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Abstract. The full Stokes equations are solved by a finite element method for simulation of large ice sheets and glaciers. The

simulation is particularly sensitive to the discretization of the grounding line which separates the ice resting on the bedrock and

the ice floating on water and is moving in time. The boundary conditions at the ice base are enforced by Nitsche’s method and a

subgrid treatment of the element in the discretization with the grounding line. Simulations with the method in two dimensions

for an advancing and a retreating grounding line illustrate the performance of the method. The computed grounding line5

position is compared to previously published data with a fine mesh. Similar results are obtained using subgrid modeling with

more than 20 times coarser meshes. It is implemented in the two dimensional version of the open source code Elmer/ICE.

1 Introduction

1.1 Ice sheet dynamics, sea-level rise, and grounding line migration

Simulation of ice sheet dynamics is a tool to assess the future sea-level rise (SLR) due to melting of continental ice sheets and10

glaciers (Hanna et al., 2013) and to reconstruct the ice sheets of the past (Stokes et al., 2015; DeConto and Pollard, 2016) for

comparison with measurements and validation of the models. The predictions are particularly sensitive to the position of the

grounding line (GL) and its numerical treatment (Durand and Pattyn, 2015; Konrad et al., 2018), the line where the ice sheet

leaves the solid bedrock and becomes an ice shelf floating on water driven by buoyancy.

The distance that the GL moves may be long over palaeo time scales. In Kingslake et al. (2018) it is shown that the GL15

has retreated several hundred kilometers in West Antarctica during the last 11,500 years and then advanced again after the

isostatic rebound of the bed. The sensitivity, long time intervals, and long distances require a careful treatment of the GL

and its neighborhood by the numerical method to discretize the equations modeling the ice sheet dynamics. In this paper, we

develop an accurate and efficient method for such problems.

1.2 Model equations20

When the ice rests on the ground and is affected by frictional forces on the bed, the ice flow is dominated by vertical shear

stresses when the basal friction is large. On the other hand, when the ice is floating on water, it is the longitudinal stress gradient
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that controls the flow of the ice. The GL is in the transition zone between these two types of flow with a gradual change of the

stress field (Schoof, 2011).

The most accurate ice model in theory is based on the full Stokes (FS) equations. A simplification of the FS equations by25

integrating in the depth of the ice is the shallow shelf (or shelfy stream) approximation (SSA) (MacAyeal, 1989). It is often

used for simulation of the coupling between a grounded ice sheet and a marine ice shelf. In the zone between the grounded ice

and the floating ice, it is necessary to use the FS equations (Wilchinsky and Chugunov, 2000; Schoof and Hindmarsh, 2010;

Docquier et al., 2011; Schoof, 2011) unless the ice is moving rapidly on the ground with low basal friction, when the SSA

equations are accurate both upstream and downstream of the GL.30

The evolution of the GL in simulations is sensitive to the model equations and the basal friction law. In a major effort

MISMIP (Pattyn et al., 2012, 2013), different ice models and implementations solve the same ice flow problems and the

predicted GL steady state and transient GL motion are compared. The results show that the position of the GL depends on the

model equations (Pattyn et al., 2013). The prediction of the GL and the SLR is different for different ice models such as FS

and SSA (Pattyn and Durand, 2013). Including equations with vertical shear stress at the GL such as the FS equations seems35

to be crucial.

The friction laws at the ice base depend on the effective pressure, the basal velocity, and the distance to the GL in different

combinations in Leguy et al. (2014); Gagliardini et al. (2015); Brondex et al. (2017); Gladstone et al. (2017). The GL position

and the SLR vary considerably depending on the choice of friction law. Given the friction law, the results are sensitive to its

model parameters too (Gong et al., 2017).40

1.3 Numerical methods

Parameters in the numerical methods also influence the GL migration. It is observed in Durand et al. (2009b) that the mesh

resolution along the ice bed has to be fine to obtain reliable solutions with FS in GL simulations. The GL is then located in

a node of the fixed or static mesh. A mesh size below 1 km is necessary in Larour et al. (2019) to resolve the features at the

GL. Adaptive meshes for a finite volume discretization of an approximation of the FS equations are employed in Cornford45

et al. (2013) to study the GL retreat and loss of ice in West Antarctica. The FS solutions of benchmark problems in Pattyn

et al. (2013) computed by an implementation of the finite element method (FEM) in Elmer/ICE (Gagliardini et al., 2013) and

FELIX-S (Leng et al., 2012) are compared in Zhang et al. (2017). The differences between the codes are attributed to different

treatment of a friction parameter at the GL and different assignment of grounded and floating nodes and element faces.

A subgrid scheme introduces an inner structure in the discretization element or mesh volume where the GL is located. Such50

schemes have been developed for simplifications of the FS equations. A subgrid model for the GL is tested in Gladstone et al.

(2010b) for the one dimensional (1D) SSA equation where the flotation condition for the ice defines the position of the GL.

The GL migration is determined by the two dimensional (2D) SSA equations discretized by the finite element method (FEM)

in Seroussi et al. (2014). Subgrid models at the GL are compared to a model without an internal structure in the element. The

conclusion is that sub-element parameterization is necessary. A shallow approximation to FS with a subgrid scheme on coarse55

meshes is compared to FS in Feldmann et al. (2014) with similar results for the GL migration. Subgrid modeling and adaptivity
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are compared in Cornford et al. (2016) for a vertically integrated model. The thickness of the ice above flotation determines if

the ice is grounded or floating. A fine mesh resolution is necessary for converged GL positions with FS in Durand et al. (2009a,

b). A dynamic mesh refinement and coarsening of the mesh following the GL would solve the problem in palaeo simulations

when the GL moves long distances. An alternative is to introduce a subgrid scheme in the mesh elements where the GL is60

located in a static mesh and keep the mesh size coarser.

1.4 Our proposed method and outline of the paper

From the above we conclude that

– the prediction of SLR is very sensitive to the position of the GL and the numerical treatment in a neighbourhood of the

GL,65

– it seems crucial that the ice model includes equations with vertical shear stress in the neighbourhood of the GL,

– one way to avoid the fine meshes that are otherwise needed close to the GL, is to introduce a subgrid scheme in the

discretization element where the GL is located.

For this purpose, we develop a numerical method for the FS equations in two dimensions introducing a subgrid scheme in

the mesh element where the GL is located. Since the subgrid scheme is restricted to one element in a 2D vertical ice this is70

computationally inexpensive. In an extension to 3D, the subgrid scheme would be applied along a line of elements in 3D.

The results with numerical modeling will always depend on the mesh resolution but can be more or less sensitive to the mesh

spacing and time steps.

We solve the FS equations in a 2D vertical ice with the Galerkin method implemented in Elmer/ICE (Gagliardini et al.,

2013). A subgrid discretization is proposed and tested for the element where the GL is located. The boundary conditions are75

imposed by Nitsche’s method at the ice base in the weak formulation of the equations (Nitsche, 1971; Urquiza et al., 2014;

Reusken et al., 2017). The linear Stokes equations are solved in Chouly et al. (2017a) with Nitsche’s treatment of the boundary

conditions. They solve the equations for the displacement but here we solve for the velocity using similar numerical techniques

to weakly impose the Dirichlet boundary conditions on the normal velocity at the base. The frictional force in the tangential

direction is applied on part of the element with the GL. The position of the GL within the element is determined in agreement80

with theory developed for the linearized FS in Schoof (2011).

The paper is organized as follows. Section 2 is devoted to the presentation of the mathematical model of the ice sheet

dynamics. In Sect. 3, the numerical discretization with FEM is given while the subgrid scheme around the GL is found in Sect.

4. The numerical results for a MISMIP problem are presented in Sect. 5. The extension to three dimensions (3D) is discussed

in Sect. 6 and finally some conclusions are drawn in Sect. 7.85
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2 Ice model

2.1 The full Stokes (FS) equations

We use the FS equations in a 2D vertical ice with coordinates x = (x,z)T for modeling the flow of an ice sheet (Hutter, 1983).

The nonlinear partial differential equations (PDEs) in the interior of the ice domain Ω are given by∇ ·u = 0,

−∇ ·σ = ρg,
(1)90

where the stress tensor is σ = τ(u)−pI and the deviatoric stress tensor is τ(u) = 2η(u)ε̇(u). The strain rate tensor is defined

by

ε̇(u) =
1

2
(∇u+∇uT ) =

 ε̇11 ε̇12

ε̇12 ε̇22

 , (2)

I is the identity matrix, and the viscosity is defined by Glen’s flow law

η(u) =
1

2
(A(T ′))

− 1
n ε̇

1−n
n

e , ε̇e =

√
1

2
tr(ε̇(u)ε̇(u)). (3)95

Here u = (u,w)T is the vector of velocities, ρ is the density of the ice, p denotes the pressure, and the gravitational vector

is denoted by g. The viscosity η is a function of the rate factor A(T ′) where T ′ is the ice temperature. For isothermal flow

assumed here, the rate factor A is constant. Finally, n is usually taken to be 3.

2.2 Boundary conditions100

At the boundary Γ of the ice domain Ω we define the normal outgoing vector n and tangential vector t (see Fig. 1). In the

2D vertical case considered here, the ice sheet geometry is constant in y. The ice surface is denoted by Γs and the ice base is

Γb = Γbg ∪Γbf . At Γs and Γbf , the floating part of Γb, we have that

σn = fs , σn = fbf , (4)

respectively. The ice is stress-free at Γs, fs = 0, and fbf =−pwn at the ice/ocean interface Γbf where pw is the water pressure.105

Let

σnt = t ·σn, σnn = n ·σn, ut = t ·u,

where σnn and σnt are the normal and tangential components of the stress and ut is the tangential component of the ice

velocity at the ice base. Then for the slip boundary Γbg , the grounded part of Γb where the ice rests on the bedrock, we have a

friction law for the sliding ice110

σnt +β(u,x)ut = 0, un = n ·u = 0, −σnn ≥ pw, (5)
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Figure 1. A two dimensional schematic view of a marine ice sheet.

where un is the normal component of the ice velocity. The type of friction law is determined by the friction coefficient β (≥ 0).

At Γbf , there is a balance between σnn and pw and the contact is friction-free, β = 0. Then

σnt = 0, −σnn = pw. (6)

At the GL, the boundary condition switches from β > 0 and un = 0 on Γbg to β = 0 and a free un on Γbf . In a 2D vertical115

ice, the GL is the point (xGL,zGL) shared between Γbg and Γbf .

The ocean surface is at z = 0, and pw =−ρwgzb. The density of sea water is denoted byρw, zb is the z-coordinate of Γb,

and g is the vertical component of the gravitational force.

2.3 The free surface equations

The boundaries Γs and Γb are time-dependent and move according to two free surface equations. The boundary Γbg follows120

the fixed bedrock with coordinates (x,b(x)).

The z-coordinate of the ice surface position zs(x,t) at Γs (see Fig. 1) is the solution of an advection equation

∂zs
∂t

+us
∂zs
∂x
−ws = as, (7)

where as denotes the surface mass balance and us = (us,ws)
T the velocity at the ice surface in contact with the atmosphere.

Similarly, the z-coordinate for the ice base zb of the floating ice at Γbf satisfies125

∂zb
∂t

+ub
∂zb
∂x
−wb = ab, (8)

where ab is the basal mass balance and ub = (ub,wb)
T the velocity of the ice at Γbf . On Γbg , zb = b(x) and on Γbf , zb > b(x).

The thickness of the ice is denoted by H = zs− zb and depends on x and t.
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2.4 A first order solution close to the grounding line

The 2D vertical solution of the FS equations in Eq. (1) with a constant viscosity, n= 1 in Eq. (3), is expanded in small130

parameters in Schoof (2011). The solutions in different regions around the GL are connected by matched asymptotics. Upstream

of the GL at the grounded part, x < xGL, the leading terms in the expansion satisfy a simple relation in scaled variables close

to the GL. Across the GL, the ice velocity u, the flux of ice uH , and the depth integrated normal or longitudinal stress τ11

in Eq. (2) are continuous. By including higher order terms in the expansion in small parameters, it is shown in Schoof (2011,

Sect. 4.7) that the ice surface slope is continuous and Archimedes’ flotation condition135

Hρ=−zbρw (9)

is not satisfied immediately downstream of the GL. A rapid variation in the vertical velocity w in a short distance interval at

the GL causes oscillations in the ice surface in the analysis as also observed in FS simulations in Durand et al. (2009a). The

flotation condition in (9) determines where the GL is in SSA in Docquier et al. (2011); Drouet et al. (2013).

In Schoof (2011, Sect. 4.3), the solution to the FS in a 2D vertical ice is expanded in two parameters, ν and ε. The aspect140

ratio of the ice ν is the quotient between a typical scale of the thickness of the iceH and a horizontal length scale L, ν =H/L,

and ε is ν times the quotient between the longitudinal and the shear stresses τ11 and τ12 in Eq. (2). If ν5/2� ε� 1 then in

a boundary layer close to the GL and x < xGL it follows from the equations that the leading terms in the solution in scaled

variables satisfy

τ22− p= σ22 = ρg(z− zs). (10)145

On floating ice τ22−p+pw = 0 and the hydrostatic flotation criterion Eq. (9) is fulfilled. This is a first order approximation of

the second relation in Eq. (6). On the grounded ice domain, we have τ22− p+ pw < 0.

Introducing the notation

χa(x,z) = τ22− p+ pw = ρg(z− zs(x))− ρwgzb(x), (11)

and letting Hbw =−zb be the thickness of the ice below the sea level yields150

χa(x,zb) =−g(ρH − ρwHbw). (12)

If x < xGL then χa < 0 in the neighborhood of xGL on Γbg and if x > xGL then χa = 0 and Eq. (9) holds true on Γbf . Suppose

that zs and zb are linear in x. Then χa is also linear in x. In numerical experiments with the linear FS (n= 1) in Nowicki and

Wingham (2008), χa(x,zb) varies linearly in x for x < xGL.

In Sect. 4, we mimic the same idea but use an indicator χ(x) or χ̃(x) derived from the solutions of the nonlinear FS equations155

to estimate the GL position. These indicators are approximated by χa(x,zb).
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3 Discretization by FEM

In this section we state the weak form of Eq. (1) and introduce the spatial FEM discretization used for Eq. (1) and give the

time-discretization of Eq. (7) and (8).

3.1 The weak form of the FS equations160

We start by defining the mixed weak form of the FS equations. Introduce k = 1+1/n, k∗ = 1+n with n from Glen’s flow law

and the spaces

V k = {v : v ∈ (W 1,k(Ω))2}, Qk∗ = {q : q ∈ Lk∗(Ω)}, (13)

see, e.g. Jouvet and Rappaz (2011, Eq. (3.7)), Chen et al. (2013, Sect. 3.1), Martin and Monnier (2014, Eq. (21)). The weak

solution (u,p) of Eq. (1) is obtained as follows. Find (u,p) ∈ V k ×Qk∗ such that for all (v, q) ∈ V k ×Qk∗ the equation165

A((u,p),(v, q)) +BΓ(u,v,p) +BN (u,v, q) = F (v) +FΓ(v), (14)

is satisfied, where

A((u,p),(v, q)) =

∫
Ω

2η(u)ε̇(u) : ε̇(v) dx− b(u, q)− b(v,p),

b(u, q) =

∫
Ω

q∇ ·u dx,

BΓ(u,v,p) =−
∫

Γbg

(σnn(u,p)n ·v+σnt(u,p)t ·v) ds=

∫
Γbg

(−σnn(u,p)n ·v+β(t ·u)(t ·v)) ds,

BN (u,v, q) =−
∫

Γbg

σnn(v, q)n ·u ds+ γ0

∫
Γbg

1

h
(n ·u)(n ·v) ds,

F (v) =

∫
Ω

ρg ·v dx,

FΓ(v) =−
∫

Γbf

pwn ·v ds

The last term inBN is added in the weak form in Nitsche’s method (Nitsche, 1971) to impose the Dirichlet condition un = 0

weakly on Γbg . It can be considered as a penalty term. Since u = unn+utt, the contribution of the tangential force can also170

be written βu ·v when un = 0. The value of the positive parameter γ0 depends on the physical problem and h is a measure

of the mesh size on Γb. The sensitivity of the GL positions for different values of γ0 is shown in Sect. 5. The first term in BN

symmetrizes the boundary term BΓ +BN on Γbg and vanishes when un = 0. The boundary term FΓ(v) is from the buoyancy

force at the ice/ocean interface in (6) where pw depends on zb on Γbf .
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3.2 The discretized FS equations175

We employ linear Lagrange elements with Galerkin Least Square (GLS) stabilization (Franca and Frey, 1992; Helanow and

Ahlkrona, 2018) to avoid spurious oscillations in the pressure using the standard setting in Elmer/ICE (Gagliardini et al., 2013)

approximating solutions in the spaces V k and Qk∗ in Eq. (13).

The mesh is constructed from a footprint mesh on the ice base and then extruded with the same number of layers equidistantly

in the vertical direction according to the thickness of the ice sheet. To simplify the implementation in 2D, the footprint mesh180

on the ice base consists of N + 1 nodes at xi = (xi,zb(xi)), i= 0, . . . ,N, with x-coordinates xi and a constant mesh size

∆x= xi−xi−1.

In general, the GL is somewhere in the interior of an interval [xi−1, xi] and it crosses the interval boundaries as it moves

forward in the advance phase and backward in the retreat phase of the ice. The advantage with Nitsche’s way of formulating

the boundary conditions is that if xGL ∈ [xi−1, xi] then the boundary integral over the interval can be split into two parts in Eq.185

(14) such that (x,zb(x)) ∈ Γbg when x ∈ [xi−1, xGL] and if x ∈ [xGL, xi] then (x,zb(x)) ∈ Γbf . In the GL element, we have

BΓ +BN =

∫
[xi−1,xGL]

−(σnn(u,p)n ·v+σnn(v, q)n ·u)+β(t ·u)(t ·v) +
γ0

h
(n ·u)(n ·v) ds,

FΓ =−
∫

[xGL,xi]

pwn ·v ds, (15)

with the integration element ds following Γb. There is a change of the boundary condition in the middle of the FEM element

where the GL is located. With a strong formulation of the boundary condition un = 0, the basis functions in V k share this

property and the condition changes from the grounded node xi−1 where the basis function satisfies un = 0 to the floating node190

at xi with a free un without taking the position of the GL inside [xi−1, xi] into account. With the weak formulation in Nitsche’s

method, the standard basis functions we use do not satisfy un = 0 strictly. The boundary condition is imposed on the solution

by the additional penalty term in (14) and this term may change inside an element as in (15).

The resulting system of nonlinear equations form a nonlinear complementarity problem (Christensen et al., 1998). The

distance d between the base of the ice and the bedrock at time t and at x is195

d(x,t) = zb(x,t)− b(x)≥ 0. (16)

If d > 0 on Γbf then the ice is not in contact with the bedrock and σnn + pw = 0 and if σnn + pw < 0 on Γbg then the ice and

the bedrock are in contact and d= 0. Hence, the complementarity relation in the vertical direction is

d(x,t)≥ 0, σnn + pw ≤ 0, d(x,t)(σnn + pw) = 0 on Γb. (17)

The contact friction law is such that β > 0 when x < xGL and β = 0 when x > xGL. The complementarity relation along the200

ice base at x is then the non-negativity of d and

β ≥ 0, β(x,t)d(x,t) = 0 on Γb. (18)
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In particular, these relations are valid at the nodes x= xj , j = 0,1, . . . ,N .

The complementarity condition also holds for un and σnn such that

σnn + pw ≤ 0, un(σnn + pw) = 0 on Γb, (19)205

without any sign constraint on un except for the retreat phase when the ice leaves the ground and un < 0.

Similar implementations for contact problems using Nitsche’s method are found in Chouly et al. (2017a, b), where the

unknowns in the PDEs are the displacement fields instead of the velocity in Eq. (1). Analysis in Chouly et al. (2017a) suggests

that Nitsche’s method for the contact problem can provide a stable numerical solution with an optimal convergence rate.

The nonlinear equations, Eq. (14), for the nodal values of u and p are solved by Picard iterations. The system of linear210

equations in every Picard iteration is solved directly by using the MUMPS linear solver in Elmer/ICE. The condition on

dj = d(xj) is used to decide if the node xj is geometrically grounded or floating. It is computed at each time step and is

not changed during the nonlinear iterations (Picard). The procedure for solution of the nonlinear FS equations is outlined in

Algorithm 1. In two dimensions, the GL will be located in one element.

Algorithm 1 Solve the FS equations

For a given mesh, compute dj , j = 0,1, ...,N, for all the nodes xj at the ice base.

Mark node j as geometrically grounded if dj < 10−3, otherwise floating.

Find the element which contains both geometrically grounded and floating nodes, and mark the grounded node in this element as ‘GL

node’.

Compute the residual of the FS equations with the initial guess of the solution.

while the residual is larger than the tolerance do

Assemble the FEM matrix for the interior of the domain Ω.

for the boundary elements on Γb do

if has ‘GL node’ then

Mark the current element as a ‘potential GL element’.

Use the subgrid scheme in Algorithm 3 of Sect. 4 for the assembly.

else

Assemble the boundary element.

end if

end for

Solve the linearized FS equations for a correction of the solution.

Compute the solution and the residual.

end while

9



3.3 Discretization of the advection equations215

The advection equations for the moving ice boundary in Eq. (7) and (8) are discretized in time by a finite difference method

and in space by FEM with linear Lagrange elements for zs and zb. An artificial diffusion stabilization term is added, making

the spatial discretization behave like an upwind scheme in the direction of the velocity as implemented in Elmer/ICE.

The advection equations Eq. (7) and Eq. (8) are integrated in time by a semi-implicit method of first order accuracy. Let

c= s or b. Then the solution is advanced from time t` to t`+1 = t` + ∆t with the time step ∆t by220

z`+1
c = z`c + ∆t(a`c−u`c

∂z`+1
c

∂x
+w`c). (20)

The spatial derivative of zc is approximated by FEM as described above. A system of linear equations is solved at t`+1 for

z`+1
c . This time discretization and its properties are discussed in Cheng et al. (2017) and summarized in Algorithm 2.

Algorithm 2 Time scheme of the GL migration problem

Start from an initial geometry Ω0 defined by z0b ,z
0
s .

for `= 0 to T/∆t− 1 do

Solve the FS equations on Ω` with Algorithm 1, to get the solution u`.

Solve for z`+1
b and z`+1

s with u` by the semi-implicit Euler method.

Use z`+1
b and z`+1

s to update Ω`+1.

end for

A numerical stability problem in zb is encountered in the boundary condition at Γbf when the FS equations are solved in

Durand et al. (2009a). It is resolved by expressing zb in pw at Γbf with a damping term. An alternative interpretation of the225

idea in Durand et al. (2009a) and an explanation follow below.

The relation between un and ut at Γbf and ub = u(x,zb(x)) is

ub =

 ub

wb

=

 zbx

−1

 un√
1 + z2

bx

+

 1

zbx

 ut√
1 + z2

bx

, (21)

where zbx denotes ∂zb/∂x. Inserting ub and wb from Eq. (21) into Eq. (8) yields

∂zb
∂t

= ab−un
√

1 + z2
bx. (22)230

Instead of discretizing Eq. (22) explicitly at t`+1 with u`n to determine p`+1
w , the base coordinate is updated implicitly

z`+1
b = z`b + ∆t

(
a`+1
b −u`+1

n

√
1 + (z`+1

bx )2

)
(23)

in the evaluation of pw in FΓ(v) in Eq. (14).

Assuming that zbx is small, the time step restriction in Eq. (23) is estimated by considering a 2D slab of the floating ice of

width ∆x and thickness H . Newton’s law of motion yields235

Mu̇n =Mg−∆xpw,

10



where M = ∆x(zs− zb)ρ is the mass of the slab. Dividing by M , integrating in time for un(tm), letting m= `+ 1 or `, and

approximating the integral by the trapezoidal rule for the quadrature yields

un(tm) =

tm∫
0

g+
gρw
ρ

zb
zs− zb

ds≈ gtm +
gρw
ρ

m∑
i=0

αi
zib

zis− zib
∆t= umn ,

with the parameters240

αi = 0.5, i= 0,m, αi = 1, i= 1, . . . ,m− 1.

Then insert umn into Eq. (23). All terms in umn from time steps i < m are collected in the sum ∆tFm−1. Then Eq. (23) can be

written

z`+1
b = z`b −∆t2

gρw
2ρ

zmb
zms − zmb

+ ∆t
(
a`b− gtm−∆tFm−1

)
. (24)

For small changes in zb in Eq. (24), the explicit method with m= ` is stable when ∆t is so small that245

|1−∆t2
gρw
2Hρ

| ≤ 1. (25)

When H = 100 m on the ice shelf, ∆t < 6.1 s which is far smaller than the stable steps for Eq. (20). Choosing the implicit

scheme with m= `+ 1, the bound on ∆t is

1/|1 + ∆t2
gρw
2Hρ

| ≤ 1, (26)

i.e. there is no bound on positive ∆t for stability but accuracy will restrict ∆t.250

Much longer stable time steps are possible at the surface and the base of the ice with a semi-implicit method Eq. (20) and

a fully implicit method Eq. (23) compared to an explicit method. For example, the time step for the problem in Eq. (20) with

1 km mesh size can be up to a couple of months. Therefore, we use the scheme in Eq. (20) for Eqs. (7) and (8) and the scheme

in Eq. (23) for Eq. (22) and pw as in Durand et al. (2009a). The difference between the approximations of zb in Eq. (20) and

(23) is of O(∆t2).255

4 Subgrid scheme around the grounding line

The basic idea of the subgrid scheme for the FS equations in this paper follows the GL parameterization (SEP3) for SSA in

Seroussi et al. (2014) and the analysis for FS in Schoof (2011). The GL is located at the position where the ice is on the ground

and the flotation criterion is perfectly satisfied such that σnn =−pw. In the FS equations, the hydrostatic assumption Eq. (9)

may not be valid close to the GL. Therefore, the GL position can not be determined by simply checking the total thickness of260

the ice H against the depth below sea level Hbw. Instead, the flotation criterion is computed by comparing the water pressure

with the numerical normal stress component orthogonal to the boundary inspired by the first order analysis in Sect. 2.4.

The numerical solutions, e.g. Gagliardini et al. (2016); Gladstone et al. (2017), converge to the analytical solution of the FS

PDE as the mesh size decreases. The analytical solution satisfies zb(x,t)> b(x) with the boundary conditions in Eq. (6) at the
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base of the floating ice, and where the ice is in contact with the bedrock zb(x,t) = b(x), the boundary conditions are given by265

Eq. (5). Examples of the analytical solution are demonstrated by the thin light blue lines in Figs. 2 and 3 with a black ‘∗’ at the

analytical GL position xGL. The two figures share the same analytical solution. However, as illustrated in Figs. 2 and 3, the

basal boundary of the ice zb(x,t) does not conform with the mesh from the spatial discretization. In particular, the GL position

xGL of the analytical solution does not coincide with any of the nodes, but it usually stays on the bedrock b(x) between the

last grounded (xi−1) and the first floating (xi) nodes, see Figs. 2 and 3. The linear element boundary between any xj−1 and270

xj is denoted by Ej . The sequence of Ej , j = 1, . . . ,N, approximates Γb. The grounding line element containing the GL is Ei.

xi−1 xi
xGL

xi−1 xi
x̃GL

HN (x)
1

0

Hβ(x)
1

0

xi−1 x̃GL xi

Figure 2. Schematic figure of the GL in case i, with the arrows indicating the direction of the net forces in the vertical direction. Upper

panel: The last grounded and first floating nodes as defined in Elmer/ICE. The light blue line is the analytical solution of the ice sheet with

the analytical GL position xGL. Middle panel: Linear interpolation to approximate the numerical GL position x̃GL. Lower panel: The step

functionsHN (x) andHβ(x) indicate the area for Nitsche’s penalty and slip boundary conditions.

Depending on how the mesh is created from the initial geometry and updated during the simulation, the first floating node

at xi, as well as the GL element, can be either on the bedrock (as in Fig. 2) or at the ice base above the bedrock (as in Fig. 3),

even though the corresponding analytical solutions are identical. Denote the situation in Fig. 2 as case i, and the one in Fig.

3 as case ii. The physical boundary conditions of the two cases are different only at the GL element. More precisely, in case275

i, the net force in the vertical direction on the node xi is pointing inward, namely χ(xi) = σnn(xi) + pw(xi)> 0, whereas in

case ii, the floating condition σnn(xi) + pw(xi) = 0 is satisfied in the node xi. The directions of the vertical net force at the

nodes xi−1 and xi are shown by the arrows in the upper panels of Fig. 2 and 3. Consequently, the external forces and boundary

conditions imposed on the GL element are different in the two cases. For instance, in case i, the GL element is considered

as geometrically grounded (defined as in Algorithm 1), shown with red color in the upper panel of Fig. 2. In case ii, the GL280

element is treated as geometrically floating and colored in blue in the upper panel of Fig. 3.
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xi−1

xi

xGL

xi−1

xi

xGL

x̃GL

x̂i

HN (x)
1

0

Hβ(x)
1

0

xi−1 x̃GL xi

Figure 3. Schematic figure of the GL in case ii, with the arrows indicating the direction of the net forces in the vertical direction. Upper

panel: The last grounded and first floating nodes as defined in Elmer/ICE. The light blue line is the analytical solution of the ice sheet with

the analytical GL position xGL. The node xi is fully geometrically floating and the net force is 0. Middle panel: Linear interpolation to

approximate the numerical GL position x̃GL. The point x̂i on the bedrock has the same x coordinate as xi. Lower panel: The step functions

HN (x) andHβ(x) indicate the area for Nitsche’s penalty and slip boundary conditions.

These two cases are similar to the LG and FF cases in Gagliardini et al. (2016) implying that the numerical solutions in the

two cases are different, especially on a coarse mesh (mesh size at about 100 m or larger). Thus, we propose a subgrid scheme

to reduce these differences in the spatial discretization and to capture the GL migration without using a fine mesh resolution

(< 100 m). The schematic drawing of the subgrid scheme for the two cases is shown in the middle panels of Fig. 2 and 3. The285

GL element is divided into the grounded (red) and floating (blue) parts by the estimated GL position x̃GL on Ei, which is the

numerical approximation of the analytical GL position xGL.

The GL moves toward the ocean in the advance phase and away from the ocean in the retreat phase. First, we consider case

i in the advance phase and define the indicator by

χ(x) = σnn + pw, (27)290

which vanishes on the floating ice and is negative and approximately equal to χa = τ22− p+ pw in Eq. (11) on the ground

since the slope of the bedrock is small and n≈ (0,−1)T . Because of the poor spatial resolution of the coarse mesh, χ(xi) is

positive.

To determine the position x̃GL, we solve χ(x̃GL) = σnn(x̃GL)+pw(x̃GL) = 0 by linear interpolation between χ(xi−1) and

χ(xi) such that295

x̃GL = xi−1−
χ(xi−1)

χ(xi−1)−χ(xi)
(xi−1−xi). (28)
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The water pressure pw(x) is a linear function of x on the GL element and the numerical solution of σnn(x) is also piecewise

linear on every element with the standard Lagrange elements in Elmer/ICE (Gagliardini et al., 2013). Hence, it makes sense to

approximate the analytical GL position xGL by x̃GL by linear interpolation in the current framework. This approach fits well

with case i since the indicator χ(x) has opposite signs at xi−1 and xi, see the middle panel of Fig. 2 where x̃GL is marked by300

a red ‘∗’. It guarantees the existence and uniqueness of x̃GL on the GL element.

Another situation in the advance phase is case ii shown in Fig. 3. As the elements on both sides of the node xi are geometri-

cally floating, the boundary condition imposed on xi becomes χ(xi) = σnn(xi)+pw(xi) = 0. However, the implicit treatment

of the ice base moves the z-coordinate of the node xi towards the bedrock with un > 0 in Eq. (23) as discussed in Sect. 3.3.

The result is that pw defined by the implicit zb in (23) satisfies σnn + pw > 0 in (27) and χ(xi)> 0.305

The implicit treatment of the ice base has the consequence that only case ii occurs in the retreat phase. When the FS equations

are solved, the implicit update of the ice base with un < 0 in Eq. (23) implies that the last grounded node in the previous time

step is leaving the bedrock when the ice is retreating and the GL moves back to the adjacent element. Case i will not appear in

that situation since zb(xi)> b(xi). In this circumstance, χ(xi) = 0 in the floating node and a correction of χ(x) is introduced

into case ii by χ̃ in310

χ̃(x) = σnn(x) + pb(x). (29)

Here pb(x) =−ρwgb(x) is the water pressure on the bedrock corresponding to linear extrapolation of the pressure for x > xGL

along the element on the bedrock. Furthermore, χ̃(x)≥ χ(x). Notice that pb(xi) = pw(x̂i)> pw(xi), where x̂i is a point on

the bedrock with the same x coordinate of xi, as illustrated in the middle panel of Fig. 3. Both χ(x) in (27) and χ̃(x) in (29) are

nonlinear in x but the numerical approximation of them will vary linearly in x. A solution x̃GL is found by linear interpolation315

of χ̃(x) between the nodes xi−1 and xi as in Eq. (28). It follows from Eq. (28) that x̃GL is located on the element boundary,

see Figs. 2 and 3. If we compare with case i, this correction can be considered as using σnn(x̃GL) to approximate σnn(xGL) on

a virtual element between xi−1 and x̂i. The position x̃GL is a numerical approximation of the analytical GL position, although

it is not geometrically in contact with the bedrock.

Since we have pb(x) = pw(x) and χ(x) = χ̃(x) at the GL element in case i, we can simply use χ̃(x) to find x̃GL for the two320

cases by replacing χ in (28) by χ̃.

The domains Γbg and Γbf are separated at x̃GL as in Eq. (15) and the integrals on the GL element are calculated with a

high-order integration scheme as in Seroussi et al. (2014). We introduce two step functions HN (x) and Hβ(x) to include and

exclude quadrature points in the integration of Nitsche’s term and the slip boundary condition, respectively. They are defined

for case i in Fig. 2 and for case ii in Fig. 3. To achieve a reasonable numerical accuracy within the GL element, as suggested in325

Seroussi et al. (2014), at least tenth order Gaussian quadrature is used.

The penalty term in Nitsche’s method restricts the motion of the element in the normal direction. It is only imposed on

an element which is fully geometrically on the ground in case i. On the contrary in case ii, the GL element Ei is not in

contact with the bedrock, see Fig. 3. The normal velocity on the element should not be forced to zero and only the floating

boundary condition is then used on the GL element. Nitsche’s penalty term should be imposed on all the fully geometrically330
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grounded elements and partially on the GL element in the advance phase as in case i. The step function HN (x) indicates how

Nitsche’s method is implemented on the basal elements, see the lower panels of Fig. 2 and 3 for the two cases. The penalty

term contributes to the integration only whenHN (x) = 1.

The slip coefficient β is treated similarly with the step function Hβ(x), where Hβ(x) = 1 is on the fully geometrically

grounded elements and Hβ(x) = 0 on the floating elements. To further smooth the transition of β at the GL, the step function335

is set to be 1/2 in parts of the GL element before integrating using the high order scheme. In case i, full friction is applied at

the grounded part between xi−1 and x̃GL of the GL element since this part is also geometrically grounded in the analytical

solution of the FS as in Fig. 2. Then, the friction is lower in the remaining part of Ei. For the floating part between x̃GL and xi

in case ii, there is no friction and Hβ(x) = 0 and we have reduced friction between xi−1 and x̃GL, see the lower panel of Fig.

3. The boundary integral Eq. (15) on Ei is now rewritten with the two step functions as340

BΓ +BN =

∫
Ei

−HN (σnn(u,p)n ·v+σnn(v, q)n ·u)+Hββ(t ·u)(t ·v) +HN
γ0

h
(n ·u)(n ·v) ds,

FΓ =

∫
Ei

(1−HN )pwn ·v ds. (30)

A summary of the numerical treatment of the GL is:

– Advance phase⇒ indicator χ in (27), case i or case ii

– Retreat phase⇒ indicator χ̃ in (29), case ii

The case is determined by the geometry of the GL element and the sign of the indicator χ.345

The algorithm for the GL element is:

Algorithm 3 Subgrid modeling for the GL element

Take all the ‘potential GL elements’ and solve χ(x) = 0 (advance phase) or χ̃(x) = 0 (retreat phase) to find x̃GL and the GL element.

Determine which case this GL element belongs to by checking the geometrical conditions at xi.

SpecifyHN (x) andHβ(x) based on x̃GL depending on the case and the advance or retreat phase.

Integrate Eq. (30) for the FEM matrix assembly.

Equations (1), (7), and (8) form a system of coupled nonlinear equations. They are solved in the same manner as in Elmer/ICE

v.8.3. The detailed procedure is explained in Algorithms 1, 2, and 3. The solution to the nonlinear FS system is computed with

Picard iterations to a 10−5 relative error with a limit of maximal 25 nonlinear iterations. The x̃GL position is determined

dynamically during each fixed-point iteration by solving Eq. (28) with χ or χ̃ and the solution σnn(x) from the previous350

nonlinear iteration, and the step functions HN and Hβ are adjusted accordingly. The water pressure pb is fixed since the ice

geometry is not changed during the nonlinear iterations.
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5 Results

The numerical experiments follow the MISMIP benchmark (Pattyn et al., 2012) and a comparison is made with the results in

Gagliardini et al. (2016). Using the experiment MISMIP 3a, the setups are exactly the same as in the advancing and retreating355

simulations in Gagliardini et al. (2016). The experiments are run with spatial resolutions of ∆x= 4 km, 2 km, 1 km and 0.5 km.

The mesh at the base is extruded vertically in 20 layers with equidistantly placed nodes in each vertical column. The time step

is ∆t= 0.125 year for all four resolutions to eliminate time discretization errors when comparing different spatial resolutions.

The dependence on γ0 in (30) for the retreating ice is shown in Fig. 4 with γ0 between 104 and 109. The estimated GL

positions do not vary with different choices of γ0 from 105 to 108 which suggests a suitable range of γ0. If γ0 is too small360

(γ0� 104), oscillations appear in the estimated GL positions. If γ0 is too large (γ0� 108), then more nonlinear iterations

in Algorithm 1 are needed in each time step. The same dependency of γ0 is observed for the advancing experiments and

for different mesh resolutions as well. The results are not very sensitive to γ0 and for the remaining experiments we choose

γ0 = 106.

0.0 0.2 0.4 0.6 0.8 1.0

t (years) ×104

7.30

7.35

7.40

7.45

7.50

7.55

7.60

x
G
L

(m
)

×105

γ0 = 1.0× 104

γ0 = 1.0× 105

γ0 = 1.0× 106

γ0 = 1.0× 107

γ0 = 1.0× 108

γ0 = 1.0× 109

Figure 4. The MISMIP 3a retreat experiment with ∆x= 1 km for different choices of γ0 in the time interval [0,10000] years.

The GL position during the transient simulations in the advance and retreat phases are displayed in Fig. 5 and the steady365

state results (at t= 10000) are shown in Fig. 6 for different mesh resolutions. The range of the steady state solutions from

Gagliardini et al. (2016) with mesh resolution from 25 m to 200 m are shown as background shaded regions in red. We achieve

similar GL migration results for both the advance and retreat experiments with at least 20 times larger mesh resolutions. The

GL position is insensitive to the variation in mesh size between 0.5 km and 4 km.

The distance between the steady state GL positions of the retreat and the advance phases is shown in Fig. 6 (b). The maximal370

distance is about 6 km at ∆x= 1 km with the subgrid model, whereas in Gagliardini et al. (2016), the resolution has to be

below 50 m to achieve a similar result.
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Figure 5. The MISMIP 3a experiments for the GL position when t ∈ [0,10000] with ∆x= 4 km, 2 km, 1 km and 0.5 km for the advance

(solid) and retreat (dashed) phases.

We observed oscillations at the ice surface near the GL in all the experiments as expected from Durand et al. (2009a); Schoof

(2011). A zoom-in plot of the surface elevation with ∆x= 0.5 km at t= 10000 years is found to the left in Fig. 7, where the

red dashed line indicates the estimated GL position.375

The ratio between the thickness below sea level Hbw and the ice thickness H is shown to the right in Fig. 7. The horizontal,

purple, dash-dotted line represents the ratio of ρ/ρw and the estimated GL is located at the red, dashed line. This result confirms

that the hydrostatic assumption Hρ=Hbwρw in Eq. (9) is not valid in the FS equations for x > xGL close to the GL and at the

GL position, cf. Durand et al. (2009a); Schoof (2011). For x < xGL we have that Hbw/H < ρ/ρw since Hbw decreases and H

increases. The conclusion from numerical experiments in van Dongen et al. (2018) is that the hydrostatic assumption and the380

SSA equations approximate the FS equations well for the floating ice beginning at a short distance away from the GL.

The solution varies smoothly over the mesh and ∆x= 0.5 km appears to be a sufficient resolution in both panels of Fig. 7.

In general, the estimated GL position does not coincide with any nodes even at the steady state but it may be close to a node.

The surface and the base velocity solutions from the retreat experiment are displayed in Fig. 8 with ∆x= 0.5 km after 10000

years. The horizontal velocities on the two surfaces are similar with negligibly small differences on the floating ice as expected.385

The vertical velocities w on the surface (orange line) and the base (blue line) at the GL are almost discontinuous as analyzed

in Schoof (2011). With the subgrid model, the rapid variation is captured on the 0.5 km mesh size.
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Figure 6. The MISMIP 3a experiments at the final time t= 10000 with the resolutions at ∆x= 4 km, 2 km, 1 km and 0.5 km. (a) The

GL positions in the advance (F) and retreat (•) phases. (b) The distance between the retreat and the advance xGL at the steady states. The

shaded regions indicate the range of the results in Gagliardini et al. (2016) with 20 times smaller mesh resolutions from 25 to 200 m with the

axis scale shown in red at the top of the plot.

6 Discussion

Seroussi et al. (2014) describe four different subgrid models (NSEP, SEP1, SEP2 and SEP3) for the friction in SSA and evaluate

them in a FEM discretization on a triangulated, planar domain. The flotation criterion is applied at the nodes of the triangles.390

In the NSEP, an element is floating or not depending on how many of the nodes that are floating. In the other three methods,

an inner structure in the triangular element is introduced. One part of a triangle is floating and one part is grounded. The

amount of friction in a triangle with the GL is determined by the flotation criterion. Either the friction coefficient is reduced,

the integration in the element only includes the grounded part, or a higher order polynomial integration (SEP3) is applied.

Faster convergence as the mesh is refined is observed for the latter methods compared to the first method. The discretization395

of the friction in Sect. 4 is similar to the SEP3 method but the FS equations also require a subgrid treatment of the normal

velocity condition. In the method for the FS equations in Gagliardini et al. (2016), the GL position is in a node and the friction
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Figure 7. Details of the solutions for the retreat experiment with ∆x= 0.5 km after 10000 years. The solid dots represent the nodes of the

elements and the vertical, red, dashed lines indicate the GL position. Left panel: The oscillations at ice surface near GL. Right panel: The

flotation criterion is evaluated by Hbw/H . The ratio between ρ/ρw is drawn in a horizontal, purple, dash-dotted line.

coefficient is approximated in three different ways. The coefficient is discontinuous at the node in one case (DI in Gagliardini

et al. (2016)). Our coefficient is also discontinuous but at the estimated location of the GL between the nodes.

The convergence of the steady state GL position toward the reference solutions in Gagliardini et al. (2016) is observed in400

the simulations in Fig. 5 and 6. However, as the meshes we used are at least 20 times larger than the 25 m finest resolution in

Gagliardini et al. (2016), it is still far from the convergence asymptote. At the current resolutions, the discretization introduces

a strong mesh effect such as the two different geometrical interpretations in the two cases mentioned in Sect. 4. The subgrid

scheme is able to provide a more accurate representation of the GL position and the boundary conditions, but the numerical

solution of the velocity field, pressure as well as the two free surfaces are still computed on the coarse mesh, which are the main405

sources of the numerical errors. Additional uncertainty at the GL is introduced by the approximation of the bedrock geometry,

the friction at the GL, and the modeling of the ice/ocean interaction. It is shown in Cheng and Lötstedt (2020) that the solution

at the GL is particularly sensitive to variation in the geometry and friction at the ice base.

Our method can be extended to a triangular mesh covering Γb in the following way (considering linear Lagrange functions).

The condition on χ in Eq. (27) or χ̃ in Eq. (29) is applied on the edges of each triangle T in the mesh. If χ < 0 in all three410

nodes then T is grounded. If χ≥ 0 in all nodes then T is floating. The GL passes inside T if χ has a different sign in one of

the nodes. Then the GL crosses the two edges where χ < 0 in one node and χ≥ 0 in the other node. In this way, a continuous

reconstruction of a piecewise linear GL is possible on Γb. The same tests are applied to χ̃. The FEM approximation is modified

in the same manner as in Sect. 4 using step functions in Nitsche’s method.
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Figure 8. The velocities u (upper panel) and w (lower panel) on the surface (orange) and the base (blue) of the ice in the retreat experiment

with ∆x= 0.5 km after 10000 years. The red, dashed line marks the GL position. The vertical velocity w is zoomed-in close to the GL.

An alternative to a subgrid scheme is to introduce static or dynamic adaptation of the mesh on Γb with a refinement at the415

GL as in e.g. Gladstone et al. (2010a); Cornford et al. (2013); Drouet et al. (2013). In general, a fine mesh is needed at the GL

and in an area surrounding it. Since the GL moves long distances in simulations of palaeo-ice sheets, the adaptation should

be dynamic, permit refinement and coarsening of the mesh varying in time, and be based on some estimate of the numerical

error of the method. In shorter time intervals, a static adaptation may be sufficient since the GL will move a shorter distance.

Furthermore, shorter time steps are necessary for numerical stability in static and dynamic mesh adaptation schemes. A static420

adaptation is determined once before the simulation starts. Introducing a time dependent, dynamic mesh adaptivity into an

existing code requires a substantial coding effort and will increase the computational work considerably. Subgrid modeling

is easier to implement and the increase in computing time is small. A combination of dynamic mesh adaptation and subgrid

discretization may be the ultimate solution.
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7 Conclusions425

A subgrid scheme at the GL has been developed and tested in the SSA model for 2D vertical ice flow in Gladstone et al. (2010b)

and in Seroussi et al. (2014), for the friction in the vertically integrated model BISICLES (Cornford et al., 2013) for 2D flow

in Cornford et al. (2016), and for the PISM model mixing SIA with SSA in 3D in Feldmann et al. (2014). Here we propose a

subgrid scheme for the FS equations for a 2D vertical ice, implemented in Elmer/ICE, that can be extended to 3D. The mesh is

static and the moving GL position within one element is determined by linear interpolation with an auxiliary function χ(x) or430

χ̃(x). Only in that element, the FEM discretization is modified to accommodate the discontinuities in the boundary conditions.

The numerical scheme is applied to the simulation of a 2D vertical ice sheet with an advancing GL and one with a retreating

GL. The model setups for the tests are the same as in one of the MISMIP examples (Pattyn et al., 2012) and in Gagliardini

et al. (2016). Comparable results to Gagliardini et al. (2016) are obtained using the subgrid scheme with more than 20 times

larger mesh sizes. A larger mesh size also allows a longer time step for the time integration.435
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