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Abstract. Concerns about food security under climate change motivate efforts to better understand future changes in crop

yields. Process-based crop models, which represent plant physiological and soil processes, are necessary tools for this purpose

since they allow representing future climate and management conditions not sampled in the historical record and new locations

to which cultivation may shift. However, process-based crop models differ in many critical details, and their responses to

different interacting factors remain only poorly understood. The Global Gridded Crop Model Intercomparison (GGCMI) Phase5

2 experiment, an activity of the Agricultural Model Intercomparison and Improvement Project (AgMIP), is designed to provide

1



a systematic parameter sweep focused on climate change factors and their interaction with overall soil fertility, to allow both

evaluating model behavior and emulating model responses in impact assessment tools. In this paper we describe the GGCMI

Phase 2 experimental protocol and its simulation data archive. Twelve crop models simulate five crops with systematic uniform

perturbations of historical climate, varying CO2, temperature, water supply, and applied nitrogen (“CTWN”) for rainfed and

irrigated agriculture, and a second set of simulations represents a type of adaptation by allowing the adjustment of growing5

season length. We present some crop yield results to illustrate general characteristics of the simulations and potential uses

of the GGCMI Phase 2 archive. For example, in cases without adaptation, modeled yields show robust decreases to warmer

temperatures in almost all regions, with a nonlinear dependence that means yields in warmer baseline locations have greater

temperature sensitivity. Inter-model uncertainty is qualitatively similar across all the four input dimensions, but is largest in

high-latitude regions where crops may be grown in the future.10

1 Introduction

Understanding crop yield response to a changing climate is critically important, especially as the global food production

system will face pressure from increased demand over the next century (Foley et al., 2005; Bodirsky et al., 2015). Climate-

related reductions in supply could therefore have severe socioeconomic consequences (e.g. Stevanović et al., 2016; Wiebe

et al., 2015). Multiple studies using different crop or climate models concur in projecting sharp yield reductions on currently15

cultivated cropland under business-as-usual climate scenarios, although their yield projections show considerable spread (e.g.

Rosenzweig et al., 2014; Schauberger et al., 2017; Porter et al. (IPCC), 2014, and references therein). Although forecasts of

future yields reductions can be made with simple statistical models based on regressions in historical weather data, process-

based models, which simulate the effect of temperature, water and nutrient availability, and atmospheric CO2 concentration on

the process of photosynthesis and the biology and phenology of individual crops, play a critical role in assessing the impacts20

of climate change.

Process-based models are necessary for understanding crop yields in novel conditions not included in historical data, in-

cluding higher CO2 levels, out-of-sample combinations of rainfall and temperature, cultivation in areas where crops are not

currently grown, and differing management practices (e.g. Pugh et al., 2016; Roberts et al., 2017; Minoli et al., 2019). Process-

based models have therefore been widely used in studies on future food security (Wheeler and Von Braun, 2013; Elliott et al.,25

2014a; Frieler et al., 2017), options for climate mitigation (Müller et al., 2015) and adaptation (Challinor et al., 2018), and

future sustainable development (Humpenöder et al., 2018; Jägermeyr et al., 2017). They are a necessity for global gridded

simulations, which allow understanding the global dynamics of agricultural trade, because global market mechanisms can

strongly modulate the economic impacts of regional yield changes (Stevanović et al., 2016; Hasegawa et al., 2018). Global

simulations are especially necessary in studying agricultural effects of climate change (Müller et al., 2017), since systematic30

climate assessments must account for cultivation area changes and crop selection switching (Rosenzweig et al., 2018; Ruane

et al., 2018) and must consider inter-regional differences (e.g. Nelson et al., 2014; Wiebe et al., 2015).

2



Modeling crop responses, however, continues to be challenging, as crop growth is a function of complex interactions between

climate inputs, soil, and management practices (Boote et al., 2013; Rötter et al., 2011). Models tend to agree broadly in major

response patterns, including a reasonable representation of the spatial pattern in historical yields of major crops and projections

of shifts in yield under future climate scenarios (e.g. Elliott et al., 2015; Müller et al., 2017). But process-based models still

struggle with some important details, including reproducing historical year-to-year variability in many regions (e.g. Müller5

et al., 2017; Jägermeyr and Frieler, 2018), reproducing historical yields when driven by reanalysis weather (e.g. Glotter et al.,

2014), and low sensitivity to extreme events (e.g. Glotter et al., 2015; Schewe et al., 2019). Global models pose additional

challenges due to variable input data quality and limited ability for model calibration. Long-term projections therefore retain

considerable uncertainty (Wolf and Oijen, 2002; Jagtap and Jones, 2002; Iizumi et al., 2010; Angulo et al., 2013; Asseng et al.,

2013, 2015).10

Model intercomparison projects such as the Agricultural Model Intercomparison and Improvement Project (AgMIP, Rosen-

zweig et al., 2013) are crucial in quantifying uncertainties in model projections (Rosenzweig et al., 2014). Intercomparison

projects have also been used to develop protocols for evaluating overall model performance (Elliott et al., 2015; Müller et al.,

2017) and to assess the representation of individual physical mechanisms such as water stress and CO2 fertilization (e.g.

Schauberger et al., 2017). However, to date, few such projects have systematically sampled critical factors that may interact15

strongly in affecting crop yields. A number of modeling exercises in the last five years have begun to use systematic param-

eter sweeps in crop model evaluation and emulation (e.g. Ruane et al., 2014; Makowski et al., 2015; Pirttioja et al., 2015;

Fronzek et al., 2018; Snyder et al., 2018; Ruiz-Ramos et al., 2018), but all involve limited sites and most also limited crops and

scenarios.

The Global Gridded Crop Model Intercomparison (GGCMI) Phase 2 experiment is the first global gridded crop model20

intercomparison involving a systematic parameter sweep across critical interacting factors. GGCMI Phase 2 is an activity of

AgMIP, and a continuation of a multi-model comparison exercise begun in 2014. The initial GGCMI Phase 1 (Elliott et al.,

2015; Müller et al., 2017) compared harmonized yield simulations over the historical period, with primary goals of model

evaluation and understanding sources of uncertainty (including model parameterization, weather inputs, and cultivation areas).

See also Folberth et al. (2019) and Porwollik et al. (2017) for more information. GGCMI Phase 2 compares simulations across25

a set of inputs with uniform perturbations to historical climatology, including CO2, temperature, precipitation, and applied

nitrogen, as well as adaptation to shifting growing seasons (collectively referred to as “CTWN-A”). The CTWN-A experiment

is inspired by AgMIP’s Coordinated Climate-Crop Modeling Project (C3MP, see Ruane et al., 2014; McDermid et al., 2015)

and contributes to the AgMIP Coordinated Global and Regional Assessments (CGRA, see Ruane et al., 2018; Rosenzweig

et al., 2018).30

In this paper, we describe the GGCMI Phase 2 model experiments and present initial summary results. In the sections that

follow, we describe the experimental goals and protocols; the different process-based models included in the intercomparison;

the levels of participation by the individual models. We then provide an assessment of model fidelity based on observed yields

at the country level, and show some selected examples of the simulation output dataset to illustrate model responses across the

input dimensions.35
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2 Simulation objectives and protocol

2.1 Goals

The guiding scientific rationale of GGCMI Phase 2 is to provide a comprehensive, systematic evaluation of the response of

process-based crop models to critical interacting factors, including CO2, temperature, water, and applied nitrogen under two

contrasting assumptions on growing season adaptation (CTWN-A). The dataset is designed to allow researchers to:5

– Enhance understanding of models sensitivity to climate and nitrogen drivers.

– Study the interactions between climate variables and nitrogen inputs in driving modeled yield impacts.

– Characterize differences in crop responses to climate change across the Earth’s climate regions.

– Provide a dataset that allows statistical emulation of crop model responses for downstream modelers.

– Explore the potential effects on future yield changes of adaptations in growing season length.10

2.2 Modeling protocol

The GGCMI Phase 1 intercomparison was a relatively limited computational exercise, requiring yield simulations for 19

crops across a total of 310 model-years of historical scenarios, and had the participation of 14 modeling groups. The GGCMI

Phase 2 protocol is substantially larger, involving over 1400 individual 30-year global scenarios, or over 42,000 model-years;

12 modeling groups nevertheless participated. To reduce the computational load, the GGCMI Phase 2 protocol reduces the15

number crops to 5 (maize, rice, soybean, spring wheat, and winter wheat). The reduced set of crops includes the three major

global cereals and the major legume and accounts for over 50% of human calories in 2016: nearly 3.5 billion tons or 32% of

total global crop production by weight (FAO, 2018). This set of major crops has the advantage of historical yield data globally

available at sub-national scale (Ray et al., 2012; Iizumi et al., 2014), and has been frequently used in subsequent analyses (e.g.

Müller et al., 2017; Porwollik et al., 2017).20

The Phase 2 protocol involves a suite of uniform perturbations from a historical climate timeseries. The baseline climate

scenario for GGCMI Phase 2 is one of the weather products used in Phase 1, daily climate inputs for 1980-2010 from the 0.5

degree NASA AgMERRA (“Agricultural”-modified Modern Era Retrospective analysis for Research and Applications) gridded

re-analysis product. AgMERRA is specifically designed for agricultural modeling, with satellite-corrected precipitation (Ruane

et al., 2015). The experimental protocol consists of 9 levels for water supply perturbations, 7 for temperature, 4 for CO2, and 325

for applied nitrogen, for a total of 756 simulations (Table 1), 672 for rainfed agriculture and an additional 84 for irrigated (W∞).

Values of climate variable perturbations are selected to represent reasonable ranges for changes over the medium term (to 2100)

under business-as-usual emissions. Values for nitrogen application levels are intended to cover a wide range of potentials. The

resulting GGCMI Phase 2 dataset captures the distribution of crop model responses over a wide range of potential future

climate and management conditions.30
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Figure 1. Left panel: Cultivated areas for maize, rice, and soybean from the MIRCA2000 (“Monthly Irrigated and Rainfed Crop Areas

around the year 2000”) dataset (Portmann et al., 2010). Blue indicates grid cells with more that 20,000 hectares (10% of the equatorial

grid cell) and gray contour shows gridcells with more that 10 hectares cultivated. Areas for winter and spring wheat areas are adapted from

MIRCA2000 and two other sources; see text for details. For irrigated crops, see supplemental Figure S1. Right panel: Number of models

providing simulations for each grid cell. All models provide the minimum areal coverage of the GGCMI Phase 2 protocol, but some provide

extra coverage at high latitudes or in arid or otherwise unsuitable areas.
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Table 1. GGCMI Phase 2 input parameter levels for each dimension. Temperature and precipitation values indicate the perturbations from

the historical climatology. Irrigated (W∞) simulations assume the maximum beneficial levels of water. Bold font indicates the ‘baseline’ or

historical level for each dimension. One model provided simulations at the T + 5 level.

Input variable Simulation input values Unit

CO2 (C) 360, 510, 660, 810 ppm

Temperature (T) -1, 0, 1, 2, 3, 4, 6 ◦C

Precipitation (W) -50, -30, -20, -10, 0, %

10, 20, 30, (and W∞)

Applied nitrogen (N) 10, 60, 200 kg ha−1

Adaptation (A) A0: none, A1: new cultivar to maintain original growing season length -

The protocol samples over all possible permutations of individual perturbations, i.e. all values are applied across all crops

and regions, so that the protocol includes many combinations that are not realistic. For example, we simulate high N application

to soybeans, which are N-fixers and need little fertilizer. This choice also means that CO2 changes are applied independently of

changes in climate variables, so that higher CO2 is not associated with higher temperatures or other particular climate changes.

The purpose of the experiment is not to produce individual scenarios that represent realistic future states, but to sample over a5

wide range of parameter space to enable understanding the factors that drive agricultural changes.

While all CTWN perturbations are applied uniformly across the historical timeseries, they are applied in different ways.

CO2 and nitrogen levels are specified as discrete values applied uniformly over all grid cells. Temperature perturbations are

applied as absolute offsets from the daily mean, minimum, and maximum temperature timeseries for each grid cell, and water

perturbations are applied as fractional changes to daily precipitation. The irrigated scenario (W∞) is a particular case of water10

supply levels, in which crops are assumed to have no water constraints. That is, all crop water requirements are fulfilled

regardless of local water supply limitations. To facilitate comparison, irrigated simulations use the same growing seasons as all

other simulations, even though in reality irrigated growing seasons may be different (Portmann et al., 2010), and both irrigated

and rainfed cases are simulated with near-global coverage.

The uniform perturbations of the GGCMI Phase 2 protocol require some care in interpretation. Temperature and precipitation15

perturbations should be considered as differences from historical climatology within the growing season only. That is, a T+1

simulation represents a 1 ◦C warmer growing season, not a 1 ◦C warmer annual mean temperature. (The distinction is important

because in climate projections, winters generally warm more than summers (e.g. Haugen et al., 2018).) In the GGCMI Phase

2 protocol, temperature and precipitation perturbations are applied uniformly in space, but future changes in temperature and

precipitation will not be spatially or temporally uniform. In a realistic climate projection, higher latitudes generally warm more20

strongly than lower latitudes (e.g. Hansen et al., 1997), and the northern high latitudes warm more quickly than the southern
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ones. A GGCMI Phase 2 simulation therefore represents a possible future state that could occur in each grid cell, but not one

that would in reality occur simultaneously in all grid cells across the globe. The GGCMI Phase 2 simulations are intended to

be used for climate impact assessment not directly but instead as a “training set” for statistical emulation of each crop model.

Once an emulator is constructed from the outputs described here, it can be driven with growing-season climate anomalies from

any climate model projection. The GGCMI Phase 2 protocol does not involve any simulated changes in climate variability,5

but Franke et al. (2020) demonstrate that these effects are relatively minor and that GGCMI Phase 2 emulators can effectively

reproduce crop model yields under realistic future climate scenarios.

The area simulated in the GGCMI Phase 2 protocol extends considerably outside currently cultivated areas, because culti-

vation may shift under climate change. Figure 1 shows both the present-day cultivated area of rainfed crops (left) and model

coverage (right). (See Supplemental Figure S1-2 for currently cultivated area for irrigated crops; model coverage is the same.)10

Each model covers all currently cultivated areas and much of the uncultivated land area, run at 0.5 degree spatial resolution.

To reduce the computational burden, the protocol requires simulation over only 80% of Earth land surface area, omitting ar-

eas assumed to remain non-arable even under an extreme climate change, including Greenland, far-northern Canada, Siberia,

Antarctica, the Gobi and Sahara Deserts, and Central Australia. The protocol also allows omitting regions judged unsuitable

for cropland for non-climatic reasons. Selection criterion involve a combination of soil suitability indices at 10 arc-minute15

resolution and excludes those 0.5 degree grid cells in which at least 90% of the area is masked as unsuitable according to

any single index, and which do not contain any currently cultivated cropland. Currently cultivated areas are provided by the

MIRCA2000 (Monthly Irrigated and Rainfed Crop Area) data product (Portmann et al., 2010). Soil suitability indices measure

excess salt, oxygen availability, rooting conditions, toxicities, and workability, and are provided by the IIASA (International

Institute for Applied Systems Analysis) Global Agro-Ecological Zone model (GAEZ, FAO/IIASA, 2011). The procedure fol-20

lows that proposed by Pugh et al. (2016). All modeling groups simulate the minimum required coverage, but some provide

simulations that extend into masked zones, including e.g. the Sahara Desert and Central Australia (Figure 1, right).

2.3 Harmonization between models

The 12 models included in GGCMI Phase 2 are all process-based crop models that are widely used in impacts assessments

(Table 3). Although some models share a common base (e.g. the LPJ or EPIC families of models), they have subsequently de-25

veloped independently. Wherever possible, the GGCMI Phase 2 protocol harmonizes inputs, but differences in model structure

mean that several key factors cannot be fully standardized across the experiment. These include soil treatment (which affects

soil organic matter and carry-over effects of soil moisture across growing years) and baseline climate inputs.

While 10 of the 12 models participating in GGCMI Phase 2 use the AgMERRA historical daily climate data product,

two models require sub-daily input data and thus use different baseline climate inputs: PROMET uses ERA-Interim reanal-30

ysis (Dee et al., 2011), and JULES uses a bias-corrected version of ERA-Interim, the 3-hour WFDEI (WATCH-Forcing-

Data-ERA-Interim) (Weedon et al., 2014), specifically the WFDEI version with precipitation bias-corrected against the CRU

TS3.101/TS3.21 precipitation totals (Harris et al., 2014). The data products show some differences (Figures S3-S4, which

compare data products over currently cultivated areas for each crop). For example, for maize-growing areas, ERA-Interim
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daily precipitation is biased high from that in AgMERRA by 7% (< 1 sigma), while mean daily precipitation in WFDEI is only

3% higher. Precipitation differences are largest in wheat areas, where ERA-Interim is substantially wetter (+60 mm year−1 or

10%). Temperature differences are largest for rice, with ERA-Interim 1◦C cooler than AgMERRA, and smaller for other crops,

e.g. maize with ERA-Interim 0.45◦C cooler and WFDEI 0.1◦C warmer. These differences are relatively small compared to the

perturbations tested in the protocol.5

Planting dates and growing season lengths are standardized across models, following the procedure described in Elliott et al.

(2015) for the fullharm setting. (The exception is that Phase 2, unlike Phase 1, uses identical growing seasons for rainfed and

irrigated cases, to allow for direct comparison of simulations along the W dimension.) This harmonization is important because

the parametrization of growing seasons can have strong effects on simulated yields (Müller et al., 2017; Jägermeyr and Frieler,

2018). In all the GGCMI Phase 2 crop models, sowing dates are prescribed directly, but the length of the growing season is a10

product of crop phenology, which is driven mostly by phenological parameters and temperature. Modelers were therefore asked

to adjust their phenological parameters so that the average growing season length of the baseline scenario (C=360, T=0, W=0)

matched the harmonization target. (The one exception to this harmonization protocol involves CARAIB, whose team kept their

own growing season specifications rather than tuning to standard lengths.) Two aspects of the procedure should be noted. First,

the target growing seasons used in GGCMI Phase 2 are crop- and location-specific. For example, present-day maize is sown in15

March in Spain, in July in Indonesia, and in December in Namibia (Portmann et al., 2010). Second, because temperature varies

between years in the 30-year baseline climatology, realized growing season length will still vary in individual years even after

harmonization.

The dependence of harvest dates on climate parameters means that growing seasons will alter under climate change in a

model with phenological parameters tuned to match target growing seasons in the baseline climate. In general, warmer future20

scenarios produce shorter growing seasons. We denote simulations that allow these future changes as “A0” experiments, where

0 denotes “no adaptation”. The GGCMI Phase 2 protocol includes a second set of experiments, “A1”, that assume that future

cultivars are modified to adjust to changes along the T dimension in the CTWN experiment. For these simulations, modelers

adjust phenological parameters for each temperature scenario to hold growing season length approximately constant. (CARAIB

simulations follow the same principle, fixing growing season length at their baseline levels.) That is, the A1 simulations require25

running a model with seven different choices of cultivar parameters, one per warming level. Parameter settings for T=0 are

identical in both A0 and A1. The A1 simulations roughly capture the case in which adaptive crop cultivar choice ensures that

crops reach maturity at roughly the same time as in the current temperature regime. This assumption is simplistic, and does

not reflect realistic opportunities and limitations to adaptation (Vadez et al., 2012; Challinor et al., 2018), but provides some

insight into how crop modifications could alter projected impacts on yields and is sufficiently easy to implement in a large30

model intercomparison project as GGCMI.

Growing seasons for maize, rice, and soybean are taken from the SAGE (Center for Sustainability and the Global Environ-

ment, University of Wisconsin) crop calendar (Sacks et al., 2010), gap-filled with the MIRCA2000 crop calendar (Portmann

et al., 2010) and, if no SAGE or MIRCA2000 data are available, with simulated LPJmL growing seasons (Waha et al., 2012)

and are identical to those used in GGCMI Phase 1 (Elliott et al., 2015). In GGCMI Phase 2, we separately treat spring and35
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winter wheat and so must define different growing seasons for each. As for the other crops, we use the SAGE crop calendar,

which separately specifies spring and winter wheat, as the primary source for 69% of grid cells. In the remaining areas where

no SAGE information is available, we turn to, in order of preference, the MIRCA2000 crop calendar (Portmann et al., 2010)

and to simulated LPJmL growing seasons (Waha et al., 2012). These datasets each provide several options for wheat growing

season for each grid cell, but do not label them as spring or winter wheat. We assign a growing season to each wheat type for5

each location based on its baseline climate conditions. A growing season is assigned to winter wheat if all of the following

hold, and to spring wheat otherwise:

– the monthly mean temperature is below freezing point (<0◦C) at most for 5 months per year (i.e. winter is not too long)

– the coldest 3 months of a year are below 10◦C (i.e. there is a winter)

– the season start date fits the criteria that:10

– if in the N. hemisphere, it is after the warmest or before the coldest month of the year (as winter is around the

end/beginning of the calendar year)

– if in the S. hemisphere, it is after the warmest and before the coldest month of the year (as winter is in the middle

of the calendar year)

Nitrogen (N) application is standardized in timing across models. N fertilizer is applied in two doses, as is often the norm15

in actual practice, to reduce losses to the environment. In the GGCMI Phase 2 protocol, half of the total fertilizer input is

applied at sowing and the other half on day 40 after sowing, for all crops except for winter wheat. For winter wheat, in practice

the application date for the second N fertilizer application varies according to local temperature, because the length of winter

dormancy can vary strongly. In the GGCMI Phase 2 protocol, the second fertilization date for winter wheat must lie at least

40 days after planting and – if not contradicting the distance to planting – no later than 50 days before maturity. If those limits20

permit, the second fertilization is set to the middle day of the first month after sowing that has average temperatures above 8◦C.

All stresses in models are disabled other than those related to nitrogen, temperature, and water. For example, model responses

to alkalinity, salinity, and non-nitrogen nutrients are all disabled. No other external N inputs are permitted – that is, there is no

atmospheric deposition of nitrogen – but some models allow additional release of plant-available nitrogen through mineraliza-

tion in soils. In LPJmL, LPJ-GUESS and APSIM, soil mineralization is a part of model treatments of soil organic matter and25

cannot be disabled. Some additional differences in model structure mean that several key factors are not standardized across the

experiment. For example, carry-over effects across growing years including residue management and soil moisture are treated

differently across models.

2.4 Output data products

All models in GGCMI Phase 2 provide 30-year timeseries of annual crop yields for each scenario, 0.5 degree grid cell and30

crop, in units of tons ha−1 year−1. They also provide all available variables of the following 6: total aboveground biomass
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yield; the dates of planting, anthesis and maturity; applied irrigation water in irrigated scenarios; and total evapotranspiration.

We term these 7 variables the “mandatory” outputs, but note that some models do not compute all of them, e.g. CARAIB does

not compute the anthesis date. Besides these 7 “mandatory” data products (Table 2, bold), the protocol requests any or all of

18 “optional” additional output variables (Table 2, plain text). Participating modeling groups provided between 3 (PEPIC) and

18 (APSIM-UGOE) of these optional variables.5

All output data is supplied as netCDF version 4 files, each containing values for one variable in a 30-year timeseries asso-

ciated with a single scenario, for all grid cells. File names follow the naming conventions of GGCMI Phase 1 (Elliott et al.,

2015), which themselves are derived from those of ISIMIP (Frieler et al., 2017). File names are specified as

[model]_[climate]_hist_fullharm_[variable]_[crop]_global_annual_[start− year]_[end− year]_[C]_[T ]_[W ]_[N ]_[A].nc4

Here [model] is the crop model name; [climate] is the original climate input dataset (typically AgMERRA); [variable] is the10

output variable (of those in Table 2); [crop] is the crop abbreviation (“mai” for maize, “ric” for rice, “soy” for soybean, “swh”

for spring wheat, and “wwh” for winter wheat); and [start− year] and [end− year] specify the first and last years recorded

on file. [C], [T ], [W ], [N ] and [A] indicate the CTWN-A settings, each represented with the respective uppercase letter and

the number indicating the level (e.g. “C360_T0_W0_N200” see Table 1). Except for the CTWN-A letters, the entire file name

needs to be in small caps. All filenames include the identifiers global and annual to distinguish them as global, annual model15

output, following the updated ISIMIP file naming convention (Frieler et al., 2017).

Output data is provided on a regular geographic grid, identical for all models. Grid cell centers span latitudes -89.75 to

89.75◦ and longitudes from -179.75 to 179.75◦. Missing values where no crop growth has been simulated are distinguished

from crop failures: a crop failure is reported as zero yield but non-simulated areas (including ocean grid cells) have yields

reported as “missing values” (defined as 1.e+20 in the netCDF files). Following NetCDF standards, latitude, longitude and20

time are included as separate variables in ascending order, with units “degrees north”, “degrees east”, and “growing seasons

since 1980-01-01 00:00:00”.

Following GGCMI Phase 1 standards, the first entry in each file describes the first complete cropping cycle simulated from

the given climate input timeseries. In the AgMERRA timeseries used for GGCMI Phase 2, the first year provided is 1980 but

the date of the first entry can vary by crop and location. In the northern hemisphere, for summer crops like maize (sown in25

spring 1980 and harvested in fall 1980), the first harvest record would be of 1980, but for winter wheat (sown in fall 1980 and

harvested in spring 1981) the first harvest record would be of 1981. Output files report the sequence of growing periods rather

than calendar years. While there is generally one sowing event per calendar year (since simulations with harmonized growing

seasons do not permit double-cropping), in some cases harvest events may skip or repeat within a calendar year. For example,

because soybeans in North Carolina are typically harvested well into December, some calendar years may include no harvest30

(if it is not completed until after Dec. 31) or two harvests (one in January and one 11 months later in the following December).
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Table 2. Output variables, naming convention, and units in the GGCMI Phase 2 protocol. Items in bold are the mandatory minimum

requirements (if model capacities allow for these outputs). Other variables are optionally provided depending on availability and participating

modeling groups provided between 3 (PEPIC) and 18 (APSIM-UGOE) of these optional variables.

Variable variable name units

Yield yield_<crop> t ha−1 yr−1 (dry matter)

Total above ground biomass yield biom_<crop> t ha−1 yr−1 (dry matter)

Actual planting date plant-day_<crop> day of year

Anthesis date † anth-day_<crop> days from planting

Maturity date maty-day_<crop> days from planting

Applied irrigation water pirrww_<crop> mm yr−1

Evapotranspiration (growing season sum) etransp_<crop> mm yr−1 (W∞ scenarios only)

Transpiration (growing season sum) transp_<crop> mm yr−1

Evaporation (growing season sum) evap_<crop> mm yr−1

Runoff (total growing season sum, subsurface + surface) runoff_<crop> mm yr−1

Total available soil moisture in root zone * trzpah2o_<crop> mm yr−1

Total root biomass rootm_<crop> t ha−1 yr−1 (dry matter)

Total Reactive Nitrogen (Nr) uptake (growing season sum) tnrup_<crop> kg ha−1 yr−1

Total Nr inputs (growing season sum) tnrin_<crop> kg ha−1 yr−1

Total Nr losses (growing season sum) tnrloss_<crop> kg ha−1 yr−1

Gross primary production (GPP) gpp_<crop> gC m−2 yr−1

Net primary production (NPP) npp_<crop> gC m−2 yr−1

CO2 response scaler on NPP co2npp_<crop> - {0..inf}

Water response scaler on NPP h2onpp_<crop> - {0..1}

Temperature response scaler on NPP tnpp_<crop> - {0..1}

Nr response scaler on NPP nrnpp_<crop> - {0..1}

Other nutrient response scaler on NPP ornpp_<crop> - {0..1}

CO2 response scaler on transpiration co2trans_<crop> - {0..1}

Maximum stress response scaler maxstress_<crop> - {0..1}

Maximum Leaf Area Index (LAI) laimax_<crop> m2 m−2

* growing season sum, basis for computing average soil moisture

† provided where possible
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3 Models contributing

The 12 models participating in GGCMI Phase 2 are listed in Table 3. Models differ substantially in structure and parameter-

ization and can be separated into two broad categories: site-based (field-scale) models, and global ecosystem models. The 6

site-based models are APSIM, pDSSAT, and the EPIC family of models; the 6 ecosystem models are LPJmL, LPJ-GUESS,

PROMET, CARAIB, ORCHIDEE, and JULES. Models employ a variety of approaches for the core modules such as pri-5

mary production or evapotranspiration. For primary production, site-based models employ light use efficiency approaches and

ecosystem models use photosynthesis approaches. For evapotranspiration, most models use Priestley-Taylor, Penman-Monteith

or Hargreaves schemes, but JULES and PROMET utilize a land surface model approach instead. Note that models that share a

common genealogy may still use different schemes for evapotranspiration: for example, EPIC-TAMU uses Penman-Monteith

and EPIC-IIASA uses Hargreaves. To describe soils, most models use either the Harmonized World Soil Database (HWSD)10

from the FAO (Fischer et al., 2008) or the ISRIC-WISE database (Batjes, 2005) or a derivation thereof. Supplemental Table S1

provides details on these model characteristics as well as on implementation, including spin-up, calibration other than growing

season, residue management, and irrigation rules,

Table 3 also describes the simulation output contribution of each model to the GGCMI Phase 2 archive. Not all modeling

groups provided simulations for the full protocol described above. Given the substantial computational requirements, different15

participation tiers were specified to allow submission of smaller sub-sets of the full protocol. These subsets were designed as

alternate samples across the 4 dimensions of the CTWN space,with full (12) and low (4) options for the C · N variables, and

full (63), reduced (31), and minimum (9) options for T · W variables (described below). All participating modeling groups

provided identical coverage of the CTWN parameter space for different crops, but most differed in CTWN coverage of A0 and

A1 scenarios. Since the adaptation dimension was defined as a secondary priority for GGCMI Phase 2, some models provided20

a more limited set of A1 scenarios. Of these, EPIC-IIASA, JULES, and ORCHIDEE-crop provided no A1 scenarios.

The different participation levels are defined by combining the CxN sets with the TxW sets:

– full: all 756 A0 simulations (all 12 CxN * all 63 TxW)

– high: 362 simulations (all 12 CxN combinations · reduced TxW set of 31 combinations)

– mid: 124 simulations (low 4 CxN combinations · reduced TxW set of 31 combinations)25

– low: 36 simulations (low 4 CxN combinations · minimum TxW set of 9 combinations)

Of the 12 models submitting data, 6 followed the full protocol; these are marked with bold text in the last column of Table

3. However, note that two of these models (CARAIB and JULES) cannot represent nitrogen effects explicitly and so do not

sample over the nitrogen dimension. Two models followed high with minor modifications (GEPIC adding an additional T

level and PROMET omitting the intermediate N level). One model (PEPIC) followed mid but included an additional C level.30

Three models approximately followed low with APSIM-UGOE and EPIC-IIASA providing some additional TxW levels and

ORCHIDEE-crop omitting some TxW combinations.
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Table 3. Models included in GGCMI Phase 2 and the number of CTWN-A simulations performed. The maximum number is 756 for A0 (no

adaptation) experiments, and 648 for A1 (maintaining growing length) experiments, since T0 is not simulated under A1. “N-Dim.” indicates

whether the models are able to represent varying nitrogen levels. Each model provides the same set of CTWN simulations across all its

modeled crops, but some models omit individual crops. (For example, APSIM-UGOE does not simulate winter wheat.)

Model (Key Citations) Maize Soybean Rice Winter

wheat

Spring

wheat

N dim. Sims per crop

(A0 / A1)

APSIM-UGOE, Keating et al. (2003); Holz-

worth et al. (2014)

X X X – X X 44 / 36

CARAIB, Dury et al. (2011); Pirttioja et al.

(2015)

X X X X X – 252 / 216

EPIC-IIASA, Balkovič et al. (2014) X X X X X X 39 / 0

EPIC-TAMU, Izaurralde et al. (2006) X X X X X X 756 / 648

JULES, Osborne et al. (2015); Williams and

Falloon (2015); Williams et al. (2017)

X X X – X – 252 / 0

GEPIC, Liu et al. (2007); Folberth et al. (2012) X X X X X X 430 / 181

LPJ-GUESS, Lindeskog et al. (2013); Olin

et al. (2015)

X – – X X X 756 / 648

LPJmL, von Bloh et al. (2018) X X X X X X 756 / 648

ORCHIDEE-crop, Wu et al. (2016) X – X X – X 33 / 0

pDSSAT, Elliott et al. (2014b); Jones et al.

(2003)

X X X X X X 756 / 648

PEPIC, Liu et al. (2016a, b) X X X X X X 149 / 121

PROMET, Hank et al. (2015); Mauser et al.

(2015)

X X X X X X 261 / 232

Totals 12 10 11 10 11 10 5240 | 3378

The combinations of perturbation values in the CxN and TxW parameter spaces used in the various participation levels are

chosen to provide maximum coverage over plausible future values. For the CxN space, we specify:

– full as 12 pairs, with 4 C values (360, 510, 660, 810 ppm) and 3 N (10, 60, 200 kg ha−1 yr−1)

– low as only 4 pairs: C360_N10, C360_N200, C660_N60, C810_N200
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For the TxW space we specify:

– full as all 7 T levels and 9W levels.

– reduced as 31 alternating combinations, with different Ws for even Ts than for odd Ts. For even Ts (i.e. T0,T2,T4,T6),

we use W = -50,-20,0,+30 = 4·4 = 16 pairs. For odd Ts (i.e. T-1,T1,T3) , we use W = -30, -10, +10, +30, inf = 3·5 = 15

pairs.5

– minimum as 9 combinations: T-1W-10, T0W10, T1W-30, T2W-50, T2W20, T3W30, T4W0, T4Winf, T6W-20

4 Results

To illustrate the properties of the GGCMI Phase 2 model simulations, we provide an evaluation of model performance by

comparing model and historical yields, and show example results that demonstrate the spread of model responses to climate

and management inputs.10

4.1 Evaluation of model performance

All models participating in GGCMI Phase 2 have be evaluated against historical yields and site specific experimental data.

Most models (9 of 12, all but CARAIB, JULES, and PROMET) have been evaluated in their global setup in the GGCMI

Phase 1 evaluation exercise (Müller et al., 2017), and many have used the GGCMI Phase 1 online tool to similarly evaluate

subsequent model versions (e.g. von Bloh et al., 2018). Evaluating the performance of crop models in the GGCMI Phase 215

archive is complicated by the artificial nature of the protocol: the settings in the CTWN-A experiment design do not reflect

actual conditions in the real world. The protocol includes one scenario of near-historical climate inputs (T0, W0, C360), but

the prescribed uniform nitrogen application levels do not reflect real-world fertilizer practices. Models also omit detailed

calibrations to reflect the performance of historical cultivars.

We provide a partial evaluation of the models’ skill in reproducing crop yield characteristics using the methodology of20

Müller et al. (2017), developed for GGCMI Phase 1. Müller et al. (2017) evaluate how well model crop yield responses in a

historical run capture real-world yield variations driven by year-to-year temperature and precipitation variations. Following this

approach, we compare yields in the GGCMI Phase 2 baseline simulations with detrended historical yields from the Food and

Agriculture Organization of the United Nations (FAO, 2018) by calculating the Pearson product moment correlation coefficient

over 26 years of yield. The procedure is sensitive to the detrending method and the area mask used to aggregate yields; we use25

a 5-year running mean removal and the MIRCA2000 cultivation area mask for aggregation. In some cases the model timeseries

are shifted by one year to account for discrepancies in FAO or model year reporting. Because the GGCMI Phase 2 protocol

imposes fixed, uniform nitrogen application levels that are not realistic for individual countries, we evaluate control runs for

each model at multiple N levels whenever possible. Nine of the GGCMI Phase 2 models (Table 3) provide historical runs for

all three nitrogen levels (10, 60, and. 200 kg ha−1 yr−1).30
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Figure 2. Assessment of crop model performance in GGCMI Phase 2, following the protocol of GGCMI Phase 1 (Müller et al., 2017). Top:

example timeseries comparison between simulated crop yield and FAO country statistics (FAO, 2018) at the country level for two example

high production countries: US maize, and rice in India, both for the 200 kg ha−1 nitrogen application level. Bottom: heatmaps illustrating

the Pearson r correlation coefficient between the detrended simulated and observed country-level mean yields for the top 10 countries by

production for each crop, of those countries with continuous FAO data over 1981-2010. We show separate comparisons for simulations with

the three different nitrogen application levels, denoted 1, 2, 3 for 10, 60, and 200 kg N ha−1, respectively. Left column shows correlation of

ensemble mean yields with FAO data Because FAO does not distinguish between wheat types, we sum simulated spring and winter wheat for

models that provide both (See Table 3.). Note that differences by region and crop are stronger than difference between models, e.g. horizontal

bars are more similar in color than vertical bars. Countries are ordered alphabetically, not by production quantity.
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As expected due to the unrealistic features described above, correlation coefficients for the GGCMI Phase 2 simulations

are slightly lower than those found in the Phase 1 evaluation, but models show reasonable fidelity at capturing year-over-year

variation (Figure 2). For example, global correlation coefficients in Phase 1 and Phase 2, respectively, are 0.89 and 0.74 for

maize, 0.67 and 0.64 for wheat, and 0.64 and 0.59 for soybeans. (Phase 1 values are from Figures 1–4 and 6 in Müller et al.

(2017).) Differences in fidelity between regions and crops exceed differences between models: that is, Figure 2(c)–2(f) shows5

more color similarity in horizontal than vertical bars. For example, maize in the United States is consistently well-simulated

while maize in Indonesia is problematic (mean Pearson correlation coefficients of 0.68 and 0.18, respectively). Note that in

this methodology, simulations of crops with low year-to-year variability such as irrigated rice and wheat will tend to score

more poorly than those with higher variability. In some cases, especially in the developing world, low correlation coefficients

may point to reporting problems in the FAO statistics and to real-world variability caused by variations in management rather10

than weather (Ray et al., 2012; Müller et al., 2017). No single model consistently exhibits greater fidelity than others. Instead,

each model shows near best-in-class performance for at least one location-crop combination. For example, pDSSAT is the

best model for maize in the US, LPJmL and GEPIC are best in Germany, PROMET is best in Argentina, and PEPIC and

LPJ-GUESS are best in France.

4.2 Model crop yield responses under CTWN forcing15

Crop models in the GGCMI Phase 2 ensemble show broadly consistent responses to climate and management perturbations in

most regions, with a strong negative impact of increased temperature in all but the coldest regions. Mapping the distribution

of baseline yields and yield changes shows the geographic dependencies that underlie these results. Absolute yield potentials

show strong spatial variation, with much of the Earth’s surface area unsuitable for any of these crops (Figure 3, left). Crop

yield changes under climate perturbations also show distinct geographic patterns (Figure 3, right, which shows fractional yield20

differences between the baseline and T+4 A0 scenarios). In general, models agree most on yield response in regions where yield

potentials are currently high and therefore where crops are currently grown. In A0 simulations, models show robust decreases

in yields at low latitudes, and highly uncertain ensemble mean increases at most high latitudes. Low latitude yield reductions

are due in part to shortening of the growing season under warming and in part to the direct effects of higher temperature. In

A1 simulations, where growing seasons length does not change, temperature-related reductions in yield are more muted (see25

Supplemental Figure S14). In both A0 and A1 simulations, models show some increases in high mountain regions that are

currently cold-limited.

Projections of strong yield growth at higher latitudes should be treated with caution, since the effects evident in Figure 3

are due in part to inaccuracies in model representations of present-day crop yields. For example, at latitudes north of 45◦, the

GGCMI Phase 2 models collectively suggest strong (but uncertain) growth in soybean yields under warmer conditions (Figure30

3, g). However, model differences are greater in the baseline than future simulations, and greatest in currently-cultivated areas

(Figure 4). Both the mean projected growth and the inter-model spread are driven by three models that show almost zero

present-day potential soybean yields across the entire high-latitude region, even in locations where soybeans are currently

grown (Figure 4, left). PROMET, for example, involves a stronger response to cold than other models (e.g. LPJmL) with
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Figure 3. Illustration of the spatial patterns of baseline yields (left) and yield changes (right) in the GGCMI Phase 2 ensemble. Left column

shows multi-model climatological(30 year) median yields for the baseline scenario, with white stippling indicating areas where these crops

are not currently cultivated. Areas with less than 0.5 ton ha−1 in the baseline are masked. Absence of cultivation aligns well with the lowest

yield contour (0-2 ton ha−1). Right column shows multi-model mean fractional yield changes in the T+4 ◦C scenario relative to the baseline

scenario. Areas without stippling are those where models agree on changes: the multi-model mean fractional change exceeds the standard

deviation of changes in individual models. Stippling indicates areas of low confidence (∆< 1σ). Some spatial structure in projected changes

at high latitudes may be due to differences in model coverage; see Figure 1.
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Figure 4. Model probability densities for soybean yields at latitudes north of 45◦ in historical and warming simulations in the A0 case.

While 10 GGCMI Phase 2 models provide simulations (Table 3); we show 8 representative models for clarity. Probability density functions

are estimated separately for locations with some current cultivation (left, approximately 2500 grid cells, unweighted by cultivated area) and

for uncultivated locations (right, approximately 1500 grid cells), for baseline historical (solid) and T+4 (◦C) (dashed) simulations. Black line

in left panel shows actual yields from 1997-2003 derived from Ray et al. (2012). For historical simulations, models agree on low potential

yields in currently uncultivated areas (right) but disagree widely on yields in currently cultivated areas (left). Color code groups models into

those with realistic yield distributions peaking at 1-2 ton ha−1 (green), those with flatter distributions extending to unrealistically high values

(red), and those with predominantly zero yields (blue). “Green” models show slight decreases under T+4 warming, “red” models moderate

increases, and “blue” models large increases.

frost below -8 ◦C irreversibly killing non-winter crops and prolonged periods of below-optimum temperatures also leading to

complete crop failure. Over the high-latitude regions simulated by both models, 52% of grid cells in PROMET report 0 yield

in the present climate vs. 11% of cells in the T+4 scenario, leading to a strong yield gain in warmer future climates. In LPJmL

outputs, the same high-latitude area is deemed suitable for cultivation even in baseline climate, with crop failure rates of 4%

and 5% in present and T+4 cases, so that projected yield changes are modest (Figure 4). These spurious low baseline yields5

result in very large fractional changes in the T+4 warming scenario, when all models agree that conditions become favorable

for soybeans. Those models that most accurately reproduce present-day high-latitude soybean yields of 1-2 ton ha−1 (Ray

et al., 2012) in fact show a slight decrease in yield under a warming scenario (Figure 4, left). Apparent future yield increases

in the multi-model mean are driven by the least realistic simulations.

The GGCMI Phase 2 exercise offers the opportunity to examine and characterize not just crop response to a single tempera-10

ture change but nonlinearities in responses and interactions between factors. We illustrate a few of these relationships in Figures

5-6 using A0 simulations to capture maximum climate effects. We choose crops and factors whose effects are reasonably well
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Figure 5. Illustration of the distribution of regional yield changes across the multi-model ensemble, split by Köppen-Geiger climate re-

gions, and with global response in rightmost panel. Y-axis is the fractional change in the regional average climatological (30-year mean)

potential yield relative to the baseline. Box-and-whiskers plots show distribution across models, with median marked; edges are first and

third quartiles and whiskers extend to 1.5·IQR. Figure shows all simulated grid cells for each model; see Supplemental Figure S10-S13 for

only currently-cultivated land. We highlight responses to individual factors; note that results are not directly comparable to simulations of

realistic projected climate scenarios with identical global mean changes. Models generally agree outside high-latitude regions, with projected

changes exceeding inter-model variance. Top: Response of rainfed maize to applied uniform temperature perturbations, for three discrete

precipitation perturbation levels ( -20%, 0%, and +20%), with CO2 and nitrogen held constant at baseline values (360 pmm and 200 kg ha−1

yr−1). Outliers in the tropics (strong negative impact of higher T) are the pDSSAT model; outliers in the arid region (strong positive impact

of higher P) are JULES. Bottom: Response of rainfed soybeans to applied uniform precipitation perturbations, for two discrete temperature

levels. Cases with reduced precipitation show greater inter-model spread than those with increased precipitation. At very large precipitation

increases, yield changes level out: benefits saturate once water availability is no longer limiting. Precipitation changes are more important in

the arid region, as expected. Note the large uncertainty in the cold continental region, also illustrated in Figures 3 and 4.
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Figure 6. Illustration of the distribution of regional yield changes across the multi-model ensemble, here for soybeans and rice for the A0

case. Conventions as in Figure 5. Top: Response of rainfed soybeans to atmospheric CO2, for three discrete precipitation perturbation levels

with temperature and nitrogen held constant at baseline values. Low outliers are the EPIC-TAMU model and the high outliers in the Arid

region are the JULES model. Reduced precipitation tends to steepen the CO2 response and increased precipitation tends to flatten it, as

expected. Reduced precipitation tends to increase the inter model spread, especially at the highest CO2 levels. Bottom: Response of irrigated

rice for three discrete CO2 levels, with nitrogen and precipitation held constant. CO2 does not change the nature of temperature response

respective to baseline as the slopes at each CO2 level are relatively constant.

understood, and show that these are reproduced in models. It is expected, for instance, that increases in precipitation should

buffer the effects of warmer temperatures and that CO2 increases should reduce damage to crops in scenarios where water is

limited. Models generally confirm expected behavior but also provide insight into unforeseen interactions. To show geographic

effects, we divide model responses in Figures 5-6 by the primary Köppen-Geiger climate regions (Rubel and Kottek, 2010),

showing the yield changes across all simulated grid cells in each region. In each panel we examine relationships between two5

factors, showing yield response against one for several scenarios of the other, in box plots that show the inter-model spread.
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The responses highlighted here are qualitatively similar across all crops included in this study (Supplemental Figures S5–S9

for all simulated area and S10–S13 for cultivated area only).

For all crops, warming scenarios with precipitation held constant produce yield decreases in most regions. These impacts

are robust for even moderate climate perturbations. For rainfed maize, even a 1◦C temperature increase with other factors

held constant produces a median regional decline in potential yield that exceeds the variance across models, in all but the5

“cold-continental” regions (Figure 5a). The remaining areas (“warm temperate”, “equatorial”, and “arid”) account for nearly

three-quarters of global maize production. In the high-latitude “cold-continental” region, potential yield changes are positive

but highly uncertain, for the reasons discussed previously; uncertainties are larger even for maize than for soybeans. (Compare

Figures 5a and 5b.) Temperature effects are somewhat nonlinear, with the largest impacts for maize in the warm “tropical”

region (for soybeans, temperature effects are more complex; see Supplemental Figure S5). Precipitation effects on rainfed10

crops are more strongly nonlinear. The curvature of the precipitation response can be seen by eye in Figure 5b: soybean yields

are strongly negatively impacted by reduced rainfall, peak under increased precipitation of 20%, and actually decline at higher

precipitation levels.

As expected, precipitation and temperature effects interact, with increases in precipitation buffering yield responses to tem-

perature. Increased rainfall mitigates the negative impacts of warmer temperatures caused by increased evapotranspiration (e.g.15

Allen et al., 1998). For maize, the effect is relatively modest outside the “arid” regions (Figure 5a). Globally, a 4◦C temperature

rise with no change in precipitation results in median loss of ∼13% of rainfed maize, with all models showing a negative re-

sponse. With a 20% increase in precipitation, the median yield loss is ∼8%. For soybeans, the equivalent values are ∼11% and

1%, respectively. Decreased rainfall, on the other hand, amplifies yield losses and also increases inter-model variance. That is,

models agree that the response to decreased water availability is negative in sign but disagree on its magnitude. Outside of arid20

regions, the interaction effect itself shows little nonlinearity (i.e. response slopes in Figures 5a and 5b are roughly parallel). As

expected, irrigated crops are more resilient to temperature increases in all regions, especially so where water is already limiting

(other than winter wheat, Supplemental Figure S9).

Increased CO2 boosts yields overall through the well-known CO2 fertilization effect (Figure 6). The effect is strongest for

the C3 crops (wheat, soybeans, and rice), while maize, a C4 grass, has a comparatively muted response. We show irrigated rice25

and rainfed soy in Figure 6 as representative C3 crops. The effect of CO2 on yields is nonlinear, as expected, with significant

benefit from small increases but with effects plateauing at higher concentrations (Figure 6). CO2 and temperature effects show

minimal interaction. This effect is seen in Figure 6a, which shows nearly parallel response slopes at different CO2 levels.

That is, CO2 fertilization does little to change the nature of the temperature response. On the other hand, CO2 and precipitation

effects interact strongly, as expected since higher CO2 levels allow reduced stomatal conductance and evapotranspiration losses,30

mitigating the effect of reduced rainfall (e.g. McGrath and Lobell, 2013). This interaction is seen in Figure 6b as smaller yield

losses from reduced rainfall when CO2 levels are higher. For example, for soy, raising CO2 to 510 ppm actually outweighs the

multi-model median damages caused by a 20% precipitation reduction in all climate regions. All crops show similar behavior,

but note that model uncertainties for wheat are substantially higher than those for other crops. (Compare Figure 6a for soy and

Supplemental Figure S7 for wheat).35

21



We show some additional cases in Supplemental Material. As noted previously, the A1 adaptation simulations involve sig-

nificantly moderated temperature impacts relative to the A0 simulations shown here (Supplemental Figure S14). Supplemental

Figures S15 and S16 show the response in the nitrogen dimension and an irrigation water demand response example.

5 Discussion and Conclusions

The GGCMI Phase 2 experiment provides a database designed to allow detailed study of crop yields in process-based models5

under climate change. While previous crop model intercomparison projects in the climate change context have focused on

simulations along realistic projected climate scenarios (e.g. Rosenzweig et al., 2014), the use of systematic input parameter

variations in GGCMI Phase 2, with up to 756 scenarios, allows not only comparing yield sensitivities to changing climate and

management inputs but also evaluating the complex interactions between important driving factors: CO2, temperature, water

supply, and applied nitrogen. The global extent of the experiment also allows identifying geographic shifts in high potential10

yield locations. With 12 participating models and 31 simulation years per scenario, the complete database constitutes over

150,000 years of gridded global yield simulation output for each crop.

Preliminary results shown here highlight some of the insights facilitated by the simulation exercise and lend confidence in

the models. In validation tests of historical simulations, year-over-year correlations in modeled and actual country-level yields

are similar to those of GGCMI Phase 1. In simulations of scenarios with perturbed climate and management factors, models15

broadly agree on changes outside the high latitudes, with the magnitude of changes at nearly all perturbation levels exceeding

the inter-model spread. At high latitudes, differences between models may result from differences in their assumed yields in

current cold conditions. In simulations with multiple perturbations, interactions between major yield drivers (e.g. temperature

and precipitation in Figure 5, or precipitation and CO2 in Figure 6) generally follow expectations and produce physically

reasonable responses in crop yields.20

Users should however be aware of some limitations of the GGCMI Phase 2 experiment that affect its potential applications.

First, absolute yield values in the baseline scenario, driven by 1981–2010 historical climate, will generally not match observed

yields over this time period. In order to match current yields, process-based models must be re-tuned to account for the constant

evolution of crop cultivar genetics and management practice (e.g. Jones et al., 2017). GGCMI Phase 2 is intended as a study

of model responses to changes in climatic conditions, which are assumed insensitive to the adjustments needed to reproduce25

present-day yields. The baseline scenario also includes no trend in CO2, and no individual case involves realistic country-

specific nitrogen application levels (Elliott et al., 2015).

The second major caveat is that no individual GGCMI Phase 2 simulation is itself a realistic future yield projection. The

uniform applied offsets in temperature and precipitation sample over potential changes, and do not individually capture the

spatially heterogeneous warming and precipitation changes expected in realistic climate projections. GGCMI Phase 2 sim-30

ulation results can be used for impacts projection, but only with the construction of an emulator of crop yield response to

climatological changes, which can then be driven by arbitrary climate scenarios. Such emulators are shown to accurately re-

produce crop model output under realistic climate projections, even though the GGCMI Phase 2 experiment does not sample
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over potential changes in the higher-order moments in temperature and precipitation distributions (Franke et al., 2020). Note

that some factors that may affect future climate-driven yield impacts cannot be captured by the GGCMI Phase 2 models in any

usage, since models do not include representations of pests, diseases, and weeds. Off-line crop model simulations (i.e. with

prescribed rather than dynamically simulated atmospheric conditions) can also not capture any feedbacks on the climate from

land use, such as irrigation impacts on humidity (e.g. Decker et al., 2017).5

We expect that the GGCMI Phase 2 simulations will yield multiple insights in future studies. Potential applications include,

as mentioned, the construction of emulators and yield response surfaces that can be used for both model diagnosis and impacts

assessment. Specific studies could include analyzing the drivers of temperature-related yield losses (which may be due to both

direct thermal effects or to shortening growing seasons); the benefits of adaptation; interactions between CO2 and water or

other CTWN factors affecting yield; changes in nitrogen use efficiency; geographic shifts in regional production; regional10

differences in yield sensitivities to CTWN-A factors. Emulators based on the dataset can be used to identify hotspots of crop

system vulnerability, and to conduct rapid assessment of new climate projections. In general, the development of multi-model

ensembles involving systematic parameter sweeps has large promise both for increasing understanding of potential future crop

responses and for improving process-based crop models.
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Code and data availability. The simulation outputs of the mandatory 7 output variables (Table 2) are available on zenodo.org. See Table 4

for data DOIs. Data are published in crop- and GGCM-specific packages, in order to break down the overall data amount into manageable

packages (<50GB per archive). All other simulation output variables are available upon request to the corresponding author.

Table 4. DOI’s for model data outputs. All model output data can be found at https://doi.org/10.5281/zenodo/XX. Where XX is the value

listed in the table.

Model Maize Soybean Rice Winter

wheat

Spring

wheat

APSIM-UGOE 2582531 2582535 2582533 2582537 2582539

CARAIB 2582522 2582508 2582504 2582516 2582499

EPIC-IIASA 2582453 2582461 2582457 2582463 2582465

EPIC-TAMU 2582349 2582367 2582352 2582392 2582418

JULES 2582543 2582547 2582545 – 2582551

GEPIC 2582247 2582258 2582251 2582260 2582263

LPJ-GUESS 2581625 – – 2581638 2581640

LPJmL 2581356 2581498 2581436 2581565 2581606

ORCHIDEE-crop 2582441 – 2582445 2582449 –

pDSSAT 2582111 2582147 2582127 2582163 2582178

PEPIC 2582341 2582433 2582343 2582439 2582455

PROMET 2582467 2582488 2582479 2582490 2582492

The scripts for generating the spring wheat and winter wheat growing seasons and second fertilizer dates and the quality screening

script is available at https://github.com/RDCEP/ggcmi/blob/phase2/. All input data are available via globus.org (registration required, free of5

charge):Minimum cropland mask is available athttps://app.globus.org/file-manager?origin_id=e4c16e81-6d04-11e5-ba46-22000b92c6ec&

origin_path=%2FAgMIP.input%2Fother.inputs%2Fphase2.masks%2F choose the file boolean_cropmask_ggcmi_phase2.nc4 Growing

period data for wheat is now divided up into winter and spring wheat, available at https://app.globus.org/file-manager?origin_id=

e4c16e81-6d04-11e5-ba46-22000b92c6ec&origin_path=%2FAgMIP.input%2Fother.inputs%2FAGMIP_GROWING_SEASON.HARM.

version2.0%2F whereas all other growing season data (maize, rice, soybean) are the same as in Phase 1 (version 1.25), available10

at https://app.globus.org/file-manager?origin_id=e4c16e81-6d04-11e5-ba46-22000b92c6ec&origin_path=%2FAgMIP.input%2Fother.

inputs%2FAGMIP_GROWING_SEASON.HARM.version1.25%2F
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