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A full Stokes subgrid model scheme for simulation of grounding line
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Gong Cheng', Per Lotstedt!, and Lina von Sydow!
! Department of Information Technology, Uppsala University, P. O. Box 337, SE-75105 Uppsala, Sweden
Correspondence: Gong Cheng (cheng.gong @it.uu.se)

Abstract. The full Stokes equations are solved by a finite element method for simulation of large ice sheets and glaciers. The
simulation is particularly sensitive to the discretization of the grounding line which separates the ice resting on the bedrock and
the ice floating on water and is moving in time. The boundary conditions at the ice base are enforced by Nitsche’s method and
a subgrid treatment of the elements-element in the discretization elese-te-with the grounding line. Simulations with the method
in two dimensions for an advancing and a retreating grounding line illustrate the performance of the method. It is implemented

in the two dimensional version of the open source code Elmer/ICE.

1 Introduction

Simulation with ice sheet models is a tool to assess the future sea-level rise (SLR) due to melting of continental ice sheets and

glaciersHanna-et-al2043)- (Hanna et al., 2013) and to reconstruct the ice sheets of the pastbeConto-andPollard(2016);-Stokes-et-al(20+

comparison with measurements and validation of the models. In the models, the predictions are particularly sensitive to the

numerical treatment of the grounding line (GL)Burand-and-Pattyn(26+5) (Durand and Pattyn, 2015). The GL is the line where
the ice sheet leaves the solid bedrock and becomes an ice shelf floating on water driven by buoyancy. It is important to know
the GL position to be able to quantify the ice discharge into the sea and as an indicator ifthe-ice-sheetis-advancingorretreating
Konrad-et-al-2048)of ice sheet advances or retreats (Konrad et al., 2018). The distance that the GL moves may be long over
palaeo time scales. It is shown inkKingstake-et-ab-2648)- (Kingslake et al., 2018) that the GL has retreated several hundred km

on-in West Antarctica during the last 11,500 years and then advanced again after the isostatic rebound of the bed. The sensi-

tivity, long time intervals, and long distances require a careful treatment of the GL neighborhood by the numerical method to

discretize the model equations.
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When the ice rests on the ground and is affected by frictional forces on the bed, the ice flow is dominated by vertical shear

stresses. Longitadinal-stresses-are-dominant-when-theieeis-The longitudinal stress gradient controls the flow of the ice floating
on water. The GL is in the transition zone between these two types of flow with a gradual change of the stress field. A-SSA

The most accurate ice model in theory is based on the full Stokes (FS) equations. A simplification of the FS equations
integrating in the depth of the ice is the shallow shelf (or shelfy stream) approximation (SSA) (MacAyeal, 1989). It is
pe—often used for simulation of the interaction between a grounded

ice sheet and a marine ice shelf, In the zone between the grounded ice and the floating ice, it is necessary to use the FS equa-

Docquier et al., 2011; Sch

the ice is moving rapidly on the ground with low basal friction and the SSA equations are accurate both upstream and

downstream of the GL. The solution to the linearized FS equations close to the GL is investigated using perturbation theory

iee-inereases-and-the-thickness-deereases-there— (Schoof, 2011).

The evolution of the GL in simulations is sensitive to the ice model, the basal friction model, and numerical parameters.
In a major effort MISMIPPattyn-et-al(2613;2612) (Pattyn et al., 2013, 2012), different ice models and implementations solve
the same ice flow problems and the predicted GL steady state and transient GL motion are compared. The results depend on
the model equations and the mesh resolutionPattyr-et-al(2043) (Pattyn et al., 2013). The prediction of the GL and the SLR is
different for different ice equations such as FS and SSA also inPattyn-and-Durand-(2613) (Pattyn and Durand, 2013). Including
equations with vertical shear stress at the GL such as the FS equations seems to be crucial. The flotation condition determines

where the GL is in SSA in (Docquier et al., 2011; Drouet et al., 2013). It is based on Archimedes’ principle for an ice column

immersed in water. The friction laws at the ice base depend on the effective pressure, the basal velocity, and the distance to the

ondex—etal - Gashardini-et-alk - Gladstone-et-al - Lesuy-etak 4} (Brondex et al

The GL position and the SLR vary considerably depending on the choice of friction model. Given the friction model, the results

GL in different combinations inB

are sensitive to its model parameters tooGeng-et-al(2017) (Gong et al., 2017).
Parameters in the numerical methods also influence the GL migration. It is observed inPurand-et-al-2009b)- (Durand et al., 2009b) that

the mesh resolution along the ice bed has to be fine to obtain reliable solutions with FS in GL simulations. The GL is then
located in a node of the fixed mesh. A mesh size below 1 km is necessary 1n1:afeﬂﬁe&al—629%9} Larour et al., 2019) to re-
solve the features at the GL. i he
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nite volume discretization of an approximation of the FS equations are employed inCoernford-et-al(2043)- (Cornford et al., 2013) to

study the GL retreat and loss of ice in West Antarctica. The FS solutions of benchmark problems inPattyn-et-al-(2043)-computed

by FEM-implementations- (Pattyn et al., 2013) computed by an implementation of the finite element method (FEM) in Elmer/ICEGagliardit

FELIX-SEkengetal2042)- (Leng et al., 2012) are compared inZhanget-al-(2047) (Zhang et al., 2017). The differences be-

tween the codes are attributed to different treatment of a friction parameter at the GL and different assignment of grounded and
floating nodes and element faces.

A subgrid medet-scheme introduces an inner structure in the discretization element or mesh volume where the GL is located.
Such a model for the GL is tested inGladstone-et-al(20+0b)- (Gladstone et al., 2010b) for the 1D SSA equation where the
flotation condition for the ice defines the position of the GL. The GL migration is determined by the 2D SSA equations dis-
cretized by the finite element method (FEM) inSeroussi-et-al(2044) (Seroussi et al., 2014). Subgrid models at the GL are
compared to a model without an internal structure in the element. The conclusion is that sub-element parameterization is
necessary. A shallow approximation to FS with subgrid-medeling-a subgrid scheme on coarse meshes is compared to FS
in : ak: - (Feldmann et al., 2014) with similar results for the GL migration. Subgrid modeling and adaptiv-

ity are compared inCernford-et-al+201+6)- (Cornford et al., 2016) for a vertically integrated model. The—stabiity—of-the-GE

agreement-A fine mesh resolution is necessary for converged GL positions with FS inDurand-et-al-42009a;-b) (Durand et al., 2009a, b).

The purpose of a subgrid medel-scheme is to avoid such fine meshes.

The fine mesh resolution needed in GL simulations with the FS equations would require large computational efforts in 3D te
solve-the-equations-in long time intervals. Since the GL moves long distances in palaco simulations, a dynamic mesh refinement
and coarsening of the mesh following the GL is necessary. The alternative pursued here with FEM is to introduce a subgrid
modeling-with-FEM-scheme in the mesh elements where the GL is located and keep the mesh size coarser. The subgrid medet
scheme is restricted to one element in a 2D vertical ice and is therefore computationally inexpensive. In an extension to 3D, the
subgrid medel-scheme would be applied along a +B-line of elements in 3D. The results with numerical modeling will always
depend on the mesh resolution but can be more or less sensitive to the mesh spacing and time steps. Our subgrid medeling

scheme is aiming at improving the accuracy in GL simulations for a static meshsize.

We solve the FS equations in a 2D vertical ice with the Galerkin method implemented in Elmer/ICEGaglhardini-et-ab~2643) (Gagliardini

A subgrid discretization is proposed and tested for the element where the GL is located. The boundary conditions are imposed
by Nitsche’s method at the ice base in the weak formulation of the equationsNits ; S ak: : i

The linear Stokes equations are solved inChouly-et-al+204+7a)- (Chouly et al., 2017a) with Nitsche’s treatment of the boundary
conditions. They solve the equations for the displacement but here we solve for the velocity using similar numerical techniques

to weakly impose the Dirichlet boundary conditions -

GLisleeatedon the normal velocity at the base. The frictional force in the tangential direction is applied on part of the element
with the GL.. The position of the GL within the element is determined by-in agreement with theory developed for the linearized

FS inSehoof (2041 (Schoof, 2011).




95

100

105

110

115

The paper is organized as follows. Section 2 is devoted to the presentation of the mathematical model of the ice sheet

dynamics. In Sect. 3, the numerical discretization is-presented-with FEM is given while the subgrid medeling-scheme around
the GL is found in Sect. 4. We-present-the-numerieal-results-The numerical results for a MISMIP problem are presented in

Sect. 5. The extension to 3D is discussed in Sect. 6 and finally some conclusions are drawn in Sect. 7.

2 Ice model
2.1 The full Stokes (FS) equations

We use the FS equations in a 2D vertical ice with coordinates x = (z,z)” for modeling of the flow of an ice sheetHutter 1983 (Hutter, 198

These nonlinear partial differential equations (PDESs) in the interior of the ice domain €2 are given by

V.-u=0,
ey
-V.o= Pg;
where the stress tensor is &==2n{w)}r{u)—pk-The symmetrie- u) — pl and the deviatoric stress tensor is 7(u) = 2n(u)é(u).
The strain rate tensor is defined by
1 €11 €
(=g (Vatva=| " ), @)
2 €12 €22
[ is the identity matrix, and the viscosity is defined by Glen’s flow law
1 Ny _1_1.l=n . 1 [N
n(w) =5 (AT)) = née™ o= Sul(r(u)r(u))y/ Str(e(u)é(u)). 3)

Here u = (u,w)” is the vector of velocities, p is the density of the ice, p denotes the pressure, and the gravitational accel-
eration in the z-direction is denoted by g. The rate factor A(T") describes how the viscosity depends on the pressure melting
point corrected temperature 7”. For isothermal flow assumed here, the rate factor A is constant. Finally, n is usually taken to
be 3.

2.2 Boundary conditions

At the boundary I of the ice domain 2 we define the normal outgoing vector n and tangential vector t, see FigareFig. 1. In a

the 2D vertical case considered here, #-the ice sheet geometry is constant in the-figure-The-upper-boundary y. The ice surface
is denoted by I'y and the lower-boundary-isTyice baseis Iy =T'y, UT'yr. Aty and 'y, the floating part of I', we have that

ngs. O’Il:fs N O'Il:fbf (4)
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Figure 1. A two dimensional schematic view of a marine ice sheet.
respectively. The ice is stress-free at Iy, fs = 0, and fs=—pmnf,s = —p,,n at the ice/ocean interface I'yy where p,, is the

water pressure. Let
Ont =t -on, opp=n-on, ug =t-u,,

where o,, and o, are the normal and tangential components of the stress and wuy is the tangential component of the ice

velocity at the ice base. Then for the slip boundary I',, the grounded part of I';, where the ice is grotndedon the bedrock, we

have a friction law for the sliding ice

ont +B8(0,x)ut =0, up=mn-u=0, —onn > Puw., ®)
where u,, is the normal component of the ice velocity. The type of friction law is determined by the friction coefficient 3. There
At I'yy, there is a balance between oy, and p,, atFp7-and the contact is friction-free, 5 = 0, then

ont =0, —Onn = Pw- 6)

The-GlLislocated-where- At the GL, the boundary condition switches from 3 > 0 and u,, =0 on Iy, to 8 =0 and a free uy, on
I'ys. In 2D vertical ice, the GL is the point (zg 1, 2¢1) between I'yg and Ty ;.
With-the-ocean-surface-The ocean surface is at z = 0, and p,, = —p,, gz, Where p,, is the density of sea water, z, is the

z-coordinate of I'y, and g is the gravitation-constantgravitational acceleration.

2.3 The free surface equations

The boundaries I'; and I'y are time-dependent and move according to two free surface equations. The boundary I'y, follows

the fixed bedrock with coordinates (x,b(x)).



135 The z-coordinate of the free-surfaceice surface position zs(z,t) at I's (see Fig. 1) is the solution of an advection equation

0z, T 0z,
ot " or

where a, denotes the netsurface-aecumulationfablation-of iee-surface mass balance and u; = (us,w;)? the velocity at the free
surfaceice surface in contact with the atmosphere. Similarly, the z-coordinate for the lewer-surface-ice base 2, of the floating

— Ws = Qs;, (7N

ice at I';; satisfies

8zb 8zb
140 = == = 8
5 + up oy W= (®)

where ay, is the net-aceunmulation/ablation-at the tower surface-basal mass balance and u, = (up,ws )7 the velocity of the ice at

Lz On Loy, 2, = b(x) and on Lyp, 2 < 0.
The thickness of the ice is denoted by H = z; — z;, and depends on {#:#}z and {.

2.4 The solution close to the grounding line

145 The 2D vertical solution of the FS equations in Eq. (1) with a constant viscosity, n = 1 in Eq. (3), is expanded in small parame-
ters in Schoof, 2011). The solutions in different regions around the GL are connected by matched asymptotics.
Upstream of the GL at the bedroekgrounded part, * < x¢y,, the leading terms in the expansion satisfy a simple equationrelation

in scaled variables close to the GL. Across the GL, u, the flux of ice ©wH, and the depth integrated normal or longitudinal stress

711 in Eq. (2) are continuous. By adding-including higher order terms in the expansion in small parameters, it is shown that the
150 upper-surfaceice surface slope is continuous and Archimedes’ flotation condition

Hp=—2zppy )

is not satisfied immediately downstream of the GL. A rapid variation in the vertical velocity w in a short distance interval at the
GL causes oscillations in the u#pperstrfaceice surface in the analysis as observed also in FS simulations inBurand-et-at-2609a) (Durand et
In - +Eh—43) (Schoof, 2011, Ch. 4.3), the solution to the FS in a 2D vertical ice is expanded in two parameters

155 v and €. The aspect ratio of the ice v is the quotient between a typical scale of the heightthickness of the ice H and a horizontal
length scale £, v = H /L, and € is v times the quotient between the longitudinal and the shear stresses 711 and 712 in Eq. (2).
If 15/2 « € < 1 then in a boundary layer close to the GL and = < z¢ it follows from the equations that the leading terms in

the solution in scaled variables satisfy
Tog —p =022 = pg(z — z5). (10

160 On floating ice 195 — p + P, = 0 and the flotation criterion Eq. (9) is fulfilled;-and-en-the-bedrock—rr—p—+pm—<0O:see e

and-, This is a first order approximation of the second relation in Eq. (6). On the grounded ice 799 — p + p., < 0.
Introduce-the notation-Introducing the notation.

X(L(x7z) =T22 — P+ Pw :pg(z—zs(x))fpwgzb(x), (11)



and letting f,, = —z;, be the thickness of the ice

W

165 below the watersurface—sea level yields Then-
Xa(xvzb) = —Q(PH—Pwaw)~ (12)

istnearin—If v < xgp then x<H-x, < 0 in the neighborhood of xgy, on I'yy and if x > xgy, then 3=06-y, = 0 and Eq.

(9) holds true on I'y¢. Suppose that z, and z;, are linear in x. Then is also linear in x. In numerical experiments with the
linear FS (n = 1) inNewicki-and-Wingham-(2008)-¢(252r)- (Nowicki and Wingham, 2008), x, (z, z5) in the original variables
170 varies linearly in x for z < xgr. In Sect. 4, 3tz -is-X . (2, 23) is an approximation of the expression used to estimate the GL

position.

3 Discretization by FEM

In this section we state the weak form of Eq. (1) and introduce the spatial FEM discretization used for Eq. (1) and give the

time-discretization of Eq. (7) and (8).
175 3.1 The weak form of the FS equations

We start by defining the mixed weak form of the FS equations. Introduce £ = 1+41/n, k* = 1+n with n from Glen’s flow law

and the spaces
Vi={vive W™ (@)%}, Qw ={q:qeL" ()}, (13)

see, e.g.Chen-etal(2013); Martin-and-Mennier(20+4) (Chen et al., 2013; Jouvet and Rappaz, 2011; Martin and Monnier, 2014).
180 The weak solution (u,p) of Eq. (1) is obtained as follows. Find (u,p) € Vi, x Q- such that for all (v,q) € Vi, X Q« the

equation

A((w,p), (v;9)) + Br(u,p,v,p) + By (u,v,q) = F(v), (14)

is satisfied, where

A((uyp)v(v,Q))=/277(U)€'(U)ié(V) dx —b(u,q) —b(v,p),
Q

b(an) :/qvu dX,
Q

BI‘(uvvvp):/(_Jnn(uvp)n'v—’_ﬁu'v) dS,
Fbg

BN(u7V7Q):7\/Crnn(v7Q)n'Ud3+’YO/%(n'u)(n'v) ds,

Ty g

F(v):/pg~v dx—/pwn-v ds.

Q Tvy



185 The last term in B/ is added in the weak form in Nitsche’s methodNitsehe(+971)- (Nitsche, 1971) to impose the Dirichlet
condition u, = 0 weakly on I'p,. It can be considered as a penalty term. The size-value of the positive parameter -y depends
on the apptieation-physical problem and / is a measure of the mesh size on I';,. The sensitivity of the GL positions for different
values of 7 is shown in Sect. 5. The first term in By symmetrizes the boundary term Br + B on I'y, and vanishes when

Un = 0.
190 3.2 The discretized FS equations

We employ linear Lagrange elements with Galerkin Least Square (GLS) stabilizationFranea-and-Frey-(1992): Helanow-and-Ahlkrona(201<
avoid spurious oscillations in the pressure using the standard setting in Elmer/ICEGaglhardini-et-ab+2643)- (Gagliardini et al., 2013) approx
solutions in the spaces V', and ()~ in Eq. (13).
The mesh is constructed from a footprint mesh on the bottom-surface-ice base and then extruded with the same number of
195 layers equidistantly in the vertical direction according to the thickness of the ieeice sheet. To simplify the implementation in 2D,
the footprint mesh on the bottomstrface-ice base consists of N +1 nodes %

with z-coordinates z; and a constant mesh size A=Az = z; — ;1.
In general, the GL is somewhere in the interior of an element-E—={a#rHnterval [x;_1, z;] and it crosses the element
interval boundaries as it moves forward in the advance phase and backward in the retreat phase of the ice. The advantage with
200 Nitsche’s way of formulating the boundary conditions is that if #or-cE-x gy, € [2;_1, z;] then the boundary integral over &;
the interval can be split into two parts in Eq. (14) such that {##crf-c Frgand-feararlc Frrasfollows(z, 2p(2)) € Ing.

when x € [x;_j, and if z € |[x gy, x;] then (z, z5(x)) € 'y ¢ as follows

/ Br+ By ds= / —(ann(u,p)n~v—|—ann(v,q)n-u)+5u~v+l}?(n-u)(n~v) ds

[wio1, 2] [xi—1,2cL]
+ / P+ v ds, (15)
[zar, ]
with the integration element ds following I'y,. There is a change of boundary-cenditions-the boundary condition in the middle
205 of the element-&-FEM element where the GL is located. With a strong formulation of u, = 0, the basis functions in ¥V
share this property and the condition changes from the grounded node #;-2;_; where the basis function satisfies u, = 0 and
the floating node at #; 1z, with a free u,, without taking the position of the GL inside &-[z;_;, x;] into account. With the
penalty term in (14) and this term may change inside an element as in (15).
210 The resulting system of nen-linearnonlinear equations form a nonlinear complementarity problemChristensen-et-al—-1998) (Christensen
The distance d between the base of the ice and the bedrock at time ¢ and at x is d=-—z5{a5t)—b(2)>-0d(2.1) = z(z.t) — b(x) > 0.
If d > 0 on I'y¢ then the ice is not in contact with the bedrock and oy + Py, = 0 and if oy + Py, < 0 on I'yg then the ice and

the bedrock are in contact and d = 0. Hence, the complementarity relation in the vertical direction is

zp(2,t) = b(x) >0, opn + 0w <0,  (2p(z,t) —b(x))(0nn + Pw) =00n T, (16)



215 The contact friction law is such that § > 0 when x < x¢ and § = 0 when x > z¢r. The complementarity relation along the

slope at x is then the non-negativity of d and
B =0, Bz,t)(2p(x,t) = b(x)) = 0on LY. (17

In particular, these relations are valid at the nodes x =z, j =0,1,...,N.

The complementarity condition also holds for u,, and oy, such that

220 Onn +Pw <0, un(o'nn +pw):00nrbv (18)

without any sign constraint on wu,, except for the retreat phase when the ice leaves the ground and u,, < 0.
Similar implementations for contact problems using Nitsche’s method are found inCheuly-et-al(20+7a;b) (Chouly et al., 2017a, b),

where the unknowns in the PDEs are the displacement fields instead of the velocity in Eq. (1). Analysis inChouly-et-al(2647a)- (Chouly et a
that Nitsche’s method for the contact problem can provide a stable numerical solution with an optimal convergence rate.

225 The nonlinear equations for the nodal values of u and p are solved by NewtenPicard iterations. The system of linear
equations in every Newton-Picard iteration is solved iteratively-directly by using the Generalised-ConjugateResidual {GER)
methed-MUMPS linear solver in Elmer/ICE. The condition on d¢5-n-a-d; = d(x;) is used to decide if the node x; is used-for
a-so-called-grounded-mask;-which-geometrically grounded or floating. It is computed at each timestep and not changed during
the nonlinear iterations. The procedure for solution of the nonlinear FS equations is outlined in Algorithm 1.

230 3.3 Discretization of the advection equations

The advection equations for the moving ice boundary in Eq. (7) and (8) are discretized in time by a finite difference method
and in space by FEM with linear Lagrange elements for 2z, and 2;,. A-An artificial diffusion stabilization term is added, making
the spatial discretization behave like an upwind scheme in the direction of the velocity as implemented in Elmer/ICE.
The advection equations Eq. (7) and Eq. (8) are integrated in time by a semi-implicit method of first order accuracy. Let
235 ¢ = s or b. Then the solution is advanced from time ¢" to t"+! = ¢" 4+ At with the timestep At by

8zn+1
2 =20 4 At(a” —u” 5 +w?). (19)
x

The spatial derivative of z. is approximated by FEM. A system of linear equations is solved at ¢"*1 for 27 *!. This time
discretization and its properties are discussed inCheng-et-at—+264+7) (Cheng et al., 2017) and summarized as in Algorithm 2.
A stability problem in z; is encountered in the boundary condition at I,y in-Durand-et-ak-(2069a)when the FS equations are
240 solved in (Durand et al., 2009a). It is selvedresolved by expressing z, in p,, at I'y ; with a damping termin-Durand-et-al+(2009a).
An alternative interpretation of the idea inBurand-et-al+2069a)- (Durand et al., 2009a) and an explanation follow below.

The relation between uy, and u at I'yy and u, = u(x, 2(x)) is

U Zbx n 1
S G T (R _m o)

Wy -1 V 1+Z§w Zbx V1+Z§w7



Algorithm 1 Solve the FS equations

For a given mesh, compute d;,j =0,1,..., N, for all the nodes z; at the ice base.
Mark node j as geometrically grounded if d; < 103, otherwise floating.
Find the elements which contain both geometrically grounded and floating nodes, and mark the grounded nodes in these elements as ‘GL
nodes’.
Compute the residual of the FS equations with the initial guess of the solution.
while the residual is larger than the tolerance do
Assemble the FEM matrix for the interior of the domain 2
for the boundary elements on I'y, do
if has ‘GL nodes’ then
Mark the current element as a ‘potential GL element’
Use the subgrid scheme in Algorithm 3 of Sect. 4 for the assembly.
else
Assemble the boundary element.
end if
end for
Solve the linearized FS equations for a correction of the solution
Compute the solution and the residual

end while

Algorithm 2 Time scheme of the GL migration problem

Start from an initial geometry 2° defined by 2, 2°.

forn=0toT/At—1 do
Solve the FS equations on 2" with Algorithm 1, to get the solutions u".

n+1

and zJ'"" with u™ with implicit Euler method.

Solve for z{f“

Use 2" and 22" to update Q™ 1!

end for

10
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where 2y, denotes 0z /0x. InsertInserting u; and w; from Eq. (20) into Eq. (8) to-obtain-yields

15)
%zab—um/l—&—z?z, 21

Instead of discretizing Eq. (21) explicitly at #with-«"—1to-determine p2" ! with u” to determine p’,*!, the base coordinate
is updated implicitly
@ = AL (ab”w 142, 1 (zé’;l)?) (22)

in the solution of Eq. (14).
Assume-Assuming that 2y, is smatl-—The-timestepsmall, the timestep restriction in Eq. (22) is estimated by considering a 2D

slab of the floating ice of width Az and thickness H. Newton’s law of motion yields
My, = Mg — Azxp,,

where M = Ax(zs — z3)p is the mass of the slab. Pivide-Dividing by M, integrate-integrating in time for uy, (™), letr—=mn

or-n—-and-approximate-letting m = n 41 or n, and approximating the integral by the trapezoidal rule for the quadrature to
t m ;

un(tm):/g+& &L ds%gt"ﬁ—%z:ai Z.Zb AL =uy,

2L —z

) P Zs—4%b =0 s b

with the parameters

a;=0.5,i1=0m, «o;=14i=1,....m—1.

Then insert u into Eq. (22). All terms in u" from timesteps i < m are collected in the sum A¢F™~!. Then Eq. (22) can be

written

an,n-‘rl — an,—l’n _ AtQ 9Pw Zgn + At (an _ gt"L _ AtFm_l) (23)
— - 2p 20—z b '

For small changes in z;, in Eq. (23), the explicit method with #=#—21m = n is stable when At is so small that

\1—At2292—“/’)|§1. (24)

When H = 100 m on the ice shelf, At < 6.1 s which is far smaller than the stable steps for Eq. (19). Choosing the implicit

scheme with #—=+#1m = n + 1, the bound on At is

9Pw
/N+A2ZE2 1 <1 25
/11 + 2le_ ; (25)

i.e. there is no bound on positive At for stability but accuracy will restrict At.

Much longer stable timesteps are possible at the surface and the base of the ice with a semi-implicit method Eq. (19) and a
fully implicit method Eq. (22) compared to an explicit method. For example, the timestep for the problem in Eq. (19) with 1 km
mesh size can be up to a couple of months. Therefore, we use the scheme in Eq. (19) for EgEgs. (7) and (8) and the scheme in
Eq. (22) for Eq. (21) and p,, as in : y (Durand et al., 2009a). The difference between the approximations of
2 in Eq. (19) and (22) is of O(At?).

11
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4 Subgrid medeling-scheme around the grounding line

The basic idea of the subgrid method-scheme for the FS equations in this paper follows the GL parameterization (SEP3) for
SSA inSeroussi-et-al«2044)- (Seroussi et al., 2014) and the analysis for FS inSehoof(2041) (Schoof, 2011). The GL is located
at the position where the ice is on the ground and the flotation criterion is perfectly satisfied such that oy, = —p,,. In the Stekes
ES equations, the hydrostatic assumption Eq. (9) may not be valid ;se-the-exaetclose to the GL. Therefore, the GL position
can not be determined by simply checking the total thickness of the ice H against the depth below sea level Hyy—=—23Hp,,.
Instead, the flotation criterion is computed by comparing the water pressure with the numerical normal stress component
orthogonal to the boundaryas-indicated-, as suggested by the first order analysis in Sect. 2.4. The indicator is here defined by

v ) T nn w

X(%) = Inn £ P, (26)

which vanishes on the floating ice and is-approximately—mr—p—py—and-negative-is negative and approximately equal to
Xa.=.T22 — P+ Py in (11) on the ground since the slope of the bedrock is small -and n ~ (0,—1)7.

(Gagliardini et al., 2016; Gladstone et al., 2017), converge to the analytical solution as the mesh size decreases. The analytical
solution satisfies z,(x,t) > b(x) with the boundary conditions are-given-by-in Eq. (6) at the base of the floating ice, and where
the ice is in contact with the bedrock -as-the—red-tine-inFis2z,(z,t) = b(x), the boundary conditions are given by Eq. (5).

Fig. 2 and 3 with a black ‘x’ at the analytical GL position x7,. The two figures share the same analytical solution. However.

; 2 and 3, the basal boundary of the ice z,(x,t) does not
conform with the mesh from the spatial discretization. In particular, the GL position X, of the analytical solution does not
coincide with any of the nodes, but it usually stays on the bedrock b(x) between the last grounded (x;_1) and the first floatin

x;) nodes, see Fig. 2 and 3. The linear element between x;_; and x, is denoted by &;. The sequence of £;,7 =

approximates I',. The grounding line element containing the GL is &;.
Depending on how the mesh is created from the initial geometry and updated during the simulation, the net-foreceswitches
stens-and-the-condition-transforms-into-the-easefirst floating node at x;, as well as the GL element, can be either on the bedrock

as in Fig. 2) or at the basal surface of the ice above the bedrock (as in Fig. 2-whenenm{e—+pute<63), even though the
corresponding analytical solutions are identical. Denote the situation in Fig. 2 by case i, and the one in Fig. 3 by case ii. We

...... ‘sropnded> han IR-conts h tha had+a h 1o aree om—the a AtRe—O ard P 0
o . W W W 2 W o

;) = 0 is satisfied in the node x;. The directions of the net force is-peinting-inward{oan—+pz—=-0)-

e e e ed-at x;, 1 and x; are shown by the arrows in the upper

12
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H ()
0 *
1 *
Hp(x) —
0

Xi-1 iGL X

Figure 2. Schematic figure of the GL in case i, with the arrows indicating the direction of the net forces. Upper panel: The last grounded and
first floating nodes as defined in Elmer/ICE. The light blue line is the analytical solution of the ice sheet with the analytical GL position X 7,.

which indicate the area for Nitsche’s penalty and slip boundary conditions.

anels of Fig. 2 and 3. Consequently, the external forces imposed on the GL element and-the-grounded-nede-in-itis-called-the

oating-o atted oating-nodeare different in the two cases. For instance, in case i,
the GL element is considered as geometrically grounded, shown with red color in the upper panel of Fig. 2. In case ii, the GL.
element is treated as geometrically floating and colored in blue in the upper panel of Fig. 3.

Trreoarse meshes; These two cases are similar to the LG and FF cases in (Gagliardini et al., 2016) implying that the numerical
solutions in the the two cases are different, especially on a coarse mesh (mesh size at about 100 m or larger). Thus, we propose
a subgrid scheme to reduce these differences in the spatial discretization and to capture the GL migration without using a fine
mesh. The schematic drawing of the subgrid scheme for the two cases is shown in the true-pesition-of the GL-is generalty not
in-one-of the nodes; but usually between-the Jast-grounded-middle panels of Fig. 2 and 3. The GL element is divided into the
grounded (red) and floating (blue) patts by the estimated GL position Xgr, on &, which is the numerical approximation of the

To determine the position X

o x(xiea) .
XGL = Xi-1 X(Xi_l)_x(xi)(xzfl X;). 27
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335

'Hﬁ(ﬁ?) —
0 *
Xi—1 Xgr Xi

Figure 3. Schematic figure of the GL in case ii, with the arrows indicating the direction of the net force. Upper panel: The last grounded
and first floating nodes as defined in Elmer/ICE. The light blue line is the analytical solution of the ice sheet with the analytical GL position
xg. The node x; is fully floating and the net force is 0. Middle panel: Linear interpolation to approximate the numerical GL position Xg .
for Nitsche's penalty and slip boundary conditions.

The water pressure x) is a linear function of x on the GL element —

element—In-and the numerical solution of o, (X) 1s also piecewise linear on every element with the standard Lagrange elements

in Elmer/ICE (Gagliardini et al., 2013). In this sense, X,

red ‘x’. It guarantees the existence and uniqueness of X7 on the GL element.
Thefeﬂ%—&ﬁmfeemﬂphe&feélmmmltuanon in case iii 5 7 T =

—-

s more complicated. In the

upper panel of Fig. 3, as the elements on both sides of the node x; are geometrically floating, the boundary condition imposed

always stays on the bedrock

a correction of y(x) is introduced in case ii by Y in

X() = Tnn () £ 20(5). (28)

14
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compare with case i, p
Geﬂeepfua&ft is correction can be considered as using o to approximate g on a virtual element between

rovides the analytical water pressure along the bedrock. Therefore, the position X, is a numerical approximation of the

Fhis-GL position, although it is not geometrically in contact with the bedrock. Moreover, this correction is not necessary
when the GL is advancing since the implicit treatment of the bottom surface is equivalent to additional-water-pressure-at-the

stress-beundary-moving x; towards X; with u, > 0 in Eq. (21) as discussed in Sect. 3.3.

Since we have X)= x) and y(x) = v(x) at the GL element in case i, we can simply use Y(x) to find X, for

the two cases by replacing x in (27) by x. After-the-Gl-pesition-is-determined;-Then the domains I'y, and I'yy are sepa-
rated at #c7Xgy, as in Eq. (15) and the integrals on the GL element are calculated with a high-order integration scheme
as inSeroussi-et-al(2014) to-achieve-a-better (Seroussi et al., 2014), We introduce two step functions H(x) and () to
include and exclude quadrature points in the integration of the Nitsche’s term and the slip boundary condition. To achieve a
reasonable resolution within the MM%@MMWWW%@%&W
in (Seroussi et al., 2014), at

high-erderschemeleast tenth order Gaussian quadrature is required.
The penalty term from-in Nitsche’s method restricts the motion of the element in the normal direction. It sheuld-only-be-is

only imposed on the element which is fully on the ground. On the contrary +-in case iii, the GL element {#751]-, is not
in contact with the bedrockas-inFig—2;-so-only-, see Fig. 3. Only the floating boundary condition sheuld-be-is then used on

he element{# ;4 ]—AdditionallyGL element. When the FS equations are solved, the implicit representation-of-the-bottont
surfaee-update of the basal surface with u,, < 01in Eq. (22) alse-implies that the ease-last grounded node in the previous timeste
is leaving the bedrock when the ice is retreating and the GL moves to the adjacent element. Case i withretreating-Gl-should

be-merged-to-will not appear in that situation with a retreating GL and as in case iii sinee-the-surface-is-leaving-the-bedroek
and-the normal velocity on the element should not be forced to zero. Fe-summarize;-Nitsche’s penalty term should be imposed

on all the fully grounded elements and partially on the GL element in the advance phase as in case i. The step function H/(x
indicates how Nitsche’s method is implemented on the bound elements, see the lower panels of Fig. 2 and 3 for the two

cases. The penalty term contributes to the integration only when Hr(x) = 1.
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£ is treated similarly with the step function #3(x), where #5(x) = Lis on the fully grounded elements and #3(z) = 0 on the
floating elements. For a smoother transition of 5 at the GL, the step function is set to be 1/2 in parts of the GL element before
integrating using the high order scheme. In case i, full friction is applied at the grounded part between x;_ and X, of the GL.
element since this part is also grounded in the analytical solution. Then, the friction is lower in the remaining part of &;. For

and x; in case ii, there is no friction and Hz(x) = 0 and we have reduced friction between x;_

and X see the lower panel of 3. The boundary integral Eq. (15) is now rewritten with the two step functions as

/BF+BN ds = —’HN(ann(mp)n-V+Unn(v,q)n~u)+H56u~V+HN%(n-u)(n-v)
E; Ei

+ (1 —=Hp)pwn-v ds. (29)

the discussion is:.

— Advance phase = case i or case ii
— Retreat phase = case ii

The case is determined by the geometry of the GL element.
The algorithm for the GL element is:

Algorithm 3 Subgrid modeling for the GL element

Take all the ‘potential GL elements’ and solve ¥ (x) = 0 to find Zg, and the GL element.
Determine which case this GL element belongs to by checking the geometrical conditions at x;
Specify Har(z) and Hg(x) based on Z¢r depending on the case and the advance or retreat phase.
Integrate Eq. (29) for the FEM matrix assembly.

Equations (1), (7), and (8) form a system of coupled nonlinear equations. They are solved in the same manner as in Elmer/ICE
v.8.3. The @

detailed procedure
is explained in Algorithms 1, 2, and 3. The solution to the nonlinear FS system is computed with Picard iterations to a 10~°

relative error with a limit of maximal 25 nonlinear iterationsand-the-srounded-conditionis—se he-distance-between-o

bottom-surface-and-the bedrock-is-smaller-than10=>m. The X osition is determined dynamically during each fixed-point
iteration by solving Eq. (27) with ¥ and the solution o, (x) from the previous nonlinear iteration, and the step functions

and H g are adjusted accordingly.
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5 Results

The numerical experiments follow the MISMIP benchmarkPattyn-et-al-26+2)-and- (Pattyn et al., 2012) and a comparison is
made with the results inGagliardini-et-ak  (Gagliardini et al., 2016). Using the experiment MISMIP 3a, the setups are
exactly the same as in the advancing and retreating simulations inGaghardini-et-al(26+6) (Gagliardini et al., 2016). The ex-
400 periments are run with spatial resolutions of Az = 4 km, 2 km and 1 kmwith-20-vertical-extruded-tayers, The mesh at the base
is extruded vertically in 20 layers with equidistantly placed nodes in each vertical column. The timestep is At = 0.125 year for
all the three resolutions to eliminate time discretization errors when comparing different spatial resolutions.
The dependence on 7, for the retreating ice is shown in Fig. 4 with 7o between 10* and 10°. The estimated GL positions
do not vary with different choices of 7y, from 10° to 10% which suggests a suitable range of yo. If 7 is too small (o < 10%),
405 oscillations appear in the estimated GL positions. If 7, is too large (7o >> 10%), then more nonlinear iterations are-needed-for
each-time-stepin Algorithm 1 are needed in each timestep. The same dependency of +y, is observed for the advance experiments
and for different mesh resolutions as well. Fer-The results are not very sensitive to yg and for the remaining experiments -we
fix-we choose o = 10°.

7.60 L0 ; ; ;
7.55 |
—— v =1.0x10*
7.50 40 =1.0x 10°
E — 9y =1.0x10°
5 o — % =10x10"
Sk — o =10x10° ]
— 7 =1.0x10°
735} |
7.30 . . ' '
0.0 0.2 0.4 0.6 0.8 1.0
t (years) x10*

Figure 4. The MISMIP 3a retreat experiment with Az = 1000 m for different choices of 7o in the time interval [0,10000] years.

The GL position during 10000 years in the advance and retreat phases are displayed in Fig. 5 for different mesh-sizesmesh
410 resolutions. The range of the results fromGagliardini-et-al-(2016)-with-meshreselutions- (Gagliardini et al., 2016) with Az =
25 and 50 m are shown as background shaded regions with colors purple and pink, respectively. We achieve similar GL
migration results both for the advance and retreat experiments with at least 20 times larger mesh-sizesmesh resolutions.
We observed oscillations at the top-strfaceice surface near the GL in all the experiments as expected fromBurand-et-al(2669a);-Schoot -
A zoom-in plot of the surface elevation with Az = 1 km at ¢ = 10000 years is shown to the left in Fig. 6, where the red dashed
415 line indicates the estimated GL position. Obviously, the estimated GL position does not coincide with any nodes even at the

steady state.
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Figure 5. The MISMIP 3a experiments for the GL position when ¢ € [0,10000] with Az = 4000,2000 and 1000 m for the advance (solid)

and retreat (dashed) phases. The shaded regions indicate the range of the results inGagliardini-et-al+20+6)- (Gagliardini et al., 2016) with
Az =50 minred and Az = 25 m in blue.

The ratio between the thickness below sea level Hy,, and the ice thickness H is shown in Fig. 6. The horizontal, purple,
dash-dotted line indicates the ratio of p/p,, and the estimated GL is located at the red, dashed line. This result confirms that the
hydrostatic assumption H p = Hy,, py, in Eq. (9) is not valid in the FS equations for > x g, close to the GL and at the GL posi-

420 tion, cf.Purand-et-al(2009a);-Sehoof (2041) (Durand et al., 2009a; Schoof, 2011). For x < z¢r, we have that Hy,,/H < p/pw
since Hy,, decreases and H increases. The conclusion from numerical experiments invan-Dongen-et-ak-«26148)- (van Dongen et al., 2018) is

that the hydrostatic assumption and the SSA equations approximate the FS equations well for the floating ice beginning at a

short distance away from the GL.
The-top-and-bettom-surface-The surface and the base velocity solutions from the retreat experiment are shewn-displayed
425 in Fig. 7 with Az =1 km after 10000 years. The horizontal velocities on the two surfaces are similar with negligibly small
differences on the floating ice as expected. The vertical velocities w on the top-surface (orange line) and bettom-surface the base
(blue line) at the GL are almost discontinuous as analyzed inSehoof(20+1) (Schoof, 2011). With the subgrid methodmodel,

the rapid variation is reselved-by-represented on the 1 km mesh size.
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Figure 6. Details of the solutions for the retreat experiment with Az = 1 km after 10000 years. The solid dots represent the nodes of the
elements and the vertical, red, dashed lines indicate the GL position. Left panel: The oscillations at tep-ice surface near GL. Right panel: The

flotation criterion is evaluated by Hy., /H. The ratio between p/p,, is drawn in a horizontal, purple, dash-dotted line.

6 Discussion

Seroussi et alSeroussi-et-ak(2644)- (Seroussi et al., 2014) describe four different subgrid models((NSEP, SEP1, SEP2 and
SEP3) for the friction in SSA and evaluate them in a FEM discretization on a triangulated, planar domain. The hydrostatic
flotation criterion is applied at the nodes of the triangles. Pepending-In the NSEP, an element is floating or not depending
on how many of the nodes that are floating;-the-. In the other three methods, an inner structure in the triangular element is
introduced. One part of a triangle is floating and one part is grounded. The amount of friction in the-triangle-is-determined:
in the element only includes the grounded part, or a higher order polynomial integration ever-the-triangles-inFEM-allows
an-inner structure-in-the-triangular-element(SEP3) is applied. Faster convergence as the mesh is refined is observed for the
the F'S equations also require a subgrid treatment of the normal velocity condition. In the method for the S equations in

Gagliardini et al., 2016), the GL position is in a node and the friction coefficient is approximated in three different ways. The

coefficient is discontinuous at the node in one case (DI in (Gagliardini et al., 2016)). Our coefficient is also discontinuous but

at the estimated location of the GL between the nodes.

The convergence of the steady state GL position toward the reference solutions in (Gagliardini et al., 2016) is observed in
the simulations in Fig. 5. However, as the meshes we used are more than 40 times larger than the 25 m finest resolution in

Gagliardini et al., 2016), it is still far from the asymptote. At the current resolutions, the discretization introduces strong mesh
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Figure 7. The velocities u (upper panel) and w (lower panel) on the top-surface (orange) and bettom-the base (blue)surface- of the ice in
the retreat experiment with Az = 1 km after 10000 years. The red, dashed line indieates-marks the GL position. The vertical velocity w is

zoomed-in close to the GL.

effect such as the two different geometrical interpretations in the two cases mentioned in Sect. 4. The subgrid scheme is able
to provide a more accurate representation of the GL position and the boundary conditions, but the numerical solution of the

velocity field, pressure as well as the two free surfaces are still determined by the coarse mesh, which are the main sources of

the numerical errors.

Our method can be extended to a triangular mesh covering I'y, in the following way. The condition on x—y in Eq. (28) is
applied on the edges of each triangle 7 in the mesh. If 3<-6-y < 0 in all three nodes then 7 is grounded. If 3->0-y > 0 in
all nodes then 7 is floating. The GL passes inside T if x—x has a different sign in one of the nodes. Then the GL crosses the
two edges where 5<-0-y < 0 in one node and 5=-6-x > 0 in the other node. In this way, a continuous reconstruction of a
piecewise linear GL is possible on I';,. The FEM approximation is modified in the same manner as in Sect. 4 with-using step

functions in Nitsche’s method.
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An alternative to subgrid-moedeling-a subgrid scheme is to introduce dynamic adaptation of the mesh on I';, with a refinement
ay (Cornford et al., 2013; Drouet et al., 2013; Gladsto

In general, a fine mesh is needed along the GL and in an area surrounding it. Since the GL moves long distances at least in

atthe GL asine.g.

simulations of palaeo-ice sheets, the adaptation should be dynamic, permit refinement and coarsening of the mesh, and be
460 based on some estimate of the medelinaceuraeynumerical error of the method. Furthermore, shorter timesteps are necessary
for stability when the mesh size is smaller in a mesh adaptive method. Introducing a time dependent mesh adaptivity into an
existing code requires a substantial coding effort and will increase the computational work considerably. Subgrid modeling is

easier to implement and the increase in computing time is small.

7 Conclusions

465 Subgrid-medels-A subgrid scheme at the GL have-has been developed and tested in the SSA model for 2D flew-vertical ice flow
in (Gladstone et al., 2010b) and in i Seroussi et al., 2014), for
the friction in the vertically integrated model BISICLESCornford-et-al-2013)-for3D-flow-inCernford-et-ak(2016) (Cornford et al., 2013)

2D flow in (Cornford et al., 2016), and for the PISM model mixing SIA with SSA in 3D inFeldmann-et-al-204+4) (Feldmann et al., 2014).
Here we propose a subgrid medelin-2B-scheme for the FS equations for a 2D vertical ice, implemented in Elmer/ICE, that can

AN AN A AANA AN ANANANAL

470 be extended to 3D. The mesh is static and the moving GL position within one element is determined by linear interpolation with

an auxiliary function x-based-on-the-theory-in-Sehoof(264H Y (x). Only in that element, the FEM discretization is modified.
The methed-numerical scheme is applied to the simulation of an—iee—sheetin—a 2D vertical ice sheet with an advanc-

ing GL and one with a retreating GL. The data-model setups for the tests are the same as in one of the MISMIP exam-
ples%&yﬁw—%%ﬁm—m&ghﬁmﬁfew—@@% Pattyn et al., 2012) and in (Gagliardini et al., 2016). Comparable re-
475 sults toGag tng— (Gagliardini et al., 2016) are obtained using the subgrid

scheme with more than 20 times larger mesh sizes. A larger mesh size also allows a longer timestep for the time integration.

Solving ¥(x) = 0 for Xg.

provides a good approximation of the GL position.

Code availability. The FS sub-grid model is implemented based on Elmer/ICE Version: 8.3 (Rev: t6bfdc9) with the scripts at http://doi.org/
480 10.5281/zenodo.3401478 and http://doi.org/10.5281/zenodo.3401475.
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