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Abstract. The full Stokes equations are solved by a finite element method for simulation of large ice sheets and glaciers. The
simulation is particularly sensitive to the discretization of the grounding line which separates the ice resting on the bedrock
and the ice floating on water and is moving in time. The boundary conditions at the ice base are enforced by Nitsche’s method
and a subgrid treatment of the elements in the discretization close to the grounding line. Simulations with the method in two
dimensions for an advancing and a retreating grounding line illustrate the performance of the method. It is implemented in the

two dimensional version of the open source code Elmer/ICE.

1 Introduction

Simulation with ice sheet models is a tool to assess the future sea-level rise (SLR) due to melting of continental ice sheets
and glaciers Hanna et al. (2013) and to reconstruct the ice sheets of the past DeConto and Pollard (2016); Stokes et al. (2015)
for comparison with measurements and validation of the models. In the models, the predictions are particularly sensitive to
the numerical treatment of the grounding line (GL) Durand and Pattyn (2015). The GL is the line where the ice sheet leaves
the solid bedrock and becomes an ice shelf floating on water driven by buoyancy. It is important to know the GL position to
be able to quantify the ice discharge into the sea and as an indicator if the ice sheet is advancing or retreating Konrad et al.
(2018). The distance that the GL. moves may be long over palaeo time scales. It is shown in Kingslake et al. (2018) that the GL
has retreated several hundred km on West Antarctica during the last 11,500 years and then advanced again after the isostatic
rebound of the bed. The sensitivity, long time intervals, and long distances require a careful treatment of the GL neighborhood
by the numerical method to discretize the model equations.

The most accurate ice model is based on the full Stokes (FS) equations. A simplification of the FS equations by integrating
in the depth of the ice is the shallow shelf (or shelfy stream) approximation (SSA) MacAyeal (1989). The computational
advantage with SSA is that the dimension of the problem is reduced by one. It is often used for simulation of the interaction
between a grounded ice sheet and a marine ice shelf. Several other simplifications exist with the same advantages as the SSA
but with slightly different solutions. Another simplification is the shallow ice approximation (SIA) suitable for ice sheets where
vertical shear stresses determine the ice flow Weis et al. (1999).

When the ice rests on the ground and is affected by frictional forces on the bed, the ice flow is dominated by vertical shear

stresses. Longitudinal stresses are dominant when the ice is floating on water. The GL is in the transition zone with a gradual
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change of the stress field. A SSA model for a two dimensional (2D) ice is analyzed in Schoof (2007) where there is a switch
in the friction coefficient at the GL from being positive in the grounded ice to zero in the floating ice. The stability of steady
state GL solutions depends on the geometry of the slope, see Schoof (2007). It is stable in a downward slope and unstable in
an upward slope. In the zone between the grounded ice and the floating ice, it is necessary to use the FS equations Docquier
et al. (2011); Schoof (2011); Schoof and Hindmarsh (2010); Wilchinsky and Chugunov (2000) unless the ice is moving rapidly
on the ground with low basal friction and the SSA equations are accurate both upstream and downstream of the GL. The
solution to the linearized FS equations close to the GL is investigated using perturbation theory in Schoof (2011). The effect of
perturbations in the topography and the friction coefficient on the surface velocity and height is studied in Cheng and Léotstedt
(2019). The sensitivity to the perturbations increases close to the GL because the velocity of the ice increases and the thickness
decreases there.

The evolution of the GL in simulations is sensitive to the ice model, the basal friction model, and numerical parameters. In
a major effort MISMIP Pattyn et al. (2013, 2012), different ice models and implementations solve the same ice flow problems
and the predicted GL steady state and transient GL motion are compared. The results depend on the model equations and the
mesh resolution Pattyn et al. (2013). The prediction of the GL and the SLR is different for different ice equations such as FS
and SSA also in Pattyn and Durand (2013). Including equations with vertical shear stress at the GL such as the FS equations
seems to be crucial. The friction laws at the ice base depend on the effective pressure, the basal velocity, and distance to the GL
in different combinations in Brondex et al. (2017); Gagliardini et al. (2015); Gladstone et al. (2017); Leguy et al. (2014). The
GL position and the SLR vary considerably depending on the choice of friction model. Given the friction model, the results
are sensitive to its model parameters too Gong et al. (2017).

Parameters in the numerical methods also influence the GL migration. It is observed in Durand et al. (2009b) that the mesh
resolution along the ice bed has to be fine to obtain reliable solutions with FS in GL simulations. The GL is then located
in a node of the fixed mesh. A mesh size below 1 km is necessary in Larour et al. (2019) to resolve the features at the GL.
The SIA and SSA equations model the ice close to the GL in Docquier et al. (2011). The transient response of the GL is
compared with the FS equations and adaptive meshes in 2D and the SSA equations in Drouet et al. (2013). The flotation
condition determines where the GL is in Docquier et al. (2011); Drouet et al. (2013). It is based on Archimedes’ principle for
an ice column immersed in water. Another adaptive mesh method is developed for the SSA equations in 1D in Gladstone et al.
(2010a). The accuracy of the method is evaluated in simulations of the GL migration. Adaptive meshes for a finite volume
discretization of an approximation of the FS equations are employed in Cornford et al. (2013) to study the GL retreat and loss
of ice in West Antarctica. The FS solutions of benchmark problems in Pattyn et al. (2013) computed by FEM implementations
in Elmer/ICE Gagliardini et al. (2013) and FELIX-S Leng et al. (2012) are compared in Zhang et al. (2017). The differences
between the codes are attributed to different treatment of a friction parameter at the GL and different assignment of grounded
and floating nodes and element faces.

A subgrid model introduces an inner structure in the discretization element or mesh volume where the GL is. Such a model
for the GL is tested in Gladstone et al. (2010b) for the 1D SSA equation where the flotation condition for the ice defines the
position of the GL. The GL migration is determined by the 2D SSA equations discretized by the finite element method (FEM)
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in Seroussi et al. (2014). Subgrid models at the GL are compared to a model without an internal structure in the element.
The conclusion is that sub-element parameterization is necessary. A shallow approximation to FS with subgrid modeling on
coarse meshes is compared to FS in Feldmann et al. (2014) with similar results for the GL migration. Subgrid modeling and
adaptivity are compared in Cornford et al. (2016) for a vertically integrated model. The stability of the GL in solutions with
FS and fine meshes in 2D are compared in Durand et al. (2009a) to the theory in Schoof (2007) with good agreement. A fine
mesh resolution is necessary for converged GL positions with FS in Durand et al. (2009a, b). The purpose of a subgrid model
is to avoid such fine meshes.

The fine mesh resolution needed in GL simulations with the FS equations would require large computational efforts in 3D to
solve the equations in long time intervals. Since the GL moves long distances in palaeo simulations, a dynamic mesh refinement
and coarsening of the mesh following the GL is necessary. The alternative pursued here is to introduce a subgrid modeling with
FEM in the mesh elements where the GL is located and keep the mesh size coarser. The subgrid model is restricted to one
element in a 2D ice and is therefore computationally inexpensive. In an extension to 3D, the subgrid model would be applied
along a 1D line of elements in 3D. The results with numerical modeling will always depend on the mesh resolution but can be
more or less sensitive to the mesh spacing and time steps. Our subgrid modeling is aiming at improving the accuracy in GL
simulations for a static mesh size.

We solve the FS equations in 2D with the Galerkin method implemented in Elmer/ICE Gagliardini et al. (2013). The bound-
ary conditions are imposed by Nitsche’s method in the weak formulation of the equations Nitsche (1971); Reusken et al.
(2017); Urquiza et al. (2014). The linear Stokes equations are solved in Chouly et al. (2017a) with Nitsche’s treatment of the
boundary conditions. They solve the equations for the displacement but here we solve for the velocity using similar numerical
techniques to weakly impose the Dirichlet boundary conditions. A subgrid discretization is proposed and tested for the element
where the GL is located. The position of the GL within the element is determined by theory developed for the linearized FS in
Schoof (2011).

The paper is organized as follows. Section 2 is devoted to the presentation of the mathematical model of the ice sheet
dynamics. In Sect. 3 the numerical discretization is presented while the subgrid modeling around the GL is found in Sect. 4.
We present the numerical results in Sect. 5. The extension to 3D is discussed in Sect. 6 and finally some conclusions are drawn

in Sect. 7.
2 Ice model

2.1 The full Stokes (FS) equations

We use the FS equations in 2D with coordinates x = (z,2)7 for modeling of the flow of an ice sheet Hutter (1983). These

nonlinear partial differential equations (PDESs) in the interior of the ice € are given by

V.-u=0, 0
_V'J:pga
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where the stress tensor is 0 = 2n(u)7(u) — pl. The symmetric strain rate tensor is defined by

Ti1  Ti12

7(u) = %(Vu—l—VuT) = , (2)

T2 T22
I is the identity matrix, and the viscosity is defined by Glen’s flow law

1 1—n

AT F 7™, = gutr (). @

N | =

95 n(u)=

Here u = (u,w)” is the vector of velocities, p is the density of the ice, p denotes the pressure, and the gravitational accel-
eration in the z-direction is denoted by g. The rate factor A(T") describes how the viscosity depends on the pressure melting
point corrected temperature 7”. For isothermal flow assumed here, the rate factor A is constant. Finally, n is usually taken to
be 3.

100 2.2 Boundary conditions

Tce flux

& Zb(xa Y, t)
X n t TGL b(x,y)

Figure 1. A two dimensional schematic view of a marine ice sheet.

At the boundary T" of the ice we define the normal outgoing vector n and tangential vector t, see Figure 1. In a 2D case
considered here, y is constant in the figure. The upper boundary is denoted by I'; and the lower boundary is I';,. At 'y and L'y ¢,
the floating part of [';,, we have that

on =f;. 4)
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The ice is stress-free at ', f; = 0, and f; = —p,,n at the ice/ocean interface I', y where p,, is the water pressure. Let

Ont =t -on, oppn=n-on, ug =t-u.

Then for the slip boundary I';4, the part of I', where the ice is grounded, we have a friction law for the sliding ice

ont + (0, x)uy =0, up=n-u=0, —0nn > Puw. (5)

The type of friction law is determined by the friction coefficient 3. There is a balance between o,y and py, at ',y and the

contact is friction-free, 3 = 0,
Ont = 07 —Onn = Pw- (6)

The GL is located where the boundary condition switches from 3 > 0 and u, = 0 on I'g to 3 = 0 and a free u, on I'yz. In 2D,
the GL is the point (z¢r,, 2¢r) between I'yg and 'y .
With the ocean surface at z = 0, p,, = —p.wg2» Where p,, is the density of sea water, z; is the z-coordinate of ['y, and g is

the gravitation constant.
2.3 The free surface equations

The boundaries I'; and I, are time-dependent and move according to two free surface equations. The boundary I'y, follows
the fixed bedrock with coordinates (x,b(x)).
The z-coordinate of the free surface position zs(x,t) at 'y (see Fig. 1) is the solution of an advection equation

0z, n 0z,
ot Us or

—Ws = As, (7)

where a, denotes the net surface accumulation/ablation of ice and u, = (us,wS)T the velocity at the free surface in contact
with the atmosphere. Similarly, the z-coordinate for the lower surface z; of the floating ice at I' ¢ satisfies

0zp 0z

E"‘Ubaix_wb:aby ®)

where a;, is the net accumulation/ablation at the lower surface and u;, = (ub,wb)T the velocity of the ice at I'yz. On I'yg,
zp = b(x).
The thickness of the ice is denoted by H = z, — z;, and depends on (z,t).

2.4 The solution close to the grounding line

The 2D solution of the FS equations in Eq. (1) with a constant viscosity, n = 1 in Eq. (3), is expanded in small parameters in
Schoof (2011). The solutions in different regions around the GL are connected by matched asymptotics. Upstream of the GL at

the bedrock, x < xg, the leading terms in the expansion satisfy a simple equation in scaled variables close to the GL. Across
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the GL, u, the flux of ice uH, and the depth integrated normal or longitudinal stress 77 in Eq. (2) are continuous. By adding

higher order terms, it is shown that the upper surface slope is continuous and Archimedes’ flotation condition

Hp=—2zypy 9

is not satisfied immediately downstream of the GL. A rapid variation in the vertical velocity w in a short interval at the GL
causes oscillations in the upper surface as observed also in FS simulations in Durand et al. (2009a).

In (Schoof, 2011, Ch. 4.3), the solution to the FS in 2D is expanded in two parameters v and €. The aspect ratio of the ice v
is the quotient between a typical scale of the height of the ice H and a length scale £, v = H /L, and ¢ is v times the quotient

5/2

between the longitudinal and the shear stresses 711 and 75 in Eq. (2). If 7°/“ < € < 1 then in a boundary layer close to the

GL and x < x, the leading terms in the solution in scaled variables satisfy

Tog — P =022 = pg(z — 2). (10)

On floating ice T22 — p+ p,, = 0 and the flotation criterion Eq. (9) is fulfilled, and on the bedrock 722 —p+p,, < 0, see Eq. (4)
and (6).

Introduce the notation

X(7,2) = Tog — P+ puw = pg(2 — 25(x)) — puwgzp (), (1)

and approximate z; and z; linearly in x in the vicinity of z¢, and let Hy,, be the thickness of the ice below the water surface.

Then

x(@,2p) = =g(pH = puw Hpw) (12)
is linear in . If < z¢, then x < 0 in the neighborhood of x¢, on I'y, and if © > ¢y, then x = 0 and Eq. (9) holds true on
I’y 7. In numerical experiments with the linear FS (n = 1) in Nowicki and Wingham (2008), x(z, z5) in the original variables
varies linearly in z for z < x¢r. In Sect. 4, x(x, zp) is used to estimate the GL position.

3 Discretization by FEM

In this section we state the weak form of Eq. (1) and introduce the spatial FEM discretization used for Eq. (1) and give the
time-discretization of Eq. (7) and (8).

3.1 The weak form of the FS equations
We start by defining the mixed weak form of the FS equations. Introduce k = 1+ 1/n, k* = 1+ n and the spaces

Vi={v:ve (W Q)?%}, Qi ={q:qeLF ()}, (13)
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see, e.g. Chen et al. (2013); Martin and Monnier (2014). The weak solution (u,p) of Eq. (1) is obtained as follows. Find
(u,p) € Vi X Q= such that for all (v,q) € Vi, X Q- the equation

A((a,p), (v,q)) + Br(u,p,v) + By (u,v,q) = F(v), (14)
is satisfied, where

A((uvp)v(vvq)):/QU(U)T(U) :7(v) dx—b(u,q) = b(v,p),
Q

b(u,q) :/qV~u dx,
Q

Br(u7p7V)=/(—Unn(u,p)n~V+ﬂu-V) ds,

Thg
BN(u,v,q):f/ann(v,q)n'uds+70/%(n~u)(n~v) ds,
Log Pag
F(V):/pg~v dx — /pwn~v ds.
Q Tyy

The last term in B s is added in the weak form in Nitsche’s method Nitsche (1971) to impose the Dirichlet condition u,, = 0
weakly on I'yg. It can be considered as a penalty term. The size of the positive parameter o depends on the application and A
is a measure of the mesh size on I'y,. The first term in B symmetrizes the boundary term Br + B on 'y, and vanishes when

un = 0.
3.2 The discretized FS equations

We employ linear Lagrange elements with Galerkin Least Square (GLS) stabilization Franca and Frey (1992); Helanow and
Ahlkrona (2018) to avoid spurious oscillations in the pressure using the standard setting in Elmer/ICE Gagliardini et al. (2013)
approximating solutions in the spaces V';, and My~ in Eq. (13).

The mesh is constructed from a footprint mesh on the bottom surface and then extruded with the same number of layers in
the vertical direction according to the thickness of the ice. To simplify the implementation in 2D, the footprint mesh on the
bottom surface consists of NV 4+ 1 nodes z;, ¢ =0,..., N, with a constant mesh size Azx.

In general, the GL is somewhere in the interior of an element £; = [x;, x;1] and it crosses the element boundaries as it moves
forward in the advance phase and backward in the retreat phase of the ice. The advantage with Nitsche’s way of formulating

the boundary conditions is that if z¢y, € &; then the boundary integral over &; can be split into two parts in Eq. (14) such that
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[zi, zcr] € Tpg and [zqr, zi41] € Toy as follows

/BF + BN ds
&

= _(Unn(u7p)n'v+gnn(an)n'u)
[zi,zaL]

+ﬁu-v+%(n-u)(n-v) ds+ / Py - v ds. (15)

[ar,wit]

There is a change of boundary conditions in the middle of the element £; where the GL is located. With a strong formulation
of uy, = 0 the basis functions in V4 share this property and the condition changes from the grounded node x; where the basis
function satisfies u,, = 0 and the floating node at z;; with a free u,, without taking the position of the GL inside &; into
account.

The resulting system of non-linear equations form a nonlinear complementarity problem Christensen et al. (1998). The
distance d between the base of the ice and the bedrock at time ¢ and at z is d = 2z,(x,t) — b(z) > 0. If d > 0 on I'y¢ then the
ice is not in contact with the bedrock and oy, +py, = 0 and if oy, +p,y < 0 on I'y, then the ice and the bedrock are in contact

and d = 0. Hence, the complementarity relation in the vertical direction is

Zb(x7t) - b(l’) Z O; Onn +pw S 07
(zp(x,t) —b(2))(0nn +Ppw) =00nTY.

(16)

The contact friction law is such that § > 0 when z < zg, and 8 = 0 when « > x¢ . The complementarity relation along the

slope at x is then the non-negativity of d and
B8>0, B(z,t)(z(x,t) —b(x)) =0onTy. 17

In particular, these relations are valid at the nodes x =z, j =0,1,...,N.

The complementarity condition also holds for u,, and oy, such that

Onn +Pw <0,
nn p (18)

un(o'nn +pw) =0on Fba

without any sign constraint on wu,, except for the retreat phase when the ice leaves the ground and u,, < 0.

Similar implementations for contact problems using Nitsche’s method are found in Chouly et al. (2017a, b), where the
unknowns in the PDEs are the displacement fields instead of the velocity in Eq. (1). Analysis in Chouly et al. (2017a) suggests
that Nitsche’s method for the contact problem can provide a stable numerical solution with an optimal convergence rate.

The nonlinear equations for the nodal values of u and p are solved by Newton iterations. The system of linear equations in
every Newton iteration is solved iteratively by using the Generalised Conjugate Residual (GCR) method in Elmer/ICE. The
condition on d; in a node x; is used for a so called grounded mask, which is computed at each timestep and not changed during

the nonlinear iterations.
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3.3 Discretization of the advection equations

The advection equations for the moving ice boundary in Eq. (7) and (8) are discretized in time by a finite difference method and
in space by FEM with linear Lagrange elements for z5 and 2. A stabilization term is added, making the spatial discretization
behave like an upwind scheme in the direction of the velocity as implemented in Elmer/ICE.
The advection equations Eq. (7) and Eq. (8) are integrated in time by a semi-implicit method of first order accuracy. Let
¢ = s or b. Then the solution is advanced from time ™ to "' = " 4+ At with the timestep At by
n+1

n+1: n At n__,n Zc n. 19
Zc Zc+ (ac U o1 +wc) ( )

The spatial derivative of z. is approximated by FEM. A system of linear equations is solved at ¢"*! for z7*!. This time
discretization and its properties are discussed in Cheng et al. (2017).

A stability problem in z; is encountered in the boundary condition at I'yy in Durand et al. (2009a). It is solved by expressing
Zp in py, at I'yy with a damping term in Durand et al. (2009a). An alternative interpretation of the idea in Durand et al. (2009a)
and an explanation follow below.

The relation between uy, and u at I'yy and u, = u(x, z(x)) is

U Z 1
u, = b — br ) Un + _ U (20)

Wy -1 V 1+ZE.L Zbx V ]‘+Z§.L7

where 2y, denotes 0z, /dx. Insert u;, and wy, from Eq. (20) into Eq. (8) to obtain

B
%zab—um/l—&—ziw Q1)

Instead of discretizing Eq. (21) explicitly at t" with 4~ to determine p?, the base coordinate is updated implicitly

=20+ At (a;} —uny/1+ ng> (22)

in the solution of Eq. (14).
Assume that z;, is small. The timestep restriction in Eq. (22) is estimated by considering a 2D slab of the floating ice of

width Az and thickness H. Newton’s law of motion yields
My, = Mg — Axpy,

where M = Ax(z;—zp)p is the mass of the slab. Divide by M, integrate in time for u,, (™), let m = n or n—1, and approximate

the integral by the trapezoidal rule for the quadrature to obtain

tm

v
P Rs—Rb

m i
9Pw 23
~ gt + =— E o — - At,
e
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a;=0.51=0m, o;=1,i=1,....m—1.
Then insert u" into Eq. (22). All terms in u™ from timesteps i < m are collected in the sum AtF™~!. Then Eq. (22) can be

written

n n—1 29p erjn n m m—1

For small changes in z; in Eq. (23), the explicit method with m = n — 1 is stable when At is so small that

\1—At2292';| <1. (24)

When H = 100 m on the ice shelf, At < 6.1 s which is far smaller than the stable steps for Eq. (19). Choosing the implicit

scheme with m = n, the bound on At is

1/[1 4 A2

;’I’f[pl <1, 25)

i.e. there is no bound on positive At for stability but accuracy will restrict At.

Much longer stable timesteps are possible at the surface and the base of the ice with a semi-implicit method Eq. (19) and
a fully implicit method Eq. (22) compared to an explicit method. For example, the timestep for the problem in Eq. (19) with
1 km mesh size can be up to a couple of months. Therefore, we use the scheme in Eq. (19) for Eq. (7) and (8) and the scheme
in Eq. (22) for Eq. (21) and p,, as in Durand et al. (2009a). The difference between the approximations of z; in Eq. (19) and
(22) is of O(At?).

4 Subgrid modeling around grounding line

The basic idea of the subgrid method for the FS equations in this paper follows the GL parameterization for SSA in Seroussi
et al. (2014) and the analysis for FS in Schoof (2011). The GL is located at the position where the ice is on the ground and
the flotation criterion is perfectly satisfied such that oy,,, = —p,,. In the Stokes equations, the hydrostatic assumption may not
be valid, so the exact GL position can not be determined by simply checking the total thickness of the ice H against the depth
below sea level Hy,, = —2;,. Instead, the flotation criterion is computed by comparing the water pressure with the normal stress
component orthogonal to the boundary as indicated by the first order analysis in Sect. 2.4. The indicator is here defined by
X(2) = onn + pw Which vanishes on the floating ice and is approximately 92 — p + p,, and negative on the ground since the
slope of the bedrock is small.

Typically, at the lower surface of the floating ice where z,(x,t) > b(z), as the blue line in Fig. 2, the boundary conditions
are given by Eq. (6), and where the ice is in contact with the bedrock, as the red line in Fig. 2, the boundary conditions
are given by Eq. (5). However, there is another case as shown in Fig. 3 when the net force at z; is pointing inward, namely
Onn (i) +pw(z;) > 0. Then, the floating boundary condition Eq. (6) should be imposed up until the node z; 1. This can happen

at some point due to the low spatial and temporal resolutions, but the node x; will move upward as long as u-n < 0, or the net

10
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force switches signs and the condition transforms into the case in Fig. 2 when oynn(z;) + pw(2;) < 0. Denote the situation in
Fig. 2 by case i, and the one in Fig. 3 by case ii. We call the node ‘grounded’ when it is in contact with the bedrock with net
force from the ice pointing outward (onn + pw < 0), and ‘floating” when the net force is pointing inward (gnn + pw > 0). The
element which contains both grounded and floating nodes is called the GL element and the grounded node in it is called the
last grounded node and the floating one is called the first floating node.

In coarse meshes, the true position of the GL is generally not in one of the nodes, but usually between the last grounded and
the first floating nodes. Instead of refining the mesh around GL, which would lead to very small time steps for stability reasons,
we will here introduce a subgrid model for the GL element.

We let x(2) = 0nn(2) +pyw(x) and assume that it is linear as in Eq. (11) to determine the position of the GL, 2, in the GL
element. In case ii, the GL is located between z;_1 and z; even though the whole element [z;_1, ;] is geometrically grounded.
The equation x(zgr) =0 is solved by linear interpolation between x(x;—1) <0 and x(x;) > 0 yielding a unique solution
satisfying x;_1 < xgr < x;, depicted as the red dot in the lower panel of Fig. 3.

There is a more complicated situation in case i, where x(z;) < 0 but x(z;+1) = 0 due to the floating boundary condition. A
correction of x is made by using X(x) = onn(z) + pp(x) where py(z) = —p,gb(x) is the water pressure on the bedrock. For
x > x;, we have b(x) < zp(z) and py(x) > py (). Therefore, x(z;iy1) > x(xir1) = 0 and x(z;) = x(z;) < 0. Then, a linear
interpolation between X (x;) and x(x;41) guarantees a unique solution of X(z¢z) = 0 in the GL element [z;,x;+1], see Fig. 2.
In case ii, py can also be used since py(x) = p,,(x) as long as the element is on the bedrock.

Conceptually, the linear interpolation of the function x (z) can be considered separately by looking at the two linear functions
onn () and py(z). As the GL always rests on the bedrock, py(z¢1,) = pw (1) is actually an exact representation of the water
pressure imposed on the ice at GL, although geometrically z,(x¢y) may not coincide with b(xgy,), especially on coarse
meshes. This also leads to the fact that the interpolated normal stress onn(Zar, 25(2¢r)) is a first order approximation of the
normal stress at the exact GL position (zgr,b(xgL)).

This correction is not necessary when the GL is advancing since the implicit treatment of the bottom surface is equivalent to
additional water pressure at the stress boundary as discussed in Sect. 3.3.

After the GL position is determined, the domains I'y, and I'y; are separated at xgy, as in Eq. (15) and the integrals are
calculated with a high-order integration scheme as in Seroussi et al. (2014) to achieve a better resolution within the element
shown in Figures 2 and 3. For a smoother transition of 3 at G L, the slip coefficient is multiplied by 1/2 at the whole GL element
before integrating using the high order scheme.

The penalty term from Nitsche’s method restricts the motion of the element in the normal direction. It should only be
imposed on the element which is fully on the ground. On the contrary, in case i, the GL element [x;,2;11] is not in contact with
the bedrock as in Fig. 2, so only the floating boundary condition should be used on the element [x;,2;+1]. Additionally, the
implicit representation of the bottom surface in Eq. (22) also implies that the case ii with retreating GL should be merged to
case i since the surface is leaving the bedrock and the normal velocity should not be forced to zero. To summarize, Nitsche’s

penalty term should be imposed on all the fully grounded elements and partially on the GL element in the advance phase.
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x; =Last Grounded B=0

Figure 2. Schematic figure of Grounding Line in case i. Upper panel: the last grounded and first floating nodes as defined in Elmer/ICE.

Lower panel: linear interpolation to compute a more accurate position of the Grounding Line.

x;—1 =Last Grounded

f

x; =First Floating

Figure 3. Schematic figure of Grounding Line in case ii. Upper panel: the last grounded and first floating nodes as defined in Elmer/ICE.

Lower panel: linear interpolation to compute a more accurate position of the Grounding Line.

Equations (1), (7), and (8) form a system of coupled nonlinear equations. They are solved in the same manner as in Elmer/ICE
v.8.3. The z 1, position is determined dynamically within every nonlinear iteration when solving the FS equations and the high
order integrations are based on the current zy,. The nonlinear FS is solved with fixed-point iterations to 10~° relative error
with a limit of maximal 25 nonlinear iterations and the grounded condition is set if the distance between of the bottom surface

and the bedrock is smaller than 10~3 m.

5 Results

The numerical experiments follow the MISMIP benchmark Pattyn et al. (2012) and comparison is made with the results in
Gagliardini et al. (2016). Using the experiment MISMIP 3a, the setups are exactly the same as in the advancing and retreating

simulations in Gagliardini et al. (2016). The experiments are run with spatial resolutions of Az =4 km, 2 km and 1 km with
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20 vertical extruded layers. The timestep is At = 0.125 year for all the three resolutions to eliminate time discretization errors
when comparing different spatial resolutions.

The dependence on ~, for the retreating ice is shown in Fig. 4 with 7o between 10* and 10°. The estimated GL positions
do not vary with different choices of yy from 10° to 108 which suggests a suitable range of y. If g is too small (v < 10%),
oscillations appear in the estimated GL positions. If 7y is too large (7 >> 108), then more nonlinear iterations are needed for
each time step. The same dependency of v is observed for the advance experiments and for different mesh resolutions as well.

For the remaining experiments, we fix vy = 106.

Ty u— : : :
7.55 .
— o =10x10*
7.50 70 = 1.0 x 10° -
E — 9 =1.0x10°
3 s — 7% =10x10 |
® a0k — 0 =10x10% ]
— 0 =1.0x10°
7.35 i
7.3%.0 012 Of4 0?6 018 1.0
t (years) x10*

Figure 4. The MISMIP 3a retreat experiment with Az = 1000 m for different choices of 7o in the time interval [0,10000] years.

The GL position during 10000 years in the advance and retreat phases are displayed in Fig. 5 for different mesh sizes. The
range of the results from Gagliardini et al. (2016) with mesh resolutions Az = 25 and 50 m are shown as background shaded
regions with colors purple and pink. We achieve similar GL migration results both for the advance and retreat experiments with
at least 20 times larger mesh sizes.

We observed oscillations at the top surface near the GL in all the experiments as expected from Durand et al. (2009a); Schoof
(2011). A zoom-in plot of the surface elevation with Az = 1 km at ¢ = 10000 years is shown to the left in Fig. 6, where the red
dashed line indicates the estimated GL position. Obviously, the estimated GL position does not coincide with any nodes even
at the steady state.

The ratio between the thickness below sea level Hy,, and the ice thickness H is shown in Fig. 6. The horizontal, purple,
dash-dotted line indicates the ratio of p/p,, and the estimated GL is located at the red, dashed line. This result confirms that the
hydrostatic assumption H p = Hp,,py is not valid in the FS equations for z > z ¢, close to the GL and at the GL position, cf.
Durand et al. (2009a); Schoof (2011). For x < z¢, we have that Hy,,/H < p/p., since Hy,, decreases and H increases. The
conclusion from numerical experiments in Van Dongen et al. (2018) is that the hydrostatic assumption and the SSA equations

approximate the FS equations well for the floating ice beginning at a short distance away from the GL.
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Figure 5. The MISMIP 3a experiments for the GL position when ¢ € [0,10000] with Az = 4000, 2000 and 1000 m for the advance (solid)
and retreat (dashed) phases. The shaded regions indicate the range of the results in Gagliardini et al. (2016) with Az =50 m in red and
Az = 25 m in blue.

The top and bottom surface velocity solutions from the retreat experiment are shown in Fig. 7 with Az = 1 km after 10000
years. The horizontal velocities on the two surfaces are similar with negligibly small differences on the floating ice. The vertical
velocities w on the top (orange line) and bottom surface (blue line) at the GL are almost discontinuous as analyzed in Schoof

(2011). With the subgrid method, the rapid variation is resolved by the 1 km mesh size.

6 Discussion

Seroussi et al Seroussi et al. (2014) describe four different subgrid models for the friction in SSA and evaluate them in a FEM
discretization on a triangulated, planar domain. The flotation criterion is applied at the nodes of the triangles. Depending on
how many of the nodes that are floating, the amount of friction in the triangle is determined. Also, a higher order polynomial
integration over the triangles in FEM allows an inner structure in the triangular element.

Our method can be extended to a triangular mesh covering I'y, in the following way. The condition on  in Eq. (11) is applied
on the edges of each triangle 7 in the mesh. If x < 0 in all three nodes then 7 is grounded. If x > 0 in all nodes then 7 is
floating. The GL passes inside 7 if y has a different sign in one of the nodes. Then the GL crosses the two edges where y < 0
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Figure 6. Details of the solutions for the retreat experiment with Az = 1 km after 10000 years. The solid dots represent the nodes of the
elements and the vertical, red, dashed lines indicate the GL position. Left panel: The oscillations at top surface near GL. Right panel: The

flotation criterion is evaluated by Hp,, / H. The ratio between p/p,, is drawn in a horizontal, purple, dash-dotted line.

in one node and x > 0 in the other node. In this way, a continuous reconstruction of a piecewise linear GL is possible on I'.
The FEM approximation is modified in the same manner as in Sect. 4 with Nitsche’s method.

An alternative to subgrid modeling is to introduce dynamic adaptation of the mesh on I';, with a refinement at the GL as
in e.g. Cornford et al. (2013); Drouet et al. (2013); Gladstone et al. (2010a). In general, a fine mesh is needed along the GL
and in an area surrounding it. Since the GL moves long distances at least in simulations of palaeo-ice sheets, the adaptation
should be dynamic, permit refinement and coarsening of the mesh, and be based on some estimate of the model inaccuracy.
Furthermore, shorter timesteps are necessary for stability when the mesh size is smaller in a mesh adaptive method. Introducing
a time dependent mesh adaptivity into an existing code requires a substantial coding effort and will increase the computational

work considerably. Subgrid modeling is easier to implement and the increase in computing time is small.

7 Conclusions

Subgrid models at the GL have been developed and tested in the SSA model for 2D flow in Gladstone et al. (2010b) and for 3D
flow in Seroussi et al. (2014), for the friction in the vertically integrated model BISICLES Cornford et al. (2013) for 3D flow
in Cornford et al. (2016), and for the PISM model mixing SIA with SSA in 3D in Feldmann et al. (2014). Here we propose a
subgrid model in 2D for the FS equations implemented in Elmer/ICE that can be extended to 3D. The mesh is static and the
moving GL position within one element is determined by linear interpolation with an auxiliary function x based on the theory

in Schoof (2011). Only in that element, the FEM discretization is modified.
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Figure 7. The velocities u (upper panel) and w (lower panel) on the top (orange) and bottom (blue) surface of the ice in the retreat experiment

with Az = 1 km after 10000 years. The red, dashed line indicates the GL position. The vertical velocity w is zoomed-in close to the GL.

The method is applied to the simulation of an ice sheet in 2D with an advancing GL and one with a retreating GL. The data

for the tests are the same as in one of the MISMIP examples Pattyn et al. (2012) and in Gagliardini et al. (2016). Comparable

350 results to Gagliardini et al. (2016) are obtained with subgrid modeling with more than 20 times larger mesh sizes. A larger
mesh size also allows a longer timestep for the time integration. Without further knowledge of the basal conditions and detailed

models at the GL, solving ¥(x) = 0 provides a good approximation of the GL position.

Code availability. The FS sub-grid model is implemented based on Elmer/ICE Version: 8. 3(Rev: f6bfdc9) with the scripts at http://doi.org/
10.5281/zenodo0.3401478 and http://doi.org/10.5281/zenodo.3401475.
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