
Dear Dr. Alex,

We have responded to all the comments by the referees. The advance and retreat
solutions have been computed with a 0.5 km long spatial step as suggested by
a referee. The grounding line (GL) position does not move very much even
compared to the 4 km step but the velocity is much better resolved at the GL
with the finer mesh. We write in the title and Introduction that the scheme is
tested in two dimensions but it can be extended to three dimensions as sketched
in Discussion. The GL is found by a first order accurate numerical method
which is consistent with all other first order approximations in the finite element
method used in this paper and Elmer/ICE. We review other subgrid methods
for other models which all are simplifications of the full Stokes (FS) model. The
FS model is needed at the GL to capture the vertical stress component there.
We refer to papers with arguments supporting that view. The difficulty with the
FS equations compared to e.g. the SSA equations is that the vertical velocity in
FS moves the base of the floating ice and Archimedes’ flotation criterion is not
valid at the GL. The vertical velocity introduces another boundary condition on
the velocity in the normal direction of the grounded ice which disappears after
the GL. The main result is that by subgrid modeling we obtain an accuracy for
the GL position comparable to previously published results using more than 20
times larger spatial steps (25-200 m).

We really appreciate your help.

Best wishes,

Gong Cheng, Per Lötstedt and Lina von Sydow
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Response to Anonymous Referee #1

March 10, 2020

The manuscript aims to present a numerical scheme to deal with the friction
inside elements partly floating in a (full-)Stokes formulation for the marine ice
sheet simulation. The formulation and results are carried out in a 2D vertical
domain, and possible extension to 3D domain is discussed. The reviewed ver-
sion presents the corrections asked in the first review, mainly in the technical
part (methods). The Introduction was changed, but additional “polishing” is
needed before publishing. No additional simulations were carried out, and the
presentation of the results was not modified

General comments

• The numerical scheme is better presented in this new version, although
some minor corrections should be done. See specific comments.

Response: The correction has been made.

• With the results presented along the manuscript it is hard to analyze the
convergence (and consistency) of the subgrid scheme proposed. There is
no convergence rate analysis or comparison with the cited reference work
(Gagliardini et al., 2016). I strongly recommend additional simulations
(mesh resolutions equal to 500 m and 250 m) and a comparison with the
results from Gagliardini et al. (2016), mainly in terms of GL position
against mesh resolution.

Response: Additional simulation with 500 m mesh resolution has been
added, and it is compared with the results in Gagliardini et al. (2016),
shown in a new Fig. 6.

• The overall explanation of the subgrid scheme was improved, which helps
the reproducibility of the results.

Response: Thanks for the comments. We improved the subgrid section
a bit more according to the specific comments.

• The Introduction section must be improved yet. The reading is not smooth
yet, and additional polishing is needed to make the reading “pleasant”
enough for a scientific/technical paper.

Response: The Introduction has been modified.
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• The citation style along the manuscript was corrected, but there are still
corrections in some parts. See specific comments.

Response: The corrections have been made.

Specific comments

• line 77: “for modeling of the flow” => “for modeling the flow”

Response: The correction has been made.

• line 78: “These nonlinear” => “The nonlinear”

Response: The correction has been made.

• line 102: “β” => “β(≥ 0)”

Response: The correction has been made.

• line 117: zb < 0 => zb > b(x)

Response: The correction has been made.

• line 119: “The solution close to the grounding line” => “A first order
solution close to the grounding line” or “A solution close to the grounding
line from the boundary layer theory” or “A boundary layer’ solution close
to the grounding line”. Note that this solution is based on a linear Stokes
problem (i.e., n = 1 in Glen’s flow law).

Response: The headline has been changed.

• line 121: “(Schoof, 2011)” => “Schoof (2011)”

Response: The correction has been made.

• line 123: “u” => “the ice velocity u”

Response: The correction has been made.

• line 124: “ice surface slope is continuous”: are you referring to slope or
just the ice surface? Does this proposition come from Schoof (2011)? Also,
why this is important/relevant for the subgrid scheme used here?

Response: These are the words used by Schoof. We could have written
‘the space derivative of the height of the ice is continuous’ but chose to
do it in this way. A reference to Schoof’s paper is included. The section
describes the analytically derived properties of the solution close to the
GL. We show later how our treatment of the GL agrees to first order with
the analysis by Schoof.

• line 128: “(Durand et al., 2009a)” => “Durand et al. (2009a)”

Response: The correction has been made.
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• line 129: “(Schoof, 2011, Ch. 4.3)” => “Schoof (2011, Sect. 4.3)”

Response: The correction has been made.

• line 129: “parameters” => “parameters,”

Response: The correction has been made.

• line 133: “variables satisfy” => “variables satisfy (Schoof, 2011)” (if the
citation is right)

Response: The correction has been made.

• line 142: “(Norwicki and Wingham, 2008)” => “Norwicki and Wingham
(2008)”

Response: The correction has been made.

• line 143: “original variables”: what does it mean?

Response: The original, unscaled variables is what it is meant. The
words are removed.

• line 149: The definition of “k” and “k∗” is weird. Why does the approxi-
mation space depend on the Glen’s flow law? Are these not referred to the
polynomial order of the space? Please, check the definition and notation
of these spaces.

Response: We now tell where in the three theoretical papers the func-
tional spaces are defined. They are the same in all the three papers. A
short discussion is found in the paper by Jouvet and Rappaz(2011). We
do not delve into this issue in details in our paper.

• line 152: Please, change the citation style here

Response: The correction has been made.

• line 156: the form “b(v, q)” is not defined here (although it follows b(u, p)
)

Response: As b(·, ·) defines a bi-linear form, we think that b(v, p) follows
from the definition of b(u, q) in Eq (14).

• line 156: where is σnt in the expressions? Please, check the forms BΓ; and
BN

Response: σnt is now in the definition of BΓ. On Γbg, σnt is replaced by
the slip boundary condition −βu. On Γbf , σnt = 0.

• line 156: How the forcing term F (v) is numerically considered in the
element crossed by the grounding line? There is no mention of this along
the text.

Response: The forcing term is split into the interior term F and the
boundary term FΓ. A sentence is added to explain the boundary term
FΓ(v). The integration of FΓ is shown Eqs (15) and (30) in the numerical
Section 4.
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• line 171: Do you also split the in integral of the forcing term F (v)?

Response: As explained above, the term F (v) is from the gravitational
force which is smooth over the GL. The boundary term FΓ is from the
ice-ocean interface and is integrated partially on the floating ice as in Eqs
(15) and (30).

• line 173: Eq. (15): the forms BΓ; and BN are already integrated. Please,
fix the notation here.

Response: This is corrected now.

• line 173: Eq. (15): where is the σnt ? Please, check the forms here.

Response: As explained above (line 156), σnt is replaced by the slip
boundary condition in BΓ on Γbg and vanishes due to the ice-ocean inter-
face condition on Γbf .

• line 173: Eq. (15): the forcing pwn ·v is considered here, but is it included
in the stiff matrix? Please, could you make it clearer?

Response: No, pwn · v is not included in the stiffness matrix because it
does not depend on u.

• lines 175-177: “With a strong formulation . . . into account”. This is
phrase is not clear. I don’t understand why strong formulation is men-
tioned here.

Response: We mean the strong formulation of the boundary condition.
We have added more explanation after Eq (15).

• line 177: “no basis functions satisfies . . . ”. I am not sure if this is true.
There are lots of FEM schemes where the discontinuity is well accommo-
dated (e.g., xFEM, CutFEM, etc). The phrase is only true if the standard
FEM is used, and no specific refinement is made in the element crossed
by the grounding line (as is the case of this paper).

Response: Yes, this is correct. We remark that we use the standard
FEM basis functions in Elmer/ICE after Eq (28).

• lines 185-186: what does “along the slope” mean?

Response: It is changed to ”along the ice base”.

• line 195: “The nonlinear equations . . . ” => “The nonlinear equations,
Eq. (14), . . . ”

Response: The correction has been made.

• line 197: “timestep” => “time step” (and elsewhere)

Response: The correction has been made.

• line 198: “nonlinear iterations” => “nonlinear iterations (Picard)”

Response: The correction has been made.
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• Algorithm 1: All grounded nodes are marked as “GL nodes”? Please,
could you make it clearer along the text? Also, check the text punctuation
in Algorithm 1

Response: The term ”GL nodes” is only used in Algorithm 1. A new
sentence is added before Algorithm 1 explaining that it will be in one
element. Some text punctuation is added.

• Algorithm 2: please, check the text punctuation in Algorithm 2

Response: The correction has been made.

• line 208: “A stability problem” => “A numerical stability problem”

Response: The correction has been made.

• line 208: “(Durand et al., 2009a)” => “Durand et al. (2009a)” Same in
lines 209, 238.

Response: The correction has been made.

• line 215: “is updated implicitly”: is pw also considered in the forcing term
of Eq. (14)? Could you make it clearer?

Response: Yes, the pw in Eq (14) is udated implicitly. A few words after
Eq (23) explain this.

• line 221: note that n was used before with another meaning

Response: All the terms with n for the time discretization are changed
to `.

• line 242: “(Seroussi et al., 2014)” => “Seroussi et al., (2014)”. The same
for Schoof citation

Response: The correction has been made.

• line 249: “(11)” => “Eq. (11)”

Response: The correction has been made.

• line 251: please, change the citation style here

Response: The correction has been made.

• line 251: “analytical solution”: which one? From Schoof 2011’s paper?
Same in line 254. Note that if it is from Schoof (2011), it is based on a
linear Stokes problem n = 1 (Glen’s flow law).

Response: It is the analytical solution to the FS equation, without any
approximation or simplification. This is now more clearly stated.

• line 258: “between” => “between any”

Response: The correction has been made.
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• line 261: “basal surface of the ice” => “ice base”

Response: The correction has been made.

• line 266: “external forces” => “external forces and boundary conditions”
(maybe?)

Response: The correction has been made.

• line 267: “geometrically grounded”: how is the element identified as ge-
ometrically grounded or geometrically floating, in the numerical frame-
work? Could you make it clearer along the text?

Response: A reference to Algorithm 1 is added to clarify this.

• line 269: “(Gagliardini et al., 2016)” => “Gagliardini et al. (2016)”

Response: The correction has been made.

• line 270: please, delete the extra “the”

Response: The correction has been made.

• line 271: “fine mesh” => “fine mesh resolution (< 100 m)” (maybe?)

Response: The correction has been made.

• Fig. 2 and Fig. 3: “net forces” => “net forces in the vertical direction”
(please, check also the text)

Response: The correction has been made.

• Eq. (27): χ(xi) = 0, right? Or this is not zero in the numerical solution?
Please, could you make it clearer along the text?

Response: The extrapolated χ and χ̃ satisfy χ(xi) > 0 and are better
explained now in Sect 4. A modification of them is necessary at xi.

• line 280: “best numerical approximation”. I don’t know if “best” is the
word here. Maybe mentioning that it is in the same order of the frame-
work/scheme/approximation space

Response: We have written about it below Eq (29).

• line 284-285: “Considering . . . always stays”: maybe this phrase is un-
necessary; even the numerical GL position stays on bedrock

Response: We have removed the sentence. It follows from the interpola-
tion in Eq (28) that the numerical xGL stays on the element boundary.

• line 293: “bottom surface” => “ice base”

Response: The correction has been made.

• line 296: please, delete “Then”

Response: The correction has been made.
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• line 297: “(Seroussi et al., 2014)” => “Seroussi et al., (2014)”. Same in
line 299

Response: The correction has been made.

• line 299: “condition” => “condition, respectively”

Response: The correction has been made.

• line 299: “reasonable resolution” => “reasonable numerical accuracy”

Response: The correction has been made.

• line 300: “required” => “used”. The integration points are defined over
the GL element, right? And the step function makes the work of selecting
the area to be integrated, right? Then, note that, depending on the situa-
tion, even a tenth order could not be enough to carry out the integration
with enough numerical accuracy (as is the SEP2 method of Seroussi et al.,
2014, where the distribution of the integration points follows the ground-
ing line position inside the GL element). Besides that, the approach used
here seems reasonable, and it is easier to be implemented in comparison
to SEP2-type scheme.

Response: Changed. Yes, with this integration scheme, a tenth order
polynomial is used to approximate the step function.

• line 302: “fully on the ground”: geometrically, right?

Response: Yes, it is changed to “fully geometrically on the ground”.

• line 304: “basal surface” => “ice base”

Response: The correction has been made.

• line 307: “fully grounded” => “fully geometrically grounded” (maybe?)

Response: The correction has been made.

• line 308: “boundary elements” => “basal elements” (maybe?)

Response: The correction has been made.

• line 311: “floating elements” => “fully geometrically floating elements”
(maybe)

Response: The correction has been made.

• line 313: “grounded” => “geometrically grounded” (maybe)

Response: The correction has been made.

• line 313: “analytical solution”: maybe “numerical solution”? It is not
clear what you meant here

Response: The analytical solution to the FS.
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• line 315: “3” => “Fig. 3”

Response: The correction has been made.

• Eq. (29): check the notation of the forms BΓ and BN . Also, there is no
σnt here

Response: The notation has been changed and σnt is replaced by −β(t ·
u)(t · v) as in Eq (14).

• lines 319-320: How are the phases (advance or retreat) defined? Compar-
ing with previous (last time step) GL position? Please, could you make it
clearer?

Response: This is clarified now in Sect 4.

• Algorithm 3: please, check the text punctuation in Algorithm 3

Response: The correction has been made.

• line 326: in the calculation of χ̃, pw is kept constant, right? Could you
please make it clearer?

Response: Yes, it is fixed. A new sentence is added.

• line 330: “(Gagliardini et al., 2016)” => Gagliardini et al., (2016)”. The
same in lines 331, 367, 369, 370, 372, 397, 398

Response: The correction has been made.

• line 342: “both for” => “for both”

Response: The correction has been made.

• line 344: please, correct the citation style

Response: The correction has been made.

• line 352: “(van Dongen et al., 2018)” => “van Dongen et al. (2018)”

Response: The correction has been made.

• line 357: “(Schoof, 2011)” => “Schoof (2011)”

Response: The correction has been made.

• line 357: “represented” => “captured

Response: The correction has been made.

• line 359: “Seroussi et al (Seroussi et al., 2014)” => Seroussi et al. (2014)
(maybe?)

Response: The correction has been made.
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• Fig. 6: Note that the GL is close to a node. I suspect the same is observed
for the other resolutions (2 and 4 km). So, the GL position also depends
on the distribution of the nodes in 1D.

Response: Yes, it depends on the node positions and the mesh size but
that is true also for the smooth solution away from the GL. The solution
is mesh dependent. The GL position between the nodes is mentioned in
the end of Results.

• line 363: “floatation criterion” => “hydrostatic floatation criterion”

Response: The correction has been made.

• line 372: “asymptote” => “convergence asymptote” (maybe?)

Response: The correction has been made.

• lines 374-375: “but the numerical solution of the velocity field, pressure
as well as the two free surfaces are still determined by the coarse mesh
. . . ”: note that small bedrock features impact the GL dynamics, and they
are important in short time scale simulations (decades). In general, mesh
resolution equal to 500 m is required to capture these bedrock features near
the GL. Also, from figures 6 and 7, there are expressive changes in the
fields near the GL (thickness, surface, horizontal and vertical velocities).
These changes are only “well” captured with enough mesh resolution (¡1
km or less). Besides that, no error estimator was used here; therefore,
the term ”determined” doesn’t fit here. The subgrid scheme tends to
accelerate the rate of convergence in comparison to NSEP-type schemes
(by decreasing the numerical error of one source, the boundary condition
at the base), but relatively fine mesh resolution (I would say 500 m) is yet
required around the GL to numerical error control (from other sources,
e.g., bedrock geometry, intrinsic solutions variations around GL, effect of
ocean-induced basal melting, etc).

Response: We have new Figs. 7 and 8 with 500 m resolution. Except for
the GL position, the solution around the GL looks very much the same
(excluding details) as the solution with 1 km resolution. Larour et al(2019)
say that 1 km is satisfactory. It seems as if 500 m is sufficient. We have
added one new reference where the sensitivity to the base friction and the
bedrock geometry is investigated. The sensitivity increases the closer the
surface observation of velocity and height is to the GL.

• line 377: “following way” => “following way (considering linear Lagrange
functions)” (maybe?)

Response: The correction has been made.

• line 382: “An alternative to a subgrid scheme is to introduce dynamic
adaptation of the mesh”: I don’t think mesh adaptation is an alternative,
strictly speaking. They are complementary to each other. The subgrid
scheme tends to decrease the error on the boundary condition, accelerating
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the rate of convergence (ideally); the mesh adaptation helps save compu-
tation effort, since enough mesh resolution ( 500 m) is needed around the
GL. They can (should) be used together, indeed.

Response: We have rewritten the paragraph now discussing static and
dynamic adaptation and subgrid modeling.

• line 383: please, correct the citation style here

Response: The correction has been made.

• line 386: “shorter timesteps are necessary for stability when the mesh
size is smaller in a mesh adaptive method” => “shorter time steps are
necessary for numerical stability in dynamic mesh adaptation schemes”.
Note that it depends on the numerical implementation; some schemes are
more stable than others.

Response: The correction has been made.

• line 387: “Introducing a time dependent mesh adaptivity into an existing
code requires a substantial coding effort and will increase the computa-
tional work considerably. Subgrid modeling is easier to implement and
the increase in computing time is small.” I don’t totally agree here. Yes,
mesh adaptivity is a substantial coding effort, and there are drawbacks
in scalability. But at the end, the computational effort is (or should be)
much less in comparison to a fine uniform mesh. The improvement of a
subgrid scheme for the basal condition (friction) makes the 25 m-mesh
resolution requirement to a 500 m-mesh resolution requirement. But yet,
a 500 m-mesh resolution is expressively fine in comparison to a typical
horizontal scale of ice sheets (order of 1,000 km). A static mesh adapta-
tion (performed during the domain discretization) could be used instead
of dynamic mesh adaptation (considering the GL will not migrate beyond
the adapted/refined region). For short-term simulations (decades) this
is feasible, but this is not totally true for paleo-ice sheets simulations.
Therefore, using subgrid scheme with dynamic mesh adaptation should
work properly (in the sense of convergence of the GL dynamics with re-
duced computational effort).

Response: The paragraph has been rewritten as described above taking
these comments into account.

• lines 390-392: “A subgrid scheme . . . (Feldmann et al., 2014)”: this phrase
could be migrated to the discussion part. Also, correct the citation style
here.

Response: We have decided to keep the work by other researchers on
subgrid schemes in Conclusions to contrast them to our work.

• line 395: “function χ(x)” => “function χ(x) based on a first order ap-
proximation of the basal stress balance” (maybe?) Again, note that the
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solution from Schoof (2011) considers n = 1 (Glen’s flow law), as you have
well pointed along the text.

Response: The functions χ(x) and χ̃(x) are nonlinear. With the FEM
discretization and linear Lagrange element we use, they are piecewise lin-
ear in x. This is remarked in Sect 4 now. In an expansion in small
parameters and taking the first order approximation for n = 1 by Schoof
we obtain χa which is close to our linear approximation.

• line 396: “is modified” => “is modified to accommodate the discontinu-
ities in the boundary conditions”

Response: The correction has been made.

• line 399: “Solving for . . . GL position”: I think this phrase could be
deleted.

Response: The correction has been made.
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Response to Anonymous Referee #2

March 11, 2020

Major concerns

1. As clearly illustrated in the paper (Section 2.4, and many other places),
the authors are using a first-order approximation to determine the location
of the grounding line. Thus, I don’t quite understand why they call it a
“full Stokes subgrid scheme”?

Response: The χ and ˜chi functions in Eqs (27) and (29) that we use to
determine the GL position are nonlinear. After FEM discretization with
the linear Lagrange element, they vary linearly in x over the GL element.
These are the χ-functions that we have access to. We write about this in
a revised Sect. 4. The linear interpolation to find xGL is consistent with
the level of approximation by FEM. The discussion in Sect. 2.4 is there
only to lend analytical support and inspiration to our choice of χ. We still
think that our method is a subgrid scheme for the FS equations.

2. In Elmer/Ice, originally, the location of the grounding line is decided by
comparing the water pressure (pw) and the normal stress (tau; which can
be determined from the Stokes solution) at each node (N = pw − τ). We
can tell which node is floating or grounded by looking at the sign of N.
Note that Elmer/Ice uses nodal force and contact force, instead of the
actual water pressure and normal stress. Therefore, if we consider a 2D
case, I guess it would still be possible to estimate the exact grounding line
location by simply interpolating the N values at two neighboring nodes.
Did the authors test it and then decide to go for their first-order method?
If yes, what is the difference between these two methods?

Response: For linear Lagrange elements used in this paper and Elmer/ICE,
the pressure and stress can be represented by the nodal force and contact
force together with the basis functions. If N = τnn − p + pw, this paper
follows the same criteria as Elmer/ICE to determine the grounded and
floating nodes. Indeed, the GL position is determined by the linear inter-
polation of the N value. However, notice that a naive linear interpolation
will not give a good estimate of the GL position, simply because N = 0
on any floating nodes. That is why we introduce the function χ̃ and use
it to determine the GL instead.
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3. If the author cannot provide the sub-grid results of 3D experiments (i.e.,
MISMIP3d), I would question the applicability of this 2D scheme in 3D
cases. I agree the 2D results are still valuable in some senses, but for a
complete and thorough evaluation of this first-order sub-grid scheme, I
would suggest the authors do the MISMIP3d tests before its final publica-
tion. However, if the editor and other reviewers feel the 2D experiments
are sufficient to prove its applicability, I would strongly suggest they re-
move all 3D discussions in the paper, and explicitly demonstrate that it is
a 2D scheme in the title and elsewhere in the manuscript. A possible title
would be “A two-dimensional first-order subgrid scheme for simulation of
grounding line migration in ice sheets using Elmer/ICE (v8.3)”. By that
it is safe to limit this paper in 2D discussion.

Response: We keep the description of a possible extension to 3D in
Discussion but add 2D in the title and stress 2D in Introduction. See also
the response to Major concern 1.

4. I am confused about the subgrid scheme, i.e., Eq (29). According to
Line 267-268, the GL element is referred to the element that is partially
grounded and partially floating. If it is true, then the Nitsche step function
in Eq (29) should be 0, according to Line 301-302, “it is only imposed
on the element which is fully on the ground” (I interpret it as “fully
grounded”), and the lower panels in Fig. 2 and 3. Then, the right hand
side of Eq. (29) is ∫

εi

Hββu · v + pwn · vds

This is different from Eq. (15) where the water pressure term is integrated
partially from xGL to xi, instead of over the whole GL element. Also, I
still don’t follow where the friction step function of 1 / 2 is from. In the
previous first round of the review, there was already a question about this,
as it looks like a smoothing function than a partial integration using JUST
the integration points in the grounded portion of the GL element. I don’t
get useful answers from the authors’ response to this point.

Response: Corrections are made in (15) and (30). BN + BΓ, F and
FΓ are separated. There are actually two levels of smoothing: the high
order integration scheme in the subgrid model smooths the changes of the
boundary conditions jumping from one node to another (between Eq. (5)
and (6)); the 1/2 coefficient smooths the jump at the step function. The
high order scheme acts on the friction law at the mesh size level with the
step function Hβ and the 1/2 coefficient acts at the integration points level
to smear out the rapid change of the step function.

Minor points

The abstract needs improvements. The abstract should cover the key points of
the paper and the current version is still a bit ambiguous. My suggestion is it
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should at least cover the details of the improvements of the sub-grid method,
compared to old model results.

Response: Two sentences have been added to Abstract.
The flow of the introduction section needs further care. For example, in the

paragraph Line 28-34, the authors discussed a bit of different “model equations”
(which looks a bit odd), and then in the paragraph Line 46-54, the authors
discussed about different lower order models again. Would be nice to put them
together so that the readers can easily follow the authors’ logic here? Another
example is that, in the paragraph Line 46-54, the authors discussed the sub-grid
scheme and said “the purpose of a subgrid scheme is to avoid such fine meshes”,
and then in the next paragraph there is a similar sentence “Our subgrid scheme
is aiming at improving the accuracy in GL simulations for a static mesh”. It
would be great if the authors make further organization for the introduction
section.

Response: Introduction has been reorganized and partly rewritten.
I don’t think the citation style is correct. For example, Line 14, “It is shown

in (Kingslake et al., 2018)” should be “It is shown in Kingslake et al. (2018)”.
Similar mistakes should be corrected all over the whole paper.

Response: The corrections have been made.

• Line 12: remove “be able”

Response: The correction has been made.

• Line 13: change “sea” to “ocean”

Response: The correction has been made.

• Line 15: “km” − > “kilometers”

Response: The correction has been made.

• Line 18: The ice flow is dominated by vertical shear only when the basal
friction is large.

Response: This is added now.

• Line 20: Any references for “gradual change of the stress field”?

Response: We refer to Schoof 2011.

• Line 23: “interaction” − > “coupling”

Response: The correction has been made.

• Line 28: this sentence is unclear to me. I guess the authors try to say that
different ice sheet models can generate different GL locations, which also
depends on basal friction and some other numerical parameters. But it
reads awkward.

Response: We have separated the model and numerical method in this
statement. The sentence is rewritten.
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• Line 31-32: “ice equations such as FS and SSA” is right. We can’t say
“equations such as Full Stokes and Shallow Shelf Approximation”.

Response: We have rewritten the sentence.

• Line 51-52: Need details of the subgrid modeling in Cornford et al., 2016

Response: Details have been included.

• Line 53-54: I suggest to remove the sentence “The purpose of ...”

Response: It has been removed.

• Line 56: the sentence “Since the GL moves” duplicates with a similar
sentence above

Response: The correction has been made.

• Line 77: I would suggest use “2D ice domain” to replace “2D vertical ice”

Response: In the first round of referee reports, one referee suggested the
phrase ‘2D vertical ice’ and we keep it like that.

• Line 86: in Eq (1), g is a vector, not its z component.

Response: The correction has been made.

• Line 87: Change the sentence “The rate factor...” to “The viscosity (η) is
a function of the rate factor A(T). T is the ice temperature.”

Response: The correction has been made.

• Line 91: “vector t, see Fig. 1” − > “vector t (see Fig. 1)”

Response: The correction has been made.

• Line 91: “In the 2D vertical case” − > “For the 2D ice domain”, and
similarly in the following

Response: See the response to line 77 above.

• Line 106: GL is the boundary (xGL, yGL) between . . .

Response: As defined in the text and shown in Fig. 1, the coordinate
system in 2D is the x− z plane. So, this should be (xGL, zGL).

• Line 108: “and g is ...” is a repeat of the description of g in Eq (1).

Response: Changed. g is the vertical component of g.

• Line 128: “as observed also” − > “as also observed”

Response: The correction has been made.

• Line 136: On the grounded ice domain, we have . . .

Response: The correction has been made.
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• Line 152, switch the order of references according to the year.

Response: The correction has been made.

• Line 261-262: “by” − > “as”

Response: The correction has been made.

• Line 264-265: at the node xi

Response: The correction has been made.

• Figure 2: in the lower panel, why is the beta 1 / 2 at [xGL, xi] where the
ice is floating?

Response: We have explanation in the paragraph preceding Eq (30) and
in the response to Major concern 4.

• Line 292-294: The sentence “Moreover, this correction . . . as discussed
in Sect 3.3” is hard to understand. Can the authors provide more de-
tails/explanations? From my understanding, if we don’t use a sub-grid
scheme, wouldn’t it be a slower advance?

Response: Sect 4 with the definitions of χ and χ̃ is rewritten with better
explanations.

• Line 298: “slip boundary” − > “grounded boundary”

Response: The ‘slip boundary condition’ refers to the boundary condi-
tions of Γbg as defined in Eq. (5) which . We keep it as it is.

• Line 302: add comma after “On the contrary”

Response: The correction has been made.

There were no more comments after line 302 in the referee report we
received.
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A full Stokes subgrid scheme
:::
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two
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for simulation of
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Abstract. The full Stokes equations are solved by a finite element method for simulation of large ice sheets and glaciers. The

simulation is particularly sensitive to the discretization of the grounding line which separates the ice resting on the bedrock and

the ice floating on water and is moving in time. The boundary conditions at the ice base are enforced by Nitsche’s method and a

subgrid treatment of the element in the discretization with the grounding line. Simulations with the method in two dimensions

for an advancing and a retreating grounding line illustrate the performance of the method.
:::
The

:::::::::
computed

:::::::::
grounding

::::
line5

::::::
position

::
is
:::::::::
compared

::
to

:::::::::
previously

::::::::
published

::::
data

::::
with

::
a

:::
fine

:::::
mesh.

:::::::
Similar

::::::
results

:::
are

:::::::
obtained

:::::
using

:::::::
subgrid

::::::::
modeling

::::
with

::::
more

::::
than

:::
20

::::
times

:::::::
coarser

:::::::
meshes. It is implemented in the two dimensional version of the open source code Elmer/ICE.

1 Introduction

Simulation with ice sheet models

1.1
::

Ice
:::::
sheet

:::::::::
dynamics,

::::::::
sea-level

::::
rise,

::::
and

:::::::::
grounding

:::
line

:::::::::
migration10

:::::::::
Simulation

::
of

:::
ice

:::::
sheet

::::::::
dynamics

:
is a tool to assess the future sea-level rise (SLR) due to melting of continental ice sheets

and glaciers (Hanna et al., 2013) and to reconstruct the ice sheets of the past (DeConto and Pollard, 2016; Stokes et al., 2015)

:::::::::::::::::::::::::::::::::::::::
(Stokes et al., 2015; DeConto and Pollard, 2016) for comparison with measurements and validation of the models. In the models,

the
:::
The predictions are particularly sensitive to the numerical treatment

:::::::
position of the grounding line (GL) (Durand and Pattyn, 2015)

. The GL is
:::
and

::
its

::::::::
numerical

::::::::
treatment

:::::::::::::::::::::::::::::::::::::::
(Durand and Pattyn, 2015; Konrad et al., 2018),

:
the line where the ice sheet leaves the15

solid bedrock and becomes an ice shelf floating on water driven by buoyancy. It is important to know the GL position to be

able to quantify the ice discharge into the sea and as an indicator of ice sheet advances or retreats (Konrad et al., 2018).

The distance that the GL moves may be long over palaeo time scales. It is shown in (Kingslake et al., 2018)
::
In

:::::::::::::::::::
Kingslake et al. (2018)

:
it
::
is

::::::
shown that the GL has retreated several hundred km

:::::::::
kilometers in West Antarctica during the last 11,500 years and then

advanced again after the isostatic rebound of the bed. The sensitivity, long time intervals, and long distances require a careful20

treatment of the GL
:::
and

:::
its neighborhood by the numerical method to discretize the model equations .

::::::::
equations

::::::::
modeling

:::
the

::
ice

:::::
sheet

:::::::::
dynamics.

::
In

:::
this

::::::
paper,

::
we

:::::::
develop

::
an

::::::::
accurate

:::
and

:::::::
efficient

:::::::
method

::
for

:::::
such

::::::::
problems.

1



1.2
:::::

Model
:::::::::
equations

When the ice rests on the ground and is affected by frictional forces on the bed, the ice flow is dominated by vertical shear

stresses . The
:::::
when

:::
the

::::
basal

:::::::
friction

::
is

:::::
large.

::
On

:::
the

:::::
other

:::::
hand,

:::::
when

:::
the

:::
ice

::
is

::::::
floating

:::
on

:::::
water,

::
it

::
is

:::
the longitudinal stress25

gradient
:::
that

:
controls the flow of the icefloating on water. The GL is in the transition zone between these two types of flow

with a gradual change of the stress field
::::::::::::
(Schoof, 2011).

The most accurate ice model in theory is based on the full Stokes (FS) equations. A simplification of the FS equations by inte-

grating in the depth of the ice is the shallow shelf (or shelfy stream) approximation (SSA) (MacAyeal, 1989). It is often used for

simulation of the interaction
:::::::
coupling between a grounded ice sheet and a marine ice shelf. In the zone between the grounded ice30

and the floating ice, it is necessary to use the FS equations (Docquier et al., 2011; Schoof, 2011; Schoof and Hindmarsh, 2010; Wilchinsky and Chugunov, 2000)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Wilchinsky and Chugunov, 2000; Schoof and Hindmarsh, 2010; Docquier et al., 2011; Schoof, 2011) unless the ice is mov-

ing rapidly on the ground with low basal frictionand
:
,
:::::
when the SSA equations are accurate both upstream and downstream of

the GL. The solution to the linearized FS equations close to the GL is investigated using perturbation theory in (Schoof, 2011)

.35

The evolution of the GL in simulations is sensitive to the ice model ,
:::::
model

::::::::
equations

::::
and the basal friction model, and

numerical parameters
:::
law. In a major effort MISMIP (Pattyn et al., 2013, 2012)

:::::::::::::::::::::
(Pattyn et al., 2012, 2013), different ice models

and implementations solve the same ice flow problems and the predicted GL steady state and transient GL motion are compared.

The results depend
::::
show

::::
that

:::
the

:::::::
position

::
of

:::
the

:::
GL

::::::::
depends on the model equations and the mesh resolution (Pattyn et al.,

2013). The prediction of the GL and the SLR is different for different ice equations
:::::
models

:
such as FS and SSA also in (Pattyn40

and Durand, 2013). Including equations with vertical shear stress at the GL such as the FS equations seems to be crucial.

The flotation condition determines where the GL is in SSA in (Docquier et al., 2011; Drouet et al., 2013). It is based on

Archimedes’ principle for an ice column immersed in water. The

:::
The

:
friction laws at the ice base depend on the effective pressure, the basal velocity, and the distance to the GL in different

combinations in (Brondex et al., 2017; Gagliardini et al., 2015; Gladstone et al., 2017; Leguy et al., 2014)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Leguy et al. (2014); Gagliardini et al. (2015); Brondex et al. (2017); Gladstone et al. (2017)45

. The GL position and the SLR vary considerably depending on the choice of friction model
:::
law. Given the friction model

:::
law,

the results are sensitive to its model parameters too (Gong et al., 2017).

1.3
::::::::

Numerical
::::::::
methods

Parameters in the numerical methods also influence the GL migration. It is observed in (Durand et al., 2009b)
::::::::::::::::::
Durand et al. (2009b)

that the mesh resolution along the ice bed has to be fine to obtain reliable solutions with FS in GL simulations. The GL is then50

located in a node of the fixed
::
or

:::::
static mesh. A mesh size below 1 km is necessary in (Larour et al., 2019)

::::::::::::::::
Larour et al. (2019)

to resolve the features at the GL. Adaptive meshes for a finite volume discretization of an approximation of the FS equa-

tions are employed in (Cornford et al., 2013)
::::::::::::::::::
Cornford et al. (2013) to study the GL retreat and loss of ice in West Antarc-

tica. The FS solutions of benchmark problems in (Pattyn et al., 2013)
::::::::::::::::
Pattyn et al. (2013) computed by an implementation of

the finite element method (FEM) in Elmer/ICE (Gagliardini et al., 2013) and FELIX-S (Leng et al., 2012) are compared in55
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(Zhang et al., 2017)
::::::::::::::::
Zhang et al. (2017). The differences between the codes are attributed to different treatment of a friction

parameter at the GL and different assignment of grounded and floating nodes and element faces.

A subgrid scheme introduces an inner structure in the discretization element or mesh volume where the GL is located.

Such a
::::::
schemes

:::::
have

:::::
been

:::::::::
developed

:::
for

::::::::::::
simplifications

:::
of

:::
the

:::
FS

:::::::::
equations.

:::
A

:::::::
subgrid

:
model for the GL is tested in

(Gladstone et al., 2010b) for the
:::::::::::::::::::
Gladstone et al. (2010b)

:::
for

:::
the

::::
one

::::::::::
dimensional

::
(1D

:
)
:
SSA equation where the flotation60

condition for the ice defines the position of the GL. The GL migration is determined by the
:::
two

:::::::::::
dimensional

:
(2D)

:
SSA

equations discretized by the finite element method (FEM) in (Seroussi et al., 2014)
:::::::::::::::::
Seroussi et al. (2014). Subgrid models

at the GL are compared to a model without an internal structure in the element. The conclusion is that sub-element pa-

rameterization is necessary. A shallow approximation to FS with a subgrid scheme on coarse meshes is compared to FS in

(Feldmann et al., 2014)
::::::::::::::::::
Feldmann et al. (2014) with similar results for the GL migration. Subgrid modeling and adaptivity are65

compared in (Cornford et al., 2016)
::::::::::::::::::
Cornford et al. (2016) for a vertically integrated model.

:::
The

::::::::
thickness

::
of

:::
the

:::
ice

::::::
above

:::::::
flotation

:::::::::
determines

::
if

:::
the

::
ice

::
is
::::::::
grounded

:::
or

:::::::
floating. A fine mesh resolution is necessary for converged GL positions with FS

in (Durand et al., 2009a, b). The purpose of a subgrid scheme is to avoid such fine meshes. The fine mesh resolution needed

in GL simulations with the FS equations would require large computational efforts in 3D in long time intervals. Since the GL

moves long distances in palaeo simulations, a
:::::::::::::::::::
Durand et al. (2009a, b)

:
.
::
A dynamic mesh refinement and coarsening of the mesh70

following the GL is necessary. The alternative pursued here with FEM
:::::
would

:::::
solve

:::
the

:::::::
problem

::
in

::::::
palaeo

::::::::::
simulations

:::::
when

::
the

::::
GL

:::::
moves

::::
long

:::::::::
distances.

:::
An

::::::::
alternative

:
is to introduce a subgrid scheme in the mesh elements where the GL is located

::
in

:
a
:::::
static

::::
mesh

:
and keep the mesh size coarser.

The subgrid scheme is

1.4
:::

Our
::::::::
proposed

:::::::
method

::::
and

::::::
outline

:::
of

:::
the

:::::
paper75

::::
From

:::
the

:::::
above

:::
we

::::::::
conclude

::::
that

–
::
the

:::::::::
prediction

::
of

:::::
SLR

:
is
::::
very

::::::::
sensitive

::
to

:::
the

:::::::
position

::
of

:::
the

:::
GL

::::
and

:::
the

::::::::
numerical

::::::::
treatment

::
in
::

a
:::::::::::::
neighbourhood

::
of

:::
the

:::
GL,

:

–
:
it
:::::
seems

::::::
crucial

::::
that

:::
the

:::
ice

:::::
model

:::::::
includes

:::::::::
equations

::::
with

::::::
vertical

:::::
shear

:::::
stress

::
in

:::
the

::::::::::::
neighbourhood

:::
of

::
the

::::
GL,

:

–
:::
one

::::
way

::
to

:::::
avoid

:::
the

::::
fine

::::::
meshes

::::
that

:::
are

:::::::::
otherwise

::::::
needed

:::::
close

::
to

:::
the

::::
GL,

::
is

::
to

::::::::
introduce

::
a
:::::::
subgrid

::::::
scheme

:::
in

:::
the80

:::::::::::
discretization

:::::::
element

:::::
where

:::
the

:::
GL

::
is

:::::::
located.

:::
For

:::
this

::::::::
purpose,

::
we

:::::::
develop

::
a

::::::::
numerical

:::::::
method

::
for

:::
the

:::
FS

::::::::
equations

::
in
::::
two

::::::::::
dimensions

:::::::::
introducing

::
a

::::::
subgrid

:::::::
scheme

::
in

:::
the

::::
mesh

:::::::
element

:::::
where

:::
the

:::
GL

::
is

:::::::
located.

::::
Since

:::
the

:::::::
subgrid

::::::
scheme

::
is restricted to one element in a 2D vertical ice and is therefore

:::
this

::
is computationally inexpensive. In an extension to 3D, the subgrid scheme would be applied along a line of elements in 3D.

The results with numerical modeling will always depend on the mesh resolution but can be more or less sensitive to the mesh85

spacing and time steps. Our subgrid scheme is aiming at improving the accuracy in GL simulations for a static mesh.We solve

the FS equations in a 2D vertical ice with the Galerkin method implemented in Elmer/ICE (Gagliardini et al., 2013). A subgrid
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discretization is proposed and tested for the element where the GL is located. The boundary conditions are imposed by Nitsche’s

method at the ice base in the weak formulation of the equations (Nitsche, 1971; Reusken et al., 2017; Urquiza et al., 2014)

:::::::::::::::::::::::::::::::::::::::::::::::
(Nitsche, 1971; Urquiza et al., 2014; Reusken et al., 2017). The linear Stokes equations are solved in (Chouly et al., 2017a)90

:::::::::::::::::
Chouly et al. (2017a) with Nitsche’s treatment of the boundary conditions. They solve the equations for the displacement but

here we solve for the velocity using similar numerical techniques to weakly impose the Dirichlet boundary conditions on the

normal velocity at the base. The frictional force in the tangential direction is applied on part of the element with the GL. The

position of the GL within the element is determined in agreement with theory developed for the linearized FS in (Schoof, 2011)

:::::::::::
Schoof (2011).95

The paper is organized as follows. Section 2 is devoted to the presentation of the mathematical model of the ice sheet

dynamics. In Sect. 3, the numerical discretization with FEM is given while the subgrid scheme around the GL is found in Sect.

4. The numerical results for a MISMIP problem are presented in Sect. 5. The extension to
::::
three

:::::::::
dimensions

::
(3D

:
) is discussed

in Sect. 6 and finally some conclusions are drawn in Sect. 7.

2 Ice model100

2.1 The full Stokes (FS) equations

We use the FS equations in a 2D vertical ice with coordinates x = (x,z)T for modeling of the flow of an ice sheet (Hutter,

1983). These
:::
The

:
nonlinear partial differential equations (PDEs) in the interior of the ice domain Ω are given by∇ ·u = 0,

−∇ ·σ = ρg,
(1)

where the stress tensor is σ = τ(u)−pI and the deviatoric stress tensor is τ(u) = 2η(u)ε̇(u). The strain rate tensor is defined105

by

ε̇(u) =
1

2
(∇u+∇uT ) =

 ε̇11 ε̇12

ε̇12 ε̇22

 , (2)

I is the identity matrix, and the viscosity is defined by Glen’s flow law

η(u) =
1

2
(A(T ′))

− 1
n ε̇

1−n
n

e , ε̇e =

√
1

2
tr(ε̇(u)ε̇(u)). (3)

110

Here u = (u,w)T is the vector of velocities, ρ is the density of the ice, p denotes the pressure, and the gravitational

acceleration in the z-direction
:::::
vector

:
is denoted by g. The

:::::::
viscosity

:
η
::

is
::

a
:::::::
function

:::
of

:::
the rate factor A(T ′) describes how

the viscosity depends on the pressure melting point corrected temperatureT ′.
::::
where

:::
T ′

::
is

:::
the

:::
ice

::::::::::
temperature.

:
For isothermal

flow assumed here, the rate factor A is constant. Finally, n is usually taken to be 3.
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2.2 Boundary conditions115

Ice fluxH

xGL

Γs

Γbg

Γbf

b(x, y)

zs(x, y, t)

zb(x, y, t)

z

xy n t
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∗
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∗ ∗
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∗ ∗
∗

∗ ∗
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Figure 1. A two dimensional schematic view of a marine ice sheet.

At the boundary Γ of the ice domain Ω we define the normal outgoing vector n and tangential vector t ,
:
(see Fig. 1

:
). In the

2D vertical case considered here, the ice sheet geometry is constant in y. The ice surface is denoted by Γs and the ice base is

Γb = Γbg ∪Γbf . At Γs and Γbf , the floating part of Γb, we have that

σn = fs , σn = fbf , (4)

respectively. The ice is stress-free at Γs, fs = 0, and fbf =−pwn at the ice/ocean interface Γbf where pw is the water pressure.120

Let

σnt = t ·σn, σnn = n ·σn, ut = t ·u,

where σnn and σnt are the normal and tangential components of the stress and ut is the tangential component of the ice

velocity at the ice base. Then for the slip boundary Γbg , the grounded part of Γb where the ice is
::::
rests on the bedrock, we have

a friction law for the sliding ice125

σnt +β(u,x)ut = 0, un = n ·u = 0, −σnn ≥ pw, (5)

where un is the normal component of the ice velocity. The type of friction law is determined by the friction coefficient β
::::
(≥ 0).

At Γbf , there is a balance between σnn and pw and the contact is friction-free, β = 0, then .
:::::
Then

σnt = 0, −σnn = pw. (6)
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At the GL, the boundary condition switches from β > 0 and un = 0 on Γbg to β = 0 and a free un on Γbf . In
:
a 2D vertical130

ice, the GL is the point (xGL,zGL)
:::::
shared between Γbg and Γbf .

The ocean surface is at z = 0, and pw =−ρwgzbwhere ρw is the .
::::
The

:
density of sea water

:
is
:::::::

denoted
::::::

byρw, zb is the

z-coordinate of Γb, and g is the
::::::
vertical

:::::::::
component

::
of

:::
the

:
gravitational acceleration

::::
force.

2.3 The free surface equations

The boundaries Γs and Γb are time-dependent and move according to two free surface equations. The boundary Γbg follows135

the fixed bedrock with coordinates (x,b(x)).

The z-coordinate of the ice surface position zs(x,t) at Γs (see Fig. 1) is the solution of an advection equation

∂zs
∂t

+us
∂zs
∂x
−ws = as, (7)

where as denotes the surface mass balance and us = (us,ws)
T the velocity at the ice surface in contact with the atmosphere.

Similarly, the z-coordinate for the ice base zb of the floating ice at Γbf satisfies140

∂zb
∂t

+ub
∂zb
∂x
−wb = ab, (8)

where ab is the basal mass balance and ub = (ub,wb)
T the velocity of the ice at Γbf . On Γbg , zb = b(x) and on Γbf , zb < 0

:::::::
zb > b(x).

The thickness of the ice is denoted by H = zs− zb and depends on x and t.

2.4 The
::
A

::::
first

:::::
order solution close to the grounding line

The 2D vertical solution of the FS equations in Eq. (1) with a constant viscosity, n= 1 in Eq. (3), is expanded in small145

parameters in (Schoof, 2011)
:::::::::::
Schoof (2011). The solutions in different regions around the GL are connected by matched

asymptotics. Upstream of the GL at the grounded part, x < xGL, the leading terms in the expansion satisfy a simple relation

in scaled variables close to the GL. Across the GL,
::
the

:::
ice

:::::::
velocity

:
u, the flux of ice uH , and the depth integrated normal or

longitudinal stress τ11 in Eq. (2) are continuous. By including higher order terms in the expansion in small parameters, it is

shown
:
in

:::::::::::::::::::::
Schoof (2011, Sect. 4.7) that the ice surface slope is continuous and Archimedes’ flotation condition150

Hρ=−zbρw (9)

is not satisfied immediately downstream of the GL. A rapid variation in the vertical velocity w in a short distance inter-

val at the GL causes oscillations in the ice surface in the analysis as observed also
::::
also

::::::::
observed

:
in FS simulations in

(Durand et al., 2009a).
:::::::::::::::::
Durand et al. (2009a).

::::
The

:::::::
flotation

::::::::
condition

::
in (9)

:::::::::
determines

:::::
where

:::
the

:::
GL

::
is

::
in

::::
SSA

::
in

::::::::::::::::::::::::::::::::::
Docquier et al. (2011); Drouet et al. (2013)

:
.In (Schoof, 2011, Ch. 4.3)

:::::::::::::::::::
Schoof (2011, Sect. 4.3), the solution to the FS in a 2D vertical ice is expanded in two parameters

:
,155

ν and ε. The aspect ratio of the ice ν is the quotient between a typical scale of the thickness of the ice H and a horizontal

length scale L, ν =H/L, and ε is ν times the quotient between the longitudinal and the shear stresses τ11 and τ12 in Eq. (2).

If ν5/2� ε� 1 then in a boundary layer close to the GL and x < xGL it follows from the equations that the leading terms in
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the solution in scaled variables satisfy

τ22− p= σ22 = ρg(z− zs). (10)160

On floating ice τ22−p+pw = 0 and the
::::::::
hydrostatic

:
flotation criterion Eq. (9) is fulfilled. This is a first order approximation of

the second relation in Eq. (6). On the grounded ice
::::::
domain,

:::
we

:::::
have τ22− p+ pw < 0.

Introducing the notation

χa(x,z) = τ22− p+ pw = ρg(z− zs(x))− ρwgzb(x), (11)

and letting Hbw =−zb be the thickness of the ice below the sea level yields165

χa(x,zb) =−g(ρH − ρwHbw). (12)

If x < xGL then χa < 0 in the neighborhood of xGL on Γbg and if x > xGL then χa = 0 and Eq. (9) holds true on Γbf .

Suppose that zs and zb are linear in x. Then χa is also linear in x. In numerical experiments with the linear FS (n= 1)

in (Nowicki and Wingham, 2008)
::::::::::::::::::::::::
Nowicki and Wingham (2008), χa(x,zb) in the original variables varies linearly in x for

x < xGL.170

In Sect. 4, χa(x,zb) is an approximation of the expression used
::
we

::::::
mimic

:::
the

::::
same

::::
idea

:::
but

:::
use

:::
an

::::::::
indicator

::::
χ(x)

::
or

:::::
χ̃(x)

::::::
derived

::::
from

::::
the

:::::::
solutions

:::
of

:::
the

::::::::
nonlinear

:::
FS

::::::::
equations

:
to estimate the GL position.

:::::
These

::::::::
indicators

:::
are

::::::::::::
approximated

:::
by

::::::::
χa(x,zb).

3 Discretization by FEM

In this section we state the weak form of Eq. (1) and introduce the spatial FEM discretization used for Eq. (1) and give the175

time-discretization of Eq. (7) and (8).

3.1 The weak form of the FS equations

We start by defining the mixed weak form of the FS equations. Introduce k = 1+1/n, k∗ = 1+n with n from Glen’s flow law

and the spaces

V k = {v : v ∈ (W 1,k(Ω))2}, Qk∗ = {q : q ∈ Lk∗(Ω)}, (13)180

see, e.g. (Chen et al., 2013; Jouvet and Rappaz, 2011; Martin and Monnier, 2014)
:::::::::::::::::::::::::::::
Jouvet and Rappaz (2011, Eq. (3.7))

:
,
::::::::::::::::::::::
Chen et al. (2013, Sect. 3.1)

:
,
::::::::::::::::::::::::::::::
Martin and Monnier (2014, Eq. (21)). The weak solution (u,p) of Eq. (1) is obtained as follows. Find (u,p) ∈ V k×Qk∗ such

that for all (v, q) ∈ V k ×Qk∗ the equation

A((u,p),(v, q)) +BΓ(u,v,p) +BN (u,v, q) = F (v)+FΓ(
::::

v), (14)
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is satisfied, where185

A((u,p),(v, q)) =

∫
Ω

2η(u)ε̇(u) : ε̇(v) dx− b(u, q)− b(v,p),

b(u, q) =

∫
Ω

q∇ ·u dx,

BΓ(u,v,p) =−
∫

Γbg

(σnn(u,p)n ·v+σnt(u,p)t ·v) ds=

∫
Γbg

(−σnn(u,p)n ·v+β(t ·u)(t ·v)) ds,

BN (u,v, q) =−
∫

Γbg

σnn(v, q)n ·u ds+ γ0

∫
Γbg

1

h
(n ·u)(n ·v) ds,

F (v) =

∫
Ω

ρg ·v dx,

FΓ(v) =−
∫

Γbf

pwn ·v ds

The last term inBN is added in the weak form in Nitsche’s method (Nitsche, 1971) to impose the Dirichlet condition un = 0

weakly on Γbg . It can be considered as a penalty term. The value
::::
Since

::::::::::::::
u = unn+utt,

:::
the

::::::::::
contribution

::
of

:::
the

::::::::
tangential

:::::
force

:::
can

::::
also

::
be

:::::::
written

:::::
βu ·v

:::::
when

:::::::
un = 0.

::::
The

:::::
value

:
of the positive parameter γ0 depends on the physical problem

:::::::
physical

:::::::
problem and h is a measure of the mesh size on Γb. The sensitivity of the GL positions for different values of γ0 is shown in190

Sect. 5. The first term in BN symmetrizes the boundary term BΓ +BN on Γbg and vanishes when un = 0.
::::
The

::::::::
boundary

::::
term

:::::
FΓ(v)

::
is

::::
from

:::
the

:::::::::
buoyancy

::::
force

::
at

:::
the

::::::::
ice/ocean

::::::::
interface

::
in (6)

:::::
where

:::
pw :::::::

depends
::
on

::
zb:::

on
::::
Γbf .

3.2 The discretized FS equations

We employ linear Lagrange elements with Galerkin Least Square (GLS) stabilization (Franca and Frey, 1992; Helanow and

Ahlkrona, 2018) to avoid spurious oscillations in the pressure using the standard setting in Elmer/ICE (Gagliardini et al., 2013)195

approximating solutions in the spaces V k and Qk∗ in Eq. (13).

The mesh is constructed from a footprint mesh on the ice base and then extruded with the same number of layers equidistantly

in the vertical direction according to the thickness of the ice sheet. To simplify the implementation in 2D, the footprint mesh

on the ice base consists of N + 1 nodes at xi = (xi,zb(xi)), i= 0, . . . ,N, with x-coordinates xi and a constant mesh size

∆x= xi−xi−1.200

In general, the GL is somewhere in the interior of an interval [xi−1, xi] and it crosses the interval boundaries as it moves

forward in the advance phase and backward in the retreat phase of the ice. The advantage with Nitsche’s way of formulating

the boundary conditions is that if xGL ∈ [xi−1, xi] then the boundary integral over the interval can be split into two parts in Eq.

(14) such that (x,zb(x)) ∈ Γbg when x ∈ [xi−1, xGL] and if x ∈ [xGL, xi] then (x,zb(x)) ∈ Γbfas follows .
::
In

:::
the

:::
GL

::::::::
element,

8



::
we

:::::
have205

BΓ +BN =

∫
[xi−1,xGL]

−(σnn(u,p)n ·v+σnn(v, q)n ·u)+β(t ·u)(t ·v) +
γ0

h
(n ·u)(n ·v) ds,

FΓ =−
∫

[xGL,xi]

pwn ·v ds, (15)

with the integration element ds following Γb. There is a change of the boundary condition in the middle of the FEM element

where the GL is located. With a strong formulation of
::
the

:::::::::
boundary

::::::::
condition

:
un = 0, the basis functions in V k share this

property and the condition changes from the grounded node xi−1 where the basis function satisfies un = 0 and
:
to

:
the floating

node at xi with a free un without taking the position of the GL inside [xi−1, xi] into account. With the weak formulation in210

Nitsche’s methodno basis function satisfies ,
:::
the

::::::::
standard

::::
basis

:::::::::
functions

:::
we

:::
use

:::
do

:::
not

::::::
satisfy un = 0 strictlybut the

:
.
::::
The

::::::::
boundary condition is imposed

::
on

:::
the

:::::::
solution

:
by the additional penalty term in (14) and this term may change inside an

element as in (15).

The resulting system of nonlinear equations form a nonlinear complementarity problem (Christensen et al., 1998). The

distance d between the base of the ice and the bedrock at time t and at x is d(x,t) = zb(x,t)− b(x)≥ 0.215

d(x,t) = zb(x,t)− b(x)≥ 0.
:::::::::::::::::::::::

(16)

If d > 0 on Γbf then the ice is not in contact with the bedrock and σnn + pw = 0 and if σnn + pw < 0 on Γbg then the ice and

the bedrock are in contact and d= 0. Hence, the complementarity relation in the vertical direction is

d(x,t)≥ 0, σnn + pw ≤ 0, d(x,t)(σnn + pw) = 0 on Γb. (17)

The contact friction law is such that β > 0 when x < xGL and β = 0 when x > xGL. The complementarity relation along the220

slope
::
ice

::::
base

:
at x is then the non-negativity of d and

β ≥ 0, β(x,t)d
:
(zb(x,t)−b(x)) = 0 on Γb. (18)

In particular, these relations are valid at the nodes x= xj , j = 0,1, . . . ,N .

The complementarity condition also holds for un and σnn such that

σnn + pw ≤ 0, un(σnn + pw) = 0 on Γb, (19)225

without any sign constraint on un except for the retreat phase when the ice leaves the ground and un < 0.

Similar implementations for contact problems using Nitsche’s method are found in (Chouly et al., 2017a, b)
:::::::::::::::::::
Chouly et al. (2017a, b)

, where the unknowns in the PDEs are the displacement fields instead of the velocity in Eq. (1). Analysis in (Chouly et al., 2017a)

:::::::::::::::::
Chouly et al. (2017a) suggests that Nitsche’s method for the contact problem can provide a stable numerical solution with an

optimal convergence rate.230

The nonlinear equations,
::::
Eq. (14),

:
for the nodal values of u and p are solved by Picard iterations. The system of linear

equations in every Picard iteration is solved directly by using the MUMPS linear solver in Elmer/ICE. The condition on

9



dj = d(xj) is used to decide if the node xj is geometrically grounded or floating. It is computed at each timestep and
::::
time

::::
step

:::
and

::
is not changed during the nonlinear iterations

::::::
(Picard). The procedure for solution of the nonlinear FS equations is outlined

in Algorithm 1.
::
In

:::
two

::::::::::
dimensions,

:::
the

:::
GL

::::
will

::
be

:::::::
located

::
in

:::
one

:::::::
element.

Algorithm 1 Solve the FS equations

For a given mesh, compute dj , j = 0,1, ...,N, for all the nodes xj at the ice base.

Mark node j as geometrically grounded if dj < 10−3, otherwise floating.

Find the element which contains both geometrically grounded and floating nodes, and mark the grounded node in this element as ‘GL

node’.

Compute the residual of the FS equations with the initial guess of the solution.

while the residual is larger than the tolerance do

Assemble the FEM matrix for the interior of the domain Ω.

for the boundary elements on Γb do

if has ‘GL nodes
::::
node’ then

Mark the current element as a ‘potential GL element’.

Use the subgrid scheme in Algorithm 3 of Sect. 4 for the assembly.

else

Assemble the boundary element.

end if

end for

Solve the linearized FS equations for a correction of the solution.

Compute the solution and the residual.

end while

235

3.3 Discretization of the advection equations

The advection equations for the moving ice boundary in Eq. (7) and (8) are discretized in time by a finite difference method

and in space by FEM with linear Lagrange elements for zs and zb. An artificial diffusion stabilization term is added, making

the spatial discretization behave like an upwind scheme in the direction of the velocity as implemented in Elmer/ICE.

The advection equations Eq. (7) and Eq. (8) are integrated in time by a semi-implicit method of first order accuracy. Let240

c= s or b. Then the solution is advanced from time tn to tn+1 = tn + ∆t with the timestep
:
t`

::
to

:::::::::::::
t`+1 = t` + ∆t

::::
with

:::
the

::::
time

:::
step

:
∆t by

zc
n+1`+1

::
= zc

n` + ∆t(ac
n`−ucn

∂zn+1
c

∂x
` ∂z

`+1
c

∂x
::::::

+wc
n`). (20)

The spatial derivative of zc is approximated by FEM
::
as

::::::::
described

::::::
above. A system of linear equations is solved at tn+1

for zn+1
c ::::

t`+1
:::
for

::::
z`+1
c . This time discretization and its properties are discussed in (Cheng et al., 2017) and summarized as245

::::::::::::::::
Cheng et al. (2017)

:::
and

::::::::::
summarized

:
in Algorithm 2.
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Algorithm 2 Time scheme of the GL migration problem

Start from an initial geometry Ω0 defined by z0b ,z
0
s .

for `= 0 to T/∆t− 1 do

Solve the FS equations on Ω` with Algorithm 1, to get the solution u`.

Solve for z`+1
b and z`+1

s with u` by the semi-implicit Euler method.

Use z`+1
b and z`+1

s to update Ω`+1.

end for

A
::::::::
numerical

:
stability problem in zb is encountered in the boundary condition at Γbf when the FS equations are solved in

(Durand et al., 2009a)
:::::::::::::::::
Durand et al. (2009a). It is resolved by expressing zb in pw at Γbf with a damping term. An alternative

interpretation of the idea in (Durand et al., 2009a)
:::::::::::::::::
Durand et al. (2009a) and an explanation follow below.

The relation between un and ut at Γbf and ub = u(x,zb(x)) is250

ub =

 ub

wb

=

 zbx

−1

 un√
1 + z2

bx

+

 1

zbx

 ut√
1 + z2

bx

, (21)

where zbx denotes ∂zb/∂x. Inserting ub and wb from Eq. (21) into Eq. (8) yields

∂zb
∂t

= ab−un
√

1 + z2
bx,. (22)

Instead of discretizing Eq. (22) explicitly at tn+1 with unn to determine pn+1
w :::

t`+1
::::
with

:::
u`n::

to
::::::::
determine

:::::
p`+1
w , the base coordinate

is updated implicitly255

zb
n+1`+1

::
= zb

n` + ∆t

(
ab
n+1`+1

::
−unn+1

√
1 + (zn+1

bx )2`+1
√

1 + (z`+1
bx )2

::::::::::::::

)
(23)

in the solution of
::::::::
evaluation

:::
of

::
pw::

in
::::::
FΓ(v)

::
in

:
Eq. (14).

Assuming that zbx is small, the timestep
::::
time

:::
step restriction in Eq. (23) is estimated by considering a 2D slab of the floating

ice of width ∆x and thickness H . Newton’s law of motion yields

Mu̇n =Mg−∆xpw,260

where M = ∆x(zs− zb)ρ is the mass of the slab. Dividing by M , integrating in time for un(tm), letting m= n+ 1 or

n
::::::::
m= `+ 1

:::
or

:̀
, and approximating the integral by the trapezoidal rule for the quadrature yields

un(tm) =

tm∫
0

g+
gρw
ρ

zb
zs− zb

ds≈ gtm +
gρw
ρ

m∑
i=0

αi
zib

zis− zib
∆t= umn ,

with the parameters

αi = 0.5, i= 0,m, αi = 1, i= 1, . . . ,m− 1.265

11



Then insert umn into Eq. (23). All terms in umn from timesteps
:::
time

:::::
steps i < m are collected in the sum ∆tFm−1. Then Eq.

(23) can be written

zb
n+1`+1

::
= zb

n`−∆t2
gρw
2ρ

zmb
zms − zmb

+ ∆t
(
ab
n`− gtm−∆tFm−1

)
. (24)

For small changes in zb in Eq. (24), the explicit method with m= n
:::::
m= ` is stable when ∆t is so small that

|1−∆t2
gρw
2Hρ

| ≤ 1. (25)270

When H = 100 m on the ice shelf, ∆t < 6.1 s which is far smaller than the stable steps for Eq. (20). Choosing the implicit

scheme with m= n+ 1
::::::::
m= `+ 1, the bound on ∆t is

1/|1 + ∆t2
gρw
2Hρ

| ≤ 1, (26)

i.e. there is no bound on positive ∆t for stability but accuracy will restrict ∆t.

Much longer stable timesteps
::::
time

::::
steps

:
are possible at the surface and the base of the ice with a semi-implicit method Eq.275

(20) and a fully implicit method Eq. (23) compared to an explicit method. For example, the timestep
:::
time

::::
step for the problem

in Eq. (20) with 1 km mesh size can be up to a couple of months. Therefore, we use the scheme in Eq. (20) for Eqs. (7) and (8)

and the scheme in Eq. (23) for Eq. (22) and pw as in (Durand et al., 2009a)
:::::::::::::::::
Durand et al. (2009a). The difference between the

approximations of zb in Eq. (20) and (23) is of O(∆t2).

4 Subgrid scheme around the grounding line280

The basic idea of the subgrid scheme for the FS equations in this paper follows the GL parameterization (SEP3) for SSA

in (Seroussi et al., 2014)
:::::::::::::::::
Seroussi et al. (2014) and the analysis for FS in (Schoof, 2011)

::::::::::::
Schoof (2011). The GL is located

at the position where the ice is on the ground and the flotation criterion is perfectly satisfied such that σnn =−pw. In the

FS equations, the hydrostatic assumption Eq. (9) may not be valid close to the GL. Therefore, the GL position can not be

determined by simply checking the total thickness of the ice H against the depth below sea level Hbw. Instead, the flotation285

criterion is computed by comparing the water pressure with the numerical normal stress component orthogonal to the boundary

, as suggested
::::::
inspired by the first order analysis in Sect. 2.4.

The indicator is here defined by

χ(x) = σnn + pw,

which vanishes on the floating ice and is negative and approximately equal to χa = τ22− p+ pw in on the ground since the290

slope of the bedrock is small and n≈ (0,−1)T .

The numerical solutions, e.g. (Gagliardini et al., 2016; Gladstone et al., 2017)
::::::::::::::::::::::::::::::::::::::
Gagliardini et al. (2016); Gladstone et al. (2017)

, converge to the analytical solution
::
of

:::
the

::
FS

:::::
PDE as the mesh size decreases. The analytical solution satisfies zb(x,t)> b(x)

with the boundary conditions in Eq. (6) at the base of the floating ice, and where the ice is in contact with the bedrock

12



zb(x,t) = b(x), the boundary conditions are given by Eq. (5). Examples of the analytical solution are demonstrated by the thin295

light blue lines in Fig
:::
Figs. 2 and 3 with a black ‘∗’ at the analytical GL position xGL. The two figures share the same analytical

solution. However, as illustrated in Fig
:::
Figs. 2 and 3, the basal boundary of the ice zb(x,t) does not conform with the mesh

from the spatial discretization. In particular, the GL position xGL of the analytical solution does not coincide with any of the

nodes, but it usually stays on the bedrock b(x) between the last grounded (xi−1) and the first floating (xi) nodes, see Fig
:::
Figs.

2 and 3. The linear element between
::::::::
boundary

:::::::
between

:::
any

:
xj−1 and xj is denoted by Ej . The sequence of Ej , j = 1, . . . ,N,300

approximates Γb. The grounding line element containing the GL is Ei.

xi−1 xi
xGL

xi−1 xi
x̃GL

HN (x)
1

0

Hβ(x)
1

0

xi−1 x̃GL xi

Figure 2. Schematic figure of the GL in case i, with the arrows indicating the direction of the net forces
:
in
:::

the
::::::
vertical

:::::::
direction. Upper

panel: The last grounded and first floating nodes as defined in Elmer/ICE. The light blue line is the analytical solution of the ice sheet with

the analytical GL position xGL. Middle panel: Linear interpolation to approximate the numerical GL position x̃GL. Lower panel: The step

functionsHN (x) andHβ(x) which indicate the area for Nitsche’s penalty and slip boundary conditions.

Depending on how the mesh is created from the initial geometry and updated during the simulation, the first floating node

at xi, as well as the GL element, can be either on the bedrock (as in Fig. 2) or at the basal surface of the ice
::
ice

::::
base

:
above

the bedrock (as in Fig. 3), even though the corresponding analytical solutions are identical. Denote the situation in Fig. 2

by
:
as

:
case i, and the one in Fig. 3 by

::
as

:
case ii. The physical boundary conditions of the two cases are different only at305

the GL element. More precisely, in case i, the net force
::
in

:::
the

:::::::
vertical

:::::::
direction

:
on the node xi is pointing inward, namely

χ(xi) = σnn(xi) + pw(xi)> 0, whereas in case ii, the floating condition σnn(xi) + pw(xi) = 0 is satisfied in the node xi.

The directions of the
::::::
vertical net force at

:::
the

:::::
nodes

:
xi−1 and xi are shown by the arrows in the upper panels of Fig. 2 and

3. Consequently, the external forces
::
and

:::::::::
boundary

:::::::::
conditions imposed on the GL element are different in the two cases. For

instance, in case i, the GL element is considered as geometrically grounded
::::::
(defined

:::
as

::
in

:::::::::
Algorithm

::
1), shown with red color310
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xi−1

xi

xGL

xi−1

xi

xGL

x̃GL

x̂i

HN (x)
1

0

Hβ(x)
1

0

xi−1 x̃GL xi

Figure 3. Schematic figure of the GL in case ii, with the arrows indicating the direction of the net force
::::
forces

::
in

:::
the

::::::
vertical

::::::
direction. Upper

panel: The last grounded and first floating nodes as defined in Elmer/ICE. The light blue line is the analytical solution of the ice sheet with

the analytical GL position xGL. The node xi is fully
::::::::::
geometrically floating and the net force is 0. Middle panel: Linear interpolation to

approximate the numerical GL position x̃GL. The point x̂i on the bedrock has the same x coordinate as xi. Lower panel: The step functions

HN (x) andHβ(x) which indicate the area for Nitsche’s penalty and slip boundary conditions.

in the upper panel of Fig. 2. In case ii, the GL element is treated as geometrically floating and colored in blue in the upper

panel of Fig. 3.

These two cases are similar to the LG and FF cases in (Gagliardini et al., 2016)
::::::::::::::::::::
Gagliardini et al. (2016) implying that the

numerical solutions in the the two cases are different, especially on a coarse mesh (mesh size at about 100 m or larger). Thus,

we propose a subgrid scheme to reduce these differences in the spatial discretization and to capture the GL migration without315

using a fine mesh
::::::::
resolution

::::::
(< 100

:::
m). The schematic drawing of the subgrid scheme for the two cases is shown in the middle

panels of Fig. 2 and 3. The GL element is divided into the grounded (red) and floating (blue) parts by the estimated GL position

x̃GL on Ei, which is the numerical approximation of the analytical GL position xGL.

:::
The

:::
GL

::::::
moves

::::::
toward

:::
the

:::::
ocean

::
in

:::
the

:::::::
advance

:::::
phase

::::
and

::::
away

:::::
from

:::
the

:::::
ocean

::
in

:::
the

:::::
retreat

::::::
phase.

:::::
First,

::
we

::::::::
consider

::::
case

:
i
::
in

:::
the

:::::::
advance

:::::
phase

:::
and

::::::
define

:::
the

:::::::
indicator

:::
by320

χ(x) = σnn + pw,
::::::::::::::

(27)

:::::
which

:::::::
vanishes

:::
on

:::
the

:::::::
floating

:::
ice

:::
and

::
is
::::::::
negative

:::
and

::::::::::::
approximately

:::::
equal

:::
to

:::::::::::::::
χa = τ22− p+ pw::

in
::::
Eq. (11)

::
on

:::
the

:::::::
ground

::::
since

:::
the

:::::
slope

::
of

:::
the

:::::::
bedrock

::
is

:::::
small

:::
and

::::::::::::
n≈ (0,−1)T .

:::::::
Because

::
of

:::
the

::::
poor

::::::
spatial

::::::::
resolution

:::
of

:::
the

:::::
coarse

::::::
mesh,

:::::
χ(xi)::

is

:::::::
positive.
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To determine the position x̃GL, we solve χ(x̃GL) = σnn(x̃GL)+pw(x̃GL) = 0 by linear interpolation between χ(xi−1) and325

χ(xi) such that

x̃GL = xi−1−
χ(xi−1)

χ(xi−1)−χ(xi)
(xi−1−xi). (28)

The water pressure pw(x) is a linear function of x on the GL element and the numerical solution of σnn(x) is also piecewise

linear on every element with the standard Lagrange elements in Elmer/ICE (Gagliardini et al., 2013). In this sense, x̃GL is the

best numerical approximation of the
:::::
Hence,

::
it
::::::
makes

:::::
sense

::
to

::::::::::
approximate

:::
the

:
analytical GL position xGL ::

by
::::
x̃GL:::

by
:::::
linear330

::::::::::
interpolation

:
in the current framework. This approach fits well with case i since the indicator χ(x) has opposite signs at xi−1

and xi, see the middle panel of Fig. 2 where x̃GL is marked by a red ‘∗’. It guarantees the existence and uniqueness of x̃GL on

the GL element.

However, the situation in
:::::::
Another

:::::::
situation

::
in
:::
the

:::::::
advance

:::::
phase

::
is
:
case ii is more complicated. In the upper panel of

:::::
shown

::
in Fig. 3, as .

:::
As

:
the elements on both sides of the node xi are geometrically floating, the boundary condition imposed on335

xi becomes χ(xi) = σnn(xi) + pw(xi) = 0. Considering that the analytical GL position xGL always stays on the bedrock,

::::::::
However,

:::
the

:::::::
implicit

::::::::
treatment

::
of

:::
the

:::
ice

:::::
base

:::::
moves

:::
the

:::::::::::
z-coordinate

:::
of

:::
the

::::
node

:::
xi :::::::

towards
:::
the

:::::::
bedrock

::::
with

:::::::
un > 0

::
in

:::
Eq. (23)

::
as

::::::::
discussed

::
in
:::::

Sect.
::::
3.3.

:::
The

:::::
result

::
is
::::
that

:::
pw ::::::

defined
:::
by

:::
the

:::::::
implicit

::
zb::

in
:
(23)

::::::
satisfies

::::::::::::
σnn + pw > 0

::
in

:
(27)

:::
and

:::::::::
χ(xi)> 0.

:::
The

:::::::
implicit

::::::::
treatment

::
of

:::
the

::
ice

::::
base

:::
has

:::
the

:::::::::::
consequence

:::
that

::::
only

::::
case ii

:::::
occurs

::
in

:::
the

:::::
retreat

::::::
phase.

:::::
When

:::
the

:::
FS

::::::::
equations340

::
are

:::::::
solved,

:::
the

::::::
implicit

::::::
update

::
of

:::
the

:::
ice

::::
base

::::
with

:::::::
un < 0

::
in

:::
Eq. (23)

::::::
implies

::::
that

:::
the

:::
last

::::::::
grounded

::::
node

::
in

:::
the

::::::::
previous

::::
time

:::
step

::
is

::::::
leaving

:::
the

:::::::
bedrock

:::::
when

:::
the

:::
ice

::
is

::::::::
retreating

:::
and

:::
the

:::
GL

::::::
moves

::::
back

::
to

:::
the

:::::::
adjacent

::::::::
element.

::::
Case i

::::
will

:::
not

::::::
appear

::
in

:::
that

:::::::
situation

:::::
since

:::::::::::::
zb(xi)> b(xi).

::
In

:::
this

::::::::::::
circumstance,

:::::::::
χ(xi) = 0

::
in

:::
the

::::::
floating

:::::
node

:::
and

:
a correction of χ(x) is introduced

in
:::
into

:
case ii by χ̃ in

χ̃(x) = σnn(x) + pb(x),. (29)345

where
::::
Here

:
pb(x) =−ρwgb(x) is the water pressure on the bedrock and

:::::::::::
corresponding

::
to

:::::
linear

:::::::::::
extrapolation

:::
of

:::
the

:::::::
pressure

::
for

::::::::
x > xGL:::::

along
:::
the

:::::::
element

:::
on

:::
the

:::::::
bedrock.

:::::::::::
Furthermore,

:
χ̃(x)≥ χ(x). Notice that pb(xi) = pw(x̂i)> pw(xi), where x̂i

is a point on the bedrock with the same x coordinate of xi, as illustrated in the middle panel of Fig. 3.
::::
Both

::::
χ(x)

:::
in (27)

:::
and

:::::
χ̃(x)

::
in (29)

:::
are

::::::::
nonlinear

::
in

::
x

:::
but

:::
the

::::::::
numerical

:::::::::::::
approximation

::
of

:::::
them

:::
will

::::
vary

:::::::
linearly

::
in

:::
x. A solution x̃GL can be

found by taking linear interpolations
:
is
:::::
found

:::
by

:::::
linear

:::::::::::
interpolation of χ̃(x) between the nodes xi−1 and xi as in Eq. (28).

:
It350

::::::
follows

::::
from

:::
Eq.

:
(28)

:::
that

::::
x̃GL::

is
::::::
located

::
on

:::
the

:::::::
element

::::::::
boundary,

:::
see

:::::
Figs.

:
2
::::
and

:
3.
:
If we compare with case i, this correction

can be considered as using σnn(x̃GL) to approximate σnn(xGL) on a virtual element between xi−1 and x̂i, since the linear

interpolation of pb(x) still provides the analytical water pressure along the bedrock.
:
.
:
Therefore, the

:::
The position x̃GL is a

numerical approximation of the
::::::::
analytical GL position, although it is not geometrically in contact with the bedrock.

Moreover, this correction is not necessary when the GL is advancing since the implicit treatment of the bottom surface is355

equivalent to moving xi towards x̂i with un > 0 in Eq. as discussed in Sect. 3.3.Since we have pb(x) = pw(x) and χ(x) = χ̃(x)

at the GL element in case i, we can simply use χ̃(x) to find x̃GL for the two cases by replacing χ in (28) by χ̃.
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Then the

:::
The

:
domains Γbg and Γbf are separated at x̃GL as in Eq. (15) and the integrals on the GL element are calculated with

a high-order integration scheme as in (Seroussi et al., 2014)
:::::::::::::::::
Seroussi et al. (2014). We introduce two step functions HN (x)360

and Hβ(x) to include and exclude quadrature points in the integration of the Nitsche’s term and the slip boundary condition.

:
,
::::::::::
respectively.

:::::
They

:::
are

:::::::
defined

:::
for

::::
case

:
i
::
in

::::
Fig.

:
2
::::
and

:::
for

::::
case

:
ii

:
in

::::
Fig.

::
3.

:
To achieve a reasonable resolution

::::::::
numerical

:::::::
accuracy

:
within the GL element, as suggested in (Seroussi et al., 2014)

:::::::::::::::::
Seroussi et al. (2014), at least tenth order Gaussian

quadrature is required
:::
used.

The penalty term in Nitsche’s method restricts the motion of the element in the normal direction. It is only imposed on the365

::
an element which is fully

:::::::::::
geometrically on the ground

:
in
::::

case
:
i. On the contrary in case ii, the GL element Ei is not in contact

with the bedrock, see Fig. 3. Only the
:::
The

:::::::
normal

:::::::
velocity

::
on

:::
the

:::::::
element

::::::
should

:::
not

:::
be

:::::
forced

::
to
::::
zero

::::
and

::::
only

:::
the

:
floating

boundary condition is then used on the GL element. When the FS equations are solved, the implicit update of the basal surface

with un < 0 in Eq. implies that the last grounded node in the previous timestep is leaving the bedrock when the ice is retreating

and the GL moves to the adjacent element. Case 1 will not appear in that situation with a retreating GL and as in case 2370

the normal velocity on the element should not be forced to zero. Nitsche’s penalty term should be imposed on all the fully

:::::::::::
geometrically

:
grounded elements and partially on the GL element in the advance phase as in case i. The step function HN (x)

indicates how Nitsche’s method is implemented on the boundary
::::
basal

:
elements, see the lower panels of Fig. 2 and 3 for the

two cases. The penalty term contributes to the integration only whenHN (x) = 1.

The slip coefficient β is treated similarly with the step function Hβ(x), where Hβ(x) = 1 is on the fully
:::::::::::
geometrically375

grounded elements and Hβ(x) = 0 on the floating elements. For a smoother
::
To

::::::
further

:::::::
smooth

:::
the transition of β at the GL,

the step function is set to be 1/2 in parts of the GL element before integrating using the high order scheme. In case i, full friction

is applied at the grounded part between xi−1 and x̃GL of the GL element since this part is also
:::::::::::
geometrically grounded in the

analytical solution .
::
of

:::
the

:::
FS

::
as

::
in

::::
Fig.

::
2. Then, the friction is lower in the remaining part of Ei. For the floating part between

x̃GL and xi in case ii, there is no friction and Hβ(x) = 0 and we have reduced friction between xi−1 and x̃GL, see the lower380

panel of
:::
Fig.

:
3. The boundary integral Eq. (15)

::
on

::
Ei:is now rewritten with the two step functions as

BΓ +BN =

∫
Ei

−HN (σnn(u,p)n ·v+σnn(v, q)n ·u)+Hββ(t ·u)(t ·v) +HN
γ0

h
(n ·u)(n ·v) ds,

FΓ =

∫
Ei

(1−HN )pwn ·v ds. (30)

A summary of the discussion
::::::::
numerical

::::::::
treatment

::
of

:::
the

:::
GL

:
is:

– Advance phase⇒
:::::::
indicator

::
χ

::
in

:
(27),

:
case i or case ii

– Retreat phase⇒
:::::::
indicator

::̃
χ

::
in (29),

:
case ii385

The case is determined by the geometry of the GL element
:::
and

:::
the

::::
sign

::
of

:::
the

::::::::
indicator

::
χ.

The algorithm for the GL element is:
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Algorithm 3 Subgrid modeling for the GL element

Take all the ‘potential GL elements’ and solve χ(x) = 0 (advance phase) or χ̃(x) = 0 (retreat phase) to find x̃GL and the GL element.

Determine which case this GL element belongs to by checking the geometrical conditions at xi.

SpecifyHN (x) andHβ(x) based on x̃GL depending on the case and the advance or retreat phase.

Integrate Eq. (30) for the FEM matrix assembly.

Equations (1), (7), and (8) form a system of coupled nonlinear equations. They are solved in the same manner as in Elmer/ICE

v.8.3. The detailed procedure is explained in Algorithms 1, 2, and 3. The solution to the nonlinear FS system is computed with

Picard iterations to a 10−5 relative error with a limit of maximal 25 nonlinear iterations. The x̃GL position is determined390

dynamically during each fixed-point iteration by solving Eq. (28) with
:
χ
:::
or χ̃ and the solution σnn(x) from the previous

nonlinear iteration, and the step functionsHN andHβ are adjusted accordingly.

:::
The

:::::
water

:::::::
pressure

:::
pb :

is
:::::
fixed

::::
since

:::
the

:::
ice

::::::::
geometry

::
is

:::
not

:::::::
changed

::::::
during

:::
the

::::::::
nonlinear

::::::::
iterations.

:

5 Results

The numerical experiments follow the MISMIP benchmark (Pattyn et al., 2012) and a comparison is made with the results in395

(Gagliardini et al., 2016)
::::::::::::::::::::
Gagliardini et al. (2016). Using the experiment MISMIP 3a, the setups are exactly the same as in the

advancing and retreating simulations in (Gagliardini et al., 2016)
:::::::::::::::::::
Gagliardini et al. (2016). The experiments are run with spatial

resolutions of ∆x= 4 km, 2 kmand 1
:
2
::::
km,

:
1
:::
km

::::
and

:::
0.5 km. The mesh at the base is extruded vertically in 20 layers with

equidistantly placed nodes in each vertical column. The timestep
::::
time

:::
step

:
is ∆t= 0.125 year for all the three

:::
four

:
resolutions

to eliminate time discretization errors when comparing different spatial resolutions.400

The dependence on γ0 ::
in (30) for the retreating ice is shown in Fig. 4 with γ0 between 104 and 109. The estimated GL

positions do not vary with different choices of γ0 from 105 to 108 which suggests a suitable range of γ0. If γ0 is too small

(γ0� 104), oscillations appear in the estimated GL positions. If γ0 is too large (γ0� 108), then more nonlinear iterations in

Algorithm 1 are needed in each timestep
:::
time

::::
step. The same dependency of γ0 is observed for the advance

:::::::::
advancing experi-

ments and for different mesh resolutions as well. The results are not very sensitive to γ0 and for the remaining experiments we405

choose γ0 = 106.

The GL position during 10000 years
:::
the

:::::::
transient

::::::::::
simulations in the advance and retreat phases are displayed in Fig. 5 for

different mesh resolutions
:::
and

:::
the

::::::
steady

::::
state

::::::
results

:::
(at

:::::::::
t= 10000)

:::
are

::::::
shown

::
in

::::
Fig.

::
6

:::
for

:::::::
different

:::::
mesh

:::::::::
resolutions. The

range of the results from (Gagliardini et al., 2016) with ∆x= 25 and 50 m
::::::
steady

::::
state

:::::::
solutions

:::::
from

::::::::::::::::::::
Gagliardini et al. (2016)

::::
with

::::
mesh

:::::::::
resolution

::::
from

:::
25

::
m

::
to

:::
200

::
m

:
are shown as background shaded regions with colors purple and pink, respectively

::
in410

:::
red. We achieve similar GL migration results both for

::
for

::::
both

:
the advance and retreat experiments with at least 20 times larger

mesh resolutions.
::::
mesh

::::::::::
resolutions.

::::
The

:::
GL

:::::::
position

::
is

:::::::::
insensitive

::
to
::::

the
:::::::
variation

::
in
:::::

mesh
::::
size

:::::::
between

::::
0.5

:::
km

:::
and

::
4
::::
km.

:::
The

:::::::
distance

:::::::
between

:::
the

::::::
steady

::::
state

:::
GL

::::::::
positions

::
of

:::
the

::::::
retreat

:::
and

:::
the

:::::::
advance

::::::
phases

::
is
::::::
shown

::
in

::::
Fig.

:
6
::::
(b).

:::
The

::::::::
maximal
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Figure 4. The MISMIP 3a retreat experiment with ∆x= 1000
::::::
∆x= 1 m

::
km

:
for different choices of γ0 in the time interval [0,10000] years.

:::::::
distance

::
is

:::::
about

:
6
::::
km

::
at

:::::::
∆x= 1

:::
km

::::
with

:::
the

:::::::
subgrid

::::::
model,

:::::::
whereas

::
in
::::::::::::::::::::

Gagliardini et al. (2016)
:
,
:::
the

:::::::::
resolution

:::
has

::
to

:::
be

:::::
below

::
50

::
m
::
to
:::::::
achieve

:
a
::::::
similar

::::::
result.415

We observed oscillations at the ice surface near the GL in all the experiments as expected from (Durand et al., 2009a; Schoof, 2011)

::::::::::::::::::::::::::::::
Durand et al. (2009a); Schoof (2011). A zoom-in plot of the surface elevation with ∆x= 1

::::::::
∆x= 0.5 km at t= 10000 years is

shown
::::
found

:
to the left in Fig. 7, where the red dashed line indicates the estimated GL position. Obviously, the estimated GL

position does not coincide with any nodes even at the steady state.

The ratio between the thickness below sea level Hbw and the ice thickness H is shown
:
to
::::

the
::::
right

:
in Fig. 7. The hori-420

zontal, purple, dash-dotted line indicates
::::::::
represents

:
the ratio of ρ/ρw and the estimated GL is located at the red, dashed line.

This result confirms that the hydrostatic assumption Hρ=Hbwρw in Eq. (9) is not valid in the FS equations for x > xGL

close to the GL and at the GL position, cf. (Durand et al., 2009a; Schoof, 2011)
::::::::::::::::::::::::::::::
Durand et al. (2009a); Schoof (2011). For

x < xGL we have that Hbw/H < ρ/ρw since Hbw decreases and H increases. The conclusion from numerical experiments in

(van Dongen et al., 2018)
:::::::::::::::::::::
van Dongen et al. (2018) is that the hydrostatic assumption and the SSA equations approximate the425

FS equations well for the floating ice beginning at a short distance away from the GL.

:::
The

:::::::
solution

:::::
varies

::::::::
smoothly

::::
over

:::
the

:::::
mesh

::::
and

::::::::
∆x= 0.5

:::
km

:::::::
appears

::
to

::
be

::
a

:::::::
sufficient

:::::::::
resolution

::
in

::::
both

::::::
panels

::
of

::::
Fig.

::
7.

::
In

:::::::
general,

:::
the

::::::::
estimated

:::
GL

:::::::
position

::::
does

:::
not

:::::::
coincide

:::::
with

:::
any

:::::
nodes

::::
even

::
at
:::
the

::::::
steady

::::
state

:::
but

::
it

::::
may

::
be

:::::
close

::
to

:
a
:::::
node.

:

The surface and the base velocity solutions from the retreat experiment are displayed in Fig. 8 with ∆x= 1
::::::::
∆x= 0.5 km after

10000 years. The horizontal velocities on the two surfaces are similar with negligibly small differences on the floating ice as430

expected. The vertical velocities w on the surface (orange line) and the base (blue line) at the GL are almost discontinuous as

analyzed in (Schoof, 2011)
::::::::::::
Schoof (2011). With the subgrid model, the rapid variation is represented on the 1

:::::::
captured

:::
on

:::
the

:::
0.5 km mesh size.
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Figure 5. The MISMIP 3a experiments for the GL position when t ∈ [0,10000] with ∆x= 4000,2000
::::::
∆x= 4

:::
km,

::
2
::::

km,
::
1

:::
km

and 1000
:::
0.5 m

:::
km

:
for the advance (solid) and retreat (dashed) phases. The shaded regions indicate the range of the results

in (Gagliardini et al., 2016) with ∆x= 50 m in red and ∆x= 25 m in blue.

6 Discussion

Seroussi et al (Seroussi et al., 2014)
:::::::::::::::::
Seroussi et al. (2014) describe four different subgrid models ((NSEP, SEP1, SEP2 and435

SEP3) for the friction in SSA and evaluate them in a FEM discretization on a triangulated, planar domain. The hydrostatic

flotation criterion is applied at the nodes of the triangles. In the NSEP, an element is floating or not depending on how many

of the nodes that are floating. In the other three methods, an inner structure in the triangular element is introduced. One part of

a triangle is floating and one part is grounded. The amount of friction in a triangle with the GL is determined by the flotation

criterion. Either the friction coefficient is reduced, the integration in the element only includes the grounded part, or a higher440

order polynomial integration (SEP3) is applied. Faster convergence as the mesh is refined is observed for the latter methods

compared to the first method. The discretization of the friction in Sect. 4 is similar to the SEP3 method but the FS equations also

require a subgrid treatment of the normal velocity condition. In the method for the FS equations in (Gagliardini et al., 2016)

:::::::::::::::::::
Gagliardini et al. (2016), the GL position is in a node and the friction coefficient is approximated in three different ways. The

coefficient is discontinuous at the node in one case (DI in (Gagliardini et al., 2016)
:::::::::::::::::::
Gagliardini et al. (2016)). Our coefficient is445

also discontinuous but at the estimated location of the GL between the nodes.
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Figure 6.
::
The

:::::::
MISMIP

:::
3a

:::::::::
experiments

::
at

:::
the

:::
final

::::
time

::::::::
t= 10000

::::
with

:::
the

::::::::
resolutions

::
at
:::::::
∆x= 4

:::
km,

::
2

:::
km,

:
1
:::

km
:::
and

:::
0.5

::::
km.

::
(a)

::::
The

::
GL

:::::::
positions

::
in
:::
the

::::::
advance

::::
(F)

:::
and

:::::
retreat

:::
(•)

:::::
phases.

:::
(b)

:::
The

:::::::
distance

::::::
between

:::
the

:::::
retreat

:::
and

:::
the

::::::
advance

::::
xGL::

at
::
the

:::::
steady

:::::
states.

::::
The

:::::
shaded

::::::
regions

::::::
indicate

::
the

:::::
range

::
of

::
the

:::::
results

::
in
:::::::::::::::::::
Gagliardini et al. (2016)

:::
with

::
20

::::
times

::::::
smaller

::::
mesh

::::::::
resolutions

:::
from

:::
25

:
to
::::
200

:
m
::::

with
:::
the

:::
axis

::::
scale

:::::
shown

::
in

:::
red

:
at
:::
the

:::
top

::
of

::
the

::::
plot.

:

The convergence of the steady state GL position toward the reference solutions in (Gagliardini et al., 2016)
::::::::::::::::::::
Gagliardini et al. (2016)

is observed in the simulations in Fig. 5
:::
and

:
6. However, as the meshes we used are more than 40

::
at

::::
least

:::
20 times larger than

the 25 m finest resolution in (Gagliardini et al., 2016)
::::::::::::::::::::
Gagliardini et al. (2016), it is still far from the

::::::::::
convergence

:
asymptote. At

the current resolutions, the discretization introduces
:
a
:
strong mesh effect such as the two different geometrical interpretations450

in the two cases mentioned in Sect. 4. The subgrid scheme is able to provide a more accurate representation of the GL position

and the boundary conditions, but the numerical solution of the velocity field, pressure as well as the two free surfaces are still

determined by
::::::::
computed

:::
on the coarse mesh, which are the main sources of the numerical errors.

:::::::::
Additional

::::::::::
uncertainty

::
at

::
the

::::
GL

::
is

:::::::::
introduced

::
by

:::
the

::::::::::::
approximation

:::
of

::
the

:::::::
bedrock

:::::::::
geometry,

:::
the

::::::
friction

::
at
:::
the

::::
GL,

:::
and

:::
the

::::::::
modeling

:::
of

:::
the

::::::::
ice/ocean

:::::::::
interaction.

::
It

::
is

::::::
shown

::
in

:::::::::::::::::::::::
Cheng and Lötstedt (2020)

:::
that

:::
the

:::::::
solution

::
at
:::
the

::::
GL

::
is

::::::::::
particularly

:::::::
sensitive

:::
to

:::::::
variation

:::
in

:::
the455

::::::::
geometry

:::
and

:::::::
friction

::
at

:::
the

:::
ice

:::::
base. Our method can be extended to a triangular mesh covering Γb in the following way
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Figure 7. Details of the solutions for the retreat experiment with ∆x= 1
::::::::
∆x= 0.5 km after 10000 years. The solid dots represent the nodes

of the elements and the vertical, red, dashed lines indicate the GL position. Left panel: The oscillations at ice surface near GL. Right panel:

The flotation criterion is evaluated by Hbw/H . The ratio between ρ/ρw is drawn in a horizontal, purple, dash-dotted line.

::::::::::
(considering

:::::
linear

::::::::
Lagrange

:::::::::
functions). The condition on

:
χ

::
in

:::
Eq. (27)

::
or χ̃ in Eq. (29) is applied on the edges of each triangle

T in the mesh. If χ̃ < 0
:::::
χ < 0 in all three nodes then T is grounded. If χ̃≥ 0

::::
χ≥ 0

:
in all nodes then T is floating. The GL

passes inside T if χ̃
:
χ

:
has a different sign in one of the nodes. Then the GL crosses the two edges where χ̃ < 0

:::::
χ < 0

:
in one

node and χ̃≥ 0
:::::
χ≥ 0 in the other node. In this way, a continuous reconstruction of a piecewise linear GL is possible on Γb.460

The
::::
same

::::
tests

:::
are

::::::
applied

::
to

:::
χ̃.

:::
The

:
FEM approximation is modified in the same manner as in Sect. 4 using step functions in

Nitsche’s method.

An alternative to a subgrid scheme is to introduce
::::
static

::
or dynamic adaptation of the mesh on Γb with a refinement at the GL

as in e.g. (Cornford et al., 2013; Drouet et al., 2013; Gladstone et al., 2010a)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
Gladstone et al. (2010a); Cornford et al. (2013); Drouet et al. (2013)

. In general, a fine mesh is needed along
:
at the GL and in an area surrounding it. Since the GL moves long distances at least in465

simulations of palaeo-ice sheets, the adaptation should be dynamic, permit refinement and coarsening of the mesh
::::::
varying

::
in

::::
time, and be based on some estimate of the numerical error of the method.

::
In

::::::
shorter

::::
time

:::::::
intervals,

::
a
:::::
static

::::::::
adaptation

::::
may

:::
be

:::::::
sufficient

:::::
since

:::
the

:::
GL

::::
will

:::::
move

:
a
::::::
shorter

:::::::
distance.

:
Furthermore, shorter timesteps

::::
time

::::
steps are necessary for stability when

the mesh size is smaller in a mesh adaptive method.
::::::::
numerical

::::::::
stability

::
in

:::::
static

:::
and

::::::::
dynamic

:::::
mesh

:::::::::
adaptation

::::::::
schemes.

::
A

::::
static

:::::::::
adaptation

::
is

::::::::::
determined

::::
once

:::::
before

:::
the

:::::::::
simulation

::::::
starts. Introducing a time dependent,

::::::::
dynamic mesh adaptivity into470

an existing code requires a substantial coding effort and will increase the computational work considerably. Subgrid modeling

is easier to implement and the increase in computing time is small.
::
A

::::::::::
combination

::
of

::::::::
dynamic

:::::
mesh

:::::::::
adaptation

:::
and

:::::::
subgrid

:::::::::::
discretization

::::
may

::
be

:::
the

:::::::
ultimate

::::::::
solution.
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Figure 8. The velocities u (upper panel) and w (lower panel) on the surface (orange) and the base (blue) of the ice in the retreat experiment

with ∆x= 1
::::::::
∆x= 0.5 km after 10000 years. The red, dashed line marks the GL position. The vertical velocity w is zoomed-in close to the

GL.

7 Conclusions

A subgrid scheme at the GL has been developed and tested in the SSA model for 2D vertical ice flow in (Gladstone et al., 2010b)475

and in (Seroussi et al., 2014)
:::::::::::::::::::
Gladstone et al. (2010b)

:::
and

:::
in

:::::::::::::::::
Seroussi et al. (2014), for the friction in the vertically integrated

model BISICLES (Cornford et al., 2013) for 2D flow in (Cornford et al., 2016)
::::::::::::::::::
Cornford et al. (2016), and for the PISM model

mixing SIA with SSA in 3D in (Feldmann et al., 2014)
::::::::::::::::::
Feldmann et al. (2014). Here we propose a subgrid scheme for the FS

equations for a 2D vertical ice, implemented in Elmer/ICE, that can be extended to 3D. The mesh is static and the moving

GL position within one element is determined by linear interpolation with an auxiliary function
::::
χ(x)

::
or

:
χ̃(x). Only in that480

element, the FEM discretization is modified
:
to

::::::::::::
accommodate

:::
the

::::::::::::
discontinuities

::
in

:::
the

::::::::
boundary

:::::::::
conditions.

The numerical scheme is applied to the simulation of a 2D vertical ice sheet with an advancing GL and one with a re-

treating GL. The model setups for the tests are the same as in one of the MISMIP examples (Pattyn et al., 2012) and in
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(Gagliardini et al., 2016)
:::::::::::::::::::
Gagliardini et al. (2016). Comparable results to (Gagliardini et al., 2016)

::::::::::::::::::::
Gagliardini et al. (2016)

are obtained using the subgrid scheme with more than 20 times larger mesh sizes. A larger mesh size also allows a longer485

timestep
::::
time

::::
step for the time integration. Solving χ̃(x) = 0 for xGL provides a good approximation of the GL position.

Code availability. The FS sub-grid model is implemented based on Elmer/ICE Version: 8.3 (Rev: f6bfdc9) with the scripts at http://doi.org/

10.5281/zenodo.3401478 and http://doi.org/10.5281/zenodo.3401475.
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