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Abstract. The full Stokes equations are solved by a finite element method for simulation of large ice sheets and glaciers. The

simulation is particularly sensitive to the discretization of the grounding line which separates the ice resting on the bedrock and

the ice floating on water and is moving in time. The boundary conditions at the ice base are enforced by Nitsche’s method and

a subgrid treatment of the elements
::::::
element in the discretization close to

::::
with the grounding line. Simulations with the method

in two dimensions for an advancing and a retreating grounding line illustrate the performance of the method. It is implemented5

in the two dimensional version of the open source code Elmer/ICE.

1 Introduction

Simulation with ice sheet models is a tool to assess the future sea-level rise (SLR) due to melting of continental ice sheets and

glaciersHanna et al. (2013)
:::::::::::::::::
(Hanna et al., 2013) and to reconstruct the ice sheets of the pastDeConto and Pollard (2016); Stokes et al. (2015)

::::::::::::::::::::::::::::::::::::::::
(DeConto and Pollard, 2016; Stokes et al., 2015) for

comparison with measurements and validation of the models. In the models, the predictions are particularly sensitive to the10

numerical treatment of the grounding line (GL)Durand and Pattyn (2015)
::::::::::::::::::::::
(Durand and Pattyn, 2015). The GL is the line where

the ice sheet leaves the solid bedrock and becomes an ice shelf floating on water driven by buoyancy. It is important to know

the GL position to be able to quantify the ice discharge into the sea and as an indicator if the ice sheet is advancing or retreating

Konrad et al. (2018)
::
of

:::
ice

::::
sheet

::::::::
advances

::
or
:::::::

retreats
:::::::::::::::::
(Konrad et al., 2018). The distance that the GL moves may be long over

palaeo time scales. It is shown inKingslake et al. (2018)
::::::::::::::::::::
(Kingslake et al., 2018) that the GL has retreated several hundred km15

on
:
in

:
West Antarctica during the last 11,500 years and then advanced again after the isostatic rebound of the bed. The sensi-

tivity, long time intervals, and long distances require a careful treatment of the GL neighborhood by the numerical method to

discretize the model equations.

The most accurate ice model is based on the full Stokes (FS) equations. A simplification of the FS equations by integrating

in the depth of the ice is the shallow shelf (or shelfy stream) approximation (SSA) MacAyeal (1989). The computational20

advantage with SSA is that the dimension of the problem is reduced by one. It is often used for simulation of the interaction

between a grounded ice sheet and a marine ice shelf. Several other simplifications exist with the same advantages as the SSA

but with slightly different solutions. Another simplification is the shallow ice approximation (SIA) suitable for ice sheets where

vertical shear stresses determine the ice flow Weis et al. (1999).
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When the ice rests on the ground and is affected by frictional forces on the bed, the ice flow is dominated by vertical shear25

stresses. Longitudinal stresses are dominant when the ice is
:::
The

::::::::::
longitudinal

:::::
stress

:::::::
gradient

:::::::
controls

::
the

::::
flow

::
of
:::
the

:::
ice

:
floating

on water. The GL is in the transition zone
::::::
between

:::::
these

::::
two

::::
types

:::
of

::::
flow with a gradual change of the stress field. A SSA

model for a two dimensional (2D) ice is analyzed in Schoof (2007) where there is a switch in the friction coefficient at the GL

from being positive in the grounded ice to zero in the floating ice. The stability of steady state GL solutions depends on the

geometry of the slope, see Schoof (2007)30

:::
The

:::::
most

:::::::
accurate

:::
ice

::::::
model

::
in

::::::
theory

::
is

:::::
based

:::
on

:::
the

::::
full

::::::
Stokes

::::
(FS)

:::::::::
equations.

::
A

::::::::::::
simplification

::
of

:::
the

:::
FS

:::::::::
equations

::
by

:::::::::
integrating

:::
in

:::
the

:::::
depth

::
of

::::
the

:::
ice

::
is

:::
the

:::::::
shallow

::::
shelf

:::
(or

::::::
shelfy

:::::::
stream)

::::::::::::
approximation

::::::
(SSA)

:::::::::::::::
(MacAyeal, 1989). It is

stable in a downward slope and unstable in an upward slope.
:::::
often

::::
used

:::
for

:::::::::
simulation

::
of

:::
the

:::::::::
interaction

:::::::
between

::
a

::::::::
grounded

::
ice

:::::
sheet

:::
and

::
a
::::::
marine

:::
ice

:::::
shelf. In the zone between the grounded ice and the floating ice, it is necessary to use the FS equa-

tionsDocquier et al. (2011); Schoof (2011); Schoof and Hindmarsh (2010); Wilchinsky and Chugunov (2000)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Docquier et al., 2011; Schoof, 2011; Schoof and Hindmarsh, 2010; Wilchinsky and Chugunov, 2000) unless35

the ice is moving rapidly on the ground with low basal friction and the SSA equations are accurate both upstream and

downstream of the GL. The solution to the linearized FS equations close to the GL is investigated using perturbation theory

inSchoof (2011). The effect of perturbations in the topography and the friction coefficient on the surface velocity and height is

studied in Cheng and Lötstedt (2019). The sensitivity to the perturbations increases close to the GL because the velocity of the

ice increases and the thickness decreases there.
:::::::::::::
(Schoof, 2011).

:
40

The evolution of the GL in simulations is sensitive to the ice model, the basal friction model, and numerical parameters.

In a major effort MISMIPPattyn et al. (2013, 2012)
:::::::::::::::::::::
(Pattyn et al., 2013, 2012), different ice models and implementations solve

the same ice flow problems and the predicted GL steady state and transient GL motion are compared. The results depend on

the model equations and the mesh resolutionPattyn et al. (2013)
::::::::::::::::
(Pattyn et al., 2013). The prediction of the GL and the SLR is

different for different ice equations such as FS and SSA also inPattyn and Durand (2013)
::::::::::::::::::::::
(Pattyn and Durand, 2013). Including45

equations with vertical shear stress at the GL such as the FS equations seems to be crucial. The
::::::
flotation

::::::::
condition

::::::::::
determines

:::::
where

:::
the

:::
GL

::
is

::
in

::::
SSA

::
in

:::::::::::::::::::::::::::::::::::
(Docquier et al., 2011; Drouet et al., 2013).

::
It
::
is

:::::
based

:::
on

::::::::::
Archimedes’

::::::::
principle

:::
for

::
an

:::
ice

:::::::
column

::::::::
immersed

::
in

:::::
water.

::::
The friction laws at the ice base depend on the effective pressure, the basal velocity, and

:::
the distance to the

GL in different combinations inBrondex et al. (2017); Gagliardini et al. (2015); Gladstone et al. (2017); Leguy et al. (2014)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Brondex et al., 2017; Gagliardini et al., 2015; Gladstone et al., 2017; Leguy et al., 2014).

The GL position and the SLR vary considerably depending on the choice of friction model. Given the friction model, the results50

are sensitive to its model parameters tooGong et al. (2017)
:::::::::::::::
(Gong et al., 2017).

Parameters in the numerical methods also influence the GL migration. It is observed inDurand et al. (2009b)
::::::::::::::::::
(Durand et al., 2009b) that

the mesh resolution along the ice bed has to be fine to obtain reliable solutions with FS in GL simulations. The GL is then

located in a node of the fixed mesh. A mesh size below 1 km is necessary inLarour et al. (2019)
:::::::::::::::::
(Larour et al., 2019) to re-

solve the features at the GL. The SIA and SSA equations model the ice close to the GL in Docquier et al. (2011). The transient55

response of the GL is compared with the FS equations and adaptive meshes in 2D and the SSA equations in Drouet et al. (2013).

The flotation condition determines where the GL is in Docquier et al. (2011); Drouet et al. (2013). It is based on Archimedes’

principle for an ice column immersed in water. Another adaptive mesh method is developed for the SSA equations in 1D in

Gladstone et al. (2010a). The accuracy of the method is evaluated in simulations of the GL migration. Adaptive meshes for a fi-

2



nite volume discretization of an approximation of the FS equations are employed inCornford et al. (2013)
:::::::::::::::::::
(Cornford et al., 2013) to60

study the GL retreat and loss of ice in West Antarctica. The FS solutions of benchmark problems inPattyn et al. (2013) computed

by FEM implementations
::::::::::::::::::::::::
(Pattyn et al., 2013) computed

:::
by

::
an

:::::::::::::
implementation

::
of

:::
the

::::
finite

:::::::
element

::::::
method

::::::
(FEM) in Elmer/ICEGagliardini et al. (2013)

:::::::::::::::::::::
(Gagliardini et al., 2013) and

FELIX-SLeng et al. (2012)
::::::::::::::::
(Leng et al., 2012) are compared inZhang et al. (2017)

:::::::::::::::::
(Zhang et al., 2017). The differences be-

tween the codes are attributed to different treatment of a friction parameter at the GL and different assignment of grounded and

floating nodes and element faces.65

A subgrid model
::::::
scheme introduces an inner structure in the discretization element or mesh volume where the GL is

::::::
located.

Such a model for the GL is tested inGladstone et al. (2010b)
:::::::::::::::::::::

(Gladstone et al., 2010b) for the 1D SSA equation where the

flotation condition for the ice defines the position of the GL. The GL migration is determined by the 2D SSA equations dis-

cretized by the finite element method (FEM) inSeroussi et al. (2014)
:::::::::::::::::::

(Seroussi et al., 2014). Subgrid models at the GL are

compared to a model without an internal structure in the element. The conclusion is that sub-element parameterization is70

necessary. A shallow approximation to FS with subgrid modeling
:
a
:::::::
subgrid

::::::
scheme

:
on coarse meshes is compared to FS

inFeldmann et al. (2014)
::::::::::::::::::::
(Feldmann et al., 2014) with similar results for the GL migration. Subgrid modeling and adaptiv-

ity are compared inCornford et al. (2016)
::::::::::::::::::::
(Cornford et al., 2016) for a vertically integrated model. The stability of the GL

in solutions with FS and fine meshes in 2D are compared in Durand et al. (2009a) to the theory in Schoof (2007) with good

agreement. A fine mesh resolution is necessary for converged GL positions with FS inDurand et al. (2009a, b)
::::::::::::::::::::
(Durand et al., 2009a, b).75

The purpose of a subgrid model
::::::
scheme is to avoid such fine meshes.

The fine mesh resolution needed in GL simulations with the FS equations would require large computational efforts in 3D to

solve the equations in long time intervals. Since the GL moves long distances in palaeo simulations, a dynamic mesh refinement

and coarsening of the mesh following the GL is necessary. The alternative pursued here
::::
with

::::
FEM

:
is to introduce a subgrid

modeling with FEM
::::::
scheme in the mesh elements where the GL is located and keep the mesh size coarser. The subgrid model80

::::::
scheme is restricted to one element in a 2D

::::::
vertical

:
ice and is therefore computationally inexpensive. In an extension to 3D, the

subgrid model
::::::
scheme

:
would be applied along a 1D line of elements in 3D. The results with numerical modeling will always

depend on the mesh resolution but can be more or less sensitive to the mesh spacing and time steps. Our subgrid modeling

::::::
scheme is aiming at improving the accuracy in GL simulations for a static meshsize.

We solve the FS equations in
:
a 2D

::::::
vertical

:::
ice with the Galerkin method implemented in Elmer/ICEGagliardini et al. (2013)

:::::::::::::::::::::
(Gagliardini et al., 2013).85

:
A
:::::::
subgrid

:::::::::::
discretization

::
is

::::::::
proposed

:::
and

:::::
tested

:::
for

:::
the

:::::::
element

:::::
where

:::
the

:::
GL

::
is
:::::::
located. The boundary conditions are imposed

by Nitsche’s method
:
at

:::
the

:::
ice

:::
base

:
in the weak formulation of the equationsNitsche (1971); Reusken et al. (2017); Urquiza et al. (2014)

:::::::::::::::::::::::::::::::::::::::::::::::
(Nitsche, 1971; Reusken et al., 2017; Urquiza et al., 2014).

The linear Stokes equations are solved inChouly et al. (2017a)
::::::::::::::::::
(Chouly et al., 2017a) with Nitsche’s treatment of the boundary

conditions. They solve the equations for the displacement but here we solve for the velocity using similar numerical techniques

to weakly impose the Dirichlet boundary conditions . A subgrid discretization is proposed and tested for the element where the90

GLis located
::
on

:::
the

::::::
normal

:::::::
velocity

::
at

:::
the

:::::
base.

:::
The

::::::::
frictional

:::::
force

::
in

:::
the

::::::::
tangential

::::::::
direction

:
is
:::::::
applied

::
on

::::
part

::
of

:::
the

:::::::
element

::::
with

::
the

::::
GL. The position of the GL within the element is determined by

::
in

::::::::
agreement

:::::
with theory developed for the linearized

FS inSchoof (2011)
::::::::::::
(Schoof, 2011).
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The paper is organized as follows. Section 2 is devoted to the presentation of the mathematical model of the ice sheet

dynamics. In Sect. 3
:
, the numerical discretization is presented

::::
with

:::::
FEM

::
is

::::
given

:
while the subgrid modeling

::::::
scheme around95

the GL is found in Sect. 4. We present the numerical results
:::
The

:::::::::
numerical

::::::
results

:::
for

:
a
::::::::
MISMIP

:::::::
problem

:::
are

:::::::::
presented in

Sect. 5. The extension to 3D is discussed in Sect. 6 and finally some conclusions are drawn in Sect. 7.

2 Ice model

2.1 The full Stokes (FS) equations

We use the FS equations in
:
a
:
2D

::::::
vertical

::
ice with coordinates x = (x,z)T for modeling of the flow of an ice sheetHutter (1983)

::::::::::::
(Hutter, 1983).100

These nonlinear partial differential equations (PDEs) in the interior of the ice
::::::
domain Ω are given by∇ ·u = 0,

−∇ ·σ = ρg,
(1)

where the stress tensor is σ = 2η(u)τ(u)− pI. The symmetric
::::::::::::
σ = τ(u)− pI

:::
and

:::
the

::::::::
deviatoric

:::::
stress

:::::
tensor

::
is

::::::::::::::::
τ(u) = 2η(u)ε̇(u).

:::
The

:
strain rate tensor is defined by

ε̇(u) =
1

2
(∇u+∇uT ) =

 ε̇11 ε̇12

ε̇12 ε̇22

 , (2)105

I is the identity matrix, and the viscosity is defined by Glen’s flow law

η(u) =
1

2
(A(T ′))−

1
n− 1

n ε̇
:::

1−n
n

e , ε̇e =

√
1

2
tr(τ(u)τ(u))

√
1

2
tr(ε̇(u)ε̇(u))

:::::::::::::

. (3)

Here u = (u,w)T is the vector of velocities, ρ is the density of the ice, p denotes the pressure, and the gravitational accel-

eration in the z-direction is denoted by g. The rate factor A(T ′) describes how the viscosity depends on the pressure melting110

point corrected temperature T ′. For isothermal flow assumed here, the rate factor A is constant. Finally, n is usually taken to

be 3.

2.2 Boundary conditions

At the boundary Γ of the ice
::::::
domain

::
Ω
:
we define the normal outgoing vector n and tangential vector t, see Figure

:::
Fig. 1. In a

::
the 2D

::::::
vertical case considered here, y

::
the

:::
ice

::::
sheet

::::::::
geometry

:
is constant in the figure. The upper boundary

::
y.

::::
The

::
ice

:::::::
surface115

is denoted by Γs and the lower boundary is Γb::
ice

::::
base

:
is
:::::::::::::
Γb = Γbg ∪Γbf . At Γs and Γbf , the floating part of Γb, we have that

σ= fs. σn = fs , σn = fbf (4)
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Figure 1. A two dimensional schematic view of a marine ice sheet.

::::::::::
respectively. The ice is stress-free at Γs, fs = 0, and fs =−pwn ::::::::::

fbf =−pwn at the ice/ocean interface Γbf where pw is the

water pressure. Let

σnt = t ·σn, σnn = n ·σn, ut = t ·u.,120

:::::
where

::::
σnn::::

and
::::
σnt :::

are
:::
the

::::::
normal

::::
and

:::::::::
tangential

::::::::::
components

::
of

:::
the

::::::
stress

:::
and

:::
ut ::

is
:::
the

:::::::::
tangential

:::::::::
component

:::
of

:::
the

:::
ice

::::::
velocity

::
at
:::
the

:::
ice

:::::
base. Then for the slip boundary Γbg , the

::::::::
grounded part of Γb where the ice is grounded

::
on

:::
the

:::::::
bedrock, we

have a friction law for the sliding ice

σnt +β(u,x)ut = 0, un = n ·u = 0, −σnn ≥ pw., (5)

:::::
where

:::
un :

is
:::
the

::::::
normal

::::::::::
component

::
of

:::
the

::
ice

::::::::
velocity. The type of friction law is determined by the friction coefficient β. There125

::
At

:::::
Γbf ,

::::
there

:
is a balance between σnn and pw at Γbf and the contact is friction-free, β = 0,

::::
then

σnt = 0, −σnn = pw. (6)

The GLis located where
::
At

:::
the

::::
GL, the boundary condition switches from β > 0 and un = 0 on Γbg to β = 0 and a free un on

Γbf . In 2D
::::::
vertical

::
ice, the GL is the point (xGL,zGL) between Γbg and Γbf .

With the ocean surface
:::
The

:::::
ocean

::::::
surface

::
is
:

at z = 0,
:::
and pw =−ρwgzb where ρw is the density of sea water, zb is the130

z-coordinate of Γb, and g is the gravitation constant
::::::::::
gravitational

:::::::::::
acceleration.

2.3 The free surface equations

The boundaries Γs and Γb are time-dependent and move according to two free surface equations. The boundary Γbg follows

the fixed bedrock with coordinates (x,b(x)).
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The z-coordinate of the free surface
::
ice

::::::
surface position zs(x,t) at Γs (see Fig. 1) is the solution of an advection equation135

∂zs
∂t

+us
∂zs
∂x
−ws = as, (7)

where as denotes the net surface accumulation/ablation of ice
::::::
surface

:::::
mass

::::::
balance and us = (us,ws)

T the velocity at the free

surface
::
ice

::::::
surface in contact with the atmosphere. Similarly, the z-coordinate for the lower surface

::
ice

:::::
base zb of the floating

ice at Γbf satisfies

∂zb
∂t

+ub
∂zb
∂x
−wb = ab, (8)140

where ab is the net accumulation/ablation at the lower surface
::::
basal

::::
mass

:::::::
balance and ub = (ub,wb)

T the velocity of the ice at

Γbf . On Γbg , zb = b(x)
:::
and

::
on

::::
Γbf ,

::::::
zb < 0.

The thickness of the ice is denoted by H = zs− zb and depends on (x,t)
:
x
::::
and

:
t.

2.4 The solution close to the grounding line

The 2D
::::::
vertical

:
solution of the FS equations in Eq. (1) with a constant viscosity, n= 1 in Eq. (3), is expanded in small parame-145

ters inSchoof (2011)
:::::::::::::
(Schoof, 2011). The solutions in different regions around the GL are connected by matched asymptotics.

Upstream of the GL at the bedrock
::::::::
grounded

:::
part, x < xGL, the leading terms in the expansion satisfy a simple equation

::::::
relation

in scaled variables close to the GL. Across the GL, u, the flux of ice uH , and the depth integrated normal or longitudinal stress

τ11 in Eq. (2) are continuous. By adding
::::::::
including higher order terms

:
in

:::
the

:::::::::
expansion

::
in

:::::
small

:::::::::
parameters, it is shown that the

upper surface
::
ice

::::::
surface slope is continuous and Archimedes’ flotation condition150

Hρ=−zbρw (9)

is not satisfied immediately downstream of the GL. A rapid variation in the vertical velocity w in a short
::::::
distance

:
interval at the

GL causes oscillations in the upper surface
::
ice

::::::
surface

::
in

:::
the

:::::::
analysis as observed also in FS simulations inDurand et al. (2009a)

::::::::::::::::::
(Durand et al., 2009a).

In(Schoof, 2011, Ch. 4.3)
::::::::::::::::::::
(Schoof, 2011, Ch. 4.3), the solution to the FS in

:
a 2D

::::::
vertical

:::
ice is expanded in two parameters

ν and ε. The aspect ratio of the ice ν is the quotient between a typical scale of the height
::::::::
thickness of the iceH and a

::::::::
horizontal155

length scale L, ν =H/L, and ε is ν times the quotient between the longitudinal and the shear stresses τ11 and τ12 in Eq. (2).

If ν5/2� ε� 1 then in a boundary layer close to the GL and x < xGL :
it

::::::
follows

:::::
from

:::
the

::::::::
equations

:::
that

:
the leading terms in

the solution in scaled variables satisfy

τ22− p= σ22 = ρg(z− zs). (10)

On floating ice τ22− p+ pw = 0 and the flotation criterion Eq. (9) is fulfilled, and on the bedrock τ22− p+ pw < 0, see Eq.160

and
:
.
::::
This

::
is

:
a
::::
first

::::
order

:::::::::::::
approximation

::
of

:::
the

::::::
second

::::::
relation

::
in
::::
Eq. (6).

::
On

:::
the

::::::::
grounded

:::
ice

:::::::::::::::
τ22− p+ pw < 0.

Introduce the notation
:::::::::
Introducing

:::
the

:::::::
notation

:

χa(x,z) = τ22− p+ pw = ρg(z− zs(x))− ρwgzb(x), (11)
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and approximate zs and zb linearly in x in the vicinity of xGL and let Hbw :::
and

:::::
letting

::::::::::
Hbw =−zb:be the thickness of the ice

below the water surface.
:::
sea

::::
level

:::::
yields

:
Then165

χa(x,zb) =−g(ρH − ρwHbw). (12)

is linear in x. If x < xGL then χ < 0
::::::
χa < 0

:
in the neighborhood of xGL on Γbg and if x > xGL then χ= 0

::::::
χa = 0

:
and Eq.

(9) holds true on Γbf .
:::::::
Suppose

::::
that

::
zs::::

and
::
zb:::

are
:::::
linear

::
in

::
x.
:::::

Then
:::
χa::

is
::::
also

:::::
linear

::
in

::
x.

:
In numerical experiments with the

linear FS (n= 1) inNowicki and Wingham (2008), χ(x,zb) ::::::::::::::::::::::::::
(Nowicki and Wingham, 2008),

::::::::
χa(x,zb) in the original variables

varies linearly in x for x < xGL. In Sect. 4, χ(x,zb) is
:::::::
χa(x,zb)::

is
::
an

::::::::::::
approximation

::
of
:::
the

:::::::::
expression

:
used to estimate the GL170

position.

3 Discretization by FEM

In this section we state the weak form of Eq. (1) and introduce the spatial FEM discretization used for Eq. (1) and give the

time-discretization of Eq. (7) and (8).

3.1 The weak form of the FS equations175

We start by defining the mixed weak form of the FS equations. Introduce k = 1+1/n, k∗ = 1+n
::::
with

:
n
:::::
from

:::::
Glen’s

::::
flow

::::
law

and the spaces

V k = {v : v ∈ (W 1,k(Ω))2}, Qk∗ = {q : q ∈ Lk∗(Ω)}, (13)

see, e.g.Chen et al. (2013); Martin and Monnier (2014)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Chen et al., 2013; Jouvet and Rappaz, 2011; Martin and Monnier, 2014).

The weak solution (u,p) of Eq. (1) is obtained as follows. Find (u,p) ∈ V k ×Qk∗ such that for all (v, q) ∈ V k ×Qk∗ the180

equation

A((u,p),(v, q)) +BΓ(u,p,v,p
:

) +BN (u,v, q) = F (v), (14)

is satisfied, where

A((u,p),(v, q)) =

∫
Ω

2η(u)ε̇(u) : ε̇(v) dx− b(u, q)− b(v,p),

b(u, q) =

∫
Ω

q∇ ·u dx,

BΓ(u,v,p) =

∫
Γbg

(−σnn(u,p)n ·v+βu ·v) ds,

BN (u,v, q) =−
∫

Γbg

σnn(v, q)n ·u ds+ γ0

∫
Γbg

1

h
(n ·u)(n ·v) ds,

F (v) =

∫
Ω

ρg ·v dx−
∫

Γbf

pwn ·v ds.

7



The last term in BN is added in the weak form in Nitsche’s methodNitsche (1971)
:::::::::::::
(Nitsche, 1971) to impose the Dirichlet185

condition un = 0 weakly on Γbg . It can be considered as a penalty term. The size
:::::
value of the positive parameter γ0 depends

on the application
::::::
physical

::::::::
problem and h is a measure of the mesh size on Γb. The

::::::::
sensitivity

::
of

:::
the

:::
GL

::::::::
positions

::
for

::::::::
different

:::::
values

::
of

:::
γ0::

is
::::::
shown

::
in

::::
Sect.

::
5.
::::
The

:
first term in BN symmetrizes the boundary term BΓ +BN on Γbg and vanishes when

un = 0.

3.2 The discretized FS equations190

We employ linear Lagrange elements with Galerkin Least Square (GLS) stabilizationFranca and Frey (1992); Helanow and Ahlkrona (2018)
:::::::::::::::::::::::::::::::::::::::::::::
(Franca and Frey, 1992; Helanow and Ahlkrona, 2018) to

avoid spurious oscillations in the pressure using the standard setting in Elmer/ICEGagliardini et al. (2013)
:::::::::::::::::::::
(Gagliardini et al., 2013) approximating

solutions in the spaces V k and Mk∗::::
Qk∗ in Eq. (13).

The mesh is constructed from a footprint mesh on the bottom surface
::
ice

::::
base and then extruded with the same number of

layers
:::::::::::
equidistantly in the vertical direction according to the thickness of the ice

::
ice

:::::
sheet. To simplify the implementation in 2D,195

the footprint mesh on the bottom surface
:::
ice

:::
base consists ofN+1 nodes xi, i= 0, . . . ,N,with

:
at
::::::::::::::::::::::::::
xi = (xi,zb(xi)), i= 0, . . . ,N,

::::
with

:::::::::::
x-coordinates

::
xi::::

and a constant mesh size ∆x
:::::::::::::
∆x= xi−xi−1.

In general, the GL is somewhere in the interior of an element Ei = [xi, xi+1]
::::::
interval

::::::::
[xi−1, xi]:and it crosses the element

::::::
interval

:
boundaries as it moves forward in the advance phase and backward in the retreat phase of the ice. The advantage with

Nitsche’s way of formulating the boundary conditions is that if xGL ∈ Ei ::::::::::::::
xGL ∈ [xi−1, xi] then the boundary integral over Ei200

::
the

:::::::
interval

:
can be split into two parts in Eq. (14) such that [xi, xGL] ∈ Γbg and [xGL, xi+1] ∈ Γbf as follows

:::::::::::::
(x,zb(x)) ∈ Γbg

::::
when

::::::::::::::
x ∈ [xi−1, xGL]

:::
and

::
if

:::::::::::
x ∈ [xGL, xi]::::

then
::::::::::::::
(x,zb(x)) ∈ Γbf ::

as
::::::
follows

:∫
[xi−1,xi]

BΓ +BN ds=

∫
[xi−1,xGL]

−(σnn(u,p)n ·v+σnn(v, q)n ·u)+βu ·v+
γ0

h
(n ·u)(n ·v) ds

+

∫
[xGL,xi]

pwn ·v ds, (15)

::::
with

:::
the

:::::::::
integration

:::::::
element

::
ds

:::::::::
following

:::
Γb. There is a change of boundary conditions

::
the

:::::::::
boundary

::::::::
condition in the middle

of the element Ei:::::
FEM

::::::
element

:
where the GL is located. With a strong formulation of un = 0,

:
the basis functions in V s :::

V k205

share this property and the condition changes from the grounded node xi ::::
xi−1 where the basis function satisfies un = 0 and

the floating node at xi+1 ::
xi with a free un without taking the position of the GL inside Ei ::::::::

[xi−1, xi]:into account.
::::
With

:::
the

::::
weak

::::::::::
formulation

::
in

::::::::
Nitsche’s

:::::::
method

::
no

:::::
basis

:::::::
function

:::::::
satisfies

::::::
un = 0

::::::
strictly

:::
but

:::
the

::::::::
condition

::
is

:::::::
imposed

::
by

:::
the

:::::::::
additional

::::::
penalty

::::
term

::
in

:
(14)

:::
and

::::
this

::::
term

::::
may

::::::
change

:::::
inside

:::
an

::::::
element

:::
as

::
in (15).

:

The resulting system of non-linear
::::::::
nonlinear equations form a nonlinear complementarity problemChristensen et al. (1998)

:::::::::::::::::::::
(Christensen et al., 1998).210

The distance d between the base of the ice and the bedrock at time t and at x is d= zb(x,t)− b(x)≥ 0
:::::::::::::::::::::::
d(x,t) = zb(x,t)− b(x)≥ 0.

If d > 0 on Γbf then the ice is not in contact with the bedrock and σnn + pw = 0 and if σnn + pw < 0 on Γbg then the ice and

the bedrock are in contact and d= 0. Hence, the complementarity relation in the vertical direction is

zb(x,t)− b(x)≥ 0, σnn + pw ≤ 0, (zb(x,t)− b(x))(σnn + pw) = 0 on Γb. (16)
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The contact friction law is such that β > 0 when x < xGL and β = 0 when x > xGL. The complementarity relation along the215

slope at x is then the non-negativity of d and

β ≥ 0, β(x,t)(zb(x,t)− b(x)) = 0 on Γb. (17)

In particular, these relations are valid at the nodes x= xj , j = 0,1, . . . ,N .

The complementarity condition also holds for un and σnn such that

σnn + pw ≤ 0, un(σnn + pw) = 0 on Γb, (18)220

without any sign constraint on un except for the retreat phase when the ice leaves the ground and un < 0.

Similar implementations for contact problems using Nitsche’s method are found inChouly et al. (2017a, b)
::::::::::::::::::::
(Chouly et al., 2017a, b),

where the unknowns in the PDEs are the displacement fields instead of the velocity in Eq. (1). Analysis inChouly et al. (2017a)
::::::::::::::::::
(Chouly et al., 2017a) suggests

that Nitsche’s method for the contact problem can provide a stable numerical solution with an optimal convergence rate.

The nonlinear equations for the nodal values of u and p are solved by Newton
:::::
Picard

:
iterations. The system of linear225

equations in every Newton
:::::
Picard

:
iteration is solved iteratively

::::::
directly by using the Generalised Conjugate Residual (GCR)

method
:::::::
MUMPS

:::::
linear

:::::
solver

:
in Elmer/ICE. The condition on dj in a

:::::::::
dj = d(xj)::

is
::::
used

::
to

::::::
decide

::
if

:::
the node xj is used for

a so called grounded mask, which
:::::::::::
geometrically

::::::::
grounded

::
or

:::::::
floating.

::
It is computed at each timestep and not changed during

the nonlinear iterations.
::::
The

::::::::
procedure

:::
for

:::::::
solution

::
of

:::
the

::::::::
nonlinear

:::
FS

::::::::
equations

::
is

:::::::
outlined

::
in

:::::::::
Algorithm

::
1.

3.3 Discretization of the advection equations230

The advection equations for the moving ice boundary in Eq. (7) and (8) are discretized in time by a finite difference method

and in space by FEM with linear Lagrange elements for zs and zb. A
:::
An

:::::::
artificial

:::::::
diffusion

:
stabilization term is added, making

the spatial discretization behave like an upwind scheme in the direction of the velocity as implemented in Elmer/ICE.

The advection equations Eq. (7) and Eq. (8) are integrated in time by a semi-implicit method of first order accuracy. Let

c= s or b. Then the solution is advanced from time tn to tn+1 = tn + ∆t with the timestep ∆t by235

zn+1
c = znc + ∆t(anc −unc

∂zn+1
c

∂x
+wnc ). (19)

The spatial derivative of zc is approximated by FEM. A system of linear equations is solved at tn+1 for zn+1
c . This time

discretization and its properties are discussed inCheng et al. (2017)
:::::::::::::::::::
(Cheng et al., 2017) and

:::::::::::
summarized

::
as

::
in

:::::::::
Algorithm

:
2.

A stability problem in zb is encountered in the boundary condition at Γbf in Durand et al. (2009a)
::::
when

:::
the

:::
FS

::::::::
equations

:::
are

:::::
solved

::
in

::::::::::::::::::
(Durand et al., 2009a). It is solved

:::::::
resolved by expressing zb in pw at Γbf with a damping termin Durand et al. (2009a).240

An alternative interpretation of the idea inDurand et al. (2009a)
:::::::::::::::::::
(Durand et al., 2009a) and an explanation follow below.

The relation between un and ut at Γbf and ub = u(x,zb(x)) is

ub =

 ub

wb

=

 zbx

−1

 un√
1 + z2

bx

+

 1

zbx

 ut√
1 + z2

bx

, (20)
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Algorithm 1
::::
Solve

:::
the

:::
FS

::::::::
equations

For a given mesh, compute dj , j = 0,1, ...,N, for all the nodes xj at the ice base.

Mark node j as geometrically grounded if dj < 10−3, otherwise floating.

Find the elements which contain both geometrically grounded and floating nodes, and mark the grounded nodes in these elements as ‘GL

nodes’.

Compute the residual of the FS equations with the initial guess of the solution.

while the residual is larger than the tolerance do

Assemble the FEM matrix for the interior of the domain Ω

for the boundary elements on Γb do

if
::

has
:::
‘GL

::::::
nodes’ then

Mark the current element as a ‘potential GL element’

Use the subgrid scheme in Algorithm 3 of Sect. 4 for the assembly.

else

Assemble the boundary element.

end if

end for

Solve the linearized FS equations for a correction of the solution

Compute the solution and the residual

end while

Algorithm 2
::::
Time

:::::::
scheme

::
of

:::
the

:::
GL

::::::::
migration

:::::::
problem

Start from an initial geometry Ω0 defined by z0b ,z
0
s .

for n= 0 to T/∆t− 1 do

Solve the FS equations on Ωn with Algorithm 1, to get the solutions un.

Solve for zn+1
b and zn+1

s with un with implicit Euler method.

Use zn+1
b and zn+1

s to update Ωn+1

end for

10



where zbx denotes ∂zb/∂x. Insert
::::::::
Inserting ub and wb from Eq. (20) into Eq. (8) to obtain

:::::
yields

∂zb
∂t

= ab−un
√

1 + z2
bx, (21)245

Instead of discretizing Eq. (21) explicitly at tn with un−1
n to determine pnw ::::

tn+1
::::
with

::
unn::

to
:::::::::
determine

::::
pn+1
w , the base coordinate

is updated implicitly

zb
nn+1
:::

= zb
n−1n

:
+ ∆t

(
ab
nn+1
:::
−unn

√
1 + z2

bx
n+1
√

1 + (zn+1
bx )2

::::::::::::::

)
(22)

in the solution of Eq. (14).

Assume
::::::::
Assuming that zbx is small. The timestep

::::
small,

:::
the

::::::::
timestep restriction in Eq. (22) is estimated by considering a 2D250

slab of the floating ice of width ∆x and thickness H . Newton’s law of motion yields

Mu̇n =Mg−∆xpw,

where M = ∆x(zs− zb)ρ is the mass of the slab. Divide
:::::::
Dividing by M , integrate

:::::::::
integrating

:
in time for un(tm), let m= n

or n− 1, and approximate
:::::
letting

:::::::::
m= n+ 1

::
or

::
n,

::::
and

::::::::::::
approximating the integral by the trapezoidal rule for the quadrature to

obtain
:::::
yields255

un(tm) =

tm∫
0

g+
gρw
ρ

zb
zs− zb

ds≈ gtm +
gρw
ρ

m∑
i=0

αi
zib

zis− zib
∆t= umn ,

::::
with

::
the

::::::::::
parameters

αi = 0.5, i= 0,m, αi = 1, i= 1, . . . ,m− 1.

Then insert umn into Eq. (22). All terms in umn from timesteps i < m are collected in the sum ∆tFm−1. Then Eq. (22) can be

written260

zb
nn+1
:::

= zb
n−1n

:
−∆t2

gρw
2ρ

zmb
zms − zmb

+ ∆t
(
anb − gtm−∆tFm−1

)
. (23)

For small changes in zb in Eq. (23), the explicit method with m= n− 1
:::::
m= n

:
is stable when ∆t is so small that

|1−∆t2
gρw
2Hρ

| ≤ 1. (24)

When H = 100 m on the ice shelf, ∆t < 6.1 s which is far smaller than the stable steps for Eq. (19). Choosing the implicit

scheme with m= n
:::::::::
m= n+ 1, the bound on ∆t is265

1/|1 + ∆t2
gρw
2Hρ

| ≤ 1, (25)

i.e. there is no bound on positive ∆t for stability but accuracy will restrict ∆t.

Much longer stable timesteps are possible at the surface and the base of the ice with a semi-implicit method Eq. (19) and a

fully implicit method Eq. (22) compared to an explicit method. For example, the timestep for the problem in Eq. (19) with 1 km

mesh size can be up to a couple of months. Therefore, we use the scheme in Eq. (19) for Eq
:::
Eqs. (7) and (8) and the scheme in270

Eq. (22) for Eq. (21) and pw as inDurand et al. (2009a)
:::::::::::::::::::
(Durand et al., 2009a). The difference between the approximations of

zb in Eq. (19) and (22) is of O(∆t2).
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4 Subgrid modeling
::::::
scheme

:
around

:::
the grounding line

The basic idea of the subgrid method
::::::
scheme for the FS equations in this paper follows the GL parameterization

::::::
(SEP3) for

SSA inSeroussi et al. (2014)
:::::::::::::::::::
(Seroussi et al., 2014) and the analysis for FS inSchoof (2011)

:::::::::::::
(Schoof, 2011). The GL is located275

at the position where the ice is on the ground and the flotation criterion is perfectly satisfied such that σnn =−pw. In the Stokes

::
FS

:
equations, the hydrostatic assumption

::
Eq.

:
(9) may not be valid , so the exact

:::::
close

::
to

:::
the

:::
GL.

:::::::::
Therefore,

:::
the

:
GL position

can not be determined by simply checking the total thickness of the ice H against the depth below sea level Hbw =−zb :::
Hbw.

Instead, the flotation criterion is computed by comparing the water pressure with the
::::::::
numerical

:
normal stress component

orthogonal to the boundaryas indicated
:
,
::
as

::::::::
suggested

:
by the first order analysis in Sect. 2.4. The indicator is here defined by280

χ(x) = σnn + pw

χ(x) = σnn + pw,
::::::::::::::

(26)

which vanishes on the floating ice and is approximately τ22− p+ pw and negative
:
is
::::::::
negative

:::
and

::::::::::::
approximately

:::::
equal

:::
to

:::::::::::::::
χa = τ22− p+ pw::

in
:
(11) on the ground since the slope of the bedrock is small .

:::
and

::::::::::::
n≈ (0,−1)T .

Typically, at the lower surface of the floating ice where zb(x,t)> b(x), as the blue line in Fig. 2,
:::
The

::::::::
numerical

::::::::
solutions,

::::
e.g.285

:::::::::::::::::::::::::::::::::::::::
(Gagliardini et al., 2016; Gladstone et al., 2017),

::::::::
converge

::
to

:::
the

::::::::
analytical

:::::::
solution

::
as

:::
the

:::::
mesh

:::
size

:::::::::
decreases.

:::
The

:::::::::
analytical

::::::
solution

:::::::
satisfies

:::::::::::::
zb(x,t)> b(x)

::::
with the boundary conditions are given by

::
in Eq. (6)

::
at

:::
the

::::
base

::
of

:::
the

:::::::
floating

::
ice, and where

the ice is in contact with the bedrock , as the red line in Fig. 2
::::::::::::
zb(x,t) = b(x), the boundary conditions are given by Eq. (5).

However, there is another case as shown
::::::::
Examples

:::
of

:::
the

::::::::
analytical

:::::::
solution

:::
are

::::::::::::
demonstrated

::
by

:::
the

::::
thin

::::
light

::::
blue

:::::
lines

::
in

:::
Fig.

::
2

:::
and

::
3

::::
with

:
a
:::::
black

:::
‘∗’

::
at

:::
the

::::::::
analytical

:::
GL

:::::::
position

:::::
xGL.

::::
The

:::
two

::::::
figures

:::::
share

:::
the

:::::
same

::::::::
analytical

::::::::
solution.

::::::::
However,290

::
as

::::::::
illustrated

:
in Fig. 3 when the net force at xi is pointing inward, namely σnn(xi) + pw(xi)> 0. Then, the floating boundary

condition Eq. should be imposed up until the node xi−1. This can happen at some point due to the low spatial and temporal

resolutions, but the node xi will move upward as long as u ·n< 0, or
:
2

:::
and

::
3,

:::
the

:::::
basal

::::::::
boundary

::
of

:::
the

:::
ice

::::::
zb(x,t):::::

does
:::
not

:::::::
conform

::::
with

:::
the

:::::
mesh

::::
from

:::
the

::::::
spatial

::::::::::::
discretization.

::
In

:::::::::
particular,

:::
the

:::
GL

:::::::
position

:::::
xGL ::

of
:::
the

::::::::
analytical

:::::::
solution

:::::
does

:::
not

:::::::
coincide

::::
with

:::
any

::
of

:::
the

::::::
nodes,

:::
but

::
it

::::::
usually

::::
stays

:::
on

:::
the

:::::::
bedrock

::::
b(x)

:::::::
between

:::
the

:::
last

::::::::
grounded

::::::
(xi−1)

::::
and

::
the

::::
first

:::::::
floating295

:::
(xi)::::::

nodes,
:::
see

::::
Fig.

::
2

:::
and

:::
3.

:::
The

::::::
linear

:::::::
element

:::::::
between

:::::
xj−1 :::

and
:::
xj::

is
:::::::
denoted

:::
by

:::
Ej . :::

The
::::::::

sequence
:::

of
::::::::::::::
Ej , j = 1, . . . ,N,

:::::::::::
approximates

:::
Γb.:::

The
:::::::::
grounding

::::
line

::::::
element

:::::::::
containing

:::
the

::::
GL

:
is
:::
Ei.:

:::::::::
Depending

::
on

::::
how

:::
the

:::::
mesh

::
is

::::::
created

:::::
from

:::
the

:::::
initial

::::::::
geometry

:::
and

:::::::
updated

::::::
during

:::
the

::::::::::
simulation, the net force switches

signs and the condition transforms into the case
:::
first

:::::::
floating

::::
node

::
at

:::
xi, ::

as
::::
well

::
as

:::
the

:::
GL

:::::::
element,

:::
can

:::
be

:::::
either

::
on

:::
the

:::::::
bedrock

::
(as

::
in
::::
Fig.

::
2)

:::
or

::
at

::
the

:::::
basal

::::::
surface

:::
of

:::
the

::
ice

::::::
above

:::
the

:::::::
bedrock

:::
(as in Fig. 2 when σnn(xi) + pw(xi)< 0

::
3),

:::::
even

::::::
though

:::
the300

:::::::::::
corresponding

:::::::::
analytical

::::::::
solutions

:::
are

:::::::
identical. Denote the situation in Fig. 2 by case i, and the one in Fig. 3 by case ii. We

call the node ‘grounded’ when it is in contact with the bedrock with net force from the ice pointing outward (σnn + pw < 0),

and ‘floating ’ when
::::
The

:::::::
physical

::::::::
boundary

::::::::
conditions

:::
of

::
the

::::
two

:::::
cases

::
are

::::::::
different

::::
only

::
at

:::
the

:::
GL

:::::::
element.

:::::
More

::::::::
precisely,

::
in

:::
case

::
i,
:::
the

:::
net

:::::
force

::
on

:::
the

::::
node

:::
xi ::

is
:::::::
pointing

::::::
inward,

:::::::
namely

::::::::::::::::::::::::::
χ(xi) = σnn(xi) + pw(xi)> 0,

:::::::
whereas

::
in

::::
case

::
ii,

:::
the

:::::::
floating

::::::::
condition

::::::::::::::::::
σnn(xi) + pw(xi) = 0

::
is

:::::::
satisfied

::
in

:::
the

::::
node

:::
xi.::::

The
::::::::
directions

:::
of the net force is pointing inward (σnn + pw ≥ 0).305

The element which contains both grounded and floating nodes is called
::
at

::::
xi−1::::

and
::
xi:::

are
::::::
shown

::
by

:::
the

::::::
arrows

:::
in

:::
the

:::::
upper

12



xi−1 xi
xGL

xi−1 xi
x̃GL

HN (x)
1

0

Hβ(x)
1

0

xi−1 x̃GL xi

Figure 2.
::::::::
Schematic

::::
figure

::
of
:::
the

:::
GL

::
in

:::
case

:
i
:
,
:::
with

:::
the

:::::
arrows

::::::::
indicating

::
the

:::::::
direction

::
of

:::
the

::
net

::::::
forces.

::::
Upper

:::::
panel:

::::
The

::
last

::::::::
grounded

:::
and

:::
first

::::::
floating

::::
nodes

::
as

::::::
defined

::
in

::::::::
Elmer/ICE.

::::
The

:::
light

::::
blue

:::
line

::
is

::
the

::::::::
analytical

::::::
solution

::
of

::
the

:::
ice

::::
sheet

:::
with

:::
the

:::::::
analytical

:::
GL

::::::
position

:::::
xGL.

:::::
Middle

:::::
panel:

:::::
Linear

::::::::::
interpolation

::
to
::::::::::
approximate

:::
the

:::::::
numerical

:::
GL

:::::::
position

::::
x̃GL.

::::::
Lower

:::::
panel:

:::
The

:::
step

::::::::
functions

::::::
HN (x)

:::
and

::::::
Hβ(x)

::::
which

:::::::
indicate

::
the

::::
area

::
for

:::::::
Nitsche’s

::::::
penalty

:::
and

:::
slip

:::::::
boundary

:::::::::
conditions.

:::::
panels

::
of

::::
Fig.

::
2

:::
and

::
3.

::::::::::::
Consequently,

:::
the

:::::::
external

:::::
forces

:::::::
imposed

:::
on

:
the GL element and the grounded node in it is called the

last groundednode and the floating one is called the first floating node
:::
are

:::::::
different

:::
in

:::
the

:::
two

::::::
cases.

:::
For

::::::::
instance,

::
in

::::
case

:
i
:
,

::
the

::::
GL

::::::
element

::
is
::::::::::
considered

::
as

:::::::::::
geometrically

:::::::::
grounded,

::::::
shown

::::
with

:::
red

::::
color

::
in
:::
the

:::::
upper

:::::
panel

:::
of

:::
Fig.

::
2.

::
In

::::
case

::
ii
:
,
:::
the

:::
GL

::::::
element

::
is
::::::
treated

::
as

::::::::::::
geometrically

::::::
floating

::::
and

::::::
colored

::
in

::::
blue

::
in

:::
the

:::::
upper

:::::
panel

::
of

::::
Fig.

:
3.310

In coarse meshes,
:::::
These

:::
two

:::::
cases

:::
are

::::::
similar

::
to

:::
the

:::
LG

:::
and

:::
FF

::::
cases

::
in

::::::::::::::::::::::::::::
(Gagliardini et al., 2016) implying

:::
that

:::
the

:::::::::
numerical

:::::::
solutions

::
in

:::
the

:::
the

::::
two

::::
cases

:::
are

::::::::
different,

::::::::
especially

:::
on

:
a
::::::
coarse

::::
mesh

::::::
(mesh

:::
size

::
at
:::::
about

::::
100

::
m

::
or

::::::
larger).

:::::
Thus,

:::
we

:::::::
propose

:
a
::::::
subgrid

:::::::
scheme

::
to

::::::
reduce

::::
these

::::::::::
differences

::
in

:::
the

::::::
spatial

:::::::::::
discretization

:::
and

::
to
:::::::
capture

:::
the

:::
GL

::::::::
migration

:::::::
without

:::::
using

:
a
::::
fine

:::::
mesh.

:::
The

:::::::::
schematic

:::::::
drawing

::
of

:::
the

:::::::
subgrid

::::::
scheme

:::
for

:::
the

:::
two

:::::
cases

::
is

::::::
shown

::
in the true position of the GL is generally not

in one of the nodes, but usually between the last grounded
:::::
middle

::::::
panels

::
of

::::
Fig.

:
2
::::
and

::
3.

::::
The

:::
GL

:::::::
element

::
is

::::::
divided

::::
into

:::
the315

::::::::
grounded

::::
(red)

:::
and

:::::::
floating

:::::
(blue)

:::::
parts

::
by

:::
the

::::::::
estimated

:::
GL

:::::::
position

:::::
x̃GL ::

on
:::
Ei,:::::

which
::
is

:::
the

::::::::
numerical

:::::::::::::
approximation

::
of

:::
the

::::::::
analytical

:::
GL

:::::::
position

:::::
xGL.

::
To

:::::::::
determine

:::
the

:::::::
position

:::::
x̃GL,

:::
we

:::::
solve

:::::::::::::::::::::::::::::::
χ(x̃GL) = σnn(x̃GL) + pw(x̃GL) = 0

:::
by

:::::
linear

:::::::::::
interpolation

:::::::
between

::::::::
χ(xi−1)

and the first floating nodes. Instead of refining the mesh around GL , which would lead to very small time steps for stability

reasons, we will here introduce a subgrid model for
::::
χ(xi):::::

such
:::
that

:
320

x̃GL = xi−1−
χ(xi−1)

χ(xi−1)−χ(xi)
(xi−1−xi).

::::::::::::::::::::::::::::::::::::

(27)

13



xi−1

xi

xGL

xi−1
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0
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Figure 3.
:::::::

Schematic
:::::
figure

::
of

:::
the

:::
GL

::
in

:::
case

::
ii,

::::
with

:::
the

:::::
arrows

::::::::
indicating

:::
the

:::::::
direction

::
of

::
the

:::
net

:::::
force.

:::::
Upper

:::::
panel:

:::
The

:::
last

::::::::
grounded

:::
and

:::
first

::::::
floating

::::
nodes

::
as
::::::
defined

::
in

:::::::::
Elmer/ICE.

:::
The

::::
light

:::
blue

:::
line

::
is
:::
the

:::::::
analytical

:::::::
solution

:
of
:::

the
:::
ice

::::
sheet

:::
with

:::
the

::::::::
analytical

::
GL

:::::::
position

::::
xGL.

:::
The

::::
node

::
xi::

is
::::
fully

::::::
floating

:::
and

::
the

:::
net

::::
force

::
is

::
0.

:::::
Middle

:::::
panel:

:::::
Linear

::::::::::
interpolation

::
to

:::::::::
approximate

:::
the

:::::::
numerical

:::
GL

::::::
position

:::::
x̃GL.

:::
The

::::
point

::̂
xi:::

on
::
the

:::::::
bedrock

::
has

:::
the

::::
same

::
x
::::::::
coordinate

::
as

:::
xi.:::::

Lower
:::::
panel:

:::
The

::::
step

:::::::
functions

::::::
HN (x)

:::
and

:::::
Hβ(x)

:::::
which

:::::::
indicate

::
the

::::
area

::
for

:::::::
Nitsche’s

::::::
penalty

:::
and

:::
slip

:::::::
boundary

:::::::::
conditions.

:::
The

:::::
water

:::::::
pressure

::::::
pw(x)

::
is

:
a
:::::
linear

:::::::
function

::
of

::
x
:::
on the GL element .

We let χ(x) = σnn(x) + pw(x) and assume that it is linear as in Eq. to determine the position of the GL, xGL, in the GL

element. In
:::
and

:::
the

::::::::
numerical

:::::::
solution

::
of

:::::::
σnn(x)

::
is

:::
also

::::::::
piecewise

:::::
linear

:::
on

:::::
every

::::::
element

::::
with

:::
the

:::::::
standard

::::::::
Lagrange

::::::::
elements

::
in

:::::::::
Elmer/ICE

:::::::::::::::::::::
(Gagliardini et al., 2013).

::
In

:::
this

::::::
sense,

::::
x̃GL::

is
:::
the

::::
best

:::::::::
numerical

::::::::::::
approximation

::
of

:::
the

::::::::
analytical

::::
GL

:::::::
position325

::::
xGL ::

in
:::
the

::::::
current

::::::::::
framework.

:::::
This

::::::::
approach

:::
fits

::::
well

::::
with

:
case ii

:
i , the GL is located between xi−1 and xi even though

the whole element [xi−1,xi] is geometrically grounded. The equation χ(xGL) = 0 is solved by linear interpolation between

χ(xi−1)< 0 and χ(xi)> 0 yielding a unique solution satisfying xi−1 < xGL < xi, depicted as the red dot in the lower panel

of Fig. 3
::::
since

:::
the

::::::::
indicator

::::
χ(x)

:::
has

::::::::
opposite

::::
signs

::
at
:::::
xi−1:::

and
:::
xi,:::

see
:::
the

::::::
middle

:::::
panel

::
of
::::

Fig.
::
2

:::::
where

::::
x̃GL::

is
:::::::
marked

::
by

::
a

:::
red

:::
‘∗’.

::
It

:::::::::
guarantees

:::
the

::::::::
existence

:::
and

:::::::::
uniqueness

::
of

:::::
x̃GL ::

on
:::
the

:::
GL

:::::::
element.330

There is a more complicated
:::::::
However,

:::
the

:
situation in case i

:
ii , where χ(xi)< 0 but χ(xi+1) = 0 due to the floating boundary

condition. A correction of χ is made by using χ̃(x) = σnn(x) + pb(x) where pb(x) =−ρwgb(x)
:
is

:::::
more

::::::::::
complicated.

:::
In

:::
the

:::::
upper

::::
panel

:::
of

:::
Fig.

::
3,

::
as

:::
the

::::::::
elements

::
on

::::
both

:::::
sides

::
of

:::
the

::::
node

:::
xi:::

are
:::::::::::
geometrically

:::::::
floating,

:::
the

::::::::
boundary

::::::::
condition

::::::::
imposed

::
on

::
xi::::::::

becomes
::::::::::::::::::::::::::
χ(xi) = σnn(xi) + pw(xi) = 0.

::::::::::
Considering

::::
that

:::
the

::::::::
analytical

:::
GL

:::::::
position

::::
xGL::::::

always
:::::
stays

::
on

:::
the

::::::::
bedrock,

:
a
::::::::
correction

:::
of

::::
χ(x)

::
is

:::::::::
introduced

::
in

::::
case

::
ii

::
by

::̃
χ

::
in335

χ̃(x) = σnn(x) + pb(x),
:::::::::::::::::::

(28)
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:::::
where

::::::::::::::::
pb(x) =−ρwgb(x)

:
is the water pressure on the bedrock . For x > xi, we have b(x)< zb(x) and pb(x)> pw(x).

Therefore, χ̃(xi+1)> χ(xi+1) = 0 and χ̃(xi) = χ(xi)< 0. Then, a linear interpolation between χ̃(xi) :::::::::::
χ̃(x)≥ χ(x).

::::::
Notice

:::
that

:::::::::::::::::::::::
pb(xi) = pw(x̂i)> pw(xi),

:::::
where

:::̂
xi::

is
::
a

::::
point

:::
on

:::
the

:::::::
bedrock

:::::
with

:::
the

:::::
same

::
x

:::::::::
coordinate

::
of

:::
xi,:::

as
::::::::
illustrated

:::
in

:::
the

::::::
middle

:::::
panel

::
of

::::
Fig.

::
3.

::
A

:::::::
solution

:::::
x̃GL :::

can
:::
be

:::::
found

:::
by

::::::
taking

:::::
linear

::::::::::::
interpolations

::
of

:::::
χ̃(x)

:::::::
between

:::
the

:::::
nodes

:::::
xi−1:

and340

χ̃(xi+1) guarantees a unique solution of χ̃(xGL) = 0 in the GL element [xi,xi+1], see Fig. 2. In
::
xi::

as
:::

in
:::
Eq.

:
(27)

:
.
::
If

:::
we

:::::::
compare

::::
with case ii

:
i, pb can also be used since pb(x) = pw(x) as long as the element is on the bedrock.

Conceptually,
::
this

:::::::::
correction

:::
can

:::
be

:::::::::
considered

::
as

:::::
using

:::::::::
σnn(x̃GL)

::
to

::::::::::
approximate

:::::::::
σnn(xGL)

:::
on

:
a
::::::
virtual

:::::::
element

:::::::
between

::::
xi−1::::

and
:::
x̂i, ::::

since
:

the linear interpolation of the function χ̃(x) can be considered separately by looking at the two linear

functions σnn(x) and pb(x). As the GL always rests on the bedrock, pb(xGL) = pw(xGL) is actually an exact representation345

of the water pressure imposed on the ice at GL, although geometrically zb(xGL) may not coincide with b(xGL), especially

on coarse meshes. This also leads to the fact that the interpolated normal stress σnn(xGL,zb(xGL)) is a first order
::::
pb(x)

::::
still

:::::::
provides

:::
the

::::::::
analytical

::::::
water

:::::::
pressure

:::::
along

:::
the

::::::::
bedrock.

:::::::::
Therefore,

:::
the

:::::::
position

:::::
x̃GL ::

is
:
a
:::::::::
numerical

:
approximation of the

normal stress at the exact GL position(xGL, b(xGL)).

This
:::
GL

:::::::
position,

::::::::
although

::
it

::
is

:::
not

::::::::::::
geometrically

::
in

::::::
contact

::::
with

:::
the

::::::::
bedrock.

:::::::::
Moreover,

:::
this

:
correction is not necessary350

when the GL is advancing since the implicit treatment of the bottom surface is equivalent to additional water pressure at the

stress boundary
::::::
moving

::
xi:::::::

towards
:::
x̂i ::::

with
::::::
un > 0

::
in

:::
Eq.

:
(21) as discussed in Sect. 3.3.

::::
Since

::::
we

::::
have

:::::::::::::
pb(x) = pw(x)

:::
and

::::::::::::
χ(x) = χ̃(x)

::
at

:::
the

::::
GL

:::::::
element

::
in

::::
case

:
i
:
,
:::
we

::::
can

::::::
simply

:::
use

:::::
χ̃(x)

::
to

::::
find

:::::
x̃GL :::

for

::
the

::::
two

:::::
cases

:::
by

::::::::
replacing

::
χ

::
in

:
(27)

::
by

::̃
χ.

:
After the GL position is determined,

::::
Then

:
the domains Γbg and Γbf are sepa-

rated at xGL ::::
x̃GL:

as in Eq. (15) and the integrals
::
on

:::
the

::::
GL

:::::::
element are calculated with a high-order integration scheme355

as inSeroussi et al. (2014) to achieve a better
::::::::::::::::::
(Seroussi et al., 2014).

::::
We

::::::::
introduce

:::
two

::::
step

::::::::
functions

:::::::
HN (x)

:::
and

:::::::
Hβ(x)

::
to

::::::
include

:::
and

:::::::
exclude

:::::::::
quadrature

::::::
points

::
in

:::
the

:::::::::
integration

:::
of

:::
the

::::::::
Nitsche’s

::::
term

::::
and

:::
the

:::
slip

::::::::
boundary

:::::::::
condition.

:::
To

::::::
achieve

::
a

:::::::::
reasonable resolution within the element shown inFigures 2 and 3. For a smoother transition of β

:::
GL

:::::::
element,

::
as

:::::::::
suggested

::
in

::::::::::::::::::
(Seroussi et al., 2014),

:
at GL, the slip coefficient is multiplied by 1/2 at the whole GL element before integrating using the

high order scheme
:::
least

:::::
tenth

:::::
order

:::::::
Gaussian

::::::::::
quadrature

:
is
::::::::
required.360

The penalty term from
:
in

:
Nitsche’s method restricts the motion of the element in the normal direction. It should only be

::
is

::::
only imposed on the element which is fully on the ground. On the contrary , in case i

:
ii, the GL element [xi,xi+1]

::
Ei is not

in contact with the bedrockas in Fig. 2, so only
:
,
:::
see

::::
Fig.

::
3.

::::
Only

:
the floating boundary condition should be

::
is

::::
then used on

the element [xi,xi+1]. Additionally
::
GL

::::::::
element.

:::::
When

:::
the

:::
FS

::::::::
equations

:::
are

::::::
solved, the implicit representation of the bottom

surface
:::::
update

:::
of

::
the

:::::
basal

::::::
surface

::::
with

::::::
un < 0

:
in Eq. (22) also implies that the case

:::
last

::::::::
grounded

::::
node

::
in
:::
the

::::::::
previous

:::::::
timestep365

:
is
:::::::
leaving

:::
the

:::::::
bedrock

::::
when

:::
the

:::
ice

::
is

::::::::
retreating

:::
and

:::
the

::::
GL

:::::
moves

::
to

:::
the

:::::::
adjacent

::::::::
element.

::::
Case

:
iii with retreating GL should

be merged to
:::
will

:::
not

::::::
appear

:::
in

:::
that

::::::::
situation

::::
with

:
a
::::::::
retreating

::::
GL

:::
and

::
as

:::
in case i

:
ii since the surface is leaving the bedrock

and the normal velocity
::
on

:::
the

:::::::
element

:
should not be forced to zero. To summarize, Nitsche’s penalty term should be imposed

on all the fully grounded elements and partially on the GL element in the advance phase
:
as

::
in

::::
case

:
i
:
.
:::
The

::::
step

:::::::
function

:::::::
HN (x)

:::::::
indicates

::::
how

::::::::
Nitsche’s

:::::::
method

::
is

:::::::::::
implemented

:::
on

:::
the

::::::::
boundary

::::::::
elements,

:::
see

:::
the

:::::
lower

::::::
panels

::
of
::::

Fig.
::
2
:::
and

::
3
:::
for

:::
the

::::
two370

:::::
cases.

:::
The

:::::::
penalty

::::
term

:::::::::
contributes

::
to

:::
the

:::::::::
integration

::::
only

:::::
when

::::::::::
HN (x) = 1.
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Schematic figure of Grounding Line in case 1. Upper panel: the last grounded and first floating nodes as defined in

Elmer/ICE. Lower panel: linear interpolation to compute a more accurate position of the Grounding Line.
:::
The

::::
slip

:::::::::
coefficient

:
β
::
is

::::::
treated

::::::::
similarly

::::
with

::
the

::::
step

:::::::
function

:::::::
Hβ(x),

:::::
where

::::::::::
Hβ(x) = 1

:
is
:::
on

:::
the

::::
fully

::::::::
grounded

::::::::
elements

:::
and

:::::::::
Hβ(x) = 0

:::
on

:::
the

::::::
floating

::::::::
elements.

:::
For

::
a
::::::::
smoother

::::::::
transition

::
of

::
β

::
at

:::
the

:::
GL,

:::
the

::::
step

:::::::
function

::
is
:::
set

::
to

::
be

:::
1/2

:::
in

::::
parts

::
of

:::
the

:::
GL

:::::::
element

::::::
before375

:::::::::
integrating

::::
using

:::
the

::::
high

:::::
order

:::::::
scheme.

::
In

::::
case

:
i
:
,
:::
full

::::::
friction

::
is

::::::
applied

::
at

:::
the

::::::::
grounded

::::
part

:::::::
between

::::
xi−1:::

and
:::::
x̃GL ::

of
:::
the

:::
GL

::::::
element

:::::
since

:::
this

::::
part

::
is

::::
also

::::::::
grounded

::
in

:::
the

:::::::::
analytical

:::::::
solution.

:::::
Then,

:::
the

:::::::
friction

::
is

:::::
lower

::
in

:::
the

:::::::::
remaining

:::
part

:::
of

::
Ei.::::

For

::
the

:::::::
floating

::::
part

:::::::
between

::::
x̃GL:::

and
:::
xi ::

in
::::
case

:
ii
:
,
::::
there

::
is

::
no

:::::::
friction

:::
and

::::::::::
Hβ(x) = 0

:::
and

:::
we

::::
have

:::::::
reduced

::::::
friction

:::::::
between

:::::
xi−1

:::
and

:::::
x̃GL,

:::
see

:::
the

:::::
lower

::::
panel

:::
of

::
3.

:::
The

::::::::
boundary

:::::::
integral

:::
Eq.

:
(15)

::
is

::::
now

:::::::
rewritten

::::
with

:::
the

::::
two

:::
step

::::::::
functions

:::
as∫

Ei

BΓ +BN ds=

∫
Ei

−HN (σnn(u,p)n ·v+σnn(v, q)n ·u)+Hββu ·v+HN
γ0

h
(n ·u)(n ·v)

+ (1−HN )pwn ·v ds.
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(29)380

Schematic figure of Grounding Line in case 2. Upper panel: the last grounded and first floating nodes as defined in

Elmer/ICE. Lower panel: linear interpolation to compute a more accurate position of the Grounding Line.
:
A

::::::::
summary

:::
of

::
the

:::::::::
discussion

:::
is:

–
:::::::
Advance

:::::
phase

:::
⇒

::::
case

:
i
::
or

::::
case

:
ii

–
::::::
Retreat

:::::
phase

::
⇒

::::
case

::
ii385

:::
The

::::
case

::
is

:::::::::
determined

:::
by

:::
the

::::::::
geometry

::
of

:::
the

:::
GL

:::::::
element.

:

:::
The

::::::::
algorithm

:::
for

:::
the

:::
GL

:::::::
element

:::
is:

Algorithm 3
::::::
Subgrid

::::::::
modeling

:::
for

:::
the

:::
GL

:::::::
element

Take all the ‘potential GL elements’ and solve χ̃(x) = 0 to find x̃GL and the GL element.

Determine which case this GL element belongs to by checking the geometrical conditions at xi

SpecifyHN (x) andHβ(x) based on x̃GL depending on the case and the advance or retreat phase.

Integrate Eq. (29) for the FEM matrix assembly.

Equations (1), (7), and (8) form a system of coupled nonlinear equations. They are solved in the same manner as in Elmer/ICE

v.8.3. The xGL position is determined dynamically within every nonlinear iteration when solving the FS equations and the high

order integrations are based on the current xGL. The nonlinear FS is solved with fixed-point iterations to
::::::
detailed

:::::::::
procedure390

:
is
:::::::::
explained

::
in

:::::::::
Algorithms

:::
1,

::
2,

:::
and

::
3.

::::
The

:::::::
solution

::
to

:::
the

::::::::
nonlinear

:::
FS

::::::
system

::
is

:::::::::
computed

::::
with

:::::
Picard

::::::::
iterations

:::
to

:
a
:
10−5

relative error with a limit of maximal 25 nonlinear iterationsand the grounded condition is set if the distance between of the

bottom surface and the bedrock is smaller than 10−3 m
:
.
::::
The

::::
x̃GL :::::::

position
::
is

:::::::::
determined

::::::::::
dynamically

::::::
during

::::
each

::::::::::
fixed-point

:::::::
iteration

::
by

:::::::
solving

:::
Eq. (27)

::::
with

::̃
χ

:::
and

:::
the

:::::::
solution

::::::
σnn(x)

:::::
from

:::
the

:::::::
previous

::::::::
nonlinear

::::::::
iteration,

:::
and

:::
the

::::
step

::::::::
functions

::::
HN

:::
and

:::
Hβ:::

are
:::::::
adjusted

::::::::::
accordingly.395
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5 Results

The numerical experiments follow the MISMIP benchmarkPattyn et al. (2012) and
::::::::::::::::::::

(Pattyn et al., 2012) and
::
a comparison is

made with the results inGagliardini et al. (2016)
::::::::::::::::::::
(Gagliardini et al., 2016). Using the experiment MISMIP 3a, the setups are

exactly the same as in the advancing and retreating simulations inGagliardini et al. (2016)
::::::::::::::::::::
(Gagliardini et al., 2016). The ex-

periments are run with spatial resolutions of ∆x= 4 km, 2 km and 1 kmwith 20 vertical extruded layers
:
.
:::
The

:::::
mesh

::
at

:::
the

::::
base400

:
is
::::::::
extruded

::::::::
vertically

::
in

::
20

:::::
layers

::::
with

:::::::::::
equidistantly

::::::
placed

:::::
nodes

::
in

::::
each

:::::::
vertical

::::::
column. The timestep is ∆t= 0.125 year for

all the three resolutions to eliminate time discretization errors when comparing different spatial resolutions.

The dependence on γ0 for the retreating ice is shown in Fig. 4 with γ0 between 104 and 109. The estimated GL positions

do not vary with different choices of γ0 from 105 to 108 which suggests a suitable range of γ0. If γ0 is too small (γ0� 104),

oscillations appear in the estimated GL positions. If γ0 is too large (γ0� 108), then more nonlinear iterations are needed for405

each time step
::
in

:::::::::
Algorithm

:
1
:::
are

::::::
needed

::
in

::::
each

:::::::
timestep. The same dependency of γ0 is observed for the advance experiments

and for different mesh resolutions as well. For
:::
The

::::::
results

:::
are

:::
not

::::
very

:::::::
sensitive

::
to

:::
γ0 :::

and
:::
for the remaining experiments , we

fix
::
we

::::::
choose γ0 = 106.
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Figure 4. The MISMIP 3a retreat experiment with ∆x= 1000 m for different choices of γ0 in the time interval [0,10000] years.

The GL position during 10000 years in the advance and retreat phases are displayed in Fig. 5 for different mesh sizes
::::
mesh

:::::::::
resolutions. The range of the results fromGagliardini et al. (2016) with mesh resolutions

::::::::::::::::::::::::
(Gagliardini et al., 2016) with

:
∆x=410

25 and 50 m are shown as background shaded regions with colors purple and pink
:
,
::::::::::
respectively. We achieve similar GL

migration results both for the advance and retreat experiments with at least 20 times larger mesh sizes
:::::
mesh

:::::::::
resolutions.

We observed oscillations at the top surface
:::
ice

::::::
surface near the GL in all the experiments as expected fromDurand et al. (2009a); Schoof (2011)

::::::::::::::::::::::::::::::
(Durand et al., 2009a; Schoof, 2011).

A zoom-in plot of the surface elevation with ∆x= 1 km at t= 10000 years is shown to the left in Fig. 6, where the red dashed

line indicates the estimated GL position. Obviously, the estimated GL position does not coincide with any nodes even at the415

steady state.
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Figure 5. The MISMIP 3a experiments for the GL position when t ∈ [0,10000] with ∆x= 4000,2000 and 1000 m for the advance (solid)

and retreat (dashed) phases. The shaded regions indicate the range of the results inGagliardini et al. (2016)
:::::::::::::::::::
(Gagliardini et al., 2016) with

∆x= 50 m in red and ∆x= 25 m in blue.

The ratio between the thickness below sea level Hbw and the ice thickness H is shown in Fig. 6. The horizontal, purple,

dash-dotted line indicates the ratio of ρ/ρw and the estimated GL is located at the red, dashed line. This result confirms that the

hydrostatic assumptionHρ=Hbwρw :
in

:::
Eq.

:
(9) is not valid in the FS equations for x > xGL close to the GL and at the GL posi-

tion, cf.Durand et al. (2009a); Schoof (2011)
:::::::::::::::::::::::::::::
(Durand et al., 2009a; Schoof, 2011). For x < xGL we have thatHbw/H < ρ/ρw420

sinceHbw decreases andH increases. The conclusion from numerical experiments invan Dongen et al. (2018)
:::::::::::::::::::::
(van Dongen et al., 2018) is

that the hydrostatic assumption and the SSA equations approximate the FS equations well for the floating ice beginning at a

short distance away from the GL.

The top and bottom surface
:::
The

:::::::
surface

:::
and

:::
the

:::::
base velocity solutions from the retreat experiment are shown

::::::::
displayed

in Fig. 7 with ∆x= 1 km after 10000 years. The horizontal velocities on the two surfaces are similar with negligibly small425

differences on the floating ice
:
as

::::::::
expected. The vertical velocitiesw on the top

::::::
surface (orange line) and bottom surface

:::
the

::::
base

(blue line) at the GL are almost discontinuous as analyzed inSchoof (2011)
:::::::::::::
(Schoof, 2011). With the subgrid method

:::::
model,

the rapid variation is resolved by
:::::::::
represented

::
on

:
the 1 km mesh size.
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Figure 6. Details of the solutions for the retreat experiment with ∆x= 1 km after 10000 years. The solid dots represent the nodes of the

elements and the vertical, red, dashed lines indicate the GL position. Left panel: The oscillations at top
::
ice surface near GL. Right panel: The

flotation criterion is evaluated by Hbw/H . The ratio between ρ/ρw is drawn in a horizontal, purple, dash-dotted line.

6 Discussion

Seroussi et alSeroussi et al. (2014)
:::::::::::::::::::
(Seroussi et al., 2014) describe four different subgrid models

:::::::
((NSEP,

::::::
SEP1,

:::::
SEP2

::::
and430

:::::
SEP3)

:
for the friction in SSA and evaluate them in a FEM discretization on a triangulated, planar domain. The

:::::::::
hydrostatic

flotation criterion is applied at the nodes of the triangles. Depending
::
In

:::
the

::::::
NSEP,

::
an

:::::::
element

::
is
:::::::
floating

::
or

::::
not

:::::::::
depending

on how many of the nodes that are floating, the .
:::
In

:::
the

::::
other

:::::
three

::::::::
methods,

:::
an

::::
inner

::::::::
structure

::
in

:::
the

:::::::::
triangular

:::::::
element

::
is

:::::::::
introduced.

::::
One

::::
part

::
of

::
a

::::::
triangle

::
is
:::::::
floating

::::
and

:::
one

::::
part

::
is

::::::::
grounded.

::::
The

:
amount of friction in the triangle is determined.

Also,
:
a
::::::
triangle

:::::
with

:::
the

:::
GL

::
is

:::::::::
determined

:::
by

:::
the

:::::::
flotation

::::::::
criterion.

::::::
Either

:::
the

::::::
friction

:::::::::
coefficient

::
is

:::::::
reduced,

:::
the

::::::::::
integration435

::
in

:::
the

:::::::
element

::::
only

:::::::
includes

:::
the

:::::::::
grounded

::::
part,

::
or

:
a higher order polynomial integration over the triangles in FEM allows

an inner structure in the triangular element
::::::
(SEP3)

::
is

:::::::
applied.

::::::
Faster

::::::::::
convergence

::
as
::::

the
::::
mesh

:::
is

::::::
refined

::
is

::::::::
observed

:::
for

:::
the

::::
latter

::::::::
methods

::::::::
compared

::
to

:::
the

::::
first

:::::::
method.

::::
The

::::::::::::
discretization

::
of

:::
the

:::::::
friction

::
in

::::
Sect.

::
4
::
is
::::::
similar

:::
to

:::
the

:::::
SEP3

:::::::
method

:::
but

::
the

:::
FS

:::::::::
equations

::::
also

::::::
require

::
a
::::::
subgrid

:::::::::
treatment

::
of

:::
the

:::::::
normal

:::::::
velocity

:::::::::
condition.

::
In

:::
the

:::::::
method

:::
for

:::
the

:::
FS

::::::::
equations

:::
in

::::::::::::::::::::
(Gagliardini et al., 2016),

:::
the

:::
GL

:::::::
position

::
is
::
in

::
a
::::
node

::::
and

::
the

:::::::
friction

:::::::::
coefficient

::
is

:::::::::::
approximated

::
in

:::::
three

:::::::
different

:::::
ways.

::::
The440

::::::::
coefficient

::
is
::::::::::::
discontinuous

::
at

:::
the

::::
node

::
in
::::
one

::::
case

:::
(DI

::
in

::::::::::::::::::::::
(Gagliardini et al., 2016)).

:::
Our

:::::::::
coefficient

::
is
::::
also

::::::::::::
discontinuous

:::
but

:
at
:::
the

:::::::::
estimated

::::::
location

:::
of

:::
the

:::
GL

:::::::
between

:::
the

::::::
nodes.

:::
The

:::::::::::
convergence

::
of

:::
the

::::::
steady

::::
state

:::
GL

:::::::
position

::::::
toward

:::
the

:::::::::
reference

:::::::
solutions

::
in
:::::::::::::::::::::::

(Gagliardini et al., 2016) is
::::::::
observed

::
in

::
the

::::::::::
simulations

:::
in

:::
Fig.

::
5.
:::::::::

However,
::
as

:::
the

:::::::
meshes

:::
we

::::
used

:::
are

:::::
more

::::
than

:::
40

:::::
times

:::::
larger

::::
than

:::
the

:::
25

::
m

:::::
finest

:::::::::
resolution

::
in

::::::::::::::::::::
(Gagliardini et al., 2016),

::
it
::
is

:::
still

:::
far

::::
from

:::
the

:::::::::
asymptote.

:::
At

:::
the

::::::
current

::::::::::
resolutions,

:::
the

:::::::::::
discretization

:::::::::
introduces

:::::
strong

:::::
mesh445
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Figure 7. The velocities u (upper panel) and w (lower panel) on the top
:::::
surface (orange) and bottom

::
the

::::
base (blue)surface of the ice in

the retreat experiment with ∆x= 1 km after 10000 years. The red, dashed line indicates
::::
marks

:
the GL position. The vertical velocity w is

zoomed-in close to the GL.

:::::
effect

::::
such

::
as

:::
the

::::
two

:::::::
different

::::::::::
geometrical

::::::::::::
interpretations

::
in

:::
the

::::
two

::::
cases

:::::::::
mentioned

:::
in

::::
Sect.

::
4.

::::
The

::::::
subgrid

:::::::
scheme

::
is

::::
able

::
to

::::::
provide

::
a
::::
more

::::::::
accurate

::::::::::::
representation

::
of

:::
the

:::
GL

:::::::
position

::::
and

:::
the

::::::::
boundary

::::::::::
conditions,

:::
but

:::
the

::::::::
numerical

:::::::
solution

:::
of

:::
the

::::::
velocity

:::::
field,

:::::::
pressure

::
as

::::
well

:::
as

:::
the

:::
two

::::
free

:::::::
surfaces

:::
are

:::
still

::::::::::
determined

::
by

:::
the

::::::
coarse

:::::
mesh,

::::::
which

:::
are

::
the

:::::
main

:::::::
sources

::
of

::
the

:::::::::
numerical

:::::
errors.

Our method can be extended to a triangular mesh covering Γb in the following way. The condition on χ
:̃
χ
:
in Eq. (28) is450

applied on the edges of each triangle T in the mesh. If χ < 0
:::::
χ̃ < 0 in all three nodes then T is grounded. If χ≥ 0

:::::
χ̃≥ 0 in

all nodes then T is floating. The GL passes inside T if χ
:̃
χ

:
has a different sign in one of the nodes. Then the GL crosses the

two edges where χ < 0
::::
χ̃ < 0

:
in one node and χ≥ 0

:::::
χ̃≥ 0 in the other node. In this way, a continuous reconstruction of a

piecewise linear GL is possible on Γb. The FEM approximation is modified in the same manner as in Sect. 4 with
::::
using

::::
step

:::::::
functions

::
in
:

Nitsche’s method.455
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An alternative to subgrid modeling
:
a
::::::
subgrid

:::::::
scheme is to introduce dynamic adaptation of the mesh on Γb with a refinement

at the GL as in e.g.Cornford et al. (2013); Drouet et al. (2013); Gladstone et al. (2010a)
::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Cornford et al., 2013; Drouet et al., 2013; Gladstone et al., 2010a).

In general, a fine mesh is needed along the GL and in an area surrounding it. Since the GL moves long distances at least in

simulations of palaeo-ice sheets, the adaptation should be dynamic, permit refinement and coarsening of the mesh, and be

based on some estimate of the model inaccuracy
::::::::
numerical

:::::
error

::
of

:::
the

:::::::
method. Furthermore, shorter timesteps are necessary460

for stability when the mesh size is smaller in a mesh adaptive method. Introducing a time dependent mesh adaptivity into an

existing code requires a substantial coding effort and will increase the computational work considerably. Subgrid modeling is

easier to implement and the increase in computing time is small.

7 Conclusions

Subgrid models
:
A
:::::::
subgrid

::::::
scheme

:
at the GL have

::
has

:
been developed and tested in the SSA model for 2D flow

::::::
vertical

:::
ice

::::
flow465

::
in

:::::::::::::::::::::::
(Gladstone et al., 2010b) and

:
inGladstone et al. (2010b) and for 3D flow inSeroussi et al. (2014)

::::::::::::::::::
(Seroussi et al., 2014), for

the friction in the vertically integrated model BISICLESCornford et al. (2013) for 3D flow inCornford et al. (2016)
:::::::::::::::::::::
(Cornford et al., 2013) for

::
2D

::::
flow

::
in

:::::::::::::::::::
(Cornford et al., 2016), and for the PISM model mixing SIA with SSA in 3D inFeldmann et al. (2014)

:::::::::::::::::::
(Feldmann et al., 2014).

Here we propose a subgrid model in 2D
::::::
scheme for the FS equations

:::
for

:
a
:::
2D

::::::
vertical

::::
ice, implemented in Elmer/ICE,

:
that can

be extended to 3D. The mesh is static and the moving GL position within one element is determined by linear interpolation with470

an auxiliary function χ̃ based on the theory in Schoof (2011)
::::
χ̃(x). Only in that element, the FEM discretization is modified.

The method
::::::::
numerical

:::::::
scheme is applied to the simulation of an ice sheet in

:
a 2D

::::::
vertical

:::
ice

:::::
sheet with an advanc-

ing GL and one with a retreating GL. The data
:::::
model

::::::
setups

:
for the tests are the same as in one of the MISMIP exam-

plesPattyn et al. (2012) and inGagliardini et al. (2016)
::::::::::::::::::::
(Pattyn et al., 2012) and

::
in

:::::::::::::::::::::
(Gagliardini et al., 2016). Comparable re-

sults toGagliardini et al. (2016) are obtained with subgrid modeling
::::::::::::::::::::::::
(Gagliardini et al., 2016) are

:::::::
obtained

:::::
using

:::
the

:::::::
subgrid475

::::::
scheme

:
with more than 20 times larger mesh sizes. A larger mesh size also allows a longer timestep for the time integration.

Without further knowledge of the basal conditions and detailed models at the GL, solving χ̃(x) = 0
::::::
Solving

::::::::
χ̃(x) = 0

:::
for

::::
xGL

provides a good approximation of the GL position.
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