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Abstract. The full Stokes equations are solved by a finite element method for simulation of large ice sheets and glaciers. The

simulation is particularly sensitive to the discretization of the grounding line which separates the ice resting on the bedrock

and the ice floating on water and is moving in time. The boundary conditions at the ice base are enforced by Nitsche’s method

and a subgrid treatment of the element in the discretization with the grounding line. Simulations with the method in two

dimensions for an advancing and a retreating grounding line illustrate the performance of the method. It is implemented in the5

two dimensional version of the open source code Elmer/ICE.

1 Introduction

Simulation with ice sheet models is a tool to assess the future sea-level rise (SLR) due to melting of continental ice sheets and

glaciers (Hanna et al., 2013) and to reconstruct the ice sheets of the past (DeConto and Pollard, 2016; Stokes et al., 2015) for

comparison with measurements and validation of the models. In the models, the predictions are particularly sensitive to the10

numerical treatment of the grounding line (GL) (Durand and Pattyn, 2015). The GL is the line where the ice sheet leaves the

solid bedrock and becomes an ice shelf floating on water driven by buoyancy. It is important to know the GL position to be able

to quantify the ice discharge into the sea and as an indicator of ice sheet advances or retreats (Konrad et al., 2018). The distance

that the GL moves may be long over palaeo time scales. It is shown in (Kingslake et al., 2018) that the GL has retreated several

hundred km in West Antarctica during the last 11,500 years and then advanced again after the isostatic rebound of the bed.15

The sensitivity, long time intervals, and long distances require a careful treatment of the GL neighborhood by the numerical

method to discretize the model equations.

When the ice rests on the ground and is affected by frictional forces on the bed, the ice flow is dominated by vertical shear

stresses. The longitudinal stress gradient controls the flow of the ice floating on water. The GL is in the transition zone between

these two types of flow with a gradual change of the stress field.20

The most accurate ice model in theory is based on the full Stokes (FS) equations. A simplification of the FS equations by

integrating in the depth of the ice is the shallow shelf (or shelfy stream) approximation (SSA) (MacAyeal, 1989). It is often

used for simulation of the interaction between a grounded ice sheet and a marine ice shelf. In the zone between the grounded

ice and the floating ice, it is necessary to use the FS equations (Docquier et al., 2011; Schoof, 2011; Schoof and Hindmarsh,

2010; Wilchinsky and Chugunov, 2000) unless the ice is moving rapidly on the ground with low basal friction and the SSA25

1



equations are accurate both upstream and downstream of the GL. The solution to the linearized FS equations close to the GL

is investigated using perturbation theory in (Schoof, 2011).

The evolution of the GL in simulations is sensitive to the ice model, the basal friction model, and numerical parameters. In

a major effort MISMIP (Pattyn et al., 2013, 2012), different ice models and implementations solve the same ice flow problems

and the predicted GL steady state and transient GL motion are compared. The results depend on the model equations and the30

mesh resolution (Pattyn et al., 2013). The prediction of the GL and the SLR is different for different ice equations such as FS

and SSA also in (Pattyn and Durand, 2013). Including equations with vertical shear stress at the GL such as the FS equations

seems to be crucial. The flotation condition determines where the GL is in SSA in (Docquier et al., 2011; Drouet et al., 2013).

It is based on Archimedes’ principle for an ice column immersed in water. The friction laws at the ice base depend on the

effective pressure, the basal velocity, and the distance to the GL in different combinations in (Brondex et al., 2017; Gagliardini35

et al., 2015; Gladstone et al., 2017; Leguy et al., 2014). The GL position and the SLR vary considerably depending on the

choice of friction model. Given the friction model, the results are sensitive to its model parameters too (Gong et al., 2017).

Parameters in the numerical methods also influence the GL migration. It is observed in (Durand et al., 2009b) that the mesh

resolution along the ice bed has to be fine to obtain reliable solutions with FS in GL simulations. The GL is then located

in a node of the fixed mesh. A mesh size below 1 km is necessary in (Larour et al., 2019) to resolve the features at the40

GL. Adaptive meshes for a finite volume discretization of an approximation of the FS equations are employed in (Cornford

et al., 2013) to study the GL retreat and loss of ice in West Antarctica. The FS solutions of benchmark problems in (Pattyn

et al., 2013) computed by an implementation of the finite element method (FEM) in Elmer/ICE (Gagliardini et al., 2013) and

FELIX-S (Leng et al., 2012) are compared in (Zhang et al., 2017). The differences between the codes are attributed to different

treatment of a friction parameter at the GL and different assignment of grounded and floating nodes and element faces.45

A subgrid scheme introduces an inner structure in the discretization element or mesh volume where the GL is located. Such

a model for the GL is tested in (Gladstone et al., 2010b) for the 1D SSA equation where the flotation condition for the ice

defines the position of the GL. The GL migration is determined by the 2D SSA equations discretized by the finite element

method (FEM) in (Seroussi et al., 2014). Subgrid models at the GL are compared to a model without an internal structure in

the element. The conclusion is that sub-element parameterization is necessary. A shallow approximation to FS with a subgrid50

scheme on coarse meshes is compared to FS in (Feldmann et al., 2014) with similar results for the GL migration. Subgrid

modeling and adaptivity are compared in (Cornford et al., 2016) for a vertically integrated model. A fine mesh resolution is

necessary for converged GL positions with FS in (Durand et al., 2009a, b). The purpose of a subgrid scheme is to avoid such

fine meshes.

The fine mesh resolution needed in GL simulations with the FS equations would require large computational efforts in 3D55

in long time intervals. Since the GL moves long distances in palaeo simulations, a dynamic mesh refinement and coarsening of

the mesh following the GL is necessary. The alternative pursued here with FEM is to introduce a subgrid scheme in the mesh

elements where the GL is located and keep the mesh size coarser. The subgrid scheme is restricted to one element in a 2D

vertical ice and is therefore computationally inexpensive. In an extension to 3D, the subgrid scheme would be applied along

a line of elements in 3D. The results with numerical modeling will always depend on the mesh resolution but can be more or60
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less sensitive to the mesh spacing and time steps. Our subgrid scheme is aiming at improving the accuracy in GL simulations

for a static mesh.

We solve the FS equations in a 2D vertical ice with the Galerkin method implemented in Elmer/ICE (Gagliardini et al.,

2013). A subgrid discretization is proposed and tested for the element where the GL is located. The boundary conditions are

imposed by Nitsche’s method at the ice base in the weak formulation of the equations (Nitsche, 1971; Reusken et al., 2017;65

Urquiza et al., 2014). The linear Stokes equations are solved in (Chouly et al., 2017a) with Nitsche’s treatment of the boundary

conditions. They solve the equations for the displacement but here we solve for the velocity using similar numerical techniques

to weakly impose the Dirichlet boundary conditions on the normal velocity at the base. The frictional force in the tangential

direction is applied on part of the element with the GL. The position of the GL within the element is determined in agreement

with theory developed for the linearized FS in (Schoof, 2011).70

The paper is organized as follows. Section 2 is devoted to the presentation of the mathematical model of the ice sheet

dynamics. In Sect. 3, the numerical discretization with FEM is given while the subgrid scheme around the GL is found in Sect.

4. The numerical results for a MISMIP problem are presented in Sect. 5. The extension to 3D is discussed in Sect. 6 and finally

some conclusions are drawn in Sect. 7.

2 Ice model75

2.1 The full Stokes (FS) equations

We use the FS equations in a 2D vertical ice with coordinates x = (x,z)T for modeling of the flow of an ice sheet (Hutter,

1983). These nonlinear partial differential equations (PDEs) in the interior of the ice domain Ω are given by∇ ·u = 0,

−∇ ·σ = ρg,
(1)

where the stress tensor is σ = τ(u)−pI and the deviatoric stress tensor is τ(u) = 2η(u)ε̇(u). The strain rate tensor is defined80

by

ε̇(u) =
1

2
(∇u+∇uT ) =

 ε̇11 ε̇12

ε̇12 ε̇22

 , (2)

I is the identity matrix, and the viscosity is defined by Glen’s flow law

η(u) =
1

2
(A(T ′))

− 1
n ε̇

1−n
n

e , ε̇e =

√
1

2
tr(ε̇(u)ε̇(u)). (3)

85

Here u = (u,w)T is the vector of velocities, ρ is the density of the ice, p denotes the pressure, and the gravitational accel-

eration in the z-direction is denoted by g. The rate factor A(T ′) describes how the viscosity depends on the pressure melting

point corrected temperature T ′. For isothermal flow assumed here, the rate factor A is constant. Finally, n is usually taken to

be 3.
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2.2 Boundary conditions90
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Figure 1. A two dimensional schematic view of a marine ice sheet.

At the boundary Γ of the ice domain Ω we define the normal outgoing vector n and tangential vector t, see Fig. 1. In the

2D vertical case considered here, the ice sheet geometry is constant in y. The ice surface is denoted by Γs and the ice base is

Γb = Γbg ∪Γbf . At Γs and Γbf , the floating part of Γb, we have that

σn = fs , σn = fbf (4)

respectively. The ice is stress-free at Γs, fs = 0, and fbf =−pwn at the ice/ocean interface Γbf where pw is the water pressure.95

Let

σnt = t ·σn, σnn = n ·σn, ut = t ·u,

where σnn and σnt are the normal and tangential components of the stress and ut is the tangential component of the ice

velocity at the ice base. Then for the slip boundary Γbg , the grounded part of Γb where the ice is on the bedrock, we have a

friction law for the sliding ice100

σnt +β(u,x)ut = 0, un = n ·u = 0, −σnn ≥ pw, (5)

where un is the normal component of the ice velocity. The type of friction law is determined by the friction coefficient β. At

Γbf , there is a balance between σnn and pw and the contact is friction-free, β = 0, then

σnt = 0, −σnn = pw. (6)
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At the GL, the boundary condition switches from β > 0 and un = 0 on Γbg to β = 0 and a free un on Γbf . In 2D vertical ice,105

the GL is the point (xGL,zGL) between Γbg and Γbf .

The ocean surface is at z = 0, and pw =−ρwgzb where ρw is the density of sea water, zb is the z-coordinate of Γb, and g is

the gravitational acceleration.

2.3 The free surface equations

The boundaries Γs and Γb are time-dependent and move according to two free surface equations. The boundary Γbg follows110

the fixed bedrock with coordinates (x,b(x)).

The z-coordinate of the ice surface position zs(x,t) at Γs (see Fig. 1) is the solution of an advection equation

∂zs
∂t

+us
∂zs
∂x
−ws = as, (7)

where as denotes the surface mass balance and us = (us,ws)
T the velocity at the ice surface in contact with the atmosphere.

Similarly, the z-coordinate for the ice base zb of the floating ice at Γbf satisfies115

∂zb
∂t

+ub
∂zb
∂x
−wb = ab, (8)

where ab is the basal mass balance and ub = (ub,wb)
T the velocity of the ice at Γbf . On Γbg , zb = b(x) and on Γbf , zb < 0.

The thickness of the ice is denoted by H = zs− zb and depends on x and t.

2.4 The solution close to the grounding line

The 2D vertical solution of the FS equations in Eq. (1) with a constant viscosity, n= 1 in Eq. (3), is expanded in small param-120

eters in (Schoof, 2011). The solutions in different regions around the GL are connected by matched asymptotics. Upstream of

the GL at the grounded part, x < xGL, the leading terms in the expansion satisfy a simple relation in scaled variables close to

the GL. Across the GL, u, the flux of ice uH , and the depth integrated normal or longitudinal stress τ11 in Eq. (2) are continu-

ous. By including higher order terms in the expansion in small parameters, it is shown that the ice surface slope is continuous

and Archimedes’ flotation condition125

Hρ=−zbρw (9)

is not satisfied immediately downstream of the GL. A rapid variation in the vertical velocity w in a short distance interval at

the GL causes oscillations in the ice surface in the analysis as observed also in FS simulations in (Durand et al., 2009a).

In (Schoof, 2011, Ch. 4.3), the solution to the FS in a 2D vertical ice is expanded in two parameters ν and ε. The aspect

ratio of the ice ν is the quotient between a typical scale of the thickness of the iceH and a horizontal length scale L, ν =H/L,130

and ε is ν times the quotient between the longitudinal and the shear stresses τ11 and τ12 in Eq. (2). If ν5/2� ε� 1 then in

a boundary layer close to the GL and x < xGL it follows from the equations that the leading terms in the solution in scaled

variables satisfy

τ22− p= σ22 = ρg(z− zs). (10)
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On floating ice τ22−p+pw = 0 and the flotation criterion Eq. (9) is fulfilled. This is a first order approximation of the second135

relation in Eq. (6). On the grounded ice τ22− p+ pw < 0.

Introducing the notation

χa(x,z) = τ22− p+ pw = ρg(z− zs(x))− ρwgzb(x), (11)

and letting Hbw =−zb be the thickness of the ice below the sea level yields

χa(x,zb) =−g(ρH − ρwHbw). (12)140

If x < xGL then χa < 0 in the neighborhood of xGL on Γbg and if x > xGL then χa = 0 and Eq. (9) holds true on Γbf . Suppose

that zs and zb are linear in x. Then χa is also linear in x. In numerical experiments with the linear FS (n= 1) in (Nowicki and

Wingham, 2008), χa(x,zb) in the original variables varies linearly in x for x < xGL. In Sect. 4, χa(x,zb) is an approximation

of the expression used to estimate the GL position.

3 Discretization by FEM145

In this section we state the weak form of Eq. (1) and introduce the spatial FEM discretization used for Eq. (1) and give the

time-discretization of Eq. (7) and (8).

3.1 The weak form of the FS equations

We start by defining the mixed weak form of the FS equations. Introduce k = 1+1/n, k∗ = 1+n with n from Glen’s flow law

and the spaces150

V k = {v : v ∈ (W 1,k(Ω))2}, Qk∗ = {q : q ∈ Lk∗(Ω)}, (13)

see, e.g. (Chen et al., 2013; Jouvet and Rappaz, 2011; Martin and Monnier, 2014). The weak solution (u,p) of Eq. (1) is

obtained as follows. Find (u,p) ∈ V k ×Qk∗ such that for all (v, q) ∈ V k ×Qk∗ the equation

A((u,p),(v, q)) +BΓ(u,v,p) +BN (u,v, q) = F (v), (14)
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is satisfied, where155

A((u,p),(v, q)) =

∫
Ω

2η(u)ε̇(u) : ε̇(v) dx− b(u, q)− b(v,p),

b(u, q) =

∫
Ω

q∇ ·u dx,

BΓ(u,v,p) =

∫
Γbg

(−σnn(u,p)n ·v+βu ·v) ds,

BN (u,v, q) =−
∫

Γbg

σnn(v, q)n ·u ds+ γ0

∫
Γbg

1

h
(n ·u)(n ·v) ds,

F (v) =

∫
Ω

ρg ·v dx−
∫

Γbf

pwn ·v ds.

The last term inBN is added in the weak form in Nitsche’s method (Nitsche, 1971) to impose the Dirichlet condition un = 0

weakly on Γbg . It can be considered as a penalty term. The value of the positive parameter γ0 depends on the physical problem

and h is a measure of the mesh size on Γb. The sensitivity of the GL positions for different values of γ0 is shown in Sect. 5.

The first term in BN symmetrizes the boundary term BΓ +BN on Γbg and vanishes when un = 0.160

3.2 The discretized FS equations

We employ linear Lagrange elements with Galerkin Least Square (GLS) stabilization (Franca and Frey, 1992; Helanow and

Ahlkrona, 2018) to avoid spurious oscillations in the pressure using the standard setting in Elmer/ICE (Gagliardini et al., 2013)

approximating solutions in the spaces V k and Qk∗ in Eq. (13).

The mesh is constructed from a footprint mesh on the ice base and then extruded with the same number of layers equidistantly165

in the vertical direction according to the thickness of the ice sheet. To simplify the implementation in 2D, the footprint mesh

on the ice base consists of N + 1 nodes at xi = (xi,zb(xi)), i= 0, . . . ,N, with x-coordinates xi and a constant mesh size

∆x= xi−xi−1.

In general, the GL is somewhere in the interior of an interval [xi−1, xi] and it crosses the interval boundaries as it moves

forward in the advance phase and backward in the retreat phase of the ice. The advantage with Nitsche’s way of formulating170

the boundary conditions is that if xGL ∈ [xi−1, xi] then the boundary integral over the interval can be split into two parts in

Eq. (14) such that (x,zb(x)) ∈ Γbg when x ∈ [xi−1, xGL] and if x ∈ [xGL, xi] then (x,zb(x)) ∈ Γbf as follows∫
[xi−1,xi]

BΓ +BN ds=

∫
[xi−1,xGL]

−(σnn(u,p)n ·v+σnn(v, q)n ·u)+βu ·v+
γ0

h
(n ·u)(n ·v) ds

+

∫
[xGL,xi]

pwn ·v ds, (15)

with the integration element ds following Γb. There is a change of the boundary condition in the middle of the FEM element

where the GL is located. With a strong formulation of un = 0, the basis functions in V k share this property and the condition175
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changes from the grounded node xi−1 where the basis function satisfies un = 0 and the floating node at xi with a free un

without taking the position of the GL inside [xi−1, xi] into account. With the weak formulation in Nitsche’s method no basis

function satisfies un = 0 strictly but the condition is imposed by the additional penalty term in (14) and this term may change

inside an element as in (15).

The resulting system of nonlinear equations form a nonlinear complementarity problem (Christensen et al., 1998). The180

distance d between the base of the ice and the bedrock at time t and at x is d(x,t) = zb(x,t)− b(x)≥ 0. If d > 0 on Γbf then

the ice is not in contact with the bedrock and σnn + pw = 0 and if σnn + pw < 0 on Γbg then the ice and the bedrock are in

contact and d= 0. Hence, the complementarity relation in the vertical direction is

zb(x,t)− b(x)≥ 0, σnn + pw ≤ 0, (zb(x,t)− b(x))(σnn + pw) = 0 on Γb. (16)

The contact friction law is such that β > 0 when x < xGL and β = 0 when x > xGL. The complementarity relation along the185

slope at x is then the non-negativity of d and

β ≥ 0, β(x,t)(zb(x,t)− b(x)) = 0 on Γb. (17)

In particular, these relations are valid at the nodes x= xj , j = 0,1, . . . ,N .

The complementarity condition also holds for un and σnn such that

σnn + pw ≤ 0, un(σnn + pw) = 0 on Γb, (18)190

without any sign constraint on un except for the retreat phase when the ice leaves the ground and un < 0.

Similar implementations for contact problems using Nitsche’s method are found in (Chouly et al., 2017a, b), where the

unknowns in the PDEs are the displacement fields instead of the velocity in Eq. (1). Analysis in (Chouly et al., 2017a) suggests

that Nitsche’s method for the contact problem can provide a stable numerical solution with an optimal convergence rate.

The nonlinear equations for the nodal values of u and p are solved by Picard iterations. The system of linear equations in195

every Picard iteration is solved directly by using the MUMPS linear solver in Elmer/ICE. The condition on dj = d(xj) is used

to decide if the node xj is geometrically grounded or floating. It is computed at each timestep and not changed during the

nonlinear iterations. The procedure for solution of the nonlinear FS equations is outlined in Algorithm 1.

3.3 Discretization of the advection equations

The advection equations for the moving ice boundary in Eq. (7) and (8) are discretized in time by a finite difference method200

and in space by FEM with linear Lagrange elements for zs and zb. An artificial diffusion stabilization term is added, making

the spatial discretization behave like an upwind scheme in the direction of the velocity as implemented in Elmer/ICE.

The advection equations Eq. (7) and Eq. (8) are integrated in time by a semi-implicit method of first order accuracy. Let

c= s or b. Then the solution is advanced from time tn to tn+1 = tn + ∆t with the timestep ∆t by

zn+1
c = znc + ∆t(anc −unc

∂zn+1
c

∂x
+wnc ). (19)205
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Algorithm 1 Solve the FS equations

For a given mesh, compute dj , j = 0,1, ...,N, for all the nodes xj at the ice base.

Mark node j as geometrically grounded if dj < 10−3, otherwise floating.

Find the elements which contain both geometrically grounded and floating nodes, and mark the grounded nodes in these elements as ‘GL

nodes’.

Compute the residual of the FS equations with the initial guess of the solution.

while the residual is larger than the tolerance do

Assemble the FEM matrix for the interior of the domain Ω

for the boundary elements on Γb do

if has ‘GL nodes’ then

Mark the current element as a ‘potential GL element’

Use the subgrid scheme in Algorithm 3 of Sect. 4 for the assembly.

else

Assemble the boundary element.

end if

end for

Solve the linearized FS equations for a correction of the solution

Compute the solution and the residual

end while

The spatial derivative of zc is approximated by FEM. A system of linear equations is solved at tn+1 for zn+1
c . This time

discretization and its properties are discussed in (Cheng et al., 2017) and summarized as in Algorithm 2.

Algorithm 2 Time scheme of the GL migration problem

Start from an initial geometry Ω0 defined by z0b ,z
0
s .

for n= 0 to T/∆t− 1 do

Solve the FS equations on Ωn with Algorithm 1, to get the solutions un.

Solve for zn+1
b and zn+1

s with un with implicit Euler method.

Use zn+1
b and zn+1

s to update Ωn+1

end for

A stability problem in zb is encountered in the boundary condition at Γbf when the FS equations are solved in (Durand et al.,

2009a). It is resolved by expressing zb in pw at Γbf with a damping term. An alternative interpretation of the idea in (Durand

et al., 2009a) and an explanation follow below.210

The relation between un and ut at Γbf and ub = u(x,zb(x)) is

ub =

 ub

wb

=

 zbx

−1

 un√
1 + z2

bx

+

 1

zbx

 ut√
1 + z2

bx

, (20)
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where zbx denotes ∂zb/∂x. Inserting ub and wb from Eq. (20) into Eq. (8) yields

∂zb
∂t

= ab−un
√

1 + z2
bx, (21)

Instead of discretizing Eq. (21) explicitly at tn+1 with unn to determine pn+1
w , the base coordinate is updated implicitly215

zn+1
b = znb + ∆t

(
an+1
b −un+1

n

√
1 + (zn+1

bx )2

)
(22)

in the solution of Eq. (14).

Assuming that zbx is small, the timestep restriction in Eq. (22) is estimated by considering a 2D slab of the floating ice of

width ∆x and thickness H . Newton’s law of motion yields

Mu̇n =Mg−∆xpw,220

where M = ∆x(zs− zb)ρ is the mass of the slab. Dividing by M , integrating in time for un(tm), letting m= n+ 1 or n, and

approximating the integral by the trapezoidal rule for the quadrature yields

un(tm) =

tm∫
0

g+
gρw
ρ

zb
zs− zb

ds≈ gtm +
gρw
ρ

m∑
i=0

αi
zib

zis− zib
∆t= umn ,

with the parameters

αi = 0.5, i= 0,m, αi = 1, i= 1, . . . ,m− 1.225

Then insert umn into Eq. (22). All terms in umn from timesteps i < m are collected in the sum ∆tFm−1. Then Eq. (22) can be

written

zn+1
b = znb −∆t2

gρw
2ρ

zmb
zms − zmb

+ ∆t
(
anb − gtm−∆tFm−1

)
. (23)

For small changes in zb in Eq. (23), the explicit method with m= n is stable when ∆t is so small that

|1−∆t2
gρw
2Hρ

| ≤ 1. (24)230

When H = 100 m on the ice shelf, ∆t < 6.1 s which is far smaller than the stable steps for Eq. (19). Choosing the implicit

scheme with m= n+ 1, the bound on ∆t is

1/|1 + ∆t2
gρw
2Hρ

| ≤ 1, (25)

i.e. there is no bound on positive ∆t for stability but accuracy will restrict ∆t.

Much longer stable timesteps are possible at the surface and the base of the ice with a semi-implicit method Eq. (19) and235

a fully implicit method Eq. (22) compared to an explicit method. For example, the timestep for the problem in Eq. (19) with

1 km mesh size can be up to a couple of months. Therefore, we use the scheme in Eq. (19) for Eqs. (7) and (8) and the scheme

in Eq. (22) for Eq. (21) and pw as in (Durand et al., 2009a). The difference between the approximations of zb in Eq. (19) and

(22) is of O(∆t2).
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4 Subgrid scheme around the grounding line240

The basic idea of the subgrid scheme for the FS equations in this paper follows the GL parameterization (SEP3) for SSA

in (Seroussi et al., 2014) and the analysis for FS in (Schoof, 2011). The GL is located at the position where the ice is on the

ground and the flotation criterion is perfectly satisfied such that σnn =−pw. In the FS equations, the hydrostatic assumption

Eq. (9) may not be valid close to the GL. Therefore, the GL position can not be determined by simply checking the total

thickness of the ice H against the depth below sea level Hbw. Instead, the flotation criterion is computed by comparing the245

water pressure with the numerical normal stress component orthogonal to the boundary, as suggested by the first order analysis

in Sect. 2.4. The indicator is here defined by

χ(x) = σnn + pw, (26)

which vanishes on the floating ice and is negative and approximately equal to χa = τ22− p+ pw in (11) on the ground since

the slope of the bedrock is small and n≈ (0,−1)T .250

The numerical solutions, e.g. (Gagliardini et al., 2016; Gladstone et al., 2017), converge to the analytical solution as the

mesh size decreases. The analytical solution satisfies zb(x,t)> b(x) with the boundary conditions in Eq. (6) at the base of

the floating ice, and where the ice is in contact with the bedrock zb(x,t) = b(x), the boundary conditions are given by Eq.

(5). Examples of the analytical solution are demonstrated by the thin light blue lines in Fig. 2 and 3 with a black ‘∗’ at the

analytical GL position xGL. The two figures share the same analytical solution. However, as illustrated in Fig. 2 and 3, the255

basal boundary of the ice zb(x,t) does not conform with the mesh from the spatial discretization. In particular, the GL position

xGL of the analytical solution does not coincide with any of the nodes, but it usually stays on the bedrock b(x) between the

last grounded (xi−1) and the first floating (xi) nodes, see Fig. 2 and 3. The linear element between xj−1 and xj is denoted by

Ej . The sequence of Ej , j = 1, . . . ,N, approximates Γb. The grounding line element containing the GL is Ei.
Depending on how the mesh is created from the initial geometry and updated during the simulation, the first floating node at260

xi, as well as the GL element, can be either on the bedrock (as in Fig. 2) or at the basal surface of the ice above the bedrock (as

in Fig. 3), even though the corresponding analytical solutions are identical. Denote the situation in Fig. 2 by case i, and the one

in Fig. 3 by case ii. The physical boundary conditions of the two cases are different only at the GL element. More precisely, in

case i, the net force on the node xi is pointing inward, namely χ(xi) = σnn(xi) + pw(xi)> 0, whereas in case ii, the floating

condition σnn(xi) + pw(xi) = 0 is satisfied in the node xi. The directions of the net force at xi−1 and xi are shown by the265

arrows in the upper panels of Fig. 2 and 3. Consequently, the external forces imposed on the GL element are different in the

two cases. For instance, in case i, the GL element is considered as geometrically grounded, shown with red color in the upper

panel of Fig. 2. In case ii, the GL element is treated as geometrically floating and colored in blue in the upper panel of Fig. 3.

These two cases are similar to the LG and FF cases in (Gagliardini et al., 2016) implying that the numerical solutions in

the the two cases are different, especially on a coarse mesh (mesh size at about 100 m or larger). Thus, we propose a subgrid270

scheme to reduce these differences in the spatial discretization and to capture the GL migration without using a fine mesh. The

schematic drawing of the subgrid scheme for the two cases is shown in the middle panels of Fig. 2 and 3. The GL element
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Hβ(x)
1

0

xi−1 x̃GL xi

Figure 2. Schematic figure of the GL in case i, with the arrows indicating the direction of the net forces. Upper panel: The last grounded and

first floating nodes as defined in Elmer/ICE. The light blue line is the analytical solution of the ice sheet with the analytical GL position xGL.

Middle panel: Linear interpolation to approximate the numerical GL position x̃GL. Lower panel: The step functions HN (x) and Hβ(x)

which indicate the area for Nitsche’s penalty and slip boundary conditions.

is divided into the grounded (red) and floating (blue) parts by the estimated GL position x̃GL on Ei, which is the numerical

approximation of the analytical GL position xGL.

To determine the position x̃GL, we solve χ(x̃GL) = σnn(x̃GL)+pw(x̃GL) = 0 by linear interpolation between χ(xi−1) and275

χ(xi) such that

x̃GL = xi−1−
χ(xi−1)

χ(xi−1)−χ(xi)
(xi−1−xi). (27)

The water pressure pw(x) is a linear function of x on the GL element and the numerical solution of σnn(x) is also piecewise

linear on every element with the standard Lagrange elements in Elmer/ICE (Gagliardini et al., 2013). In this sense, x̃GL is the

best numerical approximation of the analytical GL position xGL in the current framework. This approach fits well with case i280

since the indicator χ(x) has opposite signs at xi−1 and xi, see the middle panel of Fig. 2 where x̃GL is marked by a red ‘∗’. It

guarantees the existence and uniqueness of x̃GL on the GL element.

However, the situation in case ii is more complicated. In the upper panel of Fig. 3, as the elements on both sides of the node

xi are geometrically floating, the boundary condition imposed on xi becomes χ(xi) = σnn(xi) + pw(xi) = 0. Considering

that the analytical GL position xGL always stays on the bedrock, a correction of χ(x) is introduced in case ii by χ̃ in285

χ̃(x) = σnn(x) + pb(x), (28)
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Figure 3. Schematic figure of the GL in case ii, with the arrows indicating the direction of the net force. Upper panel: The last grounded

and first floating nodes as defined in Elmer/ICE. The light blue line is the analytical solution of the ice sheet with the analytical GL position

xGL. The node xi is fully floating and the net force is 0. Middle panel: Linear interpolation to approximate the numerical GL position x̃GL.

The point x̂i on the bedrock has the same x coordinate as xi. Lower panel: The step functions HN (x) and Hβ(x) which indicate the area

for Nitsche’s penalty and slip boundary conditions.

where pb(x) =−ρwgb(x) is the water pressure on the bedrock and χ̃(x)≥ χ(x). Notice that pb(xi) = pw(x̂i)> pw(xi), where

x̂i is a point on the bedrock with the same x coordinate of xi, as illustrated in the middle panel of Fig. 3. A solution x̃GL can

be found by taking linear interpolations of χ̃(x) between the nodes xi−1 and xi as in Eq. (27). If we compare with case i, this

correction can be considered as using σnn(x̃GL) to approximate σnn(xGL) on a virtual element between xi−1 and x̂i, since290

the linear interpolation of pb(x) still provides the analytical water pressure along the bedrock. Therefore, the position x̃GL

is a numerical approximation of the GL position, although it is not geometrically in contact with the bedrock. Moreover, this

correction is not necessary when the GL is advancing since the implicit treatment of the bottom surface is equivalent to moving

xi towards x̂i with un > 0 in Eq. (21) as discussed in Sect. 3.3.

Since we have pb(x) = pw(x) and χ(x) = χ̃(x) at the GL element in case i, we can simply use χ̃(x) to find x̃GL for the two295

cases by replacing χ in (27) by χ̃. Then the domains Γbg and Γbf are separated at x̃GL as in Eq. (15) and the integrals on the

GL element are calculated with a high-order integration scheme as in (Seroussi et al., 2014). We introduce two step functions

HN (x) and Hβ(x) to include and exclude quadrature points in the integration of the Nitsche’s term and the slip boundary

condition. To achieve a reasonable resolution within the GL element, as suggested in (Seroussi et al., 2014), at least tenth order

Gaussian quadrature is required.300

The penalty term in Nitsche’s method restricts the motion of the element in the normal direction. It is only imposed on the

element which is fully on the ground. On the contrary in case ii, the GL element Ei is not in contact with the bedrock, see Fig.
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3. Only the floating boundary condition is then used on the GL element. When the FS equations are solved, the implicit update

of the basal surface with un < 0 in Eq. (22) implies that the last grounded node in the previous timestep is leaving the bedrock

when the ice is retreating and the GL moves to the adjacent element. Case i will not appear in that situation with a retreating305

GL and as in case ii the normal velocity on the element should not be forced to zero. Nitsche’s penalty term should be imposed

on all the fully grounded elements and partially on the GL element in the advance phase as in case i. The step functionHN (x)

indicates how Nitsche’s method is implemented on the boundary elements, see the lower panels of Fig. 2 and 3 for the two

cases. The penalty term contributes to the integration only whenHN (x) = 1.

The slip coefficient β is treated similarly with the step functionHβ(x), whereHβ(x) = 1 is on the fully grounded elements310

and Hβ(x) = 0 on the floating elements. For a smoother transition of β at the GL, the step function is set to be 1/2 in parts of

the GL element before integrating using the high order scheme. In case i, full friction is applied at the grounded part between

xi−1 and x̃GL of the GL element since this part is also grounded in the analytical solution. Then, the friction is lower in the

remaining part of Ei. For the floating part between x̃GL and xi in case ii, there is no friction and Hβ(x) = 0 and we have

reduced friction between xi−1 and x̃GL, see the lower panel of 3. The boundary integral Eq. (15) is now rewritten with the two315

step functions as∫
Ei

BΓ +BN ds=

∫
Ei

−HN (σnn(u,p)n ·v+σnn(v, q)n ·u)+Hββu ·v+HN
γ0

h
(n ·u)(n ·v)

+ (1−HN )pwn ·v ds. (29)

A summary of the discussion is:

– Advance phase⇒ case i or case ii

– Retreat phase⇒ case ii320

The case is determined by the geometry of the GL element.

The algorithm for the GL element is:

Algorithm 3 Subgrid modeling for the GL element

Take all the ‘potential GL elements’ and solve χ̃(x) = 0 to find x̃GL and the GL element.

Determine which case this GL element belongs to by checking the geometrical conditions at xi

SpecifyHN (x) andHβ(x) based on x̃GL depending on the case and the advance or retreat phase.

Integrate Eq. (29) for the FEM matrix assembly.

Equations (1), (7), and (8) form a system of coupled nonlinear equations. They are solved in the same manner as in Elmer/ICE

v.8.3. The detailed procedure is explained in Algorithms 1, 2, and 3. The solution to the nonlinear FS system is computed with

Picard iterations to a 10−5 relative error with a limit of maximal 25 nonlinear iterations. The x̃GL position is determined325

dynamically during each fixed-point iteration by solving Eq. (27) with χ̃ and the solution σnn(x) from the previous nonlinear

iteration, and the step functionsHN andHβ are adjusted accordingly.
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5 Results

The numerical experiments follow the MISMIP benchmark (Pattyn et al., 2012) and a comparison is made with the results

in (Gagliardini et al., 2016). Using the experiment MISMIP 3a, the setups are exactly the same as in the advancing and330

retreating simulations in (Gagliardini et al., 2016). The experiments are run with spatial resolutions of ∆x= 4 km, 2 km and

1 km. The mesh at the base is extruded vertically in 20 layers with equidistantly placed nodes in each vertical column. The

timestep is ∆t= 0.125 year for all the three resolutions to eliminate time discretization errors when comparing different spatial

resolutions.

The dependence on γ0 for the retreating ice is shown in Fig. 4 with γ0 between 104 and 109. The estimated GL positions335

do not vary with different choices of γ0 from 105 to 108 which suggests a suitable range of γ0. If γ0 is too small (γ0� 104),

oscillations appear in the estimated GL positions. If γ0 is too large (γ0� 108), then more nonlinear iterations in Algorithm

1 are needed in each timestep. The same dependency of γ0 is observed for the advance experiments and for different mesh

resolutions as well. The results are not very sensitive to γ0 and for the remaining experiments we choose γ0 = 106.
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Figure 4. The MISMIP 3a retreat experiment with ∆x= 1000 m for different choices of γ0 in the time interval [0,10000] years.

The GL position during 10000 years in the advance and retreat phases are displayed in Fig. 5 for different mesh resolutions.340

The range of the results from (Gagliardini et al., 2016) with ∆x= 25 and 50 m are shown as background shaded regions with

colors purple and pink, respectively. We achieve similar GL migration results both for the advance and retreat experiments

with at least 20 times larger mesh resolutions.

We observed oscillations at the ice surface near the GL in all the experiments as expected from (Durand et al., 2009a; Schoof,

2011). A zoom-in plot of the surface elevation with ∆x= 1 km at t= 10000 years is shown to the left in Fig. 6, where the red345

dashed line indicates the estimated GL position. Obviously, the estimated GL position does not coincide with any nodes even

at the steady state.
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Figure 5. The MISMIP 3a experiments for the GL position when t ∈ [0,10000] with ∆x= 4000,2000 and 1000 m for the advance (solid)

and retreat (dashed) phases. The shaded regions indicate the range of the results in (Gagliardini et al., 2016) with ∆x= 50 m in red and

∆x= 25 m in blue.

The ratio between the thickness below sea level Hbw and the ice thickness H is shown in Fig. 6. The horizontal, purple,

dash-dotted line indicates the ratio of ρ/ρw and the estimated GL is located at the red, dashed line. This result confirms that

the hydrostatic assumption Hρ=Hbwρw in Eq. (9) is not valid in the FS equations for x > xGL close to the GL and at the350

GL position, cf. (Durand et al., 2009a; Schoof, 2011). For x < xGL we have that Hbw/H < ρ/ρw since Hbw decreases and H

increases. The conclusion from numerical experiments in (van Dongen et al., 2018) is that the hydrostatic assumption and the

SSA equations approximate the FS equations well for the floating ice beginning at a short distance away from the GL.

The surface and the base velocity solutions from the retreat experiment are displayed in Fig. 7 with ∆x= 1 km after 10000

years. The horizontal velocities on the two surfaces are similar with negligibly small differences on the floating ice as expected.355

The vertical velocities w on the surface (orange line) and the base (blue line) at the GL are almost discontinuous as analyzed

in (Schoof, 2011). With the subgrid model, the rapid variation is represented on the 1 km mesh size.

6 Discussion

Seroussi et al (Seroussi et al., 2014) describe four different subgrid models((NSEP, SEP1, SEP2 and SEP3) for the friction in

SSA and evaluate them in a FEM discretization on a triangulated, planar domain. The hydrostatic flotation criterion is applied360

16



7.25 7.30 7.35 7.40

x (m) ×105

0.4

0.6

0.8

1.0

1.2

1.4

z s
(m

)

×102

7.25 7.30 7.35 7.40

x (m) ×105

0.880

0.885

0.890

0.895

0.900

0.905

0.910

H
bw

/
H

Figure 6. Details of the solutions for the retreat experiment with ∆x= 1 km after 10000 years. The solid dots represent the nodes of the

elements and the vertical, red, dashed lines indicate the GL position. Left panel: The oscillations at ice surface near GL. Right panel: The

flotation criterion is evaluated by Hbw/H . The ratio between ρ/ρw is drawn in a horizontal, purple, dash-dotted line.

at the nodes of the triangles. In the NSEP, an element is floating or not depending on how many of the nodes that are floating.

In the other three methods, an inner structure in the triangular element is introduced. One part of a triangle is floating and one

part is grounded. The amount of friction in a triangle with the GL is determined by the flotation criterion. Either the friction

coefficient is reduced, the integration in the element only includes the grounded part, or a higher order polynomial integration

(SEP3) is applied. Faster convergence as the mesh is refined is observed for the latter methods compared to the first method.365

The discretization of the friction in Sect. 4 is similar to the SEP3 method but the FS equations also require a subgrid treatment

of the normal velocity condition. In the method for the FS equations in (Gagliardini et al., 2016), the GL position is in a node

and the friction coefficient is approximated in three different ways. The coefficient is discontinuous at the node in one case (DI

in (Gagliardini et al., 2016)). Our coefficient is also discontinuous but at the estimated location of the GL between the nodes.

The convergence of the steady state GL position toward the reference solutions in (Gagliardini et al., 2016) is observed in370

the simulations in Fig. 5. However, as the meshes we used are more than 40 times larger than the 25 m finest resolution in

(Gagliardini et al., 2016), it is still far from the asymptote. At the current resolutions, the discretization introduces strong mesh

effect such as the two different geometrical interpretations in the two cases mentioned in Sect. 4. The subgrid scheme is able

to provide a more accurate representation of the GL position and the boundary conditions, but the numerical solution of the

velocity field, pressure as well as the two free surfaces are still determined by the coarse mesh, which are the main sources of375

the numerical errors.

Our method can be extended to a triangular mesh covering Γb in the following way. The condition on χ̃ in Eq. (28) is applied

on the edges of each triangle T in the mesh. If χ̃ < 0 in all three nodes then T is grounded. If χ̃≥ 0 in all nodes then T is
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Figure 7. The velocities u (upper panel) and w (lower panel) on the surface (orange) and the base (blue) of the ice in the retreat experiment

with ∆x= 1 km after 10000 years. The red, dashed line marks the GL position. The vertical velocity w is zoomed-in close to the GL.

floating. The GL passes inside T if χ̃ has a different sign in one of the nodes. Then the GL crosses the two edges where χ̃ < 0

in one node and χ̃≥ 0 in the other node. In this way, a continuous reconstruction of a piecewise linear GL is possible on Γb.380

The FEM approximation is modified in the same manner as in Sect. 4 using step functions in Nitsche’s method.

An alternative to a subgrid scheme is to introduce dynamic adaptation of the mesh on Γb with a refinement at the GL as

in e.g. (Cornford et al., 2013; Drouet et al., 2013; Gladstone et al., 2010a). In general, a fine mesh is needed along the GL

and in an area surrounding it. Since the GL moves long distances at least in simulations of palaeo-ice sheets, the adaptation

should be dynamic, permit refinement and coarsening of the mesh, and be based on some estimate of the numerical error of the385

method. Furthermore, shorter timesteps are necessary for stability when the mesh size is smaller in a mesh adaptive method.

Introducing a time dependent mesh adaptivity into an existing code requires a substantial coding effort and will increase the

computational work considerably. Subgrid modeling is easier to implement and the increase in computing time is small.
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7 Conclusions

A subgrid scheme at the GL has been developed and tested in the SSA model for 2D vertical ice flow in (Gladstone et al.,390

2010b) and in (Seroussi et al., 2014), for the friction in the vertically integrated model BISICLES (Cornford et al., 2013) for

2D flow in (Cornford et al., 2016), and for the PISM model mixing SIA with SSA in 3D in (Feldmann et al., 2014). Here

we propose a subgrid scheme for the FS equations for a 2D vertical ice, implemented in Elmer/ICE, that can be extended to

3D. The mesh is static and the moving GL position within one element is determined by linear interpolation with an auxiliary

function χ̃(x). Only in that element, the FEM discretization is modified.395

The numerical scheme is applied to the simulation of a 2D vertical ice sheet with an advancing GL and one with a retreating

GL. The model setups for the tests are the same as in one of the MISMIP examples (Pattyn et al., 2012) and in (Gagliardini

et al., 2016). Comparable results to (Gagliardini et al., 2016) are obtained using the subgrid scheme with more than 20 times

larger mesh sizes. A larger mesh size also allows a longer timestep for the time integration. Solving χ̃(x) = 0 for xGL provides

a good approximation of the GL position.400
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