Anonymous Reviewer 2 (Comments):

Review of "A Comprehensive Assessment of Tropical Stratospheric Upwelling in Specified Dynamics CESM1.2.2 (WACCM)" by Nicholas A. Davis et al. (2019)

General Comments

The authors of this study probe the impacts of nudging WACCM towards MERRA-2 meteorology in a number of Specified-Dynamics (SD) simulations. The novelty of this study lies in exploring discrete nudging "flavours" in order to determine the degree in which they can accurately simulate the mean state, the interannual variability and the upwelling trends of the residual circulation seen in MERRA-2 reanalysis product. This is a commendable attempt to understand how the implementation of various nudging frameworks affects the self-consistency of a chemistry-climate simulation highlighting the possible implications regarding the accuracy of transport processes associated mainly with ozone trends in the lower stratosphere as seen in recent studies. Apart from the question of which nudging scheme appears to better reproduce MERRA-2 (and to a second degree the free-running WACCM) spatial and temporal upwelling characteristics, the study comprehensively investigates the attribution of these discrepancies by shedding some light on the physical drivers of the upwelling trends. Nudging acts as an additional non-physical tendency in the model equations and it is quite important to evaluate their potential artificial effects on the model dynamics. Therefore, this study greatly improves the understanding regarding the degree of impact arising from the choice (or not) of a particular nudging scheme, albeit in a single model framework. For the reasons above, I recommend this study to be accepted and published with minor revisions. There are a few points that I think they should be addressed by the authors, more to do with enhancing the introduction of the paper by adding a substantial amount of discussion on the nudging studies literature.

Specific comments

1. I find the introduction to be relatively short and lacking in terms of literature related to nudging studies. In order to set the scene better and highlight that nudging studies are not just used for lower stratospheric ozone trends, more references would be extremely valuable to the reader. One of the first attempts to obtain a comparison between a GCM relaxed towards analyses and the analyses themselves is detailed in Jeuken et al. (1996). There are multiple studies looking at specific meteorological events, such as van Aalst et al. (2004) looking into the Arctic winter transport processes at the end of the 20th century or the SSW during 2009-2010 winter in Akiyoshi et al. (2016). Similarly, nudged simulations were used to focus on the effects of volcanic eruptions on stratospheric tracers such as water vapour in Loffler et al. (2016), to

infer the global-mean volcanic effective radiative forcing over the satellite era in Schmidt et al. (2018), as well as to estimate the chemical effects of monsoon circulations on volcanic sulphur particles seen in Solomon et al. (2016). Additionally, Solomon et al. (2015), studied the polar ozone depletion in 2011, using a nudged version of WACCM. In fact, the latter three studies, used a previous version of CESM1-WACCM which is nudged towards an older version of the reanalysis (MERRA), with and without nudging the temperature respectively. A bit of discussion regarding the differences between the nudging schemes used in the aforementioned studies and in the current study certainly wouldn't hurt. I would also recommend some discussion with respect to the differences in between a CTM and an CCM-SD model run as nudging, especially when trying to interpret the differences between Ball et al. (2018) and Chipperfield et al. (2018). CTMs are forced directly with the full 3-D circulation from reanalyses and after many years of optimizations they have been proven quite successful at simulating stratospheric tracers on various timescales (Chipperfield, 1999; Mahieu et al. 2014). On the other hand, CCMs are much more recent tools and exhibit deep-rooted differences when compared to a CTM when looking at their tracer advection, and some discussion regarding their differences would be also a good idea.

- 2. There is a hint in the study that the overarching aim of the study is to capture the free-running WACCM climatology rather than the climatology of MERRA2 some justification is required if that is the case. Although the research question (reproducing the residual circulation variability and trends of MERRA2) of the study is clearly stated in the introduction (lines 56-57), there are various places across the text where the message appears to be the reproduction of free-running WACCM. As an example, it is stated that the nudging will create conflicts due to the differences between WACCM and MERRA2 underlying climatologies (explained in section 2 lines 88-92). I would suggest rephrasing the relevant parts where the point seems to be lost. The point of nudging is exactly to reproduce the reanalyses themselves albeit exhibiting spurious features in the stratospheric residual circulation. It should be noted that between reanalysis products and among different estimates of wbar* there lies significant uncertainty with respect to upwelling trends as seen in Abalos et al. (2015) as well as Kobayashi and Iwasaki, (2016).
- 3. There's no mention of the MERRA2 output the authors have used throughout this study. How did you calculate the TEM diagnostics? Did you perform the calculation on the native MERRA2 levels? What output have you used? How about its temporal frequency? This information needs to be included by describing all the above in either section 2 or section 3.

Minor comments

Line 22 : See discussion above (point 2)

Line 55: Some more references are needed here such as Abalos et al. (2015) and Kobayashi and Iwasaki, (2016) with findings related to the discrepancies in the trends of the residual circulation between reanalysis.

Line 62: In the context of this study is quite clear that nudging zonal-mean temperatures alters the meridional eddy momentum and heat fluxes in the TTL without being successful in simulating the underlying MERRA2 trends. Applying a thermal nudging (temperature) could potentially lead to a sustained spurious heat source in the model, which leads to a stronger BDC in the lower stratosphere as seen in Miyazaki et al. (2005) with a different model. However, the last sentence is quite strong as a statement and generalizes a result which is model specific. Therefore, I would recommend rephrasing this bit so it doesn't strike as misleading.

Line 69: When nudging, the choice of the relaxation timescale can play an important role (Merryfield et al. 2013), although there is no consensus that a specific timescale necessarily leads to an improvement (Hardiman et al. 2017). I'm aware of a standard full WACCM-SD CCMI simulation using a nudging timescale of 5 hours - towards MERRA though (Orbe et al. 2018; Orbe et al. 2019 under review in ACPD), have you performed any additional runs with this timescale (or have plans) to compare with?

Lines 84-87: It would be very helpful (at least to me) if you could include a figure (in the supplement) showing the vertical profiles of the pressure levels in WACCM-L66/L88 and MERRA2 to better highlight their spacing differences throughout the depth of the atmosphere.

Lines 98-99: Here you mention that 6-hourly MERRA2 anomalies are used for nudging WACCM, I assume you are interpolating in time to nudge every 3 hours (see line 71)?

Line 105: Please clarify that this improvement refers specifically to aerosol-climate interactions in Zhang et al. (2014).

Lines 155 & 159: Please correct the reference - it is: Hardiman et al. (2010)

Line 164: SF6 can be considered linear only by approximation, characterised by a fast growth rate and there needs to be a correction for this. See Garcia et al. (2011).

Line 224: This line refers to Figure 3b, where you calculate the difference in the trends compared to MERRA2. For clarity, it would be better to rephrase and not use the word negative but either smaller or bigger to reflect their differences. E.g. in the TTL all WACCM runs + MERRA 2 have positive trends as seen in Figure 3a, and the term negative might be misleading as the trends are just smaller (but still positive).

Line 228: "The standard UVT..." - Clarify that this holds true for both versions (L66 + L88).

Lines 241 - 252 : Excellent discussion (and figure)!

Line 309: By gravity wave (GW) momentum forcing are you referring to all the parameterizations? Meaning orographic (OGW) + non-orographic (NOGW) gravity wave drag put together? Please clarify.

Line 311: McLandress and Shepherd (2009), using CMAM, show the total contribution of both resolved and parameterized wave drag occuring at the edge of the pipe in the lower stratosphere in boreal winter in their figure 18. However, this lumps together resolved (major contributor at the edge of the pipe) and all GW parameterizations while the orographic gravity wave drag contributes more in the NH mid-latitudes instead. I would suggest caution drawing parallels to this result which remains model specific. Different parameterizations lead to various magnitudes of contributions to the upwelling throughout the stratosphere and specifically for the versions of CMAM over the past decade, it has been shown that the NOGW contributes negatively in the upwelling in the lower stratosphere in SPARC, 2010 and more recently in Chrysanthou et al. (2019).

References

van Aalst, M. K., van den Broek, M. M. P., Bregman, A., Brühl, C., Steil, B., Toon, G. C., Garcelon, S., Hansford, G. M., Jones, R. L., Gardiner, T. D., Roelofs, G. J., Lelieveld, J. and Crutzen, P. J.: Trace gas transport in the 1999/2000 Arctic winter: comparison of nudged GCM runs with observations, Atmos. Chem. Phys., 4(1), 81–93, doi:10.5194/acp-4-81-2004, 2004.

Abalos, M., Legras, B., Ploeger, F. and Randel, W. J.: Evaluating the advective Brewer-Dobson circulation in three reanalyses for the period 1979-2012, J. Geophys. Res., 120(15), 7534–7554, doi:10.1002/2015JD023182, 2015.

Akiyoshi, H., Nakamura, T., Miyasaka, T., Shiotani, M. and Suzuki, M.: A nudged chemistry-climate model simulation of chemical constituent distribution at northern high-latitude stratosphere observed by SMILES and MLS during the 2009/2010 stratospheric sudden warming, J. Geophys. Res. Atmos., 121(3), 1361–1380, doi:10.1002/2015JD023334, 2016.

Ball, W. T. W. T., Alsing, J., Mortlock, D. J. D. J., Staehelin, J., Haigh, J. D. J. D., Peter, T., Tummon, F., Stübi, R., Stenke, A., Anderson, J., Bourassa, A., Davis, S. M. S. M., Degenstein, D., Frith, S., Froidevaux, L., Roth, C., Sofieva, V., Wang, R., Wild, J., Yu, P., Ziemke, J. R. and Rozanov, E. V. E. V.: Evidence for a continuous decline in lower stratospheric ozone offsetting

ozone layer recovery, Atmos. Chem. Phys., 18(2), 1379–1394, doi:10.5194/acp-18-1379-2018, 2018.

Chipperfield, M. P.: Multiannual simulations with a three-dimensional chemical transport model, J. Geophys. Res. Atmos., 104(D1), 1781–1805, doi:10.1029/98JD02597, 1999.

Chipperfield, M. P., Dhomse, S., Hossaini, R., Feng, W., Santee, M. L., Weber, M., Burrows, J. P., Wild, J. D., Loyola, D. and Coldewey-Egbers, M.: On the Cause of Recent Variations in Lower Stratospheric Ozone, Geophys. Res. Lett., 45(11), 5718–5726, doi:10.1029/2018GL078071, 2018.

Chrysanthou, A., Maycock, A. C., Chipperfield, M. P., Dhomse, S., Garny, H., Kinnison, D., Akiyoshi, H., Deushi, M., Garcia, R. R., Jöckel, P., Kirner, O., Pitari, G., Plummer, D. A., Revell, L., Rozanov, E., Stenke, A., Tanaka, T. Y., Visioni, D. and Yamashita, Y.: The effect of atmospheric nudging on the stratospheric residual circulation in chemistry–climate models, Atmos. Chem. Phys., 19(17), 11559–11586, doi:10.5194/acp-19-11559-2019, 2019.

Garcia, R. R., Randel, W. J. and Kinnison, D. E.: On the Determination of Age of Air Trends from Atmospheric Trace Species, J. Atmos. Sci., 68(1), 139–154, doi:10.1175/2010JAS3527.1, 2011.

Hardiman, S. C., Andrews, D. G., White, A. A., Butchart, N. and Edmond, I.: Using Different Formulations of the Transformed Eulerian Mean Equations and Eliassen–Palm Diagnostics in General Circulation Models, J. Atmos. Sci., 67(6), 1983–1995, doi:10.1175/2010jas3355.1, 2010.

Hardiman, S. C., Butchart, N., O'Connor, F. M. and Rumbold, S. T.: The Met Office HadGEM3-ES chemistry-climate model: Evaluation of stratospheric dynamics and its impact on ozone, Geosci. Model Dev., 10(3), 1209–1232, doi:10.5194/gmd-10-1209-2017, 2017.

Jeuken, A. B. M., Siegmund, P. C., Heijboer, L. C., Feichter, J. and Bengtsson, L.: On the potential of assimilating meteorological analyses in a global climate model for the purpose of model validation, J. Geophys. Res. Atmos., 101(D12), 16939–16950, doi:10.1029/96JD01218, 1996.

Kobayashi, C. and Iwasaki, T.: Brewer-Dobson circulation diagnosed from JRA-55, J. Geophys. Res., 121(4), 1493–1510, doi:10.1002/2015JD023476, 2016.

Löffler, M., Brinkop, S. and Jöckel, P.: Impact of major volcanic eruptions on stratospheric water vapour, Atmos. Chem. Phys., 16(10), 6547–6562, doi:10.5194/acp-16-6547-2016, 2016.

Mahieu, E., Chipperfield, M. P., Notholt, J., Reddmann, T., Anderson, J., Bernath, P. F., Blumenstock, T., Coffey, M. T., Dhomse, S. S., Feng, W., Franco, B., Froidevaux, L., Griffith, D. W. T., Hannigan, J. W., Hase, F., Hossaini, R., Jones, N. B., Morino, I., Murata, I., Nakajima, H., Palm, M., Paton-Walsh, C., Russell, J. M., Schneider, M., Servais, C., Smale, D. and Walker, K. A.: Recent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes, Nature, 515(7525), 104–107, doi:10.1038/nature13857, 2014.

McLandress, C. and Shepherd, T. G.: Simulated anthropogenic changes in the Brewer-Dobson circulation, including its extension to high latitudes, J. Clim., 22(6), 1516–1540, doi:10.1175/2008JCLI2679.1, 2009.

Merryfield, W. J., Lee, W. S., Boer, G. J., Kharin, V. V., Scinocca, J. F., Flato, G. M., Ajayamohan, R. S., Fyfe, J. C., Tang, Y. and Polavarapu, S.: The canadian seasonal to interannual prediction system. part I: Models and initialization, Mon. Weather Rev., 141(8), 2910–2945, doi:10.1175/MWR-D-12-00216.1, 2013.

Miyazaki, K., Iwasaki, T., Shibata, K., Deushi, M. and Sekiyama, T. T.: The Impact of Changing Meteorological Variables to Be Assimilated into GCM on Ozone Simulation with MRI CTM, J. Meteorol. Soc. Japan. Ser. II, 83(5), 909–918, doi:10.2151/jmsj.83.909, 2005.

Orbe, C., Yang, H., Waugh, D. W., Zeng, G., Morgenstern, O., Kinnison, D. E., Lamarque, J.-F. F., Tilmes, S., Plummer, D. A., Scinocca, J. F., Josse, B., Marecal, V., Jöckel, P., Oman, L. D., Strahan, S. E., Deushi, M., Tanaka, T. Y., Yoshida, K., Akiyoshi, H., Yamashita, Y., Stenke, A., Revell, L., Sukhodolov, T., Rozanov, E., Pitari, G., Visioni, D., Stone, K. A., Schofield, R. and Banerjee, A.: Large-scale tropospheric transport in the Chemistry–Climate Model Initiative (CCMI) simulations, Atmos. Chem. Phys., 18(10), 7217–7235, doi:10.5194/acp-18-7217-2018, 2018.

Orbe, C., Plummer, D. A., Waugh, D. W., Yang, H., Jöckel, P., Kinnison, D. E., Josse, B., Marecal, V., Deushi, M., Abraham, N. L., Archibald, A. T., Chipperfield, M. P., Dhomse, S., Feng, W. and Bekki, S.: Description and Evaluation of the Specified-Dynamics Experiment in the Chemistry-Climate Model Initiative (CCMI), Atmos. Chem. Phys. Discuss., 2019, 1–45, doi:10.5194/acp-2019-625, 2019.

Schmidt, A., Mills, M. J., Ghan, S., Gregory, J. M., Allan, R. P., Andrews, T., Bardeen, C. G., Conley, A., Forster, P. M., Gettelman, A., Portmann, R. W., Solomon, S. and Toon, O. B.: Volcanic Radiative Forcing From 1979 to 2015, J. Geophys. Res. Atmos., 123(22), 12,491-12,508, doi:10.1029/2018JD028776, 2018.

Solomon, S., Kinnison, D., Bandoro, J. and Garcia, R.: Simulation of polar ozone depletion: An update, J. Geophys. Res. Atmos., 120(15), 7958–7974, doi:10.1002/2015JD023365, 2015.

Solomon, S., Kinnison, D., Garcia, R. R., Bandoro, J., Mills, M., Wilka, C., Neely, R. R., Schmidt, A., Barnes, J. E., Vernier, J. P. and Höpfner, M.: Monsoon circulations and tropical heterogeneous chlorine chemistry in the stratosphere, Geophys. Res. Lett., 43(24), 12,624-12,633, doi:10.1002/2016GL071778, 2016.

SPARC: SPARC CCMVal Report on the Evaluation of Chemistry-Climate Models. V. Eyring, T. Shepherd and D. Waugh (Eds.), SPARC Rep. No. 5, WCRP-30/2010,WMO/TD-No.40, available at www.sparc-climate.org/publications/sp [online] Available from: http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no5/, 2010.

Zhang, K., Wan, H., Liu, X., Ghan, S. J., Kooperman, G. J., Ma, P. L., Rasch, P. J., Neubauer, D. and Lohmann, U.: Technical note: On the use of nudging for aerosol-climate model intercomparison studies, Atmos. Chem. Phys., 14(16), 8631–8645, doi:10.5194/acp-14-8631-2014, 2014.