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1 Changes

• Page 1: All done.

• Page 2: All done.

• Page 3:

line 72: A sentence is added.

All done for the other comments, list is merged to the text.

• Page 4: All done

• Page 5

line 112: We prefer to call β a coefficient and reserve friction function for
βut. In general, β is not constant.

line 116: changed.

• Page 6: All done

• Page 7: All done

• Page 8:

line 177: Standard MISMIP setting, a ref to Durand 2019a is added.

line 184: changed.

line 193: The term is described in a better way.

• Page 12

Fig 2: colors of lines are added, a ref to fig.2 is also added in fig.3 for the
colors.

• Page 14

line 318: A reference to Fig 3 is added.

• Page 15

line 335: Ideally we would like to have a switch between 0 and 1, but this
discontinuity will make it hard for the nonlinear iterations to converge.
This is because nature of the finite element method: the high order inte-
gration scheme over a function (a Heaviside function in this case) can be
considered as to approximate the function with a high order polynomial.
Apparently, high order polynomials do not work well for the discontinuity
in the Heaviside function. That is the reason of this additional smoothing.

line 348: Three citations are added.
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• Page 18

Fig 6: We have new Figs 7 and 8 with convergence plots for mesh sizes
∆x = 0.5, 1, 2, 4 km. There it appears as if the error behaves as O(∆x)
close to the GL. The GL position itself is less sensitive to ∆x in Fig 6. We
comment on these results in Results and with one sentence in Conclusions.

line 391: added.

• Page 20

line 422: A few words are added. Dynamic adaptivity is less expensive
than having a fine static mesh everywhere but there are some nontrivial
issues to implement: solution of an adjoint problem, storing a full time
dependent forward solution for the adjoint problem (could be 3D + time),
redistribution of the mesh by splitting and collapsing mesh elements. This
can be done and has been done but requires some effort in a large produc-
tion quality code.

line 424: One new sentence is added.

• Page 21: all done.
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Abstract. The flow of large ice sheets and glaciers can be simulated by solving the full Stokes equations using
::
are

::::::
solved

::
by

:
a

finite element method
::
for

:::::::::
simulation

::
of

::::
large

:::
ice

:::::
sheets

::::
and

::::::
glaciers. The simulation is particularly sensitive to the discretization

of the grounding line , which separates
:::::
which

::::::::
separates

::
the

:
ice resting on bedrock and

::
the

:::::::
bedrock

:::
and

:::
the

:
ice floating on water ,

and is moving in time. The boundary conditions at the ice base are enforced by Nitsche’s method and a subgrid treatment of the

grounding line element
:::::::
element

::
in

::
the

::::::::::::
discretization

::::
with

::
the

:::::::::
grounding

:::
line. Simulations with the method in two dimensions for5

an advancing and a retreating grounding line illustrate the performance of the method. The computed grounding line position

is compared to previously published data with a fine mesh, showing that similar accuracy is
:
.
::::::
Similar

::::::
results

:::
are obtained using

subgrid modeling with more than 20 times coarser meshes. This subgrid scheme
:
It
:
is implemented in the two dimensional

version of the open source code Elmer/ICE.

1 Introduction10

1.1 Ice sheet dynamics, sea-level rise, and grounding line migration

Numerical simulation
:::::::::
Simulation

:
of ice sheet flow is necessary

::::::::
dynamics

::
is

::
a

:::
tool

:
to assess the future sea-level rise (SLR)

due to melting of continental ice sheets and glaciers (Hanna et al., 2013) and to reconstruct the ice sheets of the past (Stokes

et al., 2015; DeConto and Pollard, 2016) for comparison with measurements and validation of the models. Ice sheet model
:::
The

predictions are particularly sensitive to the numerical treatment
::::::
position of the grounding line (GL)

:::
and

::
its

:::::::::
numerical

::::::::
treatment15

(Durand and Pattyn, 2015; Konrad et al., 2018), the line where the ice sheet leaves the solid bedrock and becomes an ice shelf

floating on water driven by buoyancy.

The distance that the GL moves may be long over palaeo time scales. In Kingslake et al. (2018) it is shown that the GL has

retreated several hundred kilometers in West Antarctica during the last 11,500 years and then advanced again after the isostatic

rebound of the bed. The sensitivity, long time intervals, and long distances of the GL migration require a careful treatment of20

the GL and its neighborhood in
::
by the numerical method used to discretize the equations modeling the ice sheet dynamics. In

this paper, we develop an accurate and efficient method for such problems.
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1.2 Model equations

When the ice rests on the ground and is affected by large frictional forces on the bed, the ice flow is dominated by vertical

shear stresses
:::::
when

:::
the

::::
basal

:::::::
friction

::
is

::::
large. On the other hand, when the ice is floating on water, it is the longitudinal stress25

gradient that controls the flow of the ice. The GL is in the transition zone between these two types of flow with a gradual

change of the stress field (Schoof, 2011).

The most accurate ice model in theory is based on the full Stokes (FS) equations. A simplification of the FS equations by

integrating in the depth of the ice is the shallow shelf (or shelfy stream) approximation (SSA) (MacAyeal, 1989), which .
::
It is

often used for simulation of the coupling between a grounded ice sheet and a marine ice shelf. In the zone between the grounded30

ice and the floating ice, it is necessary to use the FS equations (Wilchinsky and Chugunov, 2000; Schoof and Hindmarsh, 2010;

Docquier et al., 2011; Schoof, 2011) unless the ice is moving rapidly on the ground with low basal friction, when the SSA

equations are accurate both upstream and downstream of the GL.

The evolution of the GL in simulations is sensitive to the model equations and the basal friction law. In the Marine Ice

Sheet Model Intercomparison Project (MISMIP )
:
a
:::::
major

:::::
effort

::::::::
MISMIP (Pattyn et al., 2012, 2013), different ice models and35

implementations solve the same ice flow problems and the predicted GL steady state and transient GL motion are compared.

The results show that the position of the GL depends on the model equations (Pattyn et al., 2013). Predictions
:::
The

:::::::::
prediction of

the GL position and
:::
and

:::
the SLR is different for different ice models such as FS and SSA (Pattyn and Durand, 2013). Including

equations with vertical shear stress at the GL such as the FS equations is crucial to accurately resolve GL dynamics in a wide

range of circumstances
:::::
seems

::
to
:::
be

::::::
crucial.40

The friction laws at the ice base depend on the effective pressure, the basal velocity, and the distance to the GL in different

combinations in Leguy et al. (2014); Gagliardini et al. (2015); Brondex et al. (2017); Gladstone et al. (2017). The GL position

and
:::
the

:
SLR vary considerably depending on the choice of friction law. Given the friction law, the results are sensitive to its

model parameters too (Gong et al., 2017).

1.3 Numerical methods45

Parameters in the numerical methods used to simulate ice sheet flow
:::
also

:
influence the GL migration. Durand et al. (2009b)

find
:
It

::
is

:::::::
observed

::
in
:::::::::::::::::::
Durand et al. (2009b) that the mesh resolution along the ice bed has to be fine to obtain reliable solutions

with FS in GL simulations. The GL is then located in a node of the fixed or static mesh. A mesh size below 1 km is necessary

in Larour et al. (2019) to resolve the features at the GL. Adaptive meshes for a finite volume discretization of an approximation

of the FS equations are employed in Cornford et al. (2013) to study the GL retreat and loss of ice in West Antarctica. The FS50

solutions of benchmark problems in Pattyn et al. (2013) computed by an implementation of the finite element method (FEM)

in Elmer/ICE (Gagliardini et al., 2013) and FELIX-S (Leng et al., 2012) are compared in Zhang et al. (2017). The differences

between the these implementations
:::::
codes are attributed to different treatment of a friction parameter at the GL and different

assignment of grounded and floating nodes and element faces.
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A subgrid scheme introduces an inner structure in the discretization element or mesh volume where the GL is located. Such55

schemes have been developed for simplifications of the FS equations. A subgrid model for the GL is tested in Gladstone et al.

(2010b) for the one dimensional (1D) SSA equation where the flotation condition for the ice defines the position of the GL.

The GL migration is determined by the two dimensional (2D) SSA equations discretized by the finite element method (FEM)

in Seroussi et al. (2014). Subgrid models at the GL are compared to a model without an internal structure in the element. The

conclusion is that sub-element parameterization is necessaryto obtain accurate results for reasonable computational expense.60

A shallow approximation to FS with a subgrid scheme on coarse meshes is compared to FS in Feldmann et al. (2014) with

similar results for the GL migration. Subgrid modeling and adaptivity are compared in Cornford et al. (2016) for a vertically

integrated model. The thickness of the ice above flotation determines if the ice is grounded or floating. A fine mesh resolution

is necessary for converged GL positions with FS in Durand et al. (2009a, b). A dynamic mesh refinement and coarsening of

the mesh following the GL would solve the problem in palaeo simulations when the GL moves long distances. An alternative65

is to introduce a subgrid scheme in the mesh elements where the GL is located in a static mesh and keep the mesh size

coarsereverywhere else in the ice sheet.

1.4 Proposed
::::
Our

::::::::
proposed method and outline of the paper

From the above we conclude that ,
::
the

:::::::::
prediction

::
of

::::
SLR

::
is

::::
very

:::::::
sensitive

::
to

:::
the

:::::::
position

::
of

:::
the

:::
GL

:::
and

:::
the

:::::::::
numerical

::::::::
treatment

::
in

:
a
:::::::::::::
neighbourhood

::
of

:::
the

::::
GL, it seems crucial that the ice model includes equations with vertical shear stress in the neigh-70

bourhood of the GL, and one way to avoid the fine meshes that are otherwise needed close to the GL
:
, is to introduce a subgrid

scheme in the discretization element where the GL is located. In this study
:::
For

:::
this

::::::::
purpose, we develop such a numerical

method for the FS equations in two dimensions introducing a subgrid scheme in the mesh element where the GL is located.

Since the subgrid scheme is restricted to one element in a 2D vertical ice this is computationally inexpensive. In an extension

to 3D, the subgrid scheme would be applied along a line of elements in 3D. The results with numerical modeling will always75

depend on the mesh resolution but can be more or less sensitive to the mesh spacing and time steps. It depends on the equation,

the mesh size, the mesh quality, and the finite element spaces in the approximation.

We solve the FS equations in a 2D vertical ice with the Galerkin method implemented in Elmer/ICE (Gagliardini et al.,

2013). A subgrid discretization is proposed and tested for the element where the GL is located. The boundary conditions are

imposed by Nitsche’s method at the ice base in the weak formulation of the equations (Nitsche, 1971; Urquiza et al., 2014;80

Reusken et al., 2017). The linear Stokes equations are solved in Chouly et al. (2017a) with Nitsche’s treatment of the boundary

conditions. They solve the equations for the displacement but here we solve for the velocity using similar numerical techniques

to weakly impose the Dirichlet boundary conditions on the normal velocity at the base. The frictional force in the tangential

direction is applied on part of the element with the GL. The position of the GL within the element is determined in agreement

with theory developed for the linearized FS in Schoof (2011).85

The paper is organized as follows. Section 2 is devoted to the presentation of the mathematical model of the ice sheet

dynamics. In Sect. 3, the numerical discretization with FEM is given while the subgrid scheme around the GL is found in Sect.
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4. The numerical results for a MISMIP problem are presented in Sect. 5. The extension to three dimensions (3D) is discussed

in Sect. 6 and finally some conclusions are drawn in Sect. 7.

2 Ice model90

2.1 The full Stokes (FS) equations

To simulate flow in a
:::
We

:::
use

::::
the

:::
FS

::::::::
equations

::
in

::
a
:
2D vertical cross-section of an icesheet, we use the FS equations

:::
ice

with coordinates x = (x,z)T
::
for

::::::::
modeling

:::
the

::::
flow

::
of

:::
an

:::
ice

::::
sheet

:
(Hutter, 1983). The nonlinear partial differential equations

(PDEs) in the interior of the ice domain Ω are given by∇ ·u = 0,

−∇ ·σ = ρg,
(1)95

where the stress tensor is σ = τ(u)−pI and the deviatoric stress tensor is τ(u) = 2η(u)ε̇(u). The strain rate tensor is defined

by

ε̇(u) =
1

2
(∇u+∇uT ) =

 ε̇11 ε̇12

ε̇12 ε̇22

 , (2)

I is the identity matrix, and the viscosity is defined by Glen’s flow law

η(u) =
1

2
(A(T ′))

− 1
n ε̇

1−n
n

e , ε̇e =

√
1

2
tr(ε̇(u)ε̇(u)). (3)100

Here u = (u,w)T is the vector of velocities, ρ is the density of the ice, p denotes the pressure, and the gravitational vector

is denoted by g. The viscosity η is a function of the rate factor A(T ′) where T ′ is the ice temperature. For isothermal flow

assumed here, the rate factor A is constant. Finally, n is usually taken to be 3.

2.2 Boundary conditions105

At the boundary Γ of the ice domain Ω we define the normal outgoing vector n and tangential vector t (see Fig. 1). In the

2D vertical case considered here, the ice sheet geometry is constant in y. The ice surface is denoted by Γs and the ice base is

Γb = Γbg ∪Γbf . At Γs and Γbf , the floating part of Γb, we have that

σn = fs , σn = fbf , (4)

respectively. The ice is stress-free at Γs, fs = 0, and fbf =−pwn at the ice/ocean interface Γbf where pw is the water pressure.110

Let

σnt = t ·σn, σnn = n ·σn, ut = t ·u,
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Figure 1. A two dimensional schematic view of a marine ice sheet.

where σnn and σnt are the normal and tangential components of the stress and ut is the tangential component of the ice

velocity at the ice base. Then for the slip boundary Γbg , the grounded part of Γb where the ice rests on the bedrock, we have a

friction law for the sliding ice115

σnt +β(u,x)ut = 0, un = n ·u = 0, −σnn ≥ pw, (5)

where un is the normal component of the ice velocity. The type of friction law is determined by the friction coefficient β (≥ 0).

At Γbf , there is a balance between σnn and pw and the contact is friction-free, β = 0. Then

σnt = 0, −σnn = pw. (6)

At the GL, the boundary condition switches from β > 0 and un = 0 on Γbg to β = 0 and a free un on Γbf . In a 2D vertical120

cross-section of ice, the GL is the point (xGL,zGL) shared between Γbg and Γbf .

The ocean surface is at z = 0, and pw =−ρwgzb. The density of sea water is denoted byρw, zb is the z-coordinate of Γb,

and g is the vertical component of the gravitational force.

2.3 The free surface equations

The boundaries Γs and Γb are time-dependent and move according to two free surface equations. The boundary Γbg follows125

the fixed bedrock with coordinates (x,b(x)).

The z-coordinate of the ice surface position zs(x,t) at Γs (see Fig. 1) is the solution of an advection equation

∂zs
∂t

+us
∂zs
∂x
−ws = as, (7)

5



where as denotes the surface mass balance and us = (us,ws)
T the velocity at the ice surface in contact with the atmosphere.

Similarly, the z-coordinate for the ice base zb of the floating ice at Γbf satisfies130

∂zb
∂t

+ub
∂zb
∂x
−wb = ab, (8)

where ab is the basal mass balance and ub = (ub,wb)
T the velocity of the ice at Γbf . On Γbg , zb = b(x) and on Γbf , zb > b(x).

The thickness of the ice is denoted by H = zs− zb and depends on x and t.

2.4 A first order solution close to the grounding line

The 2D vertical solution of the FS equations in Eq. (1) with a constant viscosity, n= 1 in Eq. (3), is expanded in small135

parameters in Schoof (2011). The solutions in different regions around the GL are connected by matched asymptotics. Upstream

of the GL at the grounded part, x < xGL, the leading terms in the expansion satisfy a simple relation in scaled variables close to

the GL. Across the GL, the ice velocity u, the flux of ice uH , and the depth-integrated
:::::
depth

::::::::
integrated

:
normal or longitudinal

stress τ11 in Eq. (2) are continuous. By including higher order terms in the expansion in small parameters, it is shown in Schoof

(2011, Sect. 4.7) that the ice surface slope is continuous and Archimedes’ flotation condition140

Hρ=−zbρw (9)

is not satisfied immediately downstream of the GL. A rapid variation in the vertical velocity w in a short distance interval at

the GL causes oscillations in the ice surface in the analysis as also observed in FS simulations in Durand et al. (2009a). The

flotation condition in (9) determines where the GL is in SSA in Docquier et al. (2011); Drouet et al. (2013).

In Schoof (2011, Sect. 4.3), the solution to the FS in a 2D vertical cross-section of ice
::
ice is expanded in two parameters,145

ν and ε. The aspect ratio of the ice ν is the quotient between a typical scale of the thickness of the ice H and a horizontal

length scale L, ν =H/L, and ε is ν times the quotient between the longitudinal and the shear stresses τ11 and τ12 in Eq. (2).

If ν5/2� ε� 1 then in a boundary layer close to the GL and x < xGL it follows from the equations that the leading terms in

the solution in scaled variables satisfy

τ22− p= σ22 = ρg(z− zs). (10)150

On floating ice τ22−p+pw = 0 and the hydrostatic flotation criterion Eq. (9) is fulfilled. This is a first order approximation of

the second relation in Eq. (6). On the grounded ice domain, we have τ22− p+ pw < 0.

Introducing the notation

χa(x,z) = τ22− p+ pw = ρg(z− zs(x))− ρwgzb(x), (11)

and letting Hbw =−zb be the thickness of the ice below the sea level yields155

χa(x,zb) =−g(ρH − ρwHbw). (12)
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If x < xGL then χa < 0 in the neighborhood of xGL on Γbg and if x > xGL then χa = 0 and Eq. (9) holds true on Γbf . Suppose

that zs and zb are linear in x. Then χa is also linear in x. In numerical experiments with the linear FS (n= 1) in Nowicki and

Wingham (2008), χa(x,zb) varies linearly in x for x < xGL.

In Sect. 4, we take this same approach
:::::
mimic

:::
the

:::::
same

::::
idea but use an indicator χ(x) or χ̃(x) derived from the solutions of160

the nonlinear FS equations to estimate the GL position. These indicators are approximated by χa(x,zb).

3 Discretization by FEM

In this section we state the weak form of Eq. (1) ,
:::
and

:
introduce the spatial FEM discretization used for Eq. (1) , and give the

time-discretization of Eq. (7) and (8).

3.1 The weak form of the FS equations165

We start by defining the mixed weak form of the FS equations. Introduce k = 1+1/n, k∗ = 1+n with n from Glen’s flow law

and the spaces

V k = {v : v ∈ (W 1,k(Ω))2}, Qk∗ = {q : q ∈ Lk∗(Ω)}, (13)

see, e.g. Jouvet and Rappaz (2011, Eq. (3.7)), Chen et al. (2013, Sect. 3.1), Martin and Monnier (2014, Eq. (21)). The weak

solution (u,p) of Eq. (1) is obtained as follows. Find (u,p) ∈ V k ×Qk∗ such that for all (v, q) ∈ V k ×Qk∗ the equation170

A((u,p),(v, q)) +BΓ(u,v,p) +BN (u,v, q) = F (v) +FΓ(v), (14)

is satisfied, where

A((u,p),(v, q)) =

∫
Ω

2η(u)ε̇(u) : ε̇(v) dx− b(u, q)− b(v,p),

b(u, q) =

∫
Ω

q∇ ·u dx,

BΓ(u,v,p) =−
∫

Γbg

(σnn(u,p)n ·v+σnt(u,p)t ·v) ds=

∫
Γbg

(−σnn(u,p)n ·v+β(t ·u)(t ·v)) ds,

BN (u,v, q) =−
∫

Γbg

σnn(v, q)n ·u ds+ γ0

∫
Γbg

1

h
(n ·u)(n ·v) ds,

F (v) =

∫
Ω

ρg ·v dx,

FΓ(v) =−
∫

Γbf

pwn ·v ds

The last term inBN is added in the weak form in Nitsche’s method (Nitsche, 1971) to impose the Dirichlet condition un = 0

weakly on Γbg . It can be considered as a penalty term. Since u = unn+utt, the contribution of the tangential force can also175
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be written βu ·v when un = 0. The value of the positive parameter γ0 depends on the physical problem and h is a measure

of the mesh size on Γb. The sensitivity of the GL positions for different values of γ0 is shown in Sect. 5. The first term in BN

symmetrizes the boundary term BΓ +BN on Γbg and vanishes when un = 0. The boundary term FΓ(v) is from the buoyancy

force at the ice/ocean interface in (6) where pw depends on zb on Γbf .

3.2 The discretized FS equations180

We employ linear Lagrange elements with Galerkin Least Square (GLS) stabilization (Franca and Frey, 1992; Helanow and

Ahlkrona, 2018) to avoid spurious oscillations in the pressure using the standard MISMIP setting in Elmer/ICE (Durand et al., 2009a; Gagliardini et al., 2013)

::::::::::::::::::::
(Gagliardini et al., 2013) approximating solutions in the spaces V k and Qk∗ in Eq. (13).

The mesh is constructed from a footprint mesh on the ice base and then extruded with the same number of layers equidistantly

in the vertical direction according to the thickness of the ice sheet. To simplify the implementation in 2D, the footprint mesh185

on the ice base consists of N + 1 nodes at xi = (xi,zb(xi)), i= 0, . . . ,N, with x-coordinates xi and a constant mesh size

∆x= xi−xi−1.

In general, the GL is somewhere in the interior of an interval [xi−1, xi] and it crosses the interval boundaries as it moves

forward in the advance phase and backward in the retreat phase of the ice. The advantage with Nitsche’s method
:::
way

:
of

formulating the boundary conditions is that if xGL ∈ [xi−1, xi] then the boundary integral over the interval can be split into190

two parts in Eq. (14) such that (x,zb(x)) ∈ Γbg when x ∈ [xi−1, xGL] and if x ∈ [xGL, xi] then (x,zb(x)) ∈ Γbf . In the GL

element, we have

BΓ +BN =

∫
[xi−1,xGL]

−(σnn(u,p)n ·v+σnn(v, q)n ·u)+β(t ·u)(t ·v) +
γ0

h
(n ·u)(n ·v) ds,

FΓ =−
∫

[xGL,xi]

pwn ·v ds, (15)

with the integration element ds following Γb. There is a change of the boundary condition in the middle of the FEM element

where the GL is located. With a strong formulation of the boundary condition un = 0, the basis functions in V k share this195

property and the condition changes from the grounded node xi−1 where the basis function satisfies un = 0 to the floating node

at xi with a free un without taking the position of the GL inside [xi−1, xi] into account. With the weak formulation in Nitsche’s

method, the standard basis functions we use do not satisfy un = 0 strictly. The boundary condition is imposed on the solution

by the additional penalty term multiplied by γ0 in BN in (14) . A large γ0 will force un to be small. The penalty
:::
and

::::
this term

may change inside an element as in (15)where it is 6= 0 only in the grounded part.200

The resulting system of nonlinear equations form a nonlinear complementarity problem (Christensen et al., 1998). The

distance d between the base of the ice and the bedrock at time t and at x is

d(x,t) = zb(x,t)− b(x)≥ 0. (16)
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If d > 0 on Γbf then the ice is not in contact with the bedrock and σnn + pw = 0 and if σnn + pw < 0 on Γbg then the ice and

the bedrock are in contact and d= 0. Hence, the complementarity relation in the vertical direction is205

d(x,t)≥ 0, σnn + pw ≤ 0, d(x,t)(σnn + pw) = 0 on Γb. (17)

The contact friction law is such that β > 0 when x < xGL and β = 0 when x > xGL. The complementarity relation along the

ice base at x is then the non-negativity of d and

β ≥ 0, β(x,t)d(x,t) = 0 on Γb. (18)

In particular, these relations are valid at the nodes x= xj , j = 0,1, . . . ,N .210

The complementarity condition also holds for un and σnn such that

σnn + pw ≤ 0, un(σnn + pw) = 0 on Γb, (19)

without any sign constraint on un except for the retreat phase when the ice leaves the ground and un < 0.

Similar implementations for contact problems using Nitsche’s method are found in Chouly et al. (2017a, b), where the

unknowns in the PDEs are the displacement fields instead of the velocity in Eq. (1). Analysis in Chouly et al. (2017a) suggests215

that Nitsche’s method for the contact problem can provide a stable numerical solution with an optimal convergence rate.

The nonlinear equations, Eq. (14), for the nodal values of u and p are solved by Picard iterations. The system of linear

equations in every Picard iteration is solved directly by using the MUMPS linear solver in Elmer/ICE. The condition on

dj = d(xj) is used to decide if the node xj is geometrically grounded or floating. It is computed at each time step and is

not changed during the nonlinear iterations (Picard). The procedure for solution of the nonlinear FS equations is outlined in220

Algorithm 1. In two dimensions, the GL will be located in one element.

3.3 Discretization of the advection equations

The advection equations for the moving ice boundary in Eq. (7) and (8) are discretized in time by a finite difference method

and in space by FEM with linear Lagrange elements for zs and zb. An artificial diffusion stabilization term is added, making

the spatial discretization behave like an upwind scheme in the direction of the velocity as implemented in Elmer/ICE.225

The advection equations Eq. (7) and Eq. (8) are integrated in time by a semi-implicit method of first order accuracy. Let

c= s or b. Then the solution is advanced from time t` to t`+1 = t` + ∆t with the time step ∆t by

z`+1
c = z`c + ∆t(a`c−u`c

∂z`+1
c

∂x
+w`c). (20)

The spatial derivative of zc is approximated by FEM as described above. A system of linear equations is solved at t`+1 for

z`+1
c . This time discretization and its properties are discussed in Cheng et al. (2017) and summarized in Algorithm 2.230

A numerical stability problem in zb is encountered in the boundary condition at Γbf when the FS equations are solved in

Durand et al. (2009a). It is resolved by expressing zb in pw at Γbf with a damping term. An alternative interpretation of the

idea in Durand et al. (2009a) and an explanation follow below.
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Algorithm 1 Solve the FS equations

For a given mesh, compute dj , j = 0,1, ...,N, for all the nodes xj at the ice base.

Mark node j as geometrically grounded if dj < 10−3, otherwise floating.

Find the element which contains both geometrically grounded and floating nodes, and mark the grounded node in this element as ‘GL

node’.

Compute the residual of the FS equations with the initial guess of the solution.

while the residual is larger than the tolerance do

Assemble the FEM matrix for the interior of the domain Ω.

for the boundary elements on Γb do

if has ‘GL node’ then

Mark the current element as a ‘potential GL element’.

Use the subgrid scheme in Algorithm 3 of Sect. 4 for the assembly.

else

Assemble the boundary element.

end if

end for

Solve the linearized FS equations for a correction of the solution.

Compute the solution and the residual.

end while

Algorithm 2 Time scheme of the GL migration problem

Start from an initial geometry Ω0 defined by z0b ,z
0
s .

for `= 0 to T/∆t− 1 do

Solve the FS equations on Ω` with Algorithm 1, to get the solution u`.

Solve for z`+1
b and z`+1

s with u` by the semi-implicit Euler method.

Use z`+1
b and z`+1

s to update Ω`+1.

end for

10



The relation between un and ut at Γbf and ub = u(x,zb(x)) is

ub =

 ub

wb

=

 zbx

−1

 un√
1 + z2

bx

+

 1

zbx

 ut√
1 + z2

bx

, (21)235

where zbx denotes ∂zb/∂x. Inserting ub and wb from Eq. (21) into Eq. (8) yields

∂zb
∂t

= ab−un
√

1 + z2
bx. (22)

Instead of discretizing Eq. (22) explicitly at t`+1 with u`n to determine p`+1
w , the base coordinate is updated implicitly

z`+1
b = z`b + ∆t

(
a`+1
b −u`+1

n

√
1 + (z`+1

bx )2

)
(23)

in the evaluation of pw in FΓ(v) in Eq. (14).240

Assuming that zbx is small, the time step restriction in Eq. (23) is estimated by considering a 2D slab of the floating ice of

width ∆x and thickness H . Newton’s law of motion yields

Mu̇n =Mg−∆xpw,

where M = ∆x(zs− zb)ρ is the mass of the slab. Dividing by M , integrating in time for un(tm), letting m= `+ 1 or `, and

approximating the integral by the trapezoidal rule for the quadrature yields245

un(tm) =

tm∫
0

g+
gρw
ρ

zb
zs− zb

ds≈ gtm +
gρw
ρ

m∑
i=0

αi
zib

zis− zib
∆t= umn ,

with the parameters

αi = 0.5, i= 0,m, αi = 1, i= 1, . . . ,m− 1.

Then insert umn into Eq. (23). All terms in umn from time steps i < m are collected in the sum ∆tFm−1. Then Eq. (23) can be

written250

z`+1
b = z`b −∆t2

gρw
2ρ

zmb
zms − zmb

+ ∆t
(
a`b− gtm−∆tFm−1

)
. (24)

For small changes in zb in Eq. (24), the explicit method with m= ` is stable when ∆t is so small that

|1−∆t2
gρw
2Hρ

| ≤ 1. (25)

When H = 100 m on the ice shelf, ∆t < 6.1 s which is far smaller than the stable steps for Eq. (20). Choosing the implicit

scheme with m= `+ 1, the bound on ∆t is255

1/|1 + ∆t2
gρw
2Hρ

| ≤ 1, (26)

11



i.e. there is no bound on positive ∆t for stability but accuracy will restrict ∆t.

Much longer stable time steps are possible at the surface and the base of the ice with a semi-implicit method Eq. (20) and

a fully implicit method Eq. (23) compared to an explicit method. For example, the time step for the problem in Eq. (20) with

1 km mesh size can be up to a couple of months. Therefore, we use the scheme in Eq. (20) for Eqs. (7) and (8) and the scheme260

in Eq. (23) for Eq. (22) and pw as in Durand et al. (2009a). The difference between the approximations of zb in Eq. (20) and

(23) is of O(∆t2).

4 Subgrid scheme around the grounding line

The basic idea of the subgrid scheme for the FS equations in this paper follows the GL parameterization (SEP3) for SSA in

Seroussi et al. (2014) and the analysis for FS in Schoof (2011). The GL is located at the position where the ice is on the ground265

and the flotation criterion is perfectly satisfied such that σnn =−pw. In the FS equations, the hydrostatic assumption Eq. (9)

may not be valid close to the GL. Therefore, the GL position can not be determined by simply checking the total thickness of

the ice H against the depth below sea level Hbw. Instead, the flotation criterion is computed by comparing the water pressure

with the numerical normal stress component orthogonal to the boundary inspired by the first order analysis in Sect. 2.4.

The numerical solutions, e.g. Gagliardini et al. (2016); Gladstone et al. (2017), converge to the analytical solution of the FS270

PDE as the mesh size decreases. The analytical solution satisfies zb(x,t)> b(x) with the boundary conditions in Eq. (6) at the

base of the floating ice, and where the ice is in contact with the bedrock zb(x,t) = b(x), the boundary conditions are given by

Eq. (5). Examples of the analytical solution are demonstrated by the thin light blue lines in Figs. 2 and 3 with a black ‘∗’ at the

analytical GL position xGL. The two figures share the same analytical solution. However, as illustrated in Figs. 2 and 3, the

basal boundary of the ice zb(x,t) does not conform with the mesh from the spatial discretization. In particular, the GL position275

xGL of the analytical solution does not coincide with any of the nodes, but it usually stays on the bedrock b(x) between the

last grounded (xi−1) and the first floating (xi) nodes, see Figs. 2 and 3. The linear element boundary between any xj−1 and

xj is denoted by Ej . The sequence of Ej , j = 1, . . . ,N, approximates Γb. The grounding line element containing the GL is Ei.
Depending on how the mesh is created from the initial geometry and updated during the simulation, the first floating node

at xi, as well as the GL element, can be either on the bedrock (as in Fig. 2) or at the ice base above the bedrock (as in Fig. 3),280

even though the corresponding analytical solutions are identical. Denote the situation in Fig. 2 as case i, and the one in Fig.

3 as case ii. The physical boundary conditions of the two cases are different only at the GL element. More precisely, in case

i, the net force in the vertical direction on the node xi is pointing inward, namely χ(xi) = σnn(xi) + pw(xi)> 0, whereas in

case ii, the floating condition σnn(xi) + pw(xi) = 0 is satisfied in the node xi. The directions of the vertical net force at the

nodes xi−1 and xi are shown by the arrows in the upper panels of Fig. 2 and 3. Consequently, the external forces and boundary285

conditions imposed on the GL element are different in the two cases. For instance, in case i, the GL element is considered

as geometrically grounded (defined as in Algorithm 1), shown with red color in the upper panel of Fig. 2. In case ii, the GL

element is treated as geometrically floating and colored in blue in the upper panel of Fig. 3.
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xi−1 xi
xGL

xi−1 xi
x̃GL

HN (x)
1

0

Hβ(x)
1

0

xi−1 x̃GL xi

Figure 2. Schematic figure of the GL in case i, with the arrows indicating the direction of the net forces in the vertical direction.
:::::
Upper

::::
panel:

:
The

:::
last

:::::::
grounded

:::
and

:::
first

::::::
floating

:::::
nodes

::
as

::::::
defined

::
in

::::::::
Elmer/ICE.

::::
The light blue line is the analytical solution of the ice sheet with

the analytical GL position xGL. The red line is the grounded boundary Γbg , the dark blue line is the floating boundary Γbf , and the brown

line is the bedrock topography b(x). Upper panel: The last grounded and first floating nodes as defined in Elmer/ICE. Middle panel: Linear

interpolation to approximate the numerical GL position x̃GL. Lower panel: The step functions HN (x) and Hβ(x) indicate the area for

Nitsche’s penalty and slip boundary conditions.

These two cases are similar to the LG and FF cases in Gagliardini et al. (2016) implying that the numerical solutions in the

two cases are different, especially on a coarse mesh (mesh size at about 100 m or larger). Thus, we propose a subgrid scheme290

to reduce these differences in the spatial discretization and to capture the GL migration without using a fine mesh resolution

(< 100 m). The schematic drawing of the subgrid scheme for the two cases is shown in the middle panels of Fig. 2 and 3. The

GL element is divided into the grounded (red) and floating (blue) parts by the estimated GL position x̃GL on Ei, which is the

numerical approximation of the analytical GL position xGL.

The GL moves toward the ocean in the advance phase and away from the ocean in the retreat phase. First, we consider case295

i in the advance phase and define the indicator by

χ(x) = σnn + pw, (27)

which vanishes on the floating ice and is negative and approximately equal to χa = τ22− p+ pw in Eq. (11) on the ground

since the slope of the bedrock is small and n≈ (0,−1)T . Because of the poor spatial resolution of the coarse mesh, χ(xi) is

positive.300
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xi−1

xi

xGL

xi−1

xi

xGL

x̃GL

x̂i

HN (x)
1

0

Hβ(x)
1

0

xi−1 x̃GL xi

Figure 3. Schematic figure of the GL in case ii, with the arrows indicating the direction of the net forces in the vertical direction. The colors

of the lines follow those in Fig. 2. Upper panel: The last grounded and first floating nodes as defined in Elmer/ICE. The
::::
light

:::
blue

:::
line

::
is
:::
the

:::::::
analytical

::::::
solution

::
of
:::
the

:::
ice

::::
sheet

::::
with

::
the

::::::::
analytical

:::
GL

::::::
position

:::::
xGL.

:::
The node xi is fully geometrically floating and the net force is 0.

Middle panel: Linear interpolation to approximate the numerical GL position x̃GL. The point x̂i on the bedrock has the same x coordinate

as xi. Lower panel: The step functionsHN (x) andHβ(x) indicate the area for Nitsche’s penalty and slip boundary conditions.

To determine the position x̃GL, we solve χ(x̃GL) = σnn(x̃GL)+pw(x̃GL) = 0 by linear interpolation between χ(xi−1) and

χ(xi) such that

x̃GL = xi−1−
χ(xi−1)

χ(xi−1)−χ(xi)
(xi−1−xi). (28)

The water pressure pw(x) is a linear function of x on the GL element and the numerical solution of σnn(x) is also piecewise

linear on every element with the standard Lagrange elements in Elmer/ICE (Gagliardini et al., 2013). Hence, it makes sense to305

approximate the analytical GL position xGL by x̃GL by linear interpolation in the current framework. This approach fits well

with case i since the indicator χ(x) has opposite signs at xi−1 and xi, see the middle panel of Fig. 2 where x̃GL is marked by

a red ‘∗’. It guarantees the existence and uniqueness of x̃GL on the GL element.

Another situation in the advance phase is case ii shown in Fig. 3. As the elements on both sides of the node xi are geometri-

cally floating, the boundary condition imposed on xi becomes χ(xi) = σnn(xi)+pw(xi) = 0. However, the implicit treatment310

of the ice base moves the z-coordinate of the node xi towards the bedrock with un > 0 in Eq. (23) as discussed in Sect. 3.3.

The result is that pw defined by the implicit zb in (23) satisfies σnn + pw > 0 in (27) and χ(xi)> 0.

The implicit treatment of the ice base has the consequence that only case ii occurs in the retreat phase. When the FS equations

are solved, the implicit update of the ice base with un < 0 in Eq. (23) implies that the last grounded node in the previous time

step is leaving the bedrock when the ice is retreating and the GL moves back to the adjacent element. Case i will not appear in315
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that situation since zb(xi)> b(xi). In this circumstance, χ(xi) = 0 in the floating node and a correction of χ(x) is introduced

into case ii by χ̃ in

χ̃(x) = σnn(x) + pb(x). (29)

Here pb(x) =−ρwgb(x) is the water pressure on the bedrock corresponding to linear extrapolation of the pressure for x > xGL

along the element on the bedrock. Furthermore, χ̃(x)≥ χ(x). Notice that pb(xi) = pw(x̂i)> pw(xi), where x̂i is a point on320

the bedrock with the same x coordinate of xi, as illustrated in the middle panel of Fig. 3. Both χ(x) in (27) and χ̃(x) in (29) are

nonlinear in x but the numerical approximation of them will vary linearly in x. A solution x̃GL is found by linear interpolation

of χ̃(x) between the nodes xi−1 and xi as in Eq. (28). It follows from Eq. (28) that x̃GL is located on the element boundary,

see Figs. 2 and 3. If we compare with case i, this correction can be considered as using σnn(x̃GL) to approximate σnn(xGL)

on a virtual element between xi−1 and x̂i, see Fig. 3.
:
. The position x̃GL is a numerical approximation of the analytical GL325

position, although it is not geometrically in contact with the bedrock.

Since we have pb(x) = pw(x) and χ(x) = χ̃(x) at the GL element in case i, we can simply use χ̃(x) to find x̃GL for the two

cases by replacing χ in (28) by χ̃.

The domains Γbg and Γbf are separated at x̃GL as in Eq. (15) and the integrals on the GL element are calculated with a

high-order integration scheme as in Seroussi et al. (2014). We introduce two step functions HN (x) and Hβ(x) to include and330

exclude quadrature points in the integration of Nitsche’s term and the slip boundary condition, respectively. They are defined

for case i in Fig. 2 and for case ii in Fig. 3. To achieve a reasonable numerical accuracy within the GL element, as suggested in

Seroussi et al. (2014), at least tenth order Gaussian quadrature is used.

The penalty term in Nitsche’s method restricts the motion of the element in the normal direction. It is only imposed on

an element which is fully geometrically on the ground in case i. On the contrary in case ii, the GL element Ei is not in335

contact with the bedrock, see Fig. 3. The normal velocity on the element should not be forced to zero and only the floating

boundary condition is then used on the GL element. Nitsche’s penalty term should be imposed on all the fully geometrically

grounded elements and partially on the GL element in the advance phase as in case i. The step function HN (x) indicates how

Nitsche’s method is implemented on the basal elements, see the lower panels of Fig. 2 and 3 for the two cases. The penalty

term contributes to the integration only whenHN (x) = 1.340

The slip coefficient β is treated similarly with the step function Hβ(x), where Hβ(x) = 1 is on the fully geometrically

grounded elements and Hβ(x) = 0 on the floating elements. To further smooth the transition of β at the GL, the step function

is set to be 1/2 in parts of the GL element before integrating using the high order scheme. The convergence of the nonlinear

iterations is improved in this way. In case i, full friction is applied at the grounded part between xi−1 and x̃GL of the GL

element since this part is also geometrically grounded in the analytical solution of the FS as in Fig. 2. Then, the friction is345

lower in the remaining part of Ei. For the floating part between x̃GL and xi in case ii, there is no friction and Hβ(x) = 0 and

we have reduced friction between xi−1 and x̃GL, see the lower panel of Fig. 3. The boundary integral Eq. (15) on Ei is now
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rewritten with the two step functions as

BΓ +BN =

∫
Ei

−HN (σnn(u,p)n ·v+σnn(v, q)n ·u)+Hββ(t ·u)(t ·v) +HN
γ0

h
(n ·u)(n ·v) ds,

FΓ =

∫
Ei

(1−HN )pwn ·v ds. (30)

A summary of the numerical treatment of the GL is:350

– Advance phase⇒ indicator χ in (27), case i or case ii

– Retreat phase⇒ indicator χ̃ in (29), case ii

The case is determined by the geometry of the GL element and the sign of the indicator χ.

The algorithm for the GL element is:

Algorithm 3 Subgrid modeling for the GL element

Take all the ‘potential GL elements’ and solve χ(x) = 0 (advance phase) or χ̃(x) = 0 (retreat phase) to find x̃GL and the GL element.

Determine which case this GL element belongs to by checking the geometrical conditions at xi.

SpecifyHN (x) andHβ(x) based on x̃GL depending on the case and the advance or retreat phase.

Integrate Eq. (30) for the FEM matrix assembly.

Equations (1), (7), and (8) form a system of coupled nonlinear equations. They are solved by
:
in
::::

the
::::
same

:::::::
manner

::
as

:::
in355

Elmer/ICE v.8.3in the same manner as Durand et al. (2009b); Gagliardini et al. (2013, 2016). The detailed procedure is ex-

plained in Algorithms 1, 2, and 3. The solution to the nonlinear FS system is computed with Picard iterations to a 10−5 relative

error with a limit of maximal 25 nonlinear iterations. The x̃GL position is determined dynamically during each fixed-point

iteration by solving Eq. (28) with χ or χ̃ and the solution σnn(x) from the previous nonlinear iteration, and the step functions

HN andHβ are adjusted accordingly. The water pressure pb is fixed since the ice geometry is not changed during the nonlinear360

iterations.

5 Results

The numerical experiments follow the MISMIP benchmark (Pattyn et al., 2012) and a comparison is made with the results in

Gagliardini et al. (2016). Using the experiment MISMIP 3a, the setups are exactly the same as in the advancing and retreating

simulations in Gagliardini et al. (2016). The experiments are run with spatial resolutions of ∆x= 4 km, 2 km, 1 km and 0.5 km.365

The mesh at the base is extruded vertically in 20 layers with equidistantly placed nodes in each vertical column. The time step

is ∆t= 0.125 year for all four resolutions to eliminate time discretization errors when comparing different spatial resolutions.

The dependence on γ0 in (30) for the retreating ice is shown in Fig. 4 with γ0 between 104 and 109. The estimated GL

positions do not vary with different choices of γ0 from 105 to 108 which suggests a suitable range of γ0. If γ0 is too small
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(γ0� 104), oscillations appear in the estimated GL positions. If γ0 is too large (γ0� 108), then more nonlinear iterations370

in Algorithm 1 are needed in each time step. The same dependency of γ0 is observed for the advancing experiments and

for different mesh resolutions as well. The results are not very sensitive to γ0 and for the remaining experiments we choose

γ0 = 106.
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γ0 = 1.0× 108
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Figure 4. The MISMIP 3a retreat experiment with ∆x= 1 km for different choices of γ0 in the time interval [0,10000] years.

The GL position during the transient simulations in the advance and retreat phases are displayed in Fig. 5 and the steady

state results (at t= 10000) are shown in Fig. 6 for different mesh resolutions. The range of the steady state solutions from375

Gagliardini et al. (2016) with mesh resolution from 25 m to 200 m are shown as background shaded regions in red. We achieve

similar GL migration results for both the advance and retreat experiments with at least 20 times larger mesh resolutions. The

GL position is insensitive to the variation in mesh size between 0.5 km and 4 km.

The distance between the steady state GL positions of the retreat and the advance phases is shown in Fig. 6 (b). The maximal

distance is about 6 km at ∆x= 1 km with the subgrid model, whereas in Gagliardini et al. (2016), the resolution has to be380

below 50 m to achieve a similar result.

We observe
:::::::
observed oscillations at the ice surface near the GL in all the experiments as expected from Durand et al. (2009a);

Schoof (2011). A zoom-in plot of the surface elevation computed with four different mesh sizes ∆x= 0.5,1,2,4 km after an

advance simulation to t= 10000
::::
with

::::::::
∆x= 0.5

:::
km

::
at

:::::::::
t= 10000 years is found to the left in Fig. 7. The abscissa is the distance

from the steady state GL position for each mesh size. In general, the
:
,
:::::
where

:::
the

::::
red

::::::
dashed

:::
line

::::::::
indicates

:::
the

:
estimated GL385

positiondoes not coincide with any nodes even at the steady state but it may be close to a node.

The ratio between the thickness below sea level Hbw and the ice thickness H is shown to the right in Fig. 7. As in the left

panel, the ratio is plotted versus the distance from the GL achieved with the particular mesh size. The horizontal, purple, dash-

dotted line represents the ratio of ρ/ρw . The solutions vary smoothly over the mesh with ∆x= 0.5 km which appears to be a
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Figure 5. The MISMIP 3a experiments for the GL position when t ∈ [0,10000] with ∆x= 4 km, 2 km, 1 km and 0.5 km for the advance

(solid) and retreat (dashed) phases.

sufficient resolution in both panels of Fig. 7. Moreover, the solutions converge regularly toward the solution with ∆x= 0.5 km390

when the mesh size decreases.

The result for ∆x= 0.5 km in the right panel
::
and

:::
the

:::::::::
estimated

:::
GL

::
is

::::::
located

::
at

:::
the

::::
red,

::::::
dashed

::::
line.

::::
This

:::::
result

:
confirms

that the hydrostatic assumption Hρ=Hbwρw in Eq. (9) is not valid in the FS equations for x > xGL close to the GL and at the

GL position, cf. Durand et al. (2009a); Schoof (2011). For x < xGL we have that Hbw/H < ρ/ρw since Hbw decreases and H

increases. The conclusion from numerical experiments in van Dongen et al. (2018) is that the hydrostatic assumption and the395

SSA equations approximate the FS equations well for the floating ice beginning at a short distance away from the GL.

:::
The

:::::::
solution

:::::
varies

::::::::
smoothly

::::
over

:::
the

:::::
mesh

::::
and

::::::::
∆x= 0.5

:::
km

:::::::
appears

::
to

::
be

::
a

:::::::
sufficient

:::::::::
resolution

::
in

::::
both

::::::
panels

::
of

::::
Fig.

::
7.

::
In

:::::::
general,

::
the

:::::::::
estimated

:::
GL

:::::::
position

::::
does

:::
not

:::::::
coincide

::::
with

::::
any

:::::
nodes

::::
even

::
at

:::
the

::::::
steady

::::
state

:::
but

:
it
::::
may

:::
be

::::
close

::
to

::
a
:::::
node.

The surface and the base velocity solutions from the advance
:::::
retreat

:
experiment are displayed in Fig. 8 with ∆x= 0.5,1,2,4

:::::::
∆x= 0.5 km

after 10000 years. The horizontal velocities on the two surfaces are on top of each other for all ∆x
:::::
similar

:
with negligibly small400

differences on the floating ice as expected. The vertical velocities w on the surface (dotted curves
::::::
surface

::::::
(orange

::::
line) and the

base (solid curves)
::::
blue

::::
line) at the GL are almost discontinuous as analyzed in Schoof (2011). With the subgrid model, the

rapid variation is captured with ∆x= 0.5 km . The convergence for decreasing mesh sizebehaves smoothly
::
on

:::
the

:::
0.5

:::
km

:::::
mesh

:::
size.
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Figure 6. The MISMIP 3a experiments at the final time t= 10000 with the resolutions at ∆x= 4 km, 2 km, 1 km and 0.5 km. (a) The

GL positions in the advance (F) and retreat (•) phases. (b) The distance between the retreat and the advance xGL at the steady states. The

shaded regions indicate the range of the results in Gagliardini et al. (2016) with 20 times smaller mesh resolutions from 25 to 200 m with the

axis scale shown in red at the top of the plot.

6 Discussion405

Seroussi et al. (2014) describe four different subgrid models (NSEP, SEP1, SEP2 and SEP3) for the friction in SSA and

evaluate them in a FEM discretization on a triangulated, planar domain. The flotation criterion is applied at the nodes of the

triangles. In the NSEP, an element is floating or not depending on how many of the nodes of that element
:::
that

:
are floating. In

the other three methods, an inner structure in the triangular element is introduced. One part of a triangle is floating and one

part is grounded. The amount of friction in a triangle with the GL is determined by the flotation criterion. Either the friction410

coefficient is reduced, the integration in the element only includes the grounded part, or a higher order polynomial integration

(SEP3) is applied. Faster convergence as the mesh is refined is observed for the latter methods compared to the first method.

The discretization of the friction in Sect. 4 is similar to the SEP3 method but the FS equations also require a subgrid treatment

of the normal velocity condition. In the method for the FS equations in Gagliardini et al. (2016), the GL position is in a node
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Figure 8. The velocities u (upper panel) and w (lower panel)
:
on
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(blue) of the ice in the advance

:::::
retreat

experiment with ∆x= 0.5,1,2,4
:::::::
∆x= 0.5 km after 10000 years. The solutions at the upper surface are the solid curves

::
red, and

:::::
dashed
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line
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marks the solutions at the lower surface are the dotted curves

:::
GL

::::::
position. The vertical velocity w is zoomed-in close to the GLwith the

distance to the mesh dependent GL on the x-axis.
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and the friction coefficient is approximated in three different ways. The coefficient is discontinuous at the node in one case (DI415

in Gagliardini et al. (2016)). Our coefficient is also discontinuous but at the estimated location of the GL between the nodes.

The convergence of the steady state GL position toward the reference solutions in Gagliardini et al. (2016) is observed in

the simulations in Fig. 5 and 6. However, as the meshes we used are at least 20 times larger than the 25 m finest resolution in

Gagliardini et al. (2016), it has probably not reached
::
is

:::
still

:::
far

::::
from the convergence asymptote. At the current resolutions, the

discretization introduces a strong mesh effect such as the two different geometrical interpretations in the two cases mentioned in420

Sect. 4. The subgrid scheme is able to provide a more accurate representation of the GL position and the boundary conditions,

but the numerical solution of the velocity field, pressure as well as the two free surfaces are still computed on the coarse mesh,

which are the main sources of the numerical errors. Additional uncertainty at the GL is introduced by the approximation of

the bedrock geometry, the friction at the GL, and the modeling of the ice/ocean interaction. It is shown in Cheng and Lötstedt

(2020) that the solution at the GL is particularly sensitive to variation in the geometry and friction at the ice base.425

Our method can be extended to a triangular mesh covering Γb in the following way (considering linear Lagrange functions).

The condition on χ in Eq. (27) or χ̃ in Eq. (29) is applied on the edges of each triangle T in the mesh. If χ < 0 in all three

nodes then T is grounded. If χ≥ 0 in all nodes then T is floating. The GL passes inside T if χ has a different sign in one of

the nodes. Then the GL crosses the two edges where χ < 0 in one node and χ≥ 0 in the other node. In this way, a continuous

reconstruction of a piecewise linear GL is possible on Γb. The same tests are applied to χ̃. The FEM approximation is modified430

in the same manner as in Sect. 4 using step functions in Nitsche’s method.

An alternative to a subgrid scheme is to introduce static or dynamic adaptation of the mesh on Γb with a refinement at the

GL as in e.g. Gladstone et al. (2010a); Cornford et al. (2013); Drouet et al. (2013). In general, a fine mesh is needed at the GL

and in an area surrounding it. Since the GL moves long distances in simulations of palaeo-ice sheets, the adaptation should

be dynamic, permit refinement and coarsening of the mesh varying in time, and be based on some estimate of the numerical435

error of the method. In shorter time intervals, a static adaptation may be sufficient since the GL will move a shorter distance.

Furthermore, shorter time steps are necessary for numerical stability in static and dynamic mesh adaptation schemes. A static

adaptation is determined once before the simulation starts. Introducing a time dependent, dynamic mesh with adaptivity into

an existing code requires a substantial coding effort and will increase the computational work considerablycompared to a static

mesh. Subgrid modeling is easier to implement and the increase in computing time is small. A combination of dynamic mesh440

adaptation and subgrid discretization may be the ultimate solution.

Then the mesh at the GL would be adapted to resolve the variation in the interior of the ice at the GL while the subgrid

modeling would handle the discontinuity at the basal boundary.

7 Conclusions

A subgrid scheme at the GL has been developed and tested in the SSA model for 2D vertical ice flow in Gladstone et al. (2010b)445

and in Seroussi et al. (2014), for the friction in the vertically integrated model BISICLES (Cornford et al., 2013) for 2D flow

in Cornford et al. (2016), and for the PISM model mixing SIA with SSA in 3D in Feldmann et al. (2014). Here we propose a
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subgrid scheme for the FS equations for a 2D vertical cross-section of ice, implemented in Elmer/ICE, that can be extended to

3D. The mesh is static and the moving GL position within one element is determined by linear interpolation with an auxiliary

function χ(x) or χ̃(x). Only in that element, the FEM discretization is modified to accommodate the discontinuities in the450

boundary conditions.

The numerical scheme is applied to the simulation of a 2D vertical ice sheet with an advancing GL and one with a retreating

GL. The model setups for the tests are the same as in one of the MISMIP examples (Pattyn et al., 2012) and in Gagliardini et al.

(2016). The solution converges smoothly in the neighborhood of the GL when the mesh size is reduced. Comparable results to

Gagliardini et al. (2016) are obtained using the subgrid scheme with more than 20 times larger mesh sizes. A larger mesh size455

also allows a longer time step for the time integration.

Code availability. The FS sub-grid model is implemented based on Elmer/ICE Version: 8.3 (Rev: f6bfdc9) with the scripts at http://doi.org/
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