figure 2. Schematic figure of Grounding Line in case i. Upper panel: the last grounded and first floating nodes as defined in Elmer/ICE.

Lower panel: linear interpolation to compute a more accurate position of the Grounding Line.

xi−1 =Last Grounded

xi =First Floating

β ≥ 0

β = 0

β > 0
β = 0

Figure 3. Schematic figure of Grounding Line in case ii. Upper panel: the last grounded and first floating nodes as defined in Elmer/ICE.

Lower panel: linear interpolation to compute a more accurate position of the Grounding Line.

Equations (1), (7), and (8) form a system of coupled nonlinear equations. They are solved in the same manner as in Elmer/ICE290

v.8.3. The xGL position is determined dynamically within every nonlinear iteration when solving the FS equations and the high

order integrations are based on the current xGL. The nonlinear FS is solved with fixed-point iterations to 10−5 relative error

with a limit of maximal 25 nonlinear iterations and the grounded condition is set if the distance between of the bottom surface

and the bedrock is smaller than 10−3 m.

5 Results295

The numerical experiments follow the MISMIP benchmark Pattyn et al. (2012) and comparison is made with the results in

Gagliardini et al. (2016). Using the experiment MISMIP 3a, the setups are exactly the same as in the advancing and retreating

simulations in Gagliardini et al. (2016). The experiments are run with spatial resolutions of ∆x= 4 km, 2 km and 1 km with
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20 vertical extruded layers. The timestep is ∆t= 0.125 year for all the three resolutions to eliminate time discretization errors

when comparing different spatial resolutions.300

The dependence on γ0 for the retreating ice is shown in Fig. 4 with γ0 between 104 and 109. The estimated GL positions

do not vary with different choices of γ0 from 105 to 108 which suggests a suitable range of γ0. If γ0 is too small (γ0� 104),

oscillations appear in the estimated GL positions. If γ0 is too large (γ0� 108), then more nonlinear iterations are needed for

each time step. The same dependency of γ0 is observed for the advance experiments and for different mesh resolutions as well.

For the remaining experiments, we fix γ0 = 106.305
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)

×105

γ0 = 1.0× 104

γ0 = 1.0× 105

γ0 = 1.0× 106

γ0 = 1.0× 107

γ0 = 1.0× 108

γ0 = 1.0× 109

Figure 4. The MISMIP 3a retreat experiment with ∆x= 1000 m for different choices of γ0 in the time interval [0,10000] years.

The GL position during 10000 years in the advance and retreat phases are displayed in Fig. 5 for different mesh sizes. The

range of the results from Gagliardini et al. (2016) with mesh resolutions ∆x= 25 and 50 m are shown as background shaded

regions with colors purple and pink. We achieve similar GL migration results both for the advance and retreat experiments with

at least 20 times larger mesh sizes.

We observed oscillations at the top surface near the GL in all the experiments as expected from Durand et al. (2009a); Schoof310

(2011). A zoom-in plot of the surface elevation with ∆x= 1 km at t= 10000 years is shown to the left in Fig. 6, where the red

dashed line indicates the estimated GL position. Obviously, the estimated GL position does not coincide with any nodes even

at the steady state.

The ratio between the thickness below sea level Hbw and the ice thickness H is shown in Fig. 6. The horizontal, purple,

dash-dotted line indicates the ratio of ρ/ρw and the estimated GL is located at the red, dashed line. This result confirms that the315

hydrostatic assumption Hρ=Hbwρw is not valid in the FS equations for x > xGL close to the GL and at the GL position, cf.

Durand et al. (2009a); Schoof (2011). For x < xGL we have that Hbw/H < ρ/ρw since Hbw decreases and H increases. The

conclusion from numerical experiments in Van Dongen et al. (2018) is that the hydrostatic assumption and the SSA equations

approximate the FS equations well for the floating ice beginning at a short distance away from the GL.

13

https://doi.org/10.5194/gmd-2019-244
Preprint. Discussion started: 16 September 2019
c© Author(s) 2019. CC BY 4.0 License.



0.0 0.2 0.4 0.6 0.8 1.0
t (years) ×104

6.9

7.0

7.1

7.2

7.3

7.4

7.5

7.6

x
G
L

(m
)

×105

∆x =4.0 km

∆x =4.0 km

∆x =2.0 km

∆x =2.0 km

∆x =1.0 km

∆x =1.0 km

Figure 5. The MISMIP 3a experiments for the GL position when t ∈ [0,10000] with ∆x= 4000,2000 and 1000 m for the advance (solid)

and retreat (dashed) phases. The shaded regions indicate the range of the results in Gagliardini et al. (2016) with ∆x= 50 m in red and

∆x= 25 m in blue.

The top and bottom surface velocity solutions from the retreat experiment are shown in Fig. 7 with ∆x= 1 km after 10000320

years. The horizontal velocities on the two surfaces are similar with negligibly small differences on the floating ice. The vertical

velocities w on the top (orange line) and bottom surface (blue line) at the GL are almost discontinuous as analyzed in Schoof

(2011). With the subgrid method, the rapid variation is resolved by the 1 km mesh size.

6 Discussion

Seroussi et al Seroussi et al. (2014) describe four different subgrid models for the friction in SSA and evaluate them in a FEM325

discretization on a triangulated, planar domain. The flotation criterion is applied at the nodes of the triangles. Depending on

how many of the nodes that are floating, the amount of friction in the triangle is determined. Also, a higher order polynomial

integration over the triangles in FEM allows an inner structure in the triangular element.

Our method can be extended to a triangular mesh covering Γb in the following way. The condition on χ in Eq. (11) is applied

on the edges of each triangle T in the mesh. If χ < 0 in all three nodes then T is grounded. If χ≥ 0 in all nodes then T is330

floating. The GL passes inside T if χ has a different sign in one of the nodes. Then the GL crosses the two edges where χ < 0

14

https://doi.org/10.5194/gmd-2019-244
Preprint. Discussion started: 16 September 2019
c© Author(s) 2019. CC BY 4.0 License.



7.25 7.30 7.35 7.40
x (m) ×105

0.4

0.6

0.8

1.0

1.2

1.4

z s
(m

)

×102

7.25 7.30 7.35 7.40
x (m) ×105

0.880

0.885

0.890

0.895

0.900

0.905

0.910

H
bw

/
H

Figure 6. Details of the solutions for the retreat experiment with ∆x= 1 km after 10000 years. The solid dots represent the nodes of the

elements and the vertical, red, dashed lines indicate the GL position. Left panel: The oscillations at top surface near GL. Right panel: The

flotation criterion is evaluated by Hbw/H . The ratio between ρ/ρw is drawn in a horizontal, purple, dash-dotted line.

in one node and χ≥ 0 in the other node. In this way, a continuous reconstruction of a piecewise linear GL is possible on Γb.

The FEM approximation is modified in the same manner as in Sect. 4 with Nitsche’s method.

An alternative to subgrid modeling is to introduce dynamic adaptation of the mesh on Γb with a refinement at the GL as

in e.g. Cornford et al. (2013); Drouet et al. (2013); Gladstone et al. (2010a). In general, a fine mesh is needed along the GL335

and in an area surrounding it. Since the GL moves long distances at least in simulations of palaeo-ice sheets, the adaptation

should be dynamic, permit refinement and coarsening of the mesh, and be based on some estimate of the model inaccuracy.

Furthermore, shorter timesteps are necessary for stability when the mesh size is smaller in a mesh adaptive method. Introducing

a time dependent mesh adaptivity into an existing code requires a substantial coding effort and will increase the computational

work considerably. Subgrid modeling is easier to implement and the increase in computing time is small.340

7 Conclusions

Subgrid models at the GL have been developed and tested in the SSA model for 2D flow in Gladstone et al. (2010b) and for 3D

flow in Seroussi et al. (2014), for the friction in the vertically integrated model BISICLES Cornford et al. (2013) for 3D flow

in Cornford et al. (2016), and for the PISM model mixing SIA with SSA in 3D in Feldmann et al. (2014). Here we propose a

subgrid model in 2D for the FS equations implemented in Elmer/ICE that can be extended to 3D. The mesh is static and the345

moving GL position within one element is determined by linear interpolation with an auxiliary function χ̃ based on the theory

in Schoof (2011). Only in that element, the FEM discretization is modified.
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Figure 7. The velocities u (upper panel) andw (lower panel) on the top (orange) and bottom (blue) surface of the ice in the retreat experiment

with ∆x= 1 km after 10000 years. The red, dashed line indicates the GL position. The vertical velocity w is zoomed-in close to the GL.

The method is applied to the simulation of an ice sheet in 2D with an advancing GL and one with a retreating GL. The data

for the tests are the same as in one of the MISMIP examples Pattyn et al. (2012) and in Gagliardini et al. (2016). Comparable

results to Gagliardini et al. (2016) are obtained with subgrid modeling with more than 20 times larger mesh sizes. A larger350

mesh size also allows a longer timestep for the time integration. Without further knowledge of the basal conditions and detailed

models at the GL, solving χ̃(x) = 0 provides a good approximation of the GL position.

Code availability. The FS sub-grid model is implemented based on Elmer/ICE Version: 8. 3(Rev: f6bfdc9) with the scripts at http://doi.org/

10.5281/zenodo.3401478 and http://doi.org/10.5281/zenodo.3401475.
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