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a point-by-point response to the reviews 
 
Interactive comment on “Mitigation of Model Bias Influences on Wave Data 
Assimilation with Multiple Assimilation Systems Using WaveWatch III v5.16 
and SWAN v41.20” from anonymous referee #1 
 
In general: 
 
The comments and suggestions from Reviewer #1 are excellent, which are very 
helpful for us to compare the influence of error sources more clearly. In the revision, 
we have added: (1) section 3.4 to quantify the comparison of the wind forcing error 
and model error in time and space, (2) clearer description about how to get SWH 
(significant wave height) bias and bias correction. 
 
The following is the point-by-point reply to address the comments and suggestions of 
Reviewer #1. 
 
This study investigates the challenge of model bias on wave model data assimilation. 
It applies a set of twin-model experiments to quantify the different error sources in 
wave model: initial, boundary, and model error. Based that It provide a simple 
statistical approach to reduce the impact of model bias and improve the assimilation 
results. 
The topic is interesting and important for wave data assimilation, well fit for GMD. 
The experiments are well designed and manuscript is in good shape. Here I only have 
few points to further polish this work. Therefore, I suggest miner revision for current 
version. 
 
RE: Thanks for reviewer’s encouragement. 
 
1 There are three error sources: initial/boundary/model-bias. You have identify them 
in your biased/unbiased twin experiment. It turns out both boundary and model-bias 
are important. 
In my pointer of view, both error sources could lead to SWH biases/uncertainties for 
assimilation/simulation. It would be great to separate them and quantify the 
improvement percentage by your data assimilation from your biased/unbiased twin 
experiments. The SWH bias and its decrease percentage may give your hind on 
mitigation the assimilation bias for the real observation. Similar separation should 
apply to real observation assimilation cases. In your figure 5, mainly represent the 
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SWH bias. You can recalculate figure 6 (RMSE) after remove the bias in figure 5, 
which represent the uncertainties related to boundary/model bias. 
When you apply average to reduce the assimilation error of SWH. You only reduces 
the uncertainty part but not the bias part. You have to direct remove the bias from the 
reanalysis. 
 
RE: Thanks for your thoughtful advice. We have added the quantitative comparison 
between boundary and model bias, please see lines 443-449 for their performances in 
the twin experiments. In the experiments of real-data assimilation, we also have re-
plotted the Fig. 6 (Fig. 9 in the revised version) after removing the model bias shown 
in Fig. 5 (Fig. 6 in the revision). The reviewer is right, as a try, the first method of bias 
correction is used to reduce the uncertainty part from the reanalysis and the second 
method is used to reduce the bias part. 
 
2 In your real observation assimilation, the boundary and model-bias are both 
included. You may compare spatial pattern and the decreasing percentage of SWH 
bias with those your biased/unbiased twin experiments to speculate which source 
(boundary/model-bias) has stronger impact in certain area.. 
 
RE: Thanks for your excellent suggestion. In the twin experiments, we have 
compared the spatial pattern of errors caused by wind forcing and model bias, please 
see lines 458-476 and Fig. 5. 
 
3 You only applied one kind of wind forcing for different models and then use them 
to do the bias correction. Since the bias also come from the boundary forcing. I 
encourage you using two kinds of wind forcing to further investigate the 
bias/uncertainty generated by the boundary forcing. 
 
RE: Thank you for your helpful comment. In the real experiment, it’s very difficult to 
distinguish the error sources. Then, as an understanding, we have tested the influences 
of these two error sources in the twin experiments. Next, we use a better wind forcing 
from ERA-Interim reanalysis in this manuscript to drive wave models and conduct 
bias correction in the real experiments. It is more reasonable and indicative to use bias 
correction mitigating hybrid errors and finally improve the quality of data assimilation 
results in the case of assimilating real observations. 
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4 it is unclear how do you get the SWH bias for bias correction, what is the spatial 
pattern. I thought it should refer to the figure 5, but I did not find those in the 
manuscript. 
 
RE: Thanks for your kind reminder. More detailed description about how to get SWH 
bias has added in the revision, please see lines 556-561 and Fig. 6. 
 
5 Model description in page 4. This part need be more condensed with appropriate 
reference. Readers would appreciate more on the differences among those models, 
instead of the comparison to their own previous version. You may highlight the 
advantage or disadvantage among three modes. 
 
RE: Thanks for your good advice. We simplified the description of this section, 
please see lines 112-119. 
 
Interactive comment on “Mitigation of Model Bias Influences on Wave Data 
Assimilation with Multiple Assimilation Systems Using WaveWatch III v5.16 
and SWAN v41.20” from anonymous referee #2 
 
In general: 
 
The comments and suggestions from Reviewer 2 are very constructive, which are 
helpful for us to improve this manuscript. In this revision, we have added: 1) clearer 
captions of figures, 2) more detailed description for the assumption of equation in 
section 2.3, 3) more detailed description about how to get SWH bias and bias 
correction, 4) more discussions on “online-type” bias correction, the improvement of 
windsea and swell after wind correction etc.  
 
The following is the point-by-point reply to address the comments and suggestions of 
Reviewer 2. 
 
This paper describes the effect of OI data assimilation on ocean wave simulations, 
including bias correction. The work is mainly done through running a series of twin 
experiments. The paper contains scientifically interesting results, clear writing and 
good quality of figures. There is a potential to use the system to produce a global 
wave reanalysis (ensemble) product. There are some questions and comments, which 
are descried as following. 
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RE: Thanks for your constructive comments, which have been fully addressed in the 
revision. 
 
In Model configurations: the resolution of wind forcing could cause misleading. For 
example, 0.125x0.125deg is not the resolution of ERA-Interim itself (in which the 
model resolution is much coarser), but is the resolution of gridded reanalysis data. 
Please clarify.  
 
RE: Thanks for your reminder. Clarified. Please see line 131. 
 
AVISO data: along-track data are used in wave simulation and gridded data are used 
for validation. What will be the possible effect due to difference of these data? Are 
there any observation-related errors/uncertainties that would influence the validation 
results? Also, the validation data are not independent to those assimilated. Do author 
consider using wave buoy data for validation in the future? 
 
RE: Thanks for your great comment. Along-track data is more effective to sample 
local wave information, while gridded dataset is an integration of multiple satellites, 
which more focus on the averaging variation over several days. Therefore, it is 
reasonable absorbing the along-track data into wave simulation in a small assimilation 
window with the assumption of little wave change in a short time. Nevertheless, it 
should be mentioned that due to a few satellites available, observations may lack 
representativeness in global area. At the same time, there is a potential validation 
error considering the obtained way of gridded data. As the reviewer said, the 
validation data are not fully independent to those assimilated. In the future, we will 
add buoy data to the verification, which is more reasonable and powerful to further 
illustrate the effect of bias correction. We have added discussions in the section 5. 
Please see lines 657-658. 
 
Following above comment, now some latest observation data contain wave direction 
information (i.e. peak wave direction, 2D spectra). These obs can be used to 
assimilate model wave spectra, which will have more advantages than assimilating 
SWH only. This might be worth mentioning somewhere in the paper. 
 
RE: Thanks for the good suggestion. We have added relevant description about 
observation variables and more discussions. Please see lines 481-484 and 652-654. 
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L190: why did authors choose Sigma_M=0.6m and sigma_O=0.25m? Are the same 
model and observations as used in (Qi and Fan, 2013)? Is sigma varying with time, 
space and models? There ought to be some assumptions before using these parameters. 
 
RE: Thanks for your good advice. We have added clearer description of sigma. 
Please see lines 212-216. 
 
In equation 3, sigma_i/sigma_k*r_i,k is for SWH (or wave spectra?) correlation and 
statistics. I just wonder whether wave covariances will have the same structure as 
wave error covariances as equation 3 is supposed to be for error covariance. In a 
storm the high-sea state may have a few hundred km long, but this doesn’t necessarily 
mean the error is propagating in a few hundred km distance. I don’t have a solution 
for this question. But it needs some assumptions on equation 3, with clarifications of 
potential drawbacks, before using it. 
 
RE: Thanks for your thoughtful question. We have added the description of relevant 
variables and the assumption of equation 3. Please see lines 224-227. 
 
2.3 section step 4: ocean waves have two components, i.e. windsea waves and swells. 
The wind should (only) be corrected based on the analysed windsea waves, while 
analysed swells that are not directly forced by local wind have no impact on wind 
correction. This concept is described in Lionello et al 1995. Mostly wave models can 
output windsea and swell SWH. Why did not authors use the windsea SWH (rather 
than use total SWH) to correct wind forcing? Using analysed total SWH to correct 
wind, wind could be overly corrected for example when it is a swell dominant event at 
the DA time. 
 
RE: This is an excellent suggestion. We have tested all corresponding experiments 
about correcting wind forcing with windsea wave height. However, the results do not 
show substantial improvement. The possible reason could be attributed to the simple 
correction method. It seems that in this simple correction method, it is difficult to 
distinguish the signal by using windsea wave height to correct wind from using the 
total SWH. In the future, we plan refine the correction method and study this part to 
enhance the signal-to-noise ratio. Please see lines 433-435 for added discussions on 
this point. 
 
Fig2: not very clear what b and c are for in these snapshots. SWH difference between 
what? Which is for increment? Please clarify. 
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RE: Thank you for your reminder. We have added the detailed caption of Fig. 2. 
Please see lines 860-865. 
 
Fig3,4: are these statistics for global mean or any regions? In Fig4, what are the 
correlation coefficients for (spatial correlations)? Same for other figures. 
 
RE: Thanks for your good comments. We have added all relevant captions. 
 
Fig4 shows wind correction does not clearly improve SWH simulation when 
assimilating J2. What about assimilating all satellite tracks i.e. J2+J3+SA? Does wind 
correction have a stronger effect? 
 
RE: Thanks for your great suggestion. We have redisplayed the results of wind 
correction assimilating with three satellite tracks. Please see Fig. 4. 
 
Section 4.1 and Fig7: results show that wind correction only improves wave 
simulation by certain degrees. 1) Does the wind correction scheme used here have an 
impact? Can authors show (or suggest) any difference when using the scheme of 
Lionello et al 1995 (see above comment); 2) How about the spatial distribution of 
Fig7 red lines? 3) Are there more improvements seen in windsea waves than in swells? 
(you can simply partition wind sea waves and swell waves from total SWH). I assume 
wind correction will have a stronger impact in windsea wave simulations at high 
latitudes with strong wind. 
 
RE: Thanks for your thoughtful question. 1) In the real experiments, wind correction 
has a positive effect improving the assimilation results. However, different wave 
models have different improvement magnitudes. Here, SWAN has a weaker 
performance than WW3. Compared with the scheme in Lionello et al (1995), a big 
difference is that a coarse adjustment without distinguishing the wave structure 
(windsea or swell) is conducted to reconstruct the 2-dimensional wave spectrum. We 
will take this distinction into consideration in the future study. 2) We have displayed 
the spatial distribution of the red lines in Fig. 7, please see panel d and h of Fig. 9. 3) 
About the improvement of windsea and swell, we also have added discussions in the 
revision. Please see lines 582-588. 
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Section 4.2: Please describe a bit more how the bias is produced and removed in these 
simulations. It is not very clear to me. How was ‘bias correction of model control run’ 
implemented? 
 
RE: Thanks for your great advice. We have added more detailed description about 
how to get bias and bias correction (please see lines 570-574). And we also have 
explained the “bias correction of model control run” (please see lines 615-617). 
 
Was bias correction in this paper like the offline-type bias correction? If we can have 
a long-term historic run, to produce the climatology of wave bias, and then use it as an 
offline bias correction term before online DA term (simply like some DA procedures 
in European systems), will this produce similar results as produced in Fig 10? This 
offline term can potentially be used in forecast as well. One normally won’t expect 
that DA can efficiently correct the long-term and persistent bias, but expects DA is 
more powerful for correcting the instantons/short-term/flow-dependent errors. It is not 
simple to have an immediate answer for this question, but it will be useful to have a 
discussion somewhere in the paper. 
 
RE: Thanks for your excellent suggestion. As the reviewer said, bias correction in 
this manuscript is an “offline-type”. We have 1-year output of model control run and 
with data assimilation, then do offline-type bias correction and show in Fig. 11. If a 
longer run is conducted, similar results are supposed to display like Fig. 11. We will 
verify it in the future study. The effect of data assimilation on correcting the 
instantons errors is discussed in lines 654-658. 
 
Line 61: to produce=> for producing L337: inaccurate 
 
RE: Thanks for your advice. We have modified this error, please line 375. 
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a list of all relevant changes made in the manuscript 
 
In this revision, we have added: 
(1) more detailed description to make all experiments easily operate and follow, such 
as: a) the equation assumptions, b) the figure captions, c) the method of obtaining 
SWH bias and bias correction. 
(2) deeper discussion to comprehensive understanding the effect of bias correction on 
wave data assimilation, such as: a) to quantify the error caused by wind forcing and 
model bias in time and space, b) to compare the improvement of windsea and swell 
after wind correction. 
 
a marked-up manuscript version 
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Abstract. High-quality wave prediction with a numerical wave model is of societal value. To 

initialize the wave model, wave data assimilation (WDA) is necessary to combine the model and 

observations. Due to imperfect numerical schemes and approximated physical processes, a wave 15 

model is always biased in relation to the real world. In this study, two assimilation systems are first 

developed using two nearly independent wave models; then, “perfect” and “biased” assimilation 

frameworks based on the two assimilation systems are designed to reveal the uncertainties of WDA. 

A series of “biased” assimilation experiments is conducted to systematically examine the adverse 

impact of model bias on WDA. A statistical approach based on the results from multiple assimilation 20 

systems is explored to carry out bias correction, by which the final wave analysis is significantly 

improved with the merits of individual assimilation systems. The framework with multiple 

assimilation systems provides an effective platform to improve wave analyses and predictions and 

help identify model deficits, thereby improving the model. 

1 Introduction 25 

Ocean waves, referring to the ocean surface gravity waves driven by wind, are important physical 

processes in the study of multiscale coupled systems. Many studies show that ocean waves are 

necessary for upper ocean mixing processes, whether in small-scale coastal simulations or large-scale 

global climate simulations (e.g., Babanin et al., 2009; Huang and Qiao, 2010; Qiao et al., 2004, 2010). 
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The existence of ocean waves can modify the structures of both atmospheric and marine boundary 30 

layers by providing sea surface roughness, wave-induced bottom stress, breaking wave-induced mixing, 

and so on, which ultimately influence air-sea momentum and heat exchange. Therefore, ocean waves 

are an important component in atmosphere-ocean interaction flux processes (e.g., Chen et al., 2007; 

Doyle, 2002; Liu et al., 2011; Warner et al., 2010). In addition, the study of ocean waves can reduce 

and prevent marine disasters and provide guidance for development of the social economy (e.g., Folley 35 

and Whittaker, 2009; Rusu, 2015; Wei et al., 2017). Thus, studying ocean waves is of great scientific 

and social significance. 

At present, ocean wave observational techniques are constantly being improved (e.g., Daniel et al., 

2011; Hisaki, 2005). Except for traditional buoy observations (e.g., Mitsuyasu et al., 1980; Rapizo et al., 

2015; Walsh et al., 1989), satellites can provide much near real-time wave observational information, 40 

which is beneficial for understanding the state of ocean waves (e.g., Gommenginger et al., 2003; 

Lzaguirre et al., 2011; Queffeulou P, 2004). However, observations always represent scattered samples 

in time and space in the real world and therefore do not represent the complete three-dimensional 

structure and temporal evolution of real world waves. 

Numerical wave models are a powerful tool for studying the physical processes of ocean waves and 45 

predicting future wave states. Following the development of the previous two generations, third-

generation wave models, such as WAve Modeling (WAM) (WAMDI Group, 1988), WaveWatch III 

(WW3) (Tolman, 1991), Simulating Waves Nearshore (SWAN) (Booij et al., 1999), and MArine 

Science and Numerical Modeling (MASNUM) (Yang et al., 2005), integrate the spectral action balance 

equation describing the two-dimensional ocean wave spectrum evolution without additional ad hoc 50 

assumptions regarding the spectral shape, and these third-generation models are more robust for 

arbitrary wind fields than previous models. However, there are generally three error sources in wave 

models. One error source is from an incomplete understanding of the physical processes, approximate 

expressions of the numerical discretization schemes and so on, which causes systematic errors that are 

usually referred to as wave model bias. The second error source is due to inaccurate wind forcings of 55 

wave models. The third error source is from the initial condition uncertainties, which can grow due to 

nonlinearity of the model equations during model forwarding. In this sense, the model simulated waves 

do not represent the real world either. 

Given the scattering nature of observational information and the approximate characteristics of wave 

modelling, wave model data assimilation (WDA) is necessary to combine the advantages of both the 60 删除了: modeling
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model and observations. WDA optimizes the model initial conditions to produce more accurate wave 

forecasts and produces more accurate evolution of 3-dimensional wave states to elucidate the 

underlying mechanisms; this approach dates back to the 1980s (e.g., Esteva, 1988; Janssen et al., 1989). 

Since then, many advanced WDA methods have been developed (e.g., Abdalla et al., 2013; Bauer et al., 65 

1996; Greenslade and Young, 2004; Jesus and Cavaleri, 2015; Lionello et al., 1992; Sun et al., 2017; 

Vorrips et al., 1999), and their applications have been assessed (e.g., Francis and Stratton, 1990; Heras 

et al., 1994; Stopa and Cheung, 2014). Furthermore, various observation types, such as buoy, radar and 

satellite, have been applied to WDA (e.g., Bhatt et al., 2005; Breivik et al., 1998; Feng et al., 2006; 

Greenslade, 2001; Hasselmann et al., 1997; Qi and Cao, 2016; Voorrips, 1999; Waters et al., 2013), 70 

and the wave forecasts have also been directly addressed (e.g., Almeida et al., 2016; Emmanouil et al., 

2012; Lionello et al., 1995; Qi and Fan, 2013; Sannasiraj et al., 2006; Voorrips, 1999; Wang and Yu, 

2009; Zhang et al., 2003). 

Due to the approximate nature of the numerical discretization and physical processes, a systematic 

difference between a model and the real world (i.e., model bias) exists. As noted by Zhang et al. (2012), 75 

since model bias is not well defined in observational space, the influence of model bias on data 

assimilation is a challenging research topic. Alternatively, one can simulate model bias using a pair of 

models and study the adverse impacts on data assimilation. Inspired by previous work (e.g., Dee, 2005; 

Zhang et al., 2012), here, we use a simple data assimilation scheme with two wave models (WW3 and 

SWAN) to explore the influences of different error sources on WDA. The adverse impacts of wind 80 

forcing errors and initial condition uncertainties as well as wave model bias on WDA are studied first, 

and then two simple statistical methods for bias correction are developed to mitigate assimilation errors 

and improve wave analysis. 

This paper is organized as follows. After the introduction, the methodology is presented in section 2, 

including a brief description of the employed models and observations, development of the two WDA 85 

systems using the WW3 and SWAN models, as well as the design of experiments throughout the study. 

Section 3 presents the model bias analysis and the adverse impacts of model bias on WDA. In section 4, 

the method used to mitigate model bias influences on wave assimilation is explored. Finally, the 

discussion and conclusion are given in section 5. 

删除了:  the90 
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2 Methodology 

2.1 Models and data 

2.1.1 Three models 

In the wave models, the variance spectrum or energy density E(σ, θ) is a quantity that represents the 

wave energy distribution in the radian frequency (σ) and propagation direction(θ). Without ambient 95 

ocean currents, the variance or energy of a wave package is conserved. However, if the current is 

involved, due to the work done by the current on the mean momentum transfer of waves (Longuet-

Higgins and Stewart, 1961, 1962), the energy of a spectral component is no longer conserved. In 

general, an action density spectrum defined as N=E/σ is considered within the models. Then, the 

governing equation of the wave model can be written as follows: 100 
'(
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The left-hand side of this equation is the kinematic process during wave propagation. The second term 

describes the wave energy propagation in two-dimensional geographical space denoted by	
,→. The 

/0
→ is 

the group velocity that follows the dispersion relation. The third term represents the effect of shifting 

the radian frequency due to variation in depth. The fourth term represents the depth-induced refraction. 105 

𝑐4	and 𝑐6  are wave velocities in the frequency 𝜎 and direction	𝜃, respectively. On the right-hand side, 

𝑆)@) is the nonconservative source/sink term representing all physical processes that generate, dissipate, 

or redistribute wave energy. Typically, there are three important physical processes that contribute to 

𝑆)@) , which include the atmosphere-wave interaction, nonlinear wave-wave interaction, and wave-

ocean interaction. In a shallow-water case, additional processes must be considered, such as wave-110 

bottom interaction, depth-induced breaking, and triad wave-wave interaction. 

In this study, we use three advanced third-generation spectrum models, WAve Modeling (WAM, Cycle 

4.5.4) (WAMDI Group, 1988), WaveWatch III (WW3, version 5.16) (Tolman, 1991), and Simulating 

WAves Nearshore (SWAN, version 41.20) (Booij et al., 1999), which have improved a lot from their 

predecessors, such as numerical and physical approaches. These wave models have the same form  of 115 

governing equation, however their numerical implement processes are different due to different 

consideration. For example,  SWAN is more focused on wave propagation processes in shallow water, 

while WAM and WW3 pay more attention in deep water.  For more comparisons, please see section 

2.2. 

删除了: part120 
删除了:  of this equation

删除了: . The first one is 

删除了: developed from the Sea Wave Modelling Project (SWAMP)

设置了格式: 英语(美国)
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2.1.2 Model configurations 

Three wave models use two-dimensional spectral space containing 29 frequencies that cover from .035 125 

Hz to .555 Hz with a logarithmic distribution and 24 equidistant directions. The geographic space is 

from 180° W to 180° E in the zonal direction and 75° S to 75° N in the meridional direction with a 

1°×1° grid resolution. The topography in this study is taken from the high-resolution ETOPO1 dataset 

provided by NOAA (website: https://www.ngdc.noaa.gov/mgg/global/). The wind forcing has two 

sources, both of which have 6-hour time intervals. The first dataset is the ERA-Interim reanalysis from 130 

European Centre for Medium-Range Weather Forecasts (ECMWF), with a resolution of .75°×.75° 

(http://apps.ecmwf.int/datasets/data/interim-full-daily/). The second dataset is the CFSRv2 dataset from 

NCEP, with a resolution of .205° (longitude) ×.204° (latitude) (https://rda.ucar.edu/datasets/ds094.1/). 

The time-step of all three models is 15 minutes. All relevant parameters above are set to be identical for 

every wave model (WW3, SWAN, and WAM) in this study. 135 

2.1.3 Data 

The AVISO (Archiving, Validation and Interpolation of Satellite Oceanographic) data    

(https://www.aviso.altimetry.fr/en/data/products/) are the satellite observational products used in this 

study. For ocean waves, the AVISO has two satellite altimetry products: along-track data and gridded 

data. The along-track data are used as the observational data source for the wave data in the simulation 140 

(sampled from “truth” in the “twin” experiments). The gridded data are used to validate the wave 

simulation and assimilation (1°×1° resolution with 1-day time intervals). During wave simulation, the 

significant wave height (SWH) is used as a basic observational variable for data assimilation, which is 

provided from three ongoing satellites: Jason-2, Jason-3, and Satellite for Argos and ALtiKa (SARAL). 

Figure 1 shows one-cycle ground orbit by taking Jason-2 and SARAL as examples. Jason-3 is the 145 

successor of Jason-2, and both satellites share the same orbit. 

2.2 Different modeling strategies in WW3 and SWAN 

Since the observations are only a sample of real world information, the model bias (i.e., systematic 

difference between a numerical wave model and the real world) is not well defined against the real 

world. In this study, we use the systematic difference between the WW3 and SWAN models to 150 

simulate the model bias and study the influences on wave data assimilation (WDA). 

删除了: . For the first time, WAM creatively overcomes the 
shortcomings of the first- and second-generation wave models, such 
as the numerical problems and the restrictions on the spectral shape, 
and is available for all wind fields and extreme situations.!155 
The second model is WaveWatch III (WW3, version 5.16), which is 
provided online by the National Center for Environmental Prediction 
(NCEP). In terms of the major aspects such as governing equations, 
program structures, as well as numerical and physical approaches, 
WW3 is different from its predecessors (WW2 developed at the 160 
NASA Goddard Space Flight Center, and WW1 developed at Delft 
University of Technology, Netherlands), as WW3 has a more 
reasonable wind-wave physical mechanism
The third model is Simulating WAves Nearshore (SWAN, version 
41.20) provided by Delft University of Technology, Netherlands. 165 
SWAN model employs a fully implicit finite differencing scheme, 
which is unconditionally stable and is more focused on wave 
propagation processes in shallow water. The model has been 
successfully applied to simulations of waves in coastal areas, lakes 
and estuaries, and so on.!170 
删除了: 125
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First, let us distinguish the difference in physical and numerical aspects to comprehend the causes of 

“bias” between these two models. In general, WW3 addresses global scales, and SWAN is more 175 

applicable in shallow water. Although the two models have most of the same physical processes, such 

as the wind input and nonlinear wave-wave interactions, each can provide multiple parameterization 

schemes to choose. For example, the nonlinear wave-wave interactions in SWAN include the Discrete 

Interaction Approximation (DIA) (Hasselmann et al., 1985) and the Webb-Resio-Tracy (Resio and 

Perrie, 1991;Van Vledder, 2006; Webb, 1978), while there are more choices in WW3, such as the 180 

Generalized Multiple DIA (Toman, 2004, 2013), the Two-Scale Approximation and Full Boltzmann 

Integral (Perrie et al., 2013; Perrie and Resio, 2009; Resio et al., 2011; Resio and Perrie, 2008), as well 

as the Nonlinear Filter scheme (Tolman, 2011). In order to reduce more uncertainties, same scheme is 

chosen for the same physical process. In numerical aspects, there exist different implementation 

strategies such as the differencing method, which also contributes to bias. 185 

2.3 Two data assimilation systems using WW3 and SWAN 

To explore the model bias influences on WDA, we develop two data assimilation systems based on 

WW3 and SWAN in this study. 

Generally, based on the program structure of wave models, we insert the assimilation module between 

calculations of the two-dimensional wave spectrum and outputs of wave parameters so that at the 190 

assimilation time, we call on the assimilation module to update the spectrum and SWH. When building 

the data assimilation systems, we need to consider the different structures of parallelism method, data 

storage, and information exchange in WW3 and SWAN models as noted in section 2.2. 

To clearly demonstrate the influences of model bias on WDA and minimize its adverse impact, the 

analysis scheme in both assimilation systems is optimal interpolation (OI), which also is low cost and 195 

easy to operate. We implement the OI analysis in three to four steps. The first step uses two Gaussian 

convolutions of the background and observed SWHs to compute the observational increment of SWH 

at the observational location. The second step projects the SWH observational increment onto the 

model grids centered at the observational location but within an impact radius using linear regression. 

The third step transforms the analyzed SWH to update the spectrum of model waves. The fourth step 200 

corrects wind forcing using the observational SWH. 

Step 1: Computing observational increment by convolution of two Gaussians 

删除了: uses 

删除了: a different
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Starting from the idea of the ensemble adjustment Kalman filter (Andersen, 2001), an observational 205 

increment at the observational location k, ∆𝐻CD (H represents SWH), is computed by the convolution of 

two Gaussians of the model background and observation, which can usually be obtained from model 

ensemble members and observational samples. ∆𝐻CD is formulated as follows (Zhang et al, 2007): 

  ∆𝐻CD =
E

(3F)G
HIFJ E

(3:)G
HIK

E
(3F)G

J E
(3K)G

+ ∆HL
F

MNJ(
3F

3K
)G
− 𝐻CP.                                                                                           (2)                                                                                                          

Here, the first and second terms on the right-hand side of the equation adjust the ensemble mean and 210 

ensemble spread, respectively, and ∆𝐻CP  represents the prior model spread. Superscripts O and M 

denote the observation and prior quantity estimated by the model, respectively. 𝜎 is the corresponding 

error standard deviation of SWH and varies in time, space and differs in every wave model. The 

overbar denotes the ensemble mean. In this simplified case, we specify 𝜎P = 0.6	𝑚, 𝜎D = 0.25	𝑚, 

assuming that 𝜎 is constant in all conditions similarly with the previous study (e.g., Qi and Fan, 2013), 215 

and use single model and observational values as the ensemble mean. 

Step 2: Regressing the observational increment onto model grids 

The second step projects the observational increment ∆𝐻CD  onto the related model grids using 

background error covariance, which is a key step in the analysis. To simplify the problem and improve 

the computational efficiency, many studies use a flow-independent distance function to sample the 220 

background error covariance for computing the analysis increment at the model grid i, ∆𝐻WX, as ∆𝐻WX =

(𝜎WY)Zexp	(−(
^_,L
`
)) × ∆𝐻CD. Usually, such an expression is only a symmetrical approximation of the 

correlation function and cannot represent the spatial structure and propagation characteristics of waves. 

Here, with the assumption that wave covariance has same structure as wave error covariance, we 

modify the covariance formula to increase its representativeness for wave structure by superimposing a 225 

statistical correlation coefficient obtained from the outputted SWH of model simulation into the 

formula. After analysis, the equation becomes 

∆𝐻WX =
4_
b

4L
b 𝑟W,CY ex p d−e

^_,L
` fg × ∆𝐻C

D,														i𝑓	𝑑W,C ≤ 𝑅                                                                        (3)  

∆𝐻WX = 0, 𝑖𝑓	𝑑W,C > 𝑅 

where L is the characteristic length and 𝑑W,C is the distance between the model grid i and observational 230 

point k. When 𝑑W,C is larger than the impact radius R, there is no observational impact on this model 

point from observation k. All variables with superscript s represent the model statistics from free model 
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control results. For example, 𝑟W,CY  is the SWH covariance between the model grid i and observation k, 

which is evaluated from the model data time series in corresponding experiments. To ensure the local 

characteristics of ocean waves, in this study, the characteristics length L and impact radius R (or the 

largest 𝑑W,C) are the same, causing this incremental projection to reach to the e-folding scale. Referring 

to previous studies (e.g., Lionello and Gunther, 1992; Qi and Fan, 2013), we tested different values of 245 

L and R as 300 km, 800 km, and 1000 km and found no essential improvement with larger L and R 

values. Trading-off with computational efficiency, we set L and R as 300 km throughout this study. As 

shown in Fig. 2, the new covariance represents more wave physics, i.e., the correlation has more 

asymmetrical and wave-dependent characteristics. 

Step 3: Transforming the SWH to wave spectrum 250 

The assimilation SWH 𝐻WX is a sum of the prior 𝐻WP and the analysis increment from step 2 (𝐻WX =

𝐻WP + ∆𝐻WX). In the wave model, the form of ocean waves is a two-dimensional wave spectrum that is 

distributed over frequency and phase. Thus, transforming the assimilation SWH to wave spectrum is 

necessary to update other wave parameters. Following the previous study (Qi and Fan, 2013), we 

assume that the change in wave spectrum is proportional to the energy change that is expressed by the 255 

square of SWH. Then, the analyzed spectrum 𝑆WX(𝑓, 𝜃) can be written as follows:  

𝑆WX(𝑓, 𝜃) = d
H_
n

H_
Fg

Z
𝑆WP(𝑓, 𝜃),                                                                                                                   (4)                                                                                                                                        

where f is the wave frequency and 𝜃 is the phase direction. 

Step 4: Correcting wind forcing using SWH data 

If the assimilation only adjusts the wave spectrum as described in Step 3, the updated spectral structure 260 

may be quickly overwritten by erroneous wind. In this step, we describe a simple scheme using the 

observed SWH data to correct the wind forcing. Starting from a first guess of wind (the ERA-Interim 

reanalysis, for instance), the analyzed wind 𝑊W,p
X  at model grid (i, j) can be written as follows: 

	𝑊W,p
X = 𝑊W,p

P + ∆𝑊W,p	,                                                                                                                              (5)                                                                                                                   

where W represents either the u or v component of wind. ∆𝑊W,p	 is the corrected wind increment 265 

transformed from the updated SWH. While the details of the transformation scheme can be found in 

Lionello et al. (1992, 1995), we comment on certain aspects relevant to our study. Regardless of 

boundaries, in general, the energy of ocean waves is determined by the wind speed and duration, which 

can also be expressed by SWH. In that sense, a function equation can be built, in which the left-hand 

side is an expression of wind speed and duration, while the right-hand side is an expression of SWH, 270 
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and they are balanced through wave energy. Then, the analyzed wind speed can be resolved under the 

assumption that the duration is same in the both prior and analyzed fields. 

With respect to the configuration of wave model data assimilation, the model time step is 15 minutes 

and the assimilation interval is 1 hour. At the assimilation time, we assimilate the along-track 

observations within a 1-hour time window centered at the time. After 10 days, all the observations will 275 

cover the global area. The wind data from the reanalysis products (ERA-Interim and NCEP-CFSR in 

this case) are available every 6 hours. To incorporate the wind correction into the wind forcing of the 

model, we distribute the wind correction to the adjacent two time-levels of wind data. As the process is 

looped forward as the wave model state is updated, the wind forcing is adjusted through the SWH 

assimilation. 280 

2.4 Experimental design 

Throughout this study, we use the symbol MAO(s)WF as the name for the assimilation experiment. Here, 

“MA” stands for the “assimilation model” and the subscript “O(s)” (resp. superscript “WF”) represents 

the observing system (resp. wind forcing) in the assimilation. The wind forcing is either the ECMWF 

ERA-Interim (hereafter known as ERAI) or NCEP-CFSR wind (hereafter known as CFSR). Wind 285 

forcing can also be corrected by observations of SWH (under this circumstance, the superscript “WF” 

is replaced by “ASSW”). The observations used in the assimilation could be the model data but are 

projected on the along-track points of satellite(s) if being used for the twin experiments. Under this 

circumstance, “O” represents “model that produces observations” and “(s)” represents the used satellite 

tracks (J2-Jason-2, J3-Jason-3, and SA-SARAL, for instance). Otherwise, in the real-data assimilation 290 

experiments, the subscript “O(s)” directly lists the satellites that measure the SWH. For example, a 

symbol named WW3SWAN(J2)ERAI means that the assimilation model is WW3 (here, “MA”=”WW3”) 

forced by ERA-Interim wind (“WF”=”ERAI”), and the model producing observation is SWAN with 

Jason-2 satellite track (“O”=”SWAN”, and “(s)”=”(J2)”). 

2.4.1 Twin experiments 295 

Twin experiments refer to a type of Observing System Simulation Experiment (OSSE), in which a 

model simulation is used to define the “true” solution of a data assimilation problem, and the other 

model simulation is used to start the assimilation. The “observations” are samples of the “truth” with 

some white noise to simulate the observational errors. When the “truth” and assimilation are conducted 
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by different (resp. identical) models, the framework is a “biased” (resp. “perfect”) model twin 300 

experiment. Within a twin experiment framework, any aspect of assimilation skills can be measured as 

the degree to which the “truth” is recovered through the assimilation. 

a) Perfect twin experiment 

In a perfect twin experiment, we assume that the assimilation model and the observation are unbiased, 

i.e., both the instrument measuring and numerical modelling processes are sampling the same 305 

stochastic dynamical system. Such sampling only has random sampling errors without any systematic 

difference (bias). We can build this perfect model framework by using the same model to produce the 

“truth” as the assimilation model but with different initial conditions and wind forcings. 

The “observations” from the observational time window (1 hour) centered at the assimilating time can 

be created by sampling the “truth” SWH with the tracks of the Jason-2, Jason-3 and SARAL satellites, 310 

which will cover the global area in 10 days. In this circumstance, if WW3 (resp. SWAN) is used as the 

assimilation model, the “truth” is produced by the same WW3 (resp. SWAN) model. In the assimilation, 

we may start the model with different initial conditions and/or wind forcings to examine the influences 

of initial errors and wind forcing errors on the wave assimilation. Such a perfect twin experiment can 

be named WW3WW3(s)WF or SWANSWAN(s)WF. 315 

b) Biased twin experiment 

To study the impact of model errors on wave assimilation, we use two models to design a “biased” twin 

experiment. Again, due to the scattering nature of the observations, it is difficult to obtain a complete 

picture of the model bias against the real world. Given the difference between the WW3 and SWAN 

models described in section 2.2, we use these two models and their assimilation systems here to 320 

simulate the model bias and examine its influences on the WDA. We use the ERA-Interim reanalysis 

wind to force the WW3 (resp. SWAN) to produce the “truth” and “observations” but use the SWAN 

(resp. WW3) assimilation system to assimilate the “observations.” The degree to which the “truth” 

produced by different model-based assimilation systems is recovered by assimilating the “observations” 

is an assessment of the model bias influences on the WDA. Such a “biased” twin experiment can be 325 

named WW3SWAN(s)WF or SWANWW3(s)WF. 

Under the biased twin experiment framework, we also conduct experiments to examine the impacts of 

observing systems on wave assimilations by increasing the observational information based on multiple 

satellite tracks. For example, we can examine the assimilation results of WW3SWAN(J2)WF, 

WW3SWAN(J2+J3)WF, and WW3SWAN(J2+J3+SA)WF (resp. SWANWW3(J2)WF, SWANWW3(J2+J3)WF, and 330 
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SWANWW3(J2+J3+SA)WF) to understand the impacts of observing systems on different model-based 

assimilations. 

2.4.2 Real-data assimilation experiments 

In this study, we also conduct real-data assimilation experiments using WW3 and SWAN assimilation 335 

systems with real track data from the Jason-2, Jason-3 and SARAL satellites. Through real-data 

assimilation experiments with different model-based assimilation systems, we can 1) increase our 

understanding of the influences of model errors on the WDA and 2) study the method to reduce the 

model error influences on the assimilation results. The real-data assimilation experiments can be 

directly named, e.g., WW3J2+J3+SAWF or SWANJ2+J3+SAWF. 340 

3 Error sources in wave models and WDA 

3.1 Influences of initial and wind forcing errors 

Usually, wave numerical simulation can be improved by three methods: 1) reducing the errors in the 

initial conditions, 2) enhancing the accuracy of the wind forcing, and 3) improving the representation 

of the wave model and its parameterization. 345 

In this section, we use perfect model twin experiments (as described in section 2.4.1) to exclude model 

errors and explore the impact of wind forcings and initial conditions on the wave simulations. To 

compare the performances of the WW3 and SWAN models, we conduct separate experiments with 

these two models. The “truth” and model control runs are two basic experiments of the perfect twin 

experiment framework. We use the ERA-Interim wind to drive WW3 (resp. SWAN) and generate a 350 

long time series of model states as the “truth,” which is called WW3ERAI (resp. SWANERAI) for the WW3 

(resp. SWAN) perfect model twin experiment. The “observations” are created by interpolating the 

corresponding “truth” SWH onto the along-track points of satellite orbits. Then, we use the NCEP-

CFSR wind to force WW3 (resp. SWAN), called the model control WW3CFSR (resp. SWANCFSR), and the 

data assimilation is named WW3WW3(s)CFSR (resp. SWANSWAN(s)CFSR). Starting from an independent initial 355 

condition produced by the model control, we can conduct the assimilation with the ERA-Interim or 

NCEP-CFSR wind forcing. The error verification of the assimilation results against the “truth” 

simulation compared to the error of the model control is an evaluation of the initial error or/and wind 

forcing error influences on the WDA. All perfect model twin experiments are listed in Table 1. 
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First, we conduct two sets of model control experiments WW3CFSR and SWANCFSR for 80 days (from 360 

December 2017 to February 2018). To explore the effect of the initial conditions, we perform the 

model spin-up for a long time to adequately reach a steady state. Then using the 45th-day model states 

as the initial conditions, we conduct one more model simulation and data assimilation experiments for 

each model system as WW3ERAI and WW3WW3(J2)ERAI as well as SWANERAI and SWANSWAN(J2)ERAI. The root 

mean square errors (RMSEs) of these experiments against the “truth” are shown in Fig. 3 as the red 365 

(for WW3CFSR+WW3ERAI and SWANCFSR+SWANERAI) and pink (for WW3CFSR +WW3WW3(J2)ERAI and 

SWANCFSR +SWANSWAN(J2)ERAI) lines. 

The SWH RMSE is approximately .34 meters in the WW3 or SWAN model control with the NCEP-

CFSR wind. Once the wind forcing is changed to the “perfect” wind (the ERA-Interim) on the 45th day, 

the RMSE quickly drops and is close to zero after approximately 10 days, and the SWAN model takes 370 

longer to accomplish this change than the WW3. If data assimilation is added, the RMSE reduces much 

faster than the model controls (roughly half of the time scale of the correct wind forcing). From the 

analyses above, we learned, 1) in wave models, the wind forcing plays an important role and an 

incorrect wind forcing could be a significant error source of WDA; and 2) the WDA can rapidly reduce 

the initial error and improve the predictability of a wave model even when it is forced by an inaccurate 375 

wind forcing. 

3.2 Impact of the observational system 

In this section, using the same model states (at the 45th day) in the corresponding model control as in 

section 3.1 as the initial conditions, we conduct two sets of assimilation experiments WW3WW3(J2)CFSR, 

WW3WW3(J2+J3)CFSR, WW3WW3(J2+J3+SA)CFSR and SWANSWAN(J2)CFSR, SWANSWAN(J2+J3)CFSR, 380 

SWANSWAN(J2+J3+SA)CFSR. Through examining the assimilation quality with one satellite (Jason-2), two 

satellites (Jason-2+Jason-3) and three satellites (Jason-2+Jason-3+SARAL), we attempt to understand 

the impact of improving the observing system on the WDA, considering the NCEP-CFSR wind forcing 

errors against the ECMWF ERA-Interim based on a perfect assimilation model. The RMSEs of all the 

above assimilation experiments are plotted in Fig. 3 as the blue (assimilating Jason-2 only), green 385 

(assimilating Jason-2+Jason-3) and cyan (assimilating Jason-2+Jason-3+SARAL) lines. 

From Fig. 3, we can see that in both models, the assimilation errors are reduced when more 

observational information is used. The corresponding RMSE reductions in these three experiments 

from the model control run are 24 %, 32 % and 38 % for WW3 and 26 %, 35 % and 38 % for SWAN, 
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respectively. However, when more satellite observations are assimilated into the model, the magnitude 390 

of improvement becomes small (further reduced by 8 % in WW3 and 9 % in SWAN when Jason-3 is 

added as well as only a 6 % in WW3 and 3 % in SWAN further reduction when SARAL is further 

added). These results suggest that given wind forcing errors, increasing observational information can 

help to improve the model behavior, but the improvement is limited. 

3.3 Adverse impact of model bias 395 

As described in section 2.2, the WW3 and SWAN models discretize the wave action governing 

equation with different physical processes, parameterization schemes and differencing schemes. These 

differences result in each wave model having its own distinguished characteristics. To study the 

adverse impact of the model bias on the wave assimilation, the biased twin experiments described in 

section 2.4.1 are used in this section, where the “truth” model and the assimilation model are different 400 

between WW3 and SWAN. For example, the WW3SWAN(J2)ERAI (resp. SWANWW3(J2)ERAI) experiment uses 

WW3 (resp. SWAN) as the assimilation model to assimilate the Jason-2 track point “observations,” but 

the observed values are produced by SWAN (resp. WW3), and all models are forced by the ERA-

Interim wind. All related experiments for the biased model framework are described in detail in Table 

2. 405 

The RMSEs and correlation coefficients produced by the all biased model assimilation experiments are 

plotted in Fig. 4. The black line in each panel represents the result of the WW3 model control forced by 

the ERA-Interim wind (WW3ERAI) against the “truth” simulation by the SWAN model with the same 

wind forcing (SWANERAI) (left panels, a and b) (vice versa in the right panels, c and d). Both the 

WW3ERAI and SWANERAI experiments are initialized from a cold start by the wind and integrated for 80 410 

days, and the results of the last 40 days are shown in Fig. 4. It is clear that the WW3 and SWAN model 

simulations are quite different even though both simulations use identical forcings and start from 

identical initial conditions. The RMSEs of the two model simulations are both 0.58 m, which is much 

larger than the errors produced by a perfect model but with different wind (~0.34 m, see black lines in 

Fig. 3). 415 

Compared with the model controls WW3ERAI and SWANERAI, the assimilation experiments 

WW3SWAN(J2)ERAI and SWANWW3(J2)ERAI (pink lines in Fig. 4) can significantly reduce the SWH simulation 

error (by 24 % and 22 %, respectively) and enhance the correlations (by 3 % and 4 %, respectively) 

with the “truth” (SWANERAI and WW3ERAI, respectively). When the “observations” of Jason-3 and 
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SARAL are added to the assimilation (i.e., WW3SWAN(J2+J3)ERAI and WW3SWAN(J2+J3+SA)ERAI as well as 420 

SWANWW3(J2+J3)ERAI and SWANWW3(J2+J3+SA)ERAI) (see the red and blue lines, respectively), the model 

SWH error (resp. correlation) is further reduced (resp. enhanced), but the amplitude of reduction (resp. 

enhancement) gradually diminishes (10 % and 5 % for further error reduction and 1 % and 0.8 % for 

further correlation enhancement in the WW3 assimilation; 10 % and 7 % for further error reduction and 

1.7 % and 0.7 % for further correlation enhancement in SWAN assimilation from the additions of 425 

Jason-3 and SARAL, respectively). 

The results of two other sets of assimilation experiments called WW3SWAN(J2+J3+SA)ASSW and 

SWANWW3(J2+J3+SA)ASSW are also plotted by dotted green lines in Fig. 4. The superscript “ASSW” stands 

for the assimilation-corrected wind, meaning that the wind forcing of the assimilation model is also 

“corrected” by the “observed” SWH data, as described in Step 4 of section 2.3. We found that in both 430 

assimilation systems, using the “observed” SWH data to “correct” the wind can compensate for the 

model errors to some degree and further reduce the assimilation errors, but the improvement is very 

limited. The weak improvement could be attributed to the simple wind correction method with total 

wave height. In the future, a more powerful correction method with windsea wave height may have 

better performance.  435 

These assimilation results clearly show that even though the wind forcing is perfect, once a biased 

assimilation model is used, the wave simulation has large errors. Although WDA can greatly reduce the 

simulation error by assimilating the observational information into the model, due to the existence of 

the model bias, the error remains at some significant level and cannot be eliminated entirely even by 

increasing the observational constraints through an improvement in the observational system and 440 

constraint of the wind forcing.  

3.4 Comparison of the influence of wind forcing with model bias 

Comparing the time series of SWH RMSE caused by two important error sources, model bias (0.58 m 

shown with black lines of panel a/c in Fig. 4) plays a stronger role than wind forcing (0.34 m shown 

with black lines in Fig. 3). When three satellite observations (Jason-2, Jason-3 and SARAL) are 445 

assimilated into twin experiments, the RMSE of SWH reduces 38% in perfect model twin experiments 

(cyan lines in Fig. 3) and 40% in biased model twin experiments (blue lines of panel a/c in Fig. 4). It is 

obvious that the error caused by model bias is bigger than by wind forcing and their improvements are 

almost similar after data assimilation. 

删除了: the WW3 model450 

删除了:  In the SWAN model, such wind “correction” cannot 
compensate for the model error at all.…

删除了: Next, with the results of real-data assimilation where both 
the model and wind forcing have errors, we will analyze and discuss 
how to mitigate the model bias influences on the WDA.…455 
设置了格式: 字体: (中文) Times New Roman

带格式的: 标题 2, 右  0.56 字符

设置了格式: 字体: (中文) Times New Roman, 英语(英国)

设置了格式: 字体: (中文) Times New Roman, 英语(英国)

设置了格式: 字体: (中文) Times New Roman, 英语(英国)

设置了格式: 字体: (中文) Times New Roman, 英语(英国)

设置了格式: 字体: (中文) Times New Roman

删除了: more 

设置了格式: 字体颜色: 文字 1

删除了:  
设置了格式: 字体: 加粗

设置了格式: 字体: 加粗



23 
 

A spatial pattern of SWH RMSE is also displayed in Fig. 5 (Due to the similar performance inside twin 

experiments, here we only show the results using WW3 model as simulation/assimilation model). In 

model control run, it makes sense that the error caused by wind forcing (panel a (WW3CFSR). Truth is 460 

WW3ERAI) has distributed in the areas where the wind is strong, such as the area of Antarctic 

Circumpolar Current (ACC) and the north Pacific and Atlantic Ocean, while the error caused by model 

bias (panel c (WW3ERAI). Truth is SWANERAI) is distributed almost globally. After assimilating with 

three satellite observations, the error spatial distribution of both has improved a lot respectively (panel 

b (WW3WW3(J2+J3+SA)CFSR), and panel d (WW3SWAN(J2+J3+SA)ERAI)). Referring to wind distribution, we can 465 

divide the global areas roughly into three parts: northern westerly zone (65° N-30° N), trade-wind zone 

(30° N-30° S), and circumpolar westerly zone (30° S-65° S). Therefore the error caused by wind 

forcing (resp. model bias), the decreasing percentages of SWH RMSE in these three areas are 30% 

(resp. 27%), 45% (resp. 50%), and 46% (resp. 48%), respectively. We can find that the improvement of 

both error sources has similar performance in three these areas, weak in the northern westerly zone and 470 

almost same strong in the trade-wind zone and circumpolar westerly zone. About the reason why there 

is a lower improvement in the north Pacific and Atlantic Ocean should be explored in the future. To 

sum up, the error caused by model bias has larger than wind forcing in the global area generally, 

especially in the equatorial ocean. However, in the north of Atlantic Ocean, wind forcing has a stronger 

impact. After data assimilation, both have improved greatly and have similar spatial pattern (i.e. the 475 

bigger error is still distributed in high latitude). However, their error gap is still existed. 

It’s worth to mention that there is a similar performance about the effect of observation system on 

improving both error sources, whether in time series or spatial distribution. The more observation 

information absorbed into assimilation systems, the better error improvement in both twin experiments. 

However, due to the existence of model bias, this improvement has a limitation and stays at some 480 

certain level. If more powerful observation is absorbed (such as: wave direction, wave period, and two-

dimensional wave spectra), the limitation maybe stay at a lower level. Next, with the results of real-

data assimilation where both the model and wind forcing have errors, we will analyze and discuss how 

to mitigate the model bias influences on the WDA. 
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4 Mitigation of model bias influences on wave assimilation 

4.1 Bias characteristics of WW3 and SWAN data assimilations 

From the above analyses of twin experiment results, we learned that the model bias has a strong 

adverse impact on WDA. To explore the method of mitigating the model bias influence on the WDA, 490 

we conduct the real-data assimilation experiments (same time range as the “twin” experiments) 

described in section 2.4.2 using the WW3 and SWAN assimilation systems to assimilate the track data 

of Jason-2 and Jason-2+Jason-3+SARAL. To ensure the performance of the biased model WDA, a 

longer assimilation (more than two months) is conducted (a total of 70 days). The spatial distributions 

of the SWH errors (obtained from the difference against the merged gridded AVISO observations over 495 

the last 30 days out of 80 days) are shown in Fig. 6. The left (resp. right) panels are for the WW3 (resp. 

SWAN) simulation and assimilations: WW3ERAI, WW3J2ERAI, and WW3J2+J3+SAERAI (resp. SWANERAI, 

SWANJ2ERAI, and SWANJ2+J3+SAERAI). 

Comparing panel a with panel d in Fig. 6 reveals that a large difference exists in the simulations of the 

two models. First, the SWAN simulation errors are generally larger than the WW3 simulation errors. 500 

Second, the global error distributions are quite different: while the WW3 simulation errors appear 

negative (resp. positive) over most of the 30° S north (resp. south) area, the SWAN simulation errors 

appear positive in most of the tropical oceans and negative in the middle latitudes. Both simulations 

show large errors in the southern ocean coastal area, but over the Antarctic Circumpolar Current area, 

the WW3 error is positive, and the SWAN error is negative. It is interesting that under same wind 505 

conditions, two wave models have converse performances. In the future study, it is urgent to find out 

the detailed approach of two wave models in this area.  

The above systematic differences between the two model simulations have significant influences on the 

results of the WDA. In general, the distribution of assimilation errors shares the same patterns as the 

model simulation errors but with a much smaller magnitude. The net result is that both the WW3 510 

negative (resp. positive) error magnitude over the 30oS north (resp. south) area and the SWAN error 

magnitude as (+)(-)(+)(-) from south to north are dramatically reduced by the Jason-2 data assimilation 

(comparing the middle panels with the upper panels), and on this basis, incorporating more 

observations from Jason-3 and SARAL into the assimilation process, both model error magnitudes are 

further reduced to some degree (comparing the bottom panels with the middle panels). From the 515 

corresponding RMSE distributions (it’s not shown here), we learned that the large RMSEs mainly 
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appear in places where the model bias (time mean error) is large. This finding means that the model 

bias has a largely adverse impact on the WDA. 

Figure 7 displays the time series of the RMSEs and spatial correlation coefficients with the global 530 

statistics in space. The RMSE (resp. correlation coefficient) of the SWAN model simulation is larger 

(resp. smaller) than the WW3 model simulation (.66 m RMSE and .806 correlation for SWAN 

versus .61 m RMSE and .876 correlation for WW3). In the WW3 and SWAN assimilations with the 

Jason-2 data, the RMSEs are reduced by 8 % and 11 %, respectively, and the time mean correlations 

are enhanced by roughly 1 % and 5 %, respectively. If the data of all three satellites, Jason-2, Jason-3 535 

and SARAL, are assimilated, the RMSEs are reduced by 11 % and 17 % in the WW3 and SWAN 

assimilations, respectively, and the correlations are enhanced by approximately 2 % and 8 %, 

respectively. In these real-data assimilation cases, for each model assimilation, both the model and 

wind forcing have errors. Under this circumstance, the assimilation where the SWH observations are 

used to adjust the model spectrum, the model wind forcing is also corrected and can further reduce the 540 

assimilation errors (red lines in Fig. 7). The red lines in Fig. 7 represent the best result of the 

assimilation given the WW3 and SWAN model biases, which makes full use of the observations from 

all three satellites to adjust both the model spectrum and wind forcing. Next, we will discuss how to use 

the results of two assimilation systems to mitigate the wave analysis error. 

4.2 Mitigation of WDA errors 545 

The mitigation of model bias is a complex issue in which improving the model is a final but long-

lasting solution. From Fig. 6, we learned that the WW3 and SWAN assimilation errors have some 

common (or opposite) characteristics in some locations. For example, while the SWH over the southern 

ocean coastal area always appears to be overestimated because of the lack of adequate observations to 

improve in both assimilation systems, the WW3 and SWAN assimilations appear to be the opposite in 550 

the Antarctic Circumpolar Current area and the tropical oceans. The WW3 (resp. SWAN) assimilation 

errors in the Antarctic Circumpolar Current area appear positive (resp. negative), while the WW3 (resp. 

SWAN) assimilation errors in the tropical oceans appear negative (resp. positive). A question arises: as 

the first step of mitigating model bias influences on the WDA, can we use a pair of assimilation 

systems to explore a statistical approach to reduce the wave assimilation errors? 555 

Given the opposite behaviors of two assimilation systems existing in certain places, the simplest bias 

correction could be conducted by simple average. This assumes that each wave model assimilation 
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system has its own characteristics of systemic error due to deficit physics, and these systemic errors (or 560 

model biases) from different wave models follow a Gaussian distribution with trivial expectation. The 

corresponding results are shown in Fig. 8. Compared with the performance of each individual 

assimilation system (dashed red lines for WW3 and dotted red lines for SWAN), the results of this bias 

correction (cyan lines) show that the RMSE is reduced (the left panel) but the spatial correlation is not 

greatly improved (the right panel). It is reasonable that based on the opposite errors deviating from the 565 

real world in two assimilation systems, this correction method employing the mathematical average can 

reduce the RMSE to some extent, but it may not have a significant contribution to improving the 

correlation coefficient if either the sampling size of model bias is too small (only 2 in this case) or the 

bias has an asymmetric distribution. 

Considering the potentially asymmetry of Gaussian distribution of different model biases and small 570 

sampling size in practice, as the first step, we calculate the spatial distribution of model bias in every 

assimilation system (the time mean of the difference between observations and assimilation results) 

(Fig. 6) and extract it at each time step in the output, and then calculate the expectation (average) of all 

assimilation systems as the results after bias correction. The corresponding results are shown with pink 

lines in Fig. 8. Both the RMSE and correlation are improved greatly. We also show the spatial 575 

distribution of SWH RMSEs after bias correction with the second method. From Fig. 9, we can easily 

find that after bias correction, all the experiments have similar error performances, the smaller in low 

latitude and the larger in high latitude. As the increasing of satellite observation (one in panel bf, and 

three in panel cg), the error decreases gradually referred to model control run (panel ae). Based on the 

best assimilation results currently (panel cg), the improvement with a corrected wind  is more efficient 580 

in WW3 (panel d), especially in high latitude which is the higher error area, but is hardly to find in 

SWAN (panel h). If we focus on the change without (panel c) and with (panel d) the corrected wind in 

WW3 model, the RMSE improvement of windsea and swell is 27% and 1% averaged in global. If we 

divide global area into three parts mentioned as section 3.4, the windsea (resp. swell) improvement of 

regional RMSE mean is 4% (resp. 3%), 3% (resp. 1%), and 6% (resp. 1%) in northern westerly zone 585 

(65° N-30° N), trade-wind zone (30° N-30° S), and circumpolar westerly zone (30° S-65° S). It is 

obvious that the improvement of windsea is better than swell and wind correction has a stronger impact 

in windsea wave assimilation at high latitude with strong wind. Clearly, this bias correction with 

physical consideration is more effective to improve the quality of WDA, but it uses observational 
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information one more time, while the first method of bias correction processes assimilation results 

directly without further uses of observational information. 605 

To verify the feasibility and applicability of the bias correction method above, 3 well-known wave 

models (WW3, SWAN and WAM) with the same data assimilation method are used to conduct longer 

assimilation and bias correction experiments. The calculation period lasts for 14 months (from 

November 2016 to December 2017) with sufficient spin-up process to reach a steady assimilation state 

(the 1st month for model spin-up and the 2nd month for assimilation spin-up). The results of the last 12 610 

months (for 2017) are analyzed and presented in Fig. 10 and Fig. 11 for the spatial distributions and 

time series of RMSEs and spatial correlation coefficients, respectively. From Fig. 10, we can see that 

both the RMSE and correlation coefficient (panels d and h, respectively) have been improved by the 

bias correction that combines the advantages of every WDA system (panels a and e for WW3, panels b 

and f for SWAN, panels c and g for WAM). In Fig. 11, the bias correction of model control runs (the 615 

second bias correction method is conducted based on the result of model control run from three wave 

models) shows improvement but is worse than the data assimilation before bias correction (compare 

green with pink). Compared with the model control (blue), the assimilation results with bias correction 

(red) can reduce the error by 25 % and significantly enhance the correlation coefficient (from 0.88 to 

0.923). This result confirms that this bias correction based on multiple assimilation systems can 620 

effectively enhance the WDA quality. 

5 Summary and discussion 

Ocean waves cause the sea surface roughness to impact the boundary conditions of the atmosphere and 

the wind stress of the ocean surface. Wave processes, such as wave-breaking, wave-induced bottom 

stress and so on, have significant effects on ocean mixing. Thus, ocean waves are important physical 625 

processes for understanding ocean mixing and air-sea interactions in coupled Earth systems. More 

accurately predicting ocean waves is of great societal significance. However, multiple error sources 

exist in wave simulations and predictions, including modelling errors, wind forcing errors and initial 

condition errors. 

To sort out the source of the errors of wave data assimilation (WDA), a pair of independent WDA 630 

systems is first developed using two wave models: Wave Watch III (WW3) and Simulating WAves 

Nearshore (SWAN). The perfect and biased model “twin” experiment frameworks are designed to 
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clearly identify each error source and examine its influences on WDA. The results show that model 

bias is a significant error source that has a largely adverse impact. Then, two WDA systems are used to 

design bias correction approaches to mitigate the influences of model bias and improve the assimilation 640 

quality. Finally, long-term WDA experiments added by the third WDA system with the WAM model 

(WAve Modeling) (WW3, SWAN and WAM) are conducted to validate the bias correction method. 

Three findings are established: 1) When the model is perfect, the initial condition error decays within 

10 days, but the WDA can shorten the time scale by half. 2) When the model is biased, despite a 

perfect wind forcing, the wave simulation has large errors and the WDA can only reduce the error to a 645 

limited extent. 3) With the results from two assimilation systems, a statistical approach of bias 

correction significantly improves the quality of final wave analysis by combining the merits from 

individual assimilation systems. 

Model bias is an obstacle to improving WDA and wave predictions. Using multiple assimilation 

systems to study the influences of model bias on WDA is an effective approach. As the first step, 650 

however, we have used a simple assimilation scheme and simple bias correction method. In follow-up 

studies, we shall consider powerful observation information (such as: 2-dimensional wave spectra),  

advanced assimilation schemes (such as ensemble Kalman Filter), and more comprehensive correction 

methods to help improve modelling. For example, the “online” bias correction (the “offline” bias 

correction is used in this paper) during the assimilation process (e.g., Dee, 2005) will be considered to 655 

improve the assimilation results and correct the instantons initial condition within individual 

assimilation systems, after that, a robust observation (such as buoy) is needed to validation the quality 

of bias correction. In addition, improving the model is an important, inevitable and long-lasting task. In 

this study, under same wind condition, we find that three models show common bias characteristics in 

the Antarctic Circumpolar Current (ACC) area. If there is a similar performance forcing by other wind, 660 

this may suggest that present wave modelling may have deficits in energy spectrum expression for high 

wind speed areas. In the future, we will further examine the sensitivities of physical processes on high 

wind speed to mitigate such common modelling bias. All in all, a robust bias correction method with 

lower model bias and higher representation of wave physical characteristics may further improve wave 

analysis quality. Once a long time series of high-quality wave analyses is available, it is expected that 665 

we can improve our understanding of ocean mixing. The physical process of wave-induced mixing is 

linked with the structure of the ocean mixing layer (Qiao et al., 2010). This process can be expressed as 

a function of wave number, frequency and wave spectrum and so on, provided by wave analysis. With 
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the framework of multiple WDA systems developed in this study, improved wave predictions can be 

effectively pursued. How can we further enhance the predictability of ocean waves? The first important 

step is to understand the physical process of ocean waves better based on a more accurate evolution of 

wave state from this framework. Answering these questions could be very important and interesting 680 

research topics for the future studies. 
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Figure 1: The ground projection tracks of satellite Jason-2 (blue line, with an inclination of 66° N(S)) and 855 
SARAL (red line, with an inclination of 88° N(S)) in one cycle over approximately 10 days and 35 days, 
respectively, in the a) global and b) East Asia domains (zoomed out of green box in panel a). 

 

 
Figure 2: Spatial distributions of a) background correlation coefficients by the empirical correlation model 860 
(blue), model data statistics (green) as well as their combination (red) of Eq. (3), b) background 
adjustment increments of SWH projected from the observational increment with the empirical correction 
model (blue line) and their combination model (red filled), and c) the difference of background adjustment 
increments of SWH from panel b by an analysis process given the single observation obtained at 114.09° E, 
18.90° N, denoted by the asterisk (unit: meter). 865 
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Figure 3: The time series of RMSEs of the a) WW3 and b) SWAN perfect model experiments in the model 870 
control run with the NCEP CFSRv2 wind (black, denoted as WW3CFSR in panel a and SWANCFSR in panel 
b), assimilating the “observed” data sampled by the tracks of Jason-2 (blue, denoted as WW3WW3(J2)

CFSR 
and SWANSWAN(J2)

CFSR), Jason-2 & 3 (green, denoted as WW3WW3(J2+J3)
CFSR and SWANSWAN(J2+J3)

CFSR), as 
well as Jason-2 & 3 and SARAL (cyan, denoted as WW3WW3(J2+J3+SA)

CFSR and SWANSWAN(J2+J3+SA)
CFSR) 

against the “truth” simulation forced by the ERA-Interim wind. The red and pink are forced by the NCEP 875 
CFSRv2 wind in the first 45 days, but the next 35 days are forced using the ERA-Interim wind (same as 
“truth”) without (denoted as WW3CFSR +WW3ERAI and SWANCFSR +SWANERAI) or with (denoted as 
WW3CFSR + WW3WW3(J2) 

ERAI and SWANCFSR + SWANSWAN(J2)
ERAI) the assimilation of Jason-2 data. The 

number in parentheses for each color is the corresponding RMSE averaged globally over the verification 
time period (30 days after the 45-day model spin-up and 5-day assimilation spin-up). The “observed” data 880 
are produced by projecting the “truth” SWH onto the satellite orbit.  
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Figure 4: The time series of RMSEs (upper) and spatial correlation coefficients (bottom) of the WW3(left) 885 
and SWAN(right) biased model experiments in the model control run forced by the ERA-Interim wind 
(black, denoted as WW3ERAI and SWANERAI), assimilations with “observed” data from one (pink, denoted 
as WW3SWAN(J2)

ERAI and SWANWW3(J2)
ERAI), two (red, denoted as WW3SWAN(J2+J3)

ERAI and 
SWANWW3(J2+J3)

ERAI), and three (blue, denoted as WW3SWAN(J2+J3+SA)
ERAI and SWANWW3(J2+J3+SA)

ERAI) 
satellites, as well as the assimilation with corrected wind (dotted green, denoted as WW3SWAN(J2+J3+SA)

ASSW 890 
and SWANWW3(J2+J3+SA)

ASSW) against the “truth” (same as in Fig. 3 but for SWAN and WW3 with the 
ERA-Interim wind). The numbers in the parentheses correspond to the globally averaged RMSE (in 
panels a and c) and spatial correlation coefficient (in panels b and d) over the last 30 days during the 
assimilation period. The “observed” data are produced by projecting the “truth” SWH onto the satellite 
orbit. 895 
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Figure 5: Distributions of  SWH RMSEs caused by wind forcing (left) from perfect twin experiment and 
model bias (right) from biased twin experiment in the model control run (panel a and c) and assimilations 900 
with “observed” data with three satellites (panel b and d) averaged globally over the last 30 days during 
the assimilation period.  
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Figure 6: Distributions of SWH mean errors (against the merged grid altimeter data) of the WW3 (left) and 905 
SWAN (right) model simulations (upper) and assimilations with Jason-2 (middle), as well as all Jason-2, 
Jason-3 and SARAL (bottom) data forced by the ERA-Interim wind. The statistics are averaged over the 
last 30 days of a 70-day total assimilation period (unit: meter).  
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Figure 6: Same as Fig. 5 but for the RMSEs. Panels b, c, e and f 915 
show the percentage of RMSE reduction from the model control 
(unit: meter).!
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Figure 7: Time series of RMSEs (upper) and spatial correlation coefficients (bottom) of WW3 (left) and 
SWAN (right) produced by the model control run (black, denoted as WW3ERAI and SWANERAI), 920 
assimilation using the data from one (green, denoted as WW3J2

ERAI and SWANJ2
ERAI) and three satellites 

(blue, denoted as WW3J2+J3+SA
ERAI and SWANJ2+J3+SA

ERAI) with corrected wind (red, denoted as 
WW3J2+J3+SA

ASSW and SWANJ2+J3+SA
ASSW).  
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 925 
Figure 8: Time series of a) RMSEs and b) spatial correlation coefficients produced by two bias correction 
schemes (cyan and pink) through a combination of WW3 and SWAN assimilations with the data from 
three satellites (Jason-2, Jason-3 and SARAL) and wind correction starting from the ERA-Interim wind. 
The results of the individual assimilation systems are plotted as dotted and dashed red lines (taken from 
Fig. 7) for reference.  930 
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Figure 9: Distributions of corrected SWH RMSEs of the WW3 (left) and SWAN (right) model simulations 
(ae), assimilations with Jason-2 (bf), with Jason-2, Jason-3 and SARAL (cg) forced by the ERA-Interim 
wind, as well as by a corrected wind (dh). All the results is corrected by the second bias correction method 935 
(named Bias correction2 in Fig. 8). (unit: meter).  
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Figure 10: Distributions of SWH RMSEs (left) and spatial correlation coefficients (right) (against the 
merged grid altimeter data) of the WW3 (a, e), SWAN (b, f) and WAM (c, g) assimilations and the bias 
correction with the second method (d, h). The statistics are averaged over the entire 1-year assimilation 940 
period. 
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Figure 11: The time series of a) RMSEs and b) spatial correlation coefficients produced by the model 
control run (blue), data assimilation (pink) and their corresponding bias corrections (green and red) 
combining three wave model assimilation results (WAM, WW3 and SWAN) globally averaged over 1 year.  
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Table 1: List of perfect model twin experiments. 

Exp. name Model Wind force Assimilation or not Role 

WW3ERAI WW3 ERA-Interim No Truth for WW3 assimilation 

WW3CFSR WW3 NCEP-CFSR No Model control for WW3 

assimilation reference 

WW3WW3(J2)CFSR WW3 NCEP-CFSR Yes (using Jason-2 track) 

Impact of observational 

system 
WW3WW3(J2+J3)CFSR WW3 NCEP-CFSR Yes (using tracks of Jason-

2 and Jason-3) 

WW3WW3(J2+J3+SA)CFSR WW3 NCEP-CFSR Yes (using tracks of Jason-

2, Jason-3 and SARAL) 

SWANERAI SWAN ERA-Interim No Truth for SWAN assimilation 

SWANCFSR SWAN NCEP-CFSR No Model control for SWAN 

assimilation reference 

SWANSWAN(J2)CFSR SWAN NCEP-CFSR Yes (using Jason-2 track) 

Impact of observational 

system 
SWANSWAN(J2+J3)CFSR SWAN NCEP-CFSR Yes (using tracks of Jason-

2 and Jason-3) 

SWANSWAN(J2+J3+SA)CFSR SWAN NCEP-CFSR Yes (using tracks of Jason-

2, Jason-3 and SARAL) 
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Table 2: List of biased model twin experiments. 955 

Exp. name Model Wind source Assimilation or not Role 

WW3ERAI WW3 ERA-Interim No Truth for SWAN 

assimilation 

SWANERAI SWAN ERA-Interim No Model control for 

SWAN assimilation 

reference 
SWANWW3(J2)ERAI SWAN ERA-Interim Yes (using Jason-2 track) 

Impact of observational 

system 
SWANWW3(J2+J3)ERAI SWAN ERA-Interim Yes (using tracks of Jason-2 

and Jason-3) 

SWANWW3(J2+J3+SA)ERAI SWAN ERA-Interim Yes (using tracks of Jason-2, 

Jason-3 and SARAL) 

SWANWW3(J2+J3+SA)ASSW SWAN Assimilation-corrected 

wind based on ERAI 

Yes (using tracks of Jason-2, 

Jason-3 and SARAL) 

Impact of assimilation-

corrected wind 

SWANERAI SWAN ERA-Interim No Truth for WW3 

assimilation 

WW3ERAI WW3 ERA-Interim No Model control for WW3 

assimilation reference 

WW3SWAN(J2)ERAI WW3 ERA-Interim Yes (using Jason-2 track) 

Impact of observational 

system 
WW3SWAN(J2+J3)ERAI WW3 ERA-Interim Yes (using tracks of Jason-2 

and Jason-3) 

WW3SWAN(J2+J3+SA)ERAI WW3 ERA-Interim Yes (using tracks of Jason-2, 

Jason-3 and SARAL) 
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WW3SWAN(J2+J3+SA)ASSW WW3 Assimilation-corrected 

wind based on ERAI 

Yes (using tracks of Jason-2, 

Jason-3 and SARAL) 

Impact of assimilation-

corrected wind 
 


