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Abstract. High-quality wave prediction with a numerical wave model is of societal value. To 

initialize the wave model, wave data assimilation (WDA) is necessary to combine the model and 

observations. Due to imperfect numerical schemes and approximated physical processes, a wave 15 

model is always biased in relation to the real world. In this study, two assimilation systems are first 

developed using two nearly independent wave models; then, “perfect” and “biased” assimilation 

frameworks based on the two assimilation systems are designed to reveal the uncertainties of WDA. 

A series of “biased” assimilation experiments is conducted to systematically examine the adverse 

impact of model bias on WDA. A statistical approach based on the results from multiple assimilation 20 

systems is explored to carry out bias correction, by which the final wave analysis is significantly 

improved with the merits of individual assimilation systems. The framework with multiple 

assimilation systems provides an effective platform to improve wave analyses and predictions and 

help identify model deficits, thereby improving the model. 

1 Introduction 25 

Ocean waves, referring to the ocean surface gravity waves driven by wind, are important physical 

processes in the study of multiscale coupled systems. Many studies show that ocean waves are 

necessary for upper ocean mixing processes, whether in small-scale coastal simulations or large-scale 
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global climate simulations (e.g., Babanin et al., 2009; Huang and Qiao, 2010; Qiao et al., 2004, 2010). 

The existence of ocean waves can modify the structures of both atmospheric and marine boundary 30 

layers by providing sea surface roughness, wave-induced bottom stress, breaking wave-induced mixing, 

and so on, which ultimately influence air-sea momentum and heat exchange. Therefore, ocean waves 

are an important component in atmosphere-ocean interaction flux processes (e.g., Chen et al., 2007; 

Doyle, 2002; Liu et al., 2011; Warner et al., 2010). In addition, the study of ocean waves can reduce 

and prevent marine disasters and provide guidance for development of the social economy (e.g., Folley 35 

and Whittaker, 2009; Rusu, 2015; Wei et al., 2017). Thus, studying ocean waves is of great scientific 

and social significance. 

At present, ocean wave observational techniques are constantly being improved (e.g., Daniel et al., 

2011; Hisaki, 2005). Except for traditional buoy observations (e.g., Mitsuyasu et al., 1980; Rapizo et al., 

2015; Walsh et al., 1989), satellites can provide much near real-time wave observational information, 40 

which is beneficial for understanding the state of ocean waves (e.g., Gommenginger et al., 2003; 

Lzaguirre et al., 2011; Queffeulou P, 2004). However, observations always represent scattered samples 

in time and space in the real world and therefore do not represent the complete three-dimensional 

structure and temporal evolution of real world waves. 

Numerical wave models are a powerful tool for studying the physical processes of ocean waves and 45 

predicting future wave states. Following the development of the previous two generations, third-

generation wave models, such as WAve Modeling (WAM) (WAMDI Group, 1988), WaveWatch III 

(WW3) (Tolman, 1991), Simulating Waves Nearshore (SWAN) (Booij et al., 1999), and MArine 

Science and Numerical Modeling (MASNUM) (Yang et al., 2005), integrate the spectral action balance 

equation describing the two-dimensional ocean wave spectrum evolution without additional ad hoc 50 

assumptions regarding the spectral shape, and these third-generation models are more robust for 

arbitrary wind fields than previous models. However, there are generally three error sources in wave 

models. One error source is from an incomplete understanding of the physical processes, approximate 

expressions of the numerical discretization schemes and so on, which causes systematic errors that are 

usually referred to as wave model bias. The second error source is due to inaccurate wind forcings of 55 

wave models. The third error source is from the initial condition uncertainties, which can grow due to 

nonlinearity of the model equations during model forwarding. In this sense, the model simulated waves 

do not represent the real world either. 
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Given the scattering nature of observational information and the approximate characteristics of wave 

modeling, wave model data assimilation (WDA) is necessary to combine the advantages of both the 60 

model and observations. WDA optimizes the model initial conditions to produce more accurate wave 

forecasts and produces more accurate evolution of the 3-dimensional wave states to elucidate the 

underlying mechanisms; this approach dates back to the 1980s (e.g., Esteva, 1988; Janssen et al., 1989). 

Since then, many advanced WDA methods have been developed (e.g., Abdalla et al., 2013; Bauer et al., 

1996; Greenslade and Young, 2004; Jesus and Cavaleri, 2015; Lionello et al., 1992; Sun et al., 2017; 65 

Vorrips et al., 1999), and their applications have been assessed (e.g., Francis and Stratton, 1990; Heras 

et al., 1994; Stopa and Cheung, 2014). Furthermore, various observation types, such as buoy, radar and 

satellite, have been applied to WDA (e.g., Bhatt et al., 2005; Breivik et al., 1998; Feng et al., 2006; 

Greenslade, 2001; Hasselmann et al., 1997; Qi and Cao, 2016; Voorrips, 1999; Waters et al., 2013), 

and the wave forecasts have also been directly addressed (e.g., Almeida et al., 2016; Emmanouil et al., 70 

2012; Lionello et al., 1995; Qi and Fan, 2013; Sannasiraj et al., 2006; Voorrips, 1999; Wang and Yu, 

2009; Zhang et al., 2003). 

Due to the approximate nature of the numerical discretization and physical processes, a systematic 

difference between a model and the real world (i.e., model bias) exists. As noted by Zhang et al. (2012), 

since model bias is not well defined in observational space, the influence of model bias on data 75 

assimilation is a challenging research topic. Alternatively, one can simulate model bias using a pair of 

models and study the adverse impacts on data assimilation. Inspired by previous work (e.g., Dee, 2005; 

Zhang et al., 2012), here, we use a simple data assimilation scheme with two wave models (WW3 and 

SWAN) to explore the influences of different error sources on WDA. The adverse impacts of wind 

forcing errors and initial condition uncertainties as well as wave model bias on WDA are studied first, 80 

and then two simple statistical methods for bias correction are developed to mitigate assimilation errors 

and improve wave analysis. 

This paper is organized as follows. After the introduction, the methodology is presented in section 2, 

including a brief description of the employed models and observations, development of the two WDA 

systems using the WW3 and SWAN models, as well as the design of experiments throughout the study. 85 

Section 3 presents the model bias analysis and the adverse impacts of model bias on WDA. In section 4, 

the method used to mitigate model bias influences on wave assimilation is explored. Finally, the 

discussion and conclusion are given in section 5. 
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2 Methodology 

2.1 Models and data 90 

2.1.1 Three models 

In the wave models, the variance spectrum or energy density E(σ, θ) is a quantity that represents the 

wave energy distribution in the radian frequency (σ) and propagation direction(θ). Without ambient 

ocean currents, the variance or energy of a wave package is conserved. However, if the current is 

involved, due to the work done by the current on the mean momentum transfer of waves (Longuet-95 

Higgins and Stewart, 1961, 1962), the energy of a spectral component is no longer conserved. In 

general, an action density spectrum defined as N=E/σ is considered within the models. Then, the 

governing equation of the wave model can be written as follows: 
'(
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The left-hand side is the kinematic part of this equation. The second term describes the wave energy 100 

propagation in two-dimensional geographical space denoted by	
,
→. 

/0
→ is the group velocity that follows 

the dispersion relation. The third term represents the effect of shifting the radian frequency due to 

variation in depth. The fourth term represents the depth-induced refraction. 𝑐4	and 𝑐6   are wave 

velocities in the frequency 𝜎  and direction 	𝜃 , respectively. On the right-hand side, 𝑆)@)  is the 

nonconservative source/sink term representing all physical processes that generate, dissipate, or 105 

redistribute wave energy. Typically, there are three important physical processes that contribute to 𝑆)@), 

which include the atmosphere-wave interaction, nonlinear wave-wave interaction, and wave-ocean 

interaction. In a shallow-water case, additional processes must be considered, such as wave-bottom 

interaction, depth-induced breaking, and triad wave-wave interaction. 

In this study, we use three advanced third-generation spectrum models. The first one is WAve 110 

Modeling (WAM, Cycle 4.5.4) developed from the Sea Wave Modelling Project (SWAMP). For the 

first time, WAM creatively overcomes the shortcomings of the first- and second-generation wave 

models, such as the numerical problems and the restrictions on the spectral shape, and is available for 

all wind fields and extreme situations. 

The second model is WaveWatch III (WW3, version 5.16), which is provided online by the National 115 

Center for Environmental Prediction (NCEP). In terms of the major aspects such as governing 

equations, program structures, as well as numerical and physical approaches, WW3 is different from its 
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predecessors (WW2 developed at the NASA Goddard Space Flight Center, and WW1 developed at 

Delft University of Technology, Netherlands), as WW3 has a more reasonable wind-wave physical 

mechanism

The third model is Simulating WAves Nearshore (SWAN, version 41.20) provided by Delft University 

of Technology, Netherlands. SWAN model employs a fully implicit finite differencing scheme, which 

is unconditionally stable and is more focused on wave propagation processes in shallow water. The 

model has been successfully applied to simulations of waves in coastal areas, lakes and estuaries, and 

so on. 125 

2.1.2 Model configurations 

Three wave models use two-dimensional spectral space containing 29 frequencies that cover from .035 

Hz to .555 Hz with a logarithmic distribution and 24 equidistant directions. The geographic space is 

from 180° W to 180° E in the zonal direction and 75° S to 75° N in the meridional direction with a 

1°×1° grid resolution. The topography in this study is taken from the high-resolution ETOPO1 dataset 130 

provided by NOAA (website: https://www.ngdc.noaa.gov/mgg/global/). The wind forcing has two 

sources, both of which have 6-hour time intervals. The first dataset is the ERA-Interim reanalysis from 

European Centre for Medium-Range Weather Forecasts (ECMWF), with a resolution of .125°×.125° 

(http://apps.ecmwf.int/datasets/data/interim-full-daily/). The second dataset is the CFSRv2 dataset from 

NCEP, with a resolution of .205° (longitude) ×.204° (latitude) (https://rda.ucar.edu/datasets/ds094.1/). 135 

The time step of all three models is 15 minutes. All relevant parameters are set to be identical for every 

wave model (WW3, SWAN, and WAM) in this study. 

2.1.3 Data 

The AVISO (Archiving, Validation and Interpolation of Satellite Oceanographic) data    

(https://www.aviso.altimetry.fr/en/data/products/) are the satellite observational products used in this 140 

study. For ocean waves, the AVISO has two satellite altimetry products: along-track data and gridded 

data. The along-track data are used as the observational data source for the wave data in the simulation 

(sampled from “truth” in the “twin” experiments). The gridded data are used to validate the wave 

simulation and assimilation (1°×1° resolution with 1-day time intervals). During wave simulation, the 

significant wave height (SWH) is used as a basic observational variable for data assimilation, which is 145 

provided from three ongoing satellites: Jason-2, Jason-3, and Satellite for Argos and ALtiKa (SARAL). 
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Figure 1 shows one-cycle ground orbit by taking Jason-2 and SARAL as examples. Jason-3 is the 

successor of Jason-2, and both satellites share the same orbit. 

2.2 Different modeling strategies in WW3 and SWAN 

Since the observations are only a sample of real world information, the model bias (i.e., systematic 150 

difference between a numerical wave model and the real world) is not well defined against the real 

world. In this study, we use the systematic difference between the WW3 and SWAN models to 

simulate the model bias and study the influences on wave data assimilation (WDA). 

First, let us distinguish the difference in physical and numerical aspects to comprehend the causes of 

“bias” between these two models. In general, WW3 addresses global scales, and SWAN is more 155 

applicable in shallow water. Although the two models have most of the same physical processes, such 

as the wind input and nonlinear wave-wave interactions, each uses a different parameterization scheme. 

For example, the nonlinear wave-wave interactions in SWAN include the Discrete Interaction 

Approximation (DIA) (Hasselmann et al., 1985) and the Webb-Resio-Tracy (Resio and Perrie, 

1991;Van Vledder, 2006; Webb, 1978), while there are more choices in WW3, such as the Generalized 160 

Multiple DIA (Toman, 2004, 2013), the Two-Scale Approximation and Full Boltzmann Integral (Perrie 

et al., 2013; Perrie and Resio, 2009; Resio et al., 2011; Resio and Perrie, 2008), as well as the 

Nonlinear Filter scheme (Tolman, 2011). In numerical aspects, there exist different implementation 

strategies such as the differencing method, which also contributes to bias. 

2.3 Two data assimilation systems using WW3 and SWAN 165 

To explore the model bias influences on WDA, we develop two data assimilation systems based on 

WW3 and SWAN in this study. 

Generally, based on the program structure of wave models, we insert the assimilation module between 

calculations of the two-dimensional wave spectrum and outputs of wave parameters so that at the 

assimilation time, we call on the assimilation module to update the spectrum and SWH. When building 170 

the data assimilation systems, we need to consider the different structures of parallelism method, data 

storage, and information exchange in WW3 and SWAN models as noted in section 2.2. 

To clearly demonstrate the influences of model bias on WDA and minimize its adverse impact, the 

analysis scheme in both assimilation systems is optimal interpolation (OI), which also is low cost and 

easy to operate. We implement the OI analysis in three to four steps. The first step uses two Gaussian 175 
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convolutions of the background and observed SWHs to compute the observational increment of SWH 

at the observational location. The second step projects the SWH observational increment onto the 

model grids centered at the observational location but within an impact radius using linear regression. 

The third step transforms the analyzed SWH to update the spectrum of model waves. The fourth step 

corrects wind forcing using the observational SWH. 180 

Step 1: Computing observational increment by convolution of two Gaussians 

Starting from the idea of the ensemble adjustment Kalman filter (Andersen, 2001), an observational 

increment at the observational location k, ∆𝐻CD (H represents SWH), is computed by the convolution of 

two Gaussians of the model background and observation, which can usually be obtained from model 

ensemble members and observational samples. ∆𝐻CD is formulated as follows (Zhang et al, 2007): 185 

  ∆𝐻CD =
E

(3F)G
HIFJ E

(3:)G
HIK

E
(3F)G

J E
(3K)G

+ ∆HL
F

MNJ(3
F

3K
)G
− 𝐻CP.                                                                                           (2)                                                                                                          

Here, the first and second terms on the right-hand side adjust the ensemble mean and ensemble spread, 

respectively, and ∆𝐻CP represents the prior model spread. Superscripts O and M denote the observation 

and prior quantity estimated by the model, respectively. 𝜎 is the corresponding error standard deviation. 

The overbar denotes the ensemble mean. In this simplified case, we specify 𝜎P = 0.6	𝑚, 𝜎D = 0.25	𝑚, 190 

as in a previous study (Qi and Fan, 2013), and use single model and observational values as the 

ensemble mean. 

Step 2: Regressing the observational increment onto model grids 

The second step projects the observational increment ∆𝐻CD  onto the related model grids using 

background error covariance, which is a key step in the analysis. To simplify the problem and improve 195 

the computational efficiency, many studies use a flow-independent distance function to sample the 

background error covariance for computing the analysis increment at the model grid i, ∆𝐻WX, as ∆𝐻WX =

(𝜎WY)Zexp	(−(
^_,L
`
)) × ∆𝐻CD. Usually, such an expression is only a symmetrical approximation of the 

correlation function and cannot represent the spatial structure and propagation characteristics of waves. 

Here, we modify the covariance formula to increase its representation for wave structure by 200 

superimposing a statistical correlation coefficient into the formula. After analysis, the equation 

becomes 

∆𝐻WX =
4_
b

4L
b 𝑟W,CY ex p d−e

^_,L
`
fg × ∆𝐻CD,                                                                                                      (3)  
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where L is the characteristic length and 𝑑W,C is the distance between the model grid i and observational 

point k. When 𝑑W,C is larger than the impact radius R, there is no observational impact on this model 205 

point from observation k. All variables with superscript s represent the model statistics from free model 

control results. For example, 𝑟W,CY  is the SWH covariance between the model grid i and observation k, 

which is evaluated from the model data time series in corresponding experiments. To ensure the local 

characteristics of ocean waves, in this study, the characteristics length L and impact radius R (or the 

largest 𝑑W,C) are the same, causing this incremental projection to reach to the e-folding scale. Referring 210 

to previous studies (e.g., Lionello and Gunther, 1992; Qi and Fan, 2013), we tested different values of 

L and R as 300 km, 800 km, and 1000 km and found no essential improvement with larger L and R 

values. Trading-off with computational efficiency, we set L and R as 300 km throughout this study. As 

shown in Fig. 2, the new covariance represents more wave physics, i.e., the correlation has more 

asymmetrical and wave-dependent characteristics. 215 

Step 3: Transforming the SWH to wave spectrum 

The assimilation SWH 𝐻WX is a sum of the prior 𝐻WP and the analysis increment from step 2 (𝐻WX =

𝐻WP + ∆𝐻WX). In the wave model, the form of ocean waves is a two-dimensional wave spectrum that is 

distributed over frequency and phase. Thus, transforming the assimilation SWH to wave spectrum is 

necessary to update other wave parameters. Following the previous study (Qi and Fan, 2013), we 220 

assume that the change in wave spectrum is proportional to the energy change that is expressed by the 

square of SWH. Then, the analyzed spectrum 𝑆WX(𝑓, 𝜃) can be written as follows:  

𝑆WX(𝑓, 𝜃) = dH_
j

H_
Fg

Z
𝑆WP(𝑓, 𝜃),                                                                                                                   (4)                                                                                                                                        

where f is the wave frequency and 𝜃 is the phase direction. 

Step 4: Correcting wind forcing using SWH data 225 

If the assimilation only adjusts the wave spectrum as described in Step 3, the updated spectral structure 

may be quickly overwritten by erroneous wind. In this step, we describe a simple scheme using the 

observed SWH data to correct the wind forcing. Starting from a first guess of wind (the ERA-Interim 

reanalysis, for instance), the analyzed wind 𝑊W,l
X  at model grid (i, j) can be written as follows: 

	𝑊W,l
X = 𝑊W,l

P + ∆𝑊W,l	,                                                                                                                              (5)                                                                                                                   230 

where W represents either the u or v component of wind. ∆𝑊W,l	is the corrected wind increment 

transformed from the updated SWH. While the details of the transformation scheme can be found in 
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Lionello et al. (1992, 1995), we comment on certain aspects relevant to our study. Regardless of 

boundaries, in general, the energy of ocean waves is determined by the wind speed and duration, which 

can also be expressed by SWH. In that sense, a function equation can be built, in which the left-hand 235 

side is an expression of wind speed and duration, while the right-hand side is an expression of SWH, 

and they are balanced through wave energy. Then, the analyzed wind speed can be resolved under the 

assumption that the duration is same in the both prior and analyzed fields. 

With respect to the configuration of wave model data assimilation, the model time step is 15 minutes 

and the assimilation interval is 1 hour. At the assimilation time, we assimilate the along-track 240 

observations within a 1-hour time window centered at the time. After 10 days, all the observations will 

cover the global area. The wind data from the reanalysis products (ERA-Interim and NCEP-CFSR in 

this case) are available every 6 hours. To incorporate the wind correction into the wind forcing of the 

model, we distribute the wind correction to the adjacent two time-levels of wind data. As the process is 

looped forward as the wave model state is updated, the wind forcing is adjusted through the SWH 245 

assimilation. 

2.4 Experimental design 

Throughout this study, we use the symbol MAO(s)WF as the name for the assimilation experiment. Here, 

“MA” stands for the “assimilation model” and the subscript “O(s)” (resp. superscript “WF”) represents 

the observing system (resp. wind forcing) in the assimilation. The wind forcing is either the ECMWF 250 

ERA-Interim (hereafter known as ERAI) or NCEP-CFSR wind (hereafter known as CFSR). Wind 

forcing can also be corrected by observations of SWH (under this circumstance, the superscript “WF” 

is replaced by “ASSW”). The observations used in the assimilation could be the model data but are 

projected on the along-track points of satellite(s) if being used for the twin experiments. Under this 

circumstance, “O” represents “model that produces observations” and “(s)” represents the used satellite 255 

tracks (J2-Jason-2, J3-Jason-3, and SA-SARAL, for instance). Otherwise, in the real-data assimilation 

experiments, the subscript “O(s)” directly lists the satellites that measure the SWH. 

2.4.1 Twin experiments 

Twin experiments refer to a type of Observing System Simulation Experiment (OSSE), in which a 

model simulation is used to define the “true” solution of a data assimilation problem, and the other 260 

model simulation is used to start the assimilation. The “observations” are samples of the “truth” with 
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some white noise to simulate the observational errors. When the “truth” and assimilation are conducted 

by different (resp. identical) models, the framework is a “biased” (resp. “perfect”) model twin 

experiment. Within a twin experiment framework, any aspect of assimilation skills can be measured as 

the degree to which the “truth” is recovered through the assimilation. 265 

a) Perfect twin experiment 

In a perfect twin experiment, we assume that the assimilation model and the observation are unbiased, 

i.e., both the instrument measuring and numerical modeling processes are sampling the same stochastic 

dynamical system. Such sampling only has random sampling errors without any systematic difference 

(bias). We can build this perfect model framework by using the same model to produce the “truth” as 270 

the assimilation model but with different initial conditions and wind forcings. 

The “observations” from the observational time window (1 hour) centered at the assimilating time can 

be created by sampling the “truth” SWH with the tracks of the Jason-2, Jason-3 and SARAL satellites, 

which will cover the global area in 10 days. In this circumstance, if WW3 (resp. SWAN) is used as the 

assimilation model, the “truth” is produced by the same WW3 (resp. SWAN) model. In the 275 

assimilation, we may start the model with different initial conditions and/or wind forcings to examine 

the influences of initial errors and wind forcing errors on the wave assimilation. Such a perfect twin 

experiment can be named WW3WW3(s)WF or SWANSWAN(s)WF. 

b) Biased twin experiment 

To study the impact of model errors on wave assimilation, we use two models to design a “biased” twin 280 

experiment. Again, due to the scattering nature of the observations, it is difficult to obtain a complete 

picture of the model bias against the real world. Given the difference between the WW3 and SWAN 

models described in section 2.2, we use these two models and their assimilation systems here to 

simulate the model bias and examine its influences on the WDA. We use the ERA-Interim reanalysis 

wind to force the WW3 (resp. SWAN) to produce the “truth” and “observations” but use the SWAN 285 

(resp. WW3) assimilation system to assimilate the “observations.” The degree to which the “truth” 

produced by different model-based assimilation systems is recovered by assimilating the “observations” 

is an assessment of the model bias influences on the WDA. Such a “biased” twin experiment can be 

named WW3SWAN(s)WF or SWANWW3(s)WF. 

Under the biased twin experiment framework, we also conduct experiments to examine the impacts of 290 

observing systems on wave assimilations by increasing the observational information based on multiple 

satellite tracks. For example, we can examine the assimilation results of WW3SWAN(J2)WF, 
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WW3SWAN(J2+J3)WF, and WW3SWAN(J2+J3+SA)WF (resp. SWANWW3(J2)WF, SWANWW3(J2+J3)WF, and 

SWANWW3(J2+J3+SA)WF) to understand the impacts of observing systems on different model-based 

assimilations. 295 

2.4.2 Real-data assimilation experiments 

In this study, we also conduct real-data assimilation experiments using WW3 and SWAN assimilation 

systems with real track data from the Jason-2, Jason-3 and SARAL satellites. Through real-data 

assimilation experiments with different model-based assimilation systems, we can 1) increase our 

understanding of the influences of model errors on the WDA and 2) study the method to reduce the 300 

model error influences on the assimilation results. The real-data assimilation experiments can be 

directly named, e.g., WW3J2+J3+SAWF or SWANJ2+J3+SAWF. 

3 Error sources in wave models and WDA 

3.1 Influences of initial and wind forcing errors 

Usually, wave numerical simulation can be improved by three methods: 1) reducing the errors in the 305 

initial conditions, 2) enhancing the accuracy of the wind forcing, and 3) improving the representation 

of the wave model and its parameterization. 

In this section, we use perfect model twin experiments (as described in section 2.4.1) to exclude model 

errors and explore the impact of wind forcings and initial conditions on the wave simulations. To 

compare the performances of the WW3 and SWAN models, we conduct separate experiments with 310 

these two models. The “truth” and model control runs are two basic experiments of the perfect twin 

experiment framework. We use the ERA-Interim wind to drive WW3 (resp. SWAN) and generate a 

long time series of model states as the “truth,” which is called WW3ERAI (resp. SWANERAI) for the WW3 

(resp. SWAN) perfect model twin experiment. The “observations” are created by interpolating the 

corresponding “truth” SWH onto the along-track points of satellite orbits. Then, we use the NCEP-315 

CFSR wind to force WW3 (resp. SWAN), called the model control WW3CFSR (resp. SWANCFSR), and the 

data assimilation is named WW3WW3(s)CFSR (resp. SWANSWAN(s)CFSR). Starting from an independent initial 

condition produced by the model control, we can conduct the assimilation with the ERA-Interim or 

NCEP-CFSR wind forcing. The error verification of the assimilation results against the “truth” 
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simulation compared to the error of the model control is an evaluation of the initial error or/and wind 320 

forcing error influences on the WDA. All perfect model twin experiments are listed in Table 1. 

First, we conduct two sets of model control experiments WW3CFSR and SWANCFSR for 80 days (from 

December 2017 to February 2018). To explore the effect of the initial conditions, we perform the 

model spin-up for a long time to adequately reach a steady state. Then using the 45th-day model states 

as the initial conditions, we conduct one more model simulation and data assimilation experiments for 325 

each model system as WW3ERAI and WW3WW3(J2)ERAI as well as SWANERAI and SWANSWAN(J2)ERAI. The root 

mean square errors (RMSEs) of these experiments against the “truth” are shown in Fig. 3 as the red 

(for WW3CFSR+WW3ERAI and SWANCFSR+SWANERAI) and pink (for WW3CFSR +WW3WW3(J2)ERAI and 

SWANCFSR +SWANSWAN(J2)ERAI) lines. 

The SWH RMSE is approximately .34 meters in the WW3 or SWAN model control with the NCEP-330 

CFSR wind. Once the wind forcing is changed to the “perfect” wind (the ERA-Interim) on the 45th day, 

the RMSE quickly drops and is close to zero after approximately 10 days, and the SWAN model takes 

longer to accomplish this change than the WW3. If data assimilation is added, the RMSE reduces much 

faster than the model controls (roughly half of the time scale of the correct wind forcing). From the 

analyses above, we learned, 1) in wave models, the wind forcing plays an important role and an 335 

incorrect wind forcing could be a significant error source of WDA; and 2) the WDA can rapidly reduce 

the initial error and improve the predictability of a wave model even when it is forced by an accurate 

wind forcing. 

3.2 Impact of the observational system 

In this section, using the same model states (at the 45th day) in the corresponding model control as in 340 

section 3.1 as the initial conditions, we conduct two sets of assimilation experiments WW3WW3(J2)CFSR, 

WW3WW3(J2+J3)CFSR, WW3WW3(J2+J3+SA)CFSR and SWANSWAN(J2)CFSR, SWANSWAN(J2+J3)CFSR, 

SWANSWAN(J2+J3+SA)CFSR. Through examining the assimilation quality with one satellite (Jason-2), two 

satellites (Jason-2+Jason-3) and three satellites (Jason-2+Jason-3+SARAL), we attempt to understand 

the impact of improving the observing system on the WDA, considering the NCEP-CFSR wind forcing 345 

errors against the ECMWF ERA-Interim based on a perfect assimilation model. The RMSEs of all the 

above assimilation experiments are plotted in Fig. 3 as the blue (assimilating Jason-2 only), green 

(assimilating Jason-2+Jason-3) and cyan (assimilating Jason-2+Jason-3+SARAL) lines. 
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From Fig. 3, we can see that in both models, the assimilation errors are reduced when more 

observational information is used. The corresponding RMSE reductions in these three experiments 350 

from the model control run are 24 %, 32 % and 38 % for WW3 and 26 %, 35 % and 38 % for SWAN, 

respectively. However, when more satellite observations are assimilated into the model, the magnitude 

of improvement becomes small (further reduced by 8 % in WW3 and 9 % in SWAN when Jason-3 is 

added as well as only a 6 % in WW3 and 3 % in SWAN further reduction when SARAL is further 

added). These results suggest that given wind forcing errors, increasing observational information can 355 

help to improve the model behavior, but the improvement is limited. 

3.3 Adverse impact of model bias 

As described in section 2.2, the WW3 and SWAN models discretize the wave action governing 

equation with different physical processes, parameterization schemes and differencing schemes. These 

differences result in each wave model having its own distinguished characteristics. To study the 360 

adverse impact of the model bias on the wave assimilation, the biased twin experiments described in 

section 2.4.1 are used in this section, where the “truth” model and the assimilation model are different 

between WW3 and SWAN. For example, the WW3SWAN(J2)ERAI (resp. SWANWW3(J2)ERAI) experiment uses 

WW3 (resp. SWAN) as the assimilation model to assimilate the Jason-2 track point “observations,” but 

the observed values are produced by SWAN (resp. WW3), and all models are forced by the ERA-365 

Interim wind. All related experiments for the biased model framework are described in detail in Table 

2. 

The RMSEs and correlation coefficients produced by the all biased model assimilation experiments are 

plotted in Fig. 4. The black line in each panel represents the result of the WW3 model control forced by 

the ERA-Interim wind (WW3ERAI) against the “truth” simulation by the SWAN model with the same 370 

wind forcing (SWANERAI) (left panels, a and b) (vice versa in the right panels, c and d). Both the 

WW3ERAI and SWANERAI experiments are initialized from a cold start by the wind and integrated for 80 

days, and the results of the last 40 days are shown in Fig. 4. It is clear that the WW3 and SWAN model 

simulations are quite different even though both simulations use identical forcings and start from 

identical initial conditions. The RMSEs of the two model simulations are both 0.58 m, which is much 375 

larger than the errors produced by a perfect model but with different wind (~0.34 m, see Fig. 3). 

Compared with the model controls WW3ERAI and SWANERAI, the assimilation experiments 

WW3SWAN(J2)ERAI and SWANWW3(J2)ERAI (pink lines in Fig. 4) can significantly reduce the SWH simulation 
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error (by 24 % and 22 %, respectively) and enhance the correlations (by 3 % and 4 %, respectively) 

with the “truth” (SWANERAI and WW3ERAI, respectively). When the “observations” of Jason-3 and 380 

SARAL are added to the assimilation (i.e., WW3SWAN(J2+J3)ERAI and WW3SWAN(J2+J3+SA)ERAI as well as 

SWANWW3(J2+J3)ERAI and SWANWW3(J2+J3+SA)ERAI) (see the red and blue lines, respectively), the model 

SWH error (resp. correlation) is further reduced (resp. enhanced), but the amplitude of reduction (resp. 

enhancement) gradually diminishes (10 % and 5 % for further error reduction and 1 % and 0.8 % for 

further correlation enhancement in the WW3 assimilation; 10 % and 7 % for further error reduction and 385 

1.7 % and 0.7 % for further correlation enhancement in SWAN assimilation from the additions of 

Jason-3 and SARAL, respectively). 

The results of two other sets of assimilation experiments called WW3SWAN(J2)ASSW and SWANWW3(J2)ASSW 

are also plotted by dotted green lines in Fig. 4. The superscript “ASSW” stands for the assimilation-

corrected wind, meaning that the wind forcing of the assimilation model is also “corrected” by the 390 

“observed” SWH data, as described in Step 4 of section 2.3. We found that in the WW3 model, using 

the “observed” SWH data to “correct” the wind can compensate for the model errors to some degree 

and further reduce the assimilation errors, but the improvement is very limited. In the SWAN model, 

such wind “correction” cannot compensate for the model error at all. 

These assimilation results clearly show that even though the wind forcing is perfect, once a biased 395 

assimilation model is used, the wave simulation has large errors. Although WDA can greatly reduce the 

simulation error by assimilating the observational information into the model, due to the existence of 

the model bias, the error remains at some significant level and cannot be eliminated entirely even by 

increasing the observational constraints through an improvement in the observational system and 

constraint of the wind forcing. Next, with the results of real-data assimilation where both the model and 400 

wind forcing have errors, we will analyze and discuss how to mitigate the model bias influences on the 

WDA. 

4 Mitigation of model bias influences on wave assimilation 

4.1 Bias characteristics of WW3 and SWAN data assimilations 

From the above analyses of twin experiment results, we learned that the model bias has a strong 405 

adverse impact on WDA. To explore the method of mitigating the model bias influence on the WDA, 

we conduct the real-data assimilation experiments (same time range as the “twin” experiments) 
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described in section 2.4.2 using the WW3 and SWAN assimilation systems to assimilate the track data 

of Jason-2 and Jason-2+Jason-3+SARAL. To ensure the performance of the biased model WDA, a 

longer assimilation (more than two months) is conducted (a total of 70 days). The spatial distributions 410 

of the SWH errors (verified against the merged gridded AVISO observations over the last 30 days out 

of 80 days) are shown in Fig. 5. The left (resp. right) panels are for the WW3 (resp. SWAN) simulation 

and assimilations: WW3ERAI, WW3J2ERAI, and WW3J2+J3+SAERAI (resp. SWANERAI, SWANJ2ERAI, and 

SWANJ2+J3+SAERAI). 

Comparing panel a with panel d in Fig. 5 reveals that a large difference exists in the simulations of the 415 

two models. First, the SWAN simulation errors are generally larger than the WW3 simulation errors. 

Second, the global error distributions are quite different: while the WW3 simulation errors appear 

negative (resp. positive) over most of the 30° S north (resp. south) area, the SWAN simulation errors 

appear positive in most of the tropical oceans and negative in the middle latitudes. Both simulations 

show large errors in the southern ocean coastal area, but over the Antarctic Circumpolar Current area, 420 

the WW3 error is positive, and the SWAN error is negative. Large model errors usually occur in strong 

wind areas. Although the same parametric scheme of wind input expressed by exponential growth with 

friction velocity can be activated, the process transforming wind speed provided by users to friction 

velocity is necessary but different in both models, which may be an important reason why the two 

models have different performances under the same wind conditions. 425 

The above systematic differences between the two model simulations have significant influences on the 

results of the WDA. In general, the distribution of assimilation errors shares the same patterns as the 

model simulation errors but with a much smaller magnitude. The net result is that both the WW3 

negative (resp. positive) error magnitude over the 30oS north (resp. south) area and the SWAN error 

magnitude as (+)(-)(+)(-) from south to north are dramatically reduced by the Jason-2 data assimilation 430 

(comparing the middle panels with the upper panels), and on this basis, incorporating more 

observations from Jason-3 and SARAL into the assimilation process, both model error magnitudes are 

further reduced to some degree (comparing the bottom panels with the middle panels). From the 

corresponding RMSE distributions (Fig. 6), we learned that the large RMSEs mainly appear in places 

where the model bias (time mean error) is large. This finding means that the model bias has a largely 435 

adverse impact on the WDA. 

Figure 7 displays the time series of the RMSEs and correlation coefficients with the statistics in space. 

The RMSE (resp. correlation coefficient) of the SWAN model simulation is larger (resp. smaller) than 
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the WW3 model simulation (.66 m RMSE and .806 correlation for SWAN versus .61 m RMSE 

and .876 correlation for WW3). In the WW3 and SWAN assimilations with the Jason-2 data, the 440 

RMSEs are reduced by 8 % and 11 %, respectively, and the time mean correlations are enhanced by 

roughly 1 % and 5 %, respectively. If the data of all three satellites, Jason-2, Jason-3 and SARAL, are 

assimilated, the RMSEs are reduced by 11 % and 17 % in the WW3 and SWAN assimilations, 

respectively, and the correlations are enhanced by approximately 2 % and 8 %, respectively. In these 

real-data assimilation cases, for each model assimilation, both the model and wind forcing have errors. 445 

Under this circumstance, the assimilation where the SWH observations are used to adjust the model 

spectrum, the model wind forcing is also corrected and can further reduce the assimilation errors (red 

lines in Fig. 7). The red lines in Fig. 7 represent the best result of the assimilation given the WW3 and 

SWAN model biases, which makes full use of the observations from all three satellites to adjust both 

the model spectrum and wind forcing. Next, we will discuss how to use the results of two assimilation 450 

systems to mitigate the wave analysis error. 

4.2 Mitigation of WDA errors 

The mitigation of model bias is a complex issue in which improving the model is a final but long-

lasting solution. From Fig. 5, we learned that the WW3 and SWAN assimilation errors have some 

common (or opposite) characteristics in some locations. For example, while the SWH over the southern 455 

ocean coastal area always appears to be overestimated because of the lack of adequate observations to 

improve in both assimilation systems, the WW3 and SWAN assimilations appear to be the opposite in 

the Antarctic Circumpolar Current area and the tropical oceans. The WW3 (resp. SWAN) assimilation 

errors in the Antarctic Circumpolar Current area appear positive (resp. negative), while the WW3 (resp. 

SWAN) assimilation errors in the tropical oceans appear negative (resp. positive). A question arises: as 460 

the first step of mitigating model bias influences on the WDA, can we use a pair of assimilation 

systems to explore a statistical approach to reduce the wave assimilation errors? 

Given the opposite behaviors of two assimilation systems existing in certain places, the simplest bias 

correction can be conducted by simple average. This assumes that bias itself has a Gaussian 

distribution with trivial expectation. The corresponding results are shown in Fig. 8. Compared with the 465 

performance of each individual assimilation system (dashed red lines for WW3 and dotted red lines for 

SWAN), the results of this bias correction (cyan lines) show that the RMSE is reduced (the left panel) 

but the correlation is not greatly improved (the right panel). It is reasonable that based on the opposite 
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errors deviating from the real world in two assimilation systems, this correction method employing the 

mathematical average can reduce the RMSE to some extent, but it may not have a significant 470 

contribution to improving the correlation coefficient if either the sampling size of model bias is too 

small (only 2 in this case) or the bias has an asymmetric distribution. 

Considering the potentially asymmetric distribution of bias (i.e., each wave model has its own 

characteristics of systematic error due to deficit physics) and small sampling size in practice, we 

calculate the bias (i.e., long-term mean of the error) for each assimilation system and extract it first and 475 

then calculate the expectation (average). The corresponding results are shown with pink lines in Fig. 8. 

Both the RMSE and correlation are improved greatly. Clearly, this bias correction with physical 

consideration is more effective to improve the quality of WDA, but it uses observational information 

one more time, while the first method of bias correction processes assimilation results directly without 

further uses of observational information. 480 

To verify the feasibility and applicability of the bias correction method above, 3 well-known wave 

models (WW3, SWAN and WAM) with the same data assimilation method are used to conduct longer 

assimilation and bias correction experiments. The calculation period lasts for 14 months (from 

November 2016 to December 2017) with sufficient spin-up process to reach a steady assimilation state 

(the 1st month for model spin-up and the 2nd month for assimilation spin-up). The results of the last 12 485 

months (for 2017) are analyzed and presented in Fig. 9 and Fig. 10 for the spatial distributions and 

time series of RMSEs and correlation coefficients, respectively. From Fig. 9, we can see that both the 

RMSE and correlation coefficient (panels d and h, respectively) have been improved by the bias 

correction that combines the advantages of every WDA system (panels a and e for WW3, panels b and 

f for SWAN, panels c and g for WAM). In Fig. 10, the bias correction of model control runs shows 490 

improvement but is worse than the data assimilation before bias correction (compare green with pink). 

Compared with the model control (blue), the assimilation results with bias correction (red) can reduce 

the error by 25 % and significantly enhance the correlation coefficient (from 0.88 to 0.923). This result 

confirms that this bias correction based on multiple assimilation systems can effectively enhance the 

WDA quality. 495 
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5 Summary and discussion 

Ocean waves cause the sea surface roughness to impact the boundary conditions of the atmosphere and 

the wind stress of the ocean surface. Wave processes, such as wave-breaking, wave-induced bottom 

stress and so on, have significant effects on ocean mixing. Thus, ocean waves are important physical 

processes for understanding ocean mixing and air-sea interactions in coupled Earth systems. More 500 

accurately predicting ocean waves is of great societal significance. However, multiple error sources 

exist in wave simulations and predictions, including modeling errors, wind forcing errors and initial 

condition errors. 

To sort out the source of the errors of wave data assimilation (WDA), a pair of independent WDA 

systems is first developed using two wave models: Wave Watch III (WW3) and Simulating WAves 505 

Nearshore (SWAN). The perfect and biased model “twin” experiment frameworks are designed to 

clearly identify each error source and examine its influences on WDA. The results show that model 

bias is a significant error source that has a largely adverse impact. Then, two WDA systems are used to 

design bias correction approaches to mitigate the influences of model bias and improve the assimilation 

quality. Finally, long-term WDA experiments added by the third WDA system with the WAM model 510 

(WAve Modeling) (WW3, SWAN and WAM) are conducted to validate the bias correction method. 

Three findings are established: 1) When the model is perfect, the correct wind forcing can overwrite the 

initial condition error within a 10-day time scale, but the WDA can shorten the time scale by half. 2) 

When the model is biased, despite a perfect wind forcing, the wave simulation has large errors and the 

WDA can only reduce the error to a limited extent. 3) With the results from two assimilation systems, a 515 

statistical approach of bias correction significantly improves the quality of final wave analysis by 

combining the merits from individual assimilation systems. 

Model bias is an obstacle to improving WDA and wave predictions. Using multiple assimilation 

systems to study the influences of model bias on WDA is an effective approach. As the first step, 

however, we have used a simple assimilation scheme and simple bias correction method. In follow-up 520 

studies, we shall consider advanced assimilation schemes and more comprehensive correction methods 

to help improve modeling. For example, the “online” bias correction during the assimilation process 

(e.g., Dee, 2005) will be considered to improve the assimilation results within individual assimilation 

systems. In addition, improving the model is an important, inevitable and long-lasting task. In this 

study, we find that three models show common bias characteristics in the Antarctic Circumpolar 525 

Current (ACC) area. This finding suggests that present wave modeling may have deficits in energy 
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spectrum expression for high wind speed areas. In the future, we will further examine the sensitivities 

of physical processes on high wind speed to mitigate such common modeling bias. All in all, a robust 

bias correction method with lower model bias and higher representation of wave physical 

characteristics may further improve wave analysis quality. Once a long time series of high-quality 530 

wave analyses is available, it is expected that we can improve our understanding of ocean mixing. The 

physical process of wave-induced mixing is linked with the structure of the ocean mixing layer (Qiao et 

al., 2010). This process can be expressed as a function of wave number, frequency and wave spectrum 

and so on, provided by wave analysis. With the framework of multiple WDA systems developed in this 

study, improved wave predictions can be effectively pursued. How can we further enhance the 535 

predictability of ocean waves? The first important step is to understand the physical process of ocean 

waves better based on a more accurate evolution of wave state from this framework. Answering these 

questions could be very important and interesting research topics for the future studies. 
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 710 
Figure 1: The ground projection tracks of satellite Jason-2 (blue line, with an inclination of 66° N(S)) and 
SARAL (red line, with an inclination of 88° N(S)) in one cycle over approximately 10 days and 35 days, 
respectively, in the a) global and b) East Asia domains (zoomed out of green box in panel a). 

 

 715 
Figure 2: Spatial distributions of a) background correlation coefficients by the empirical correlation model 
(blue), model data statistics (green) as well as their combination of Eq. (3) (red), b) adjustment increments 
of SWH, and c) the SWH difference from panel b by an analysis process given the single observation 
obtained at 114.09° E, 18.90° N, denoted by the asterisk (unit: meter). 
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 720 
Figure 3: The time series of RMSEs of the a) WW3 and b) SWAN perfect model experiments in the model 
control run with the NCEP CFSRv2 wind (black, denoted as WW3CFSR in panel a and SWANCFSR in panel 
b), assimilating the “observed” data sampled by the tracks of Jason-2 (blue, denoted as WW3WW3(J2)

CFSR 
and SWANSWAN(J2)

CFSR), Jason-2 & 3 (green, denoted as WW3WW3(J2+J3)
CFSR and SWANSWAN(J2+J3)

CFSR), as 
well as Jason-2 & 3 and SARAL (cyan, denoted as WW3WW3(J2+J3+SA)

CFSR and SWANSWAN(J2+J3+SA)
CFSR) 725 

against the “truth” simulation forced by the ERA-Interim wind. The red and pink are forced by the NCEP 
CFSRv2 wind in the first 45 days, but the next 35 days are forced using the ERA-Interim wind (same as 
“truth”) without (denoted as WW3CFSR +WW3ERAI and SWANCFSR +SWANERAI) or with (denoted as 
WW3CFSR + WW3WW3(J2) 

ERAI and SWANCFSR + SWANSWAN(J2)
ERAI) the assimilation of Jason-2 data. The 

number in parentheses for each color is the corresponding RMSE summed over the verification time 730 
period (30 days after the 45-day model spin-up and 5-day assimilation spin-up). The “observed” data are 
produced by projecting the “truth” SWH onto the satellite orbit. 
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Figure 4: The time series of RMSEs (upper) and correlation coefficients (bottom) of the WW3(left) and 735 
SWAN(right) biased model experiments in the model control run forced by the ERA-Interim wind (black, 
denoted as WW3ERAI and SWANERAI), assimilations with “observed” data from one (pink, denoted as 
WW3SWAN(J2)

ERAI and SWANWW3(J2)
ERAI), two (red, denoted as WW3SWAN(J2+J3)

ERAI and 
SWANWW3(J2+J3)

ERAI), and three (blue, denoted as WW3SWAN(J2+J3+SA)
ERAI and SWANWW3(J2+J3+SA)

ERAI) 
satellites, as well as the assimilation with corrected wind (dotted green, denoted as WW3SWAN(J2)

ASSW and 740 
SWANWW3(J2)

ASSW) against the “truth” (same as in Fig. 3 but for SWAN and WW3 with the ERA-Interim 
wind). The numbers in the parentheses correspond to the RMSE (in panels a and c) and correlation 
coefficient (in panels b and d) over the last 30 days during the assimilation period. The “observed” data 
are produced by projecting the “truth” SWH onto the satellite orbit. 
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Figure 5: Distributions of SWH mean errors (against the merged grid altimeter data) of the WW3 (left) 
and SWAN (right) model simulations (upper) and assimilations with Jason-2 (middle), as well as all Jason-
2, Jason-3 and SARAL (bottom) data forced by the ERA-Interim wind. The statistics are conducted over 
the last 30 days of a 70-day total assimilation period (unit: meter). 750 
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Figure 6: Same as Fig. 5 but for the RMSEs. Panels b, c, e and f show the percentage of RMSE reduction 
from the model control (unit: meter). 

  755 

https://doi.org/10.5194/gmd-2019-243
Preprint. Discussion started: 7 October 2019
c© Author(s) 2019. CC BY 4.0 License.



31 
 

 
Figure 7: Time series of RMSEs (upper) and correlation coefficients (bottom) of WW3 (left) and SWAN 
(right) produced by the model control run (black, denoted as WW3ERAI and SWANERAI), assimilation 
using the data from one (green, denoted as WW3J2

ERAI and SWANJ2
ERAI) and three satellites (blue, 

denoted as WW3J2+J3+SA
ERAI and SWANJ2+J3+SA

ERAI) with corrected wind (red, denoted as WW3J2+J3+SA
ASSW 760 

and SWANJ2+J3+SA
ASSW). 
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Figure 8: Time series of a) RMSEs and b) correlation coefficients produced by two bias correction schemes 
(cyan and pink) through a combination of WW3 and SWAN assimilations with the data from three 765 
satellites (Jason-2, Jason-3 and SARAL) and wind correction starting from the ERA-Interim wind. The 
results of the individual assimilation systems are plotted as dotted and dashed red lines (taken from Fig. 7) 
for reference. 
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 770 
Figure 9: Distributions of SWH RMSEs (left) and correlation coefficients (right) (against the merged grid 
altimeter data) of the WW3 (a, e), SWAN (b, f) and WAM (c, g) assimilations and the bias correction (d, h). 
The statistics are conducted over the entire 1-year assimilation period. Other information is the same as 
that in Fig. 8. 
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Figure 10: The time series of a) RMSEs and b) correlation coefficients produced by the model 

control run (blue), data assimilation (pink) and their corresponding bias corrections (green and 

red) combining three wave model assimilation results (WAM, WW3 and SWAN) over 1 year. 

Other information is the same as in Fig. 8. 780 
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Table 1: List of perfect model twin experiments. 

Exp. name Model Wind force Assimilation or not Role 

WW3ERAI WW3 ERA-Interim No Truth for WW3 assimilation 

WW3CFSR WW3 NCEP-CFSR No Model control for WW3 

assimilation reference 

WW3WW3(J2)CFSR WW3 NCEP-CFSR Yes (using Jason-2 track) 

Impact of observational 

system 
WW3WW3(J2+J3)CFSR WW3 NCEP-CFSR Yes (using tracks of Jason-

2 and Jason-3) 

WW3WW3(J2+J3+SA)CFSR WW3 NCEP-CFSR Yes (using tracks of Jason-

2, Jason-3 and SARAL) 

SWANERAI SWAN ERA-Interim No Truth for SWAN assimilation 

SWANCFSR SWAN NCEP-CFSR No Model control for SWAN 

assimilation reference 

SWANSWAN(J2)CFSR SWAN NCEP-CFSR Yes (using Jason-2 track) 

Impact of observational 

system 
SWANSWAN(J2+J3)CFSR SWAN NCEP-CFSR Yes (using tracks of Jason-

2 and Jason-3) 

SWANSWAN(J2+J3+SA)CFSR SWAN NCEP-CFSR Yes (using tracks of Jason-

2, Jason-3 and SARAL) 
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Table 2: List of biased model twin experiments. 

Exp. name Model Wind source Assimilation or not Role 

WW3ERAI WW3 ERA-Interim No Truth for SWAN 

assimilation 

SWANERAI SWAN ERA-Interim No Model control for 

SWAN assimilation 

reference 
SWANWW3(J2)ERAI SWAN ERA-Interim Yes (using Jason-2 track) 

Impact of observational 

system 
SWANWW3(J2+J3)ERAI SWAN ERA-Interim Yes (using tracks of Jason-2 

and Jason-3) 

SWANWW3(J2+J3+SA)ERAI SWAN ERA-Interim Yes (using tracks of Jason-2, 

Jason-3 and SARAL) 

SWANWW3(J2)ASSW SWAN Assimilation-corrected 

wind based on ERAI 
Yes (using tracks of Jason-2) Impact of assimilation-

corrected wind 

SWANERAI SWAN ERA-Interim No Truth for WW3 

assimilation 

WW3ERAI WW3 ERA-Interim No Model control for WW3 

assimilation reference 

WW3SWAN(J2)ERAI WW3 ERA-Interim Yes (using Jason-2 track) 

Impact of observational 

system 
WW3SWAN(J2+J3)ERAI WW3 ERA-Interim Yes (using tracks of Jason-2 

and Jason-3) 

WW3SWAN(J2+J3+SA)ERAI WW3 ERA-Interim Yes (using tracks of Jason-2, 

Jason-3 and SARAL) 
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WW3SWAN(J2)ASSW WW3 Assimilation-corrected 

wind based on ERAI 
Yes (using tracks of Jason-2) Impact of assimilation-

corrected wind 
 785 
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