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1 Cover letter to the Editor

March 13, 2020

Dear Editor,

Attached is the author response to referee comments and the modified manuscript. The largest change involves Subsection

2.2, which has been substantially modified to address reviewer comments. The section now more clearly outlines the rationale5

for the uniform offsets used in the experiment design. This was the main concern raised by both reviewers. Other significant

modifications to address reviewer comments include: a table detailing model differences has been added to the supplement

(Table S1), and three figures have been added to the supplement that show model responses to other dimensions as requested

by a reviewer. Because the original manuscript led both reviewers to miss key elements of the underlying motivation for the

experiment, we have also made numerous minor adjustments throughout the paper to clarify the writing. Please note that we10

changed “Phase II” throughout the paper to “Phase 2” to match previous publication convention. This includes in the title of

the paper. No figures have been modified. Attached are:

– The response to the referee comments, with explanation of line-by-line changes to the manuscript. Original comments

in gray and author responses in black.

– The pdf with all the text modifications highlighted (using difflatex). Red text has been removed and blue text has been15

added.

Thank you,

James Franke (and coauthors)

University of Chicago
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2 Anonymous Referee 1

COMMENT: The manuscript by Franke et al., details the experimental design for the Phase II GGCMI crop model comparison.

The goal is to provide a set of simulations to synchronize a variety of crop models and compare the responses from perturbations

of temperature, precipitation, CO2, and nitrogen fertilizer. The result is a dataset of thousands of simulations that can be used

to emulate statistical crop model response under varying inputs of climate change. The authors provide some analysis of the5

dataset, providing examples of non-linear behavior under multiple variable perturbations be-tween temperature, precipitation,

and CO2. Furthermore, the authors provide access to other users for additional analysis. The manuscript is well written, the

message is clearly defined, with a logical flow throughout, and void of technical errors. The authors did a good job detailing

some of the more complex features of their study.

RESPONSE: Thank you for the overall assessment.10

COMMENT: My main concern with this manuscript is I find the approach toward the perturbation experiments somewhat

unrealistic. I understand the difficulty in generating simulations across different models in a way that is uniform, and I find the

large number of simulations included in the dataset impressive but having such a large set of parameters for the simulations

makes interpreting the output difficult and negates the heterogeneous(in space and time) behavior of climate. Wouldn’t it be

easier to use CMIP output to drive simulations which could reduce the number of model runs? Perhaps the authors could15

provide more discussion on this choice. Also, since these are offline runs, they don’t include feedbacks between the atmosphere

and land (e.g. irrigation feedbacks to temperature), which are important.

RESPONSE: Yes, the approach of using uniformly perturbed climate inputs does not reflect realistic climate scenarios. If

the goal of GGCMI Phase 2 were to use these simulations for climate change impact assessments, this experimental design

would be the wrong choice. However, the goals of GGCMI-2 are to (i) scrutinize model response in response to individual and20

combined drivers and to (ii) develop crop model emulators on these experiments. Both of those goals require sampling across

the space of potential perturbations that allows untangling the contributions of individual factors that are highly correlated in

realistic future scenarios (e.g. CO2 and temperature). That is, meeting our goals requires a suite of unrealistic inputs.

We do believe that GGCMI-2 can also serve the needs of impacts assessments through the development of emulators. That

is, the responses to the CTWN-A factors diagnosed from GGCMI-2 can be used to build up emulations of what the crop25

models would produce under a realistic climate scenario, including all the heterogeneous aspects of true climate change. (In

this exercise, a crop model emulator for each individual grid cell is driven with the timeseries of projected climate changes for

that particular location.)

This use is not demonstrated in the manuscript here, which is the “experiment description” paper; instead it is shown in a

companion “model description” paper that describes the CTWN-A emulators, and is now available as a GMD discussion paper30

(https://www.geosci-model-dev-discuss.net/gmd-2019-365/ ). GMD had requested that we split our discussion of GGCMI-2

into these two components, to clearly distinguish the experimental description from the emulator development. In the com-

panion paper we show that realistic CMIP-based simulations can be reproduced extremely well by emulators built from the

CTWN-A experiment. This is true despite the fact that the uniform offset experiments omit some aspects of climate change
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that could be important to crops - the distribution of weather conditions within growing season, e.g. stronger warming in spring

vs. summer. Such effects do not appear large enough to compromise the GGCMI-2 emulators.

We have revised the text of the manuscript under review here to better explain the rationale of GGCMI-2 and to point to

the companion emulator paper as a justification of its utility for impacts assessment. This point is extremely important and we

thank the reviewer for pointing out that our explanation was insufficiently clear in the submitted manuscript.5

It is true that these experiments do not include feedbacks between irrigation and temperature. This is non-ideal, but in

practice, the vast majority of crop yield projections under climate change also omit this feedback, and instead simply feed a

climate projection to a process-based or statistical crop model. We have added some discussion of this point in the manuscript

and suggested the need for future studies.

CHANGES:10

– Extensive justification for the experiment set-up has been added to pages 6 and 7.

– The companion paper which details emulation for impact assessment is now cited on page 7, line 19.

– Feedbacks between atmospheres and temperatures are now addressed in new sentences on page 24, lines 1 through 3.

COMMENT: I did not find the A1 simulations discussed anywhere. They seem to be included in the methods section but

are not included in the analysis. Perhaps they should be omitted. Similarly, the nitrogen simulations are also missing from the15

analysis (except for the correlation with observations).

RESPONSE: The A dimension (adaptation in growing season length) is an integral part of the protocol and should be

described fully in the experiment description paper. We have now given it more attention in the overall paper.

Note that the adaptation dimension will always be treated somewhat separately in discussion as it is not directly comparable

to the other four dimensions (CTWN): it does not address inputs but the parameterization of crop varieties.20

We have tried to limit the amount of analysis of results that are shown as experiment description papers are supposed to

focus on experimental design, with a few results only as illustrations. However, we have added some additional material on N

and A so that these dimensions do not seem less important.

CHANGES:

– A figure has been added to the supplement (S14) that shows the yield response to increased temperature in the A125

scenarios.

– Some discussion of the difference between A1 and A0 response has been added to page 18 line 21 - 25. Clarification

between which scenario is being referenced in each case has be added throughout.

– New discussion of model calibration procedures for A1 growing seasons has been added to the supplement page 5.

– A figure has been added to the supplement (S15) that shows the yield response to increased temperature across the30

nitrogen dimension.

3



General Comments:

COMMENT: P. 7, Section 2.3: The 12 models included in the study are very different types of models. I know this was

discussed in the original paper describing protocol I, but it should also be noted here. How did the model differences inform

the experimental design (or limit the scope of the study)?

RESPONSE: Yes, the inclusion of different model types in a model intercomparison both complicates and enriches the5

analysis. One goal of the GGCMI Phase 2 experiment is to analyze model differences in order to better understand skills and

deficiencies and to improve models. We have added this point more clearly in the text. Based on reviewer comments, we are

also now adding a section describing key differences among models, and including a table in the supplemental material that

describes model differences in inputs, structure and setup.

CHANGES:10

– A new paragraph describing model differences has been added to page 12, lines 25-33.

– A new table has been added to the supplement (Table S1) detailing model differences.

COMMENT: P. 9, L. 10: If some models don’t output the anthesis date, why is it considered mandatory?

RESPONSE: The anthesis date is an important phenological indicator and was considered a standard output also in the

previous stages of GGCMI. However, as some models do not explicitly compute anthesis dates, these cannot deliver these15

outputs. The “mandatory” label means that models that do compute anthesis should report it. We have modified the text and

table caption to make this clear.

CHANGES:

– Table caption modified as noted on page 11.

– The “mandatory” designation has been clarified on page 10, line 26.20

COMMENT: P. 15, L. 6: Is the negative impact on yield from increasing temperature due to shorter growing seasons or from

actual heat damage to the crop?

RESPONSE: Typically, the effect is a combination of the two mechanisms. The use of both A0 and A1 setups was designed

to answer exactly this question. We have added text to emphasize this point. Note however that the experiment description

paper here is not intended to conduct all these analyses, but rather to describe the protocol and outputs of the experiments that25

will allow questions to be answered. We are glad that the experiment provokes such useful responses! GGCMI team members

are currently preparing a paper describing in detail the effects of adaptation in these experiments.

CHANGES:

– Text added as noted on page 17, line 15.

COMMENT: P. 15, L 11-13: The change in yields at different latitudes is unrealistic because of the design of the experiment.30

Simply increasing temperature uniformly and not accounting for the seasonal differences in temperature change (i.e., stronger
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winter increase in temperature and weak or no summer increase) results in an unrealistic “warming” during the growing

season that might not exist. This is also the probable cause of the increase in yield from the least realistic simulations (Pl. 15,

L 28-29).

RESPONSE: As discussed above, the uniform perturbations are not intended to reproduce a realistic scenario and should

not be used as such. The reviewer’s comment is useful in telling us that we need to make this point more clear in the paper.5

We have added language to emphasize that the GGCMI-2 output for a given uniform temperature shift should not be taken as a

proxy for an actual projection under a realistic climate scenario that produces the equivalent global mean temperature change.

We have tried to clarify two important points brought up by this comment. First, the climate offsets in the GGCMI-2

experiments refer to offsets during the growing season, not to annual means. The strong increases in yield in high-latitude

regions in some simulations are therefore the appropriate response for each model given the applied level of warming during10

the growing season. Models of course disagree on the extent or even the sign of yield changes, especially in high-latitude

regions, and their responses may be unrealistic.

Second, a scenario with a uniform offset (across space and time) will not match a scenario with the same mean change but

with the spatial patterns of climate change expected under future scenarios. The effects of these spatial patterns are shown

explicitly in the companion GMD “model description” paper (see link above). We now refer to that paper explicitly.15

CHANGES:

– New paragraph added as noted on page 7, lines 7-20 as noted.
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3 Anonymous Referee 2

COMMENT: The manuscript by Franke et al. documented a new AgMIP GGCMI effort on simulating the crop responses to

globally uniform environmental perturbations, includingCO2, temperature, precipitation, nitrogen, and adaptation (CTWN-A).

The simulation protocols are described in detail and key model outputs are made publically available. The authors made the

first cut on data analysis to show the key characteristics of the simulated dataset. Overall, this manuscript is well organized5

and written. It also fulfills the scope of GMD and should be of great interests to the broader crop modeling and climate change

adaptation community.

RESPONSE: Thank you for the overall positive assessment.

COMMENT: I have the following comments for the authors to consider:

COMMENT: Firstly, I see the nitrogen application rates designed in Table 1 are largely not realistic, especially considering10

how nitrogen application rates differ for different crops. I am not sure if I misunderstood anything there, but please help to

clarify this point.

RESPONSE: The idea of the uniform perturbation and input levels in the CTWN-A experiment is not to be fully realistic

but to allow for in-depth analyses by providing a structured analysis framework. Fertilizer application rates differ substantially

across crops (e.g. maize vs. soybean) but also across the globe where access to fertilizers is often limited. We designed the15

ranges of CTWN so that low and high-end values are included and model behavior can be understood across these dimensions.

By using a range of nitrogen input levels (as well as inputs of climate variables), we are able to construct “emulators” of

the crop model responses to these factors for arbitrary input levels. That is, the GGCMI-2 experiments allow constructing a re-

sponse surface that would allow reproducing the output crop models would have produced if run with more realistic (or indeed,

any) nitrogen inputs. This use is explained in detail in a companion GCM paper now available online at (https://www.geosci-20

model-dev-discuss.net/gmd-2019-365/ ). We have added more discussion in this first “experiment description” paper to make

this clear, and now point to the companion paper.

CHANGES:

– Text added on page 6, line 11 to clarify the intent of the N application levels.

COMMENT: Secondly, I found some critical information is missing in the current manuscript. For example, the differences25

among different models (especially those with the same base),the irrigation triggering rules in different models, key model

inputs (such as cultivar in-formation), model tuning method and model spin-up design. Please see later detailed comments.

RESPONSE: We agree with this critique and have expanded the discussion of structural differences among models. We have

also included a table in the Supplemental Materials showing key model features and structural differences. This addition will

make the manuscript significantly more useful for readers.30

CHANGES:

– A new paragraph describing model differences has been added to page 12, lines 25-33.

– A new table has been added to the supplement (Table S1) detailing model differences.
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COMMENT: Thirdly, there are 7 mandatory variables in Table 2. However, the authors only discussed yield, which I agree

is the most important one for crop models. If the authors can have some discussions on other variables, it would be very

interesting, even if the figures are dumped into supplementary materials.

RESPONSE: As this is the experiment description paper and the experiment is very comprehensive (experiments, different

model types, different output variables), we tried to find a balance between producing a readable overview paper and one with5

exhaustive detail. However, we may have erred on the side of over-focusing on yield. We have therefore now added some

examples of other outputs in the supplementary material and more discussion in the main text.

CHANGES:

– A figure illustrating the irrigation water response to warming has been added to the supplement (Figure S16).

COMMENT: More detailed comments are as following: COMMENT: P2, L30-L31: the transition to “Global crop model10

experiments are needed for systematic climate change assessments” is a little wired to me. Are you talking about the same

point with last sentence or not?

RESPONSE: Yes, this sentence is a bit too condensed. We have updated the language accordingly.

CHANGES:

– Text modified on page 2, line 27-33 to clarify meaning.15

COMMENT: P3, L22: Folberth et al. (2016); Porwollik et al. (2017)-> Folberth et al. (2016) and Porwollik et al. (2017)?

RESPONSE: Thank you for catching this! These references are now corrected; we have updated Folberth et al. 2016 to

Folberth et al. 2019.

CHANGES:

– Correction made on page 3, line 28.20

COMMENT: P3, L25: (C3MP Ruane et al., 2014; McDermid et al., 2015)-> (C3MP) (Ruane et al.,2014; McDermid et al.,

2015)

RESPONSE: We have changed to “(C3MP, see Ruane et al., 2014; McDermid et al., 2015)”

CHANGES:

– Correction made on page 3, line 33.25

COMMENT: P4, L26: an additional 84 for irrigated (W1)->an additional 84 for irrigated area (W1)?Are those 84 cases

for irrigated area only with the assumption that the irrigated area will not change or also for rainfed area too (to get rid of

water stress in rainfed regions)? Please clarify this point. It would be really interesting to have a no-water-limitation case for

rainfed area. Moreover, how does each model trigger irrigation? Does the irrigated amount differ a lot among models?

RESPONSE: No, following the general GGCMI experiment design, fully rainfed and fully irrigated systems are simulated30

in all grid cells, independent of their actual distribution. This protocol allows for better analyses (e.g. simulations with and
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without water stress can be compared) and also for understanding the potential of optional cropland expansion. In the GGCMI

Phase 2 setup, irrigated systems are also simulated during the rainfed growing seasons so that the simulation results are directly

comparable and only differ with respect to water supply. We have modified the text to make this choice more clear.

CHANGES:

– Text added on page 6, lines 1-6 line 3 to clarify the irrigation protocol.5

– Table added to supplement detailing individual model protocol for irrigation triggering (Table S1).

COMMENT: Table 1: There are three levels of applied nitrogen (10, 60, 200 kg/ha). Are those three levels uniformly applied

for all the five crops? For soybean, we don’t need that much nitrogen (200 kg/ha), right? For corn, is 10 kg/ha a too strong

nitrogen limitation, especially for a few regions such as US?

RESPONSE: Yes, as discussed above, N levels in the experimental protocol are uniformly applied across all locations and10

all crops, and are not intended to be realistic. The experiment design is intended to span the full range of plausible input values,

though the maximum of 200 kgN/ha may actually be a bit low for some crops and regions. Using uniform offsets and input

levels allows structured analysis of the effects of each factor. As per answers above, we have now made this rationale more

clear in the text.

CHANGES:15

– Text added on page 6, lines 11 to clarify the intent of the N application levels.

COMMENT: P7, L5: it would be good to document the main differences related with crop growth among those sharing-a-

common-base models, i.e. EPIC group (EPIC-IIASA, EPIC-TAMU, GEPIC, pEPIC), and LPJ group (LPJml, LPJ-GUESS).

RESPONSE: Yes, as discussed above, these differences are included in the table with details on model inputs, structure and

setup that is now included in Supplementary Material. We feel this addition greatly strengthens the utility of the paper and20

thank the reviewer for the suggestion.

CHANGES:

– A new paragraph describing model differences has been added to page 12, lines 25-33 including some discussion about

models that share a common genealogy.

– A new table has been added to the supplement (Table S1) detailing model differences.25

COMMENT: P7, L24-L25: will the change of phenological parameters have a huge impact on yield for different models?

RESPONSE: Yes, model performance can be very sensitive to the parametrization of growing seasons. That is why the

experiment protocol prescribes harmonized growing seasons so that it is easier to analyze model responses. We have amplified

discussion of this point in the text.

CHANGES:30
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– Sentence added to page 8, line 28.

COMMENT: P7, L28: what’s the “technical reasons” for CARAIB model? A note should be put on this.

RESPONSE: We agree that “technical reasons” does not adequately describe the issue at hand. In fact, the CARAIB team

simply missed harmonizing this aspect. We think it is still of value to include their output in the archive, and any applications

can exclude CARAIB results if required for their purposes. We have adjusted the sentence in question.5

CHANGES:

– Text modified in the paragraph starting on page 8, line 24 to clarify the process here.

COMMENT: P7L35-P8L1: how did modelers adjust those parameters? Was it manual tuning or automatic tuning? And

should this tuning be conducted for every year and each location? Ideally, there should be a section in the appendix for

parameter tuning to include related details (parameter space, and tuning method)10

RESPONSE: We now describe this procedure more clearly in the main text. The groups used manual parameter tuning to

harmonize the growing seasons. First, parameters are adjusted for each crop in each location under the unperturbed AgMERRA

baseline climate timeseries so that growing seasons in this 31-year period (1980-2010) reproduce specified observed average

growing seasons for this period. For A0 simulations, the parameters are then left constant for all experiments, so that growing

seasons alter under warming.15

Note that because each crop model sets the growing season differently, the parameters modified will differ across models.

Describing the exact procedure of the different modeling groups would require extensive discussion of the structure of each

model. While we agree an appendix describing this would be useful to some readers, we feel it is out of scope for this paper.

We hope that this need is satisfied instead by our links to the description papers for each individual model, which should cover

their process of determining growing seasons.20

CHANGES:

– Text modified in the paragraph on page 9, lines 8-22 to better describe the growing season calibration.

– New list of A1 case calibration measures added to the supplement on page 5.

COMMENT: P9, L10: please move “(Note that several models do not output the anthesis date.)“after “the dates of planting,

anthesis, and maturity”, i.e. the dates of planting, anthesis, and maturity (Note that several models do not output the anthesis25

date).

RESPONSE: Reviewer 1 also had problems with this sentence and it has been revised accordingly. It no longer includes

parentheses.

CHANGES:

– Correction made on page 10, line 26.30
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COMMENT: P9, L8: 30-year or 31-year (1980-2010)? What’s the model spin-up protocol?

RESPONSE: The spin up is very different across models. This is now documented in the new table on model inputs, structure

and setup.

CHANGES:

– New table added to supplement (Table S1).5

COMMENT: P11, L20: no italic text in Table 3!

RESPONSE: Thank you for catching this. These simulation sets are shown in bold in Table 3 (column “Sims per crop”), and

the sentence is now corrected.

CHANGES:

– Correction made on page 14, line 13.10

COMMENT: P11, L28: did you missed 510 ppm there?

RESPONSE: Yes, thanks for catching this; it is now corrected.

CHANGES:

– Correction made on page 14, line 21.

COMMENT: P13, L26: For example, global correlation coefficients for maize in Phase I and Phase II are 0.89 and 0.74,15

respectively; for wheat 0.67 and 0.64, and for soybeans 0.64 and 0.59. (Compare to Müller et al. (2017) Figures 1–4 and 6.)->

For example, global correlation coefficients in Phase I and Phase II are 0.89 and 0.74 for maize, 0.67 and0.64 for wheat, and

0.64 and 0.59 for soybeans, respectively (Phase I values are from Figures 1-4 and 6 in Müller et al. (2017))

RESPONSE: Corrected as suggested.

CHANGES:20

– Correction made on page 15, line 28.

COMMENT: P13, L27: Figure 2 should be Figure 2(c)-2(f)

RESPONSE: Corrected as suggested.

CHANGES:

– Correction made on page 15, line 30.25

COMMENT: Caption of Figure 5: There are two “all” in “Figure shows all all simulated grid cells for each model”

RESPONSE: Thanks for catching this; corrected.

CHANGES:

– Correction made to Figure 5 caption on page 20.
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COMMENT: P19, L1: region. (For soybeans, temperature effects are more complex; see Supple-mental Figure S5.)-> region

(for soybeans, temperature effects are more complex; see Supplemental Figure S5).

RESPONSE: Corrected as suggested.

CHANGES:

– Correction made on page 22, line 2.5

COMMENT: P20, L10: Generally, the carbon fertilization effect (CFE) would be larger under drier condition than under

wetter condition. Is this true in Fig. 6a and Fig. S7? McGrath, J.M., & Lobell, D.B. (2013). Regional disparities in the CO2

fertilization effect and implications for crop yields. Environmental Research Letters, 8, 014054

RESPONSE: The GGCMI-2 experiment is designed to allow diagnosis of this and other interaction effects! But, as this is

the experiment description paper, we are not analyzing results in full depth. We hope instead that many analyses will follow,10

making use of the freely available data set that we describe here. We have now added this citation and mentioned this effect as

the possible target of a future study.

CHANGES:

– Citation adde to page 22, line 23.

– Text added to page 24, line 8.15

COMMENT: P21, L1-2: again, please check the use of parenthesis.

RESPONSE: We have removed parentheses here.

CHANGES:

– Correction made on page 23, line 11. Text modifications for clarity.

COMMENT: Section 5: I am glad that the authors discussed some of the limitations in the simulation exercise. One more20

point should be included there is about how to validate the simulated responses, especially considering that there are indeed

some field experiments designed to measure the responses of crops to environmental manipulations.

RESPONSE: We now include more discussion of the fact that models have been individually and jointly evaluated, including

against data from field experiments.

We also discuss the challenges from the artificial model setup in the GGCMI Phase 2 experiment more thoroughly, and now25

refer to the companion paper (Franke et al., 2020), in which we demonstrate that emulators built from this artificial setup can

very well reproduce model behavior from crop yield simulations driven by more realistic future climate projections.

CHANGES:

– Text added to address model validation on page 15, lines 6-9.

– Text added to address model validation against realistic climate scenarios with the emulator on page 23, line 31.30
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Abstract. Concerns about food security under climate change motivate efforts to better understand future changes in crop

yields. Process-based crop models, which represent plant physiological and soil processes, are necessary tools for this purpose

since they allow representing future climate and management conditions not sampled in the historical record and new loca-

tions to which cultivation may shift. However, process-based crop models differ in many critical details, and their responses

to different interacting factors remain only poorly understood. The Global Gridded Crop Model Intercomparison (GGCMI)5

Phase II
:
2
:
experiment, an activity of the Agricultural Model Intercomparison and Improvement Project (AgMIP), is designed
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to provide a systematic parameter sweep focused on climate change factors and their interaction with overall soil fertility, to

allow both evaluating model behavior and emulating model responses in impact assessment tools. In this paper we describe the

GGCMI Phase II
:
2 experimental protocol and its simulation data archive. Twelve crop models simulate five crops with system-

atic uniform perturbations of historical climate, varying CO2, temperature, water supply, and applied nitrogen (“CTWN”) for

rainfed and irrigated agriculture, and a second set of simulations represents a type of adaptation by allowing the adjustment of5

growing season length. We present some crop yield results to illustrate general characteristics of the simulations and potential

uses of the GGCMI Phase II
:
2
:
archive. For example,

::
in

:::::
cases

::::::
without

::::::::::
adaptation, modeled yields show robust decreases to

warmer temperatures in almost all regions, with a nonlinear dependence that indicates
:::::
means

:
yields in warmer baseline loca-

tions have greater temperature sensitivity. Inter-model uncertainty is qualitatively similar across all the four input dimensions,

but is largest in high-latitude regions where crops may be grown in the future.10

1 Introduction

Understanding crop yield response to a changing climate is critically important, especially as the global food production

system will face pressure from increased demand over the next century (Foley et al., 2005; Bodirsky et al., 2015). Climate-

related reductions in supply could therefore have severe socioeconomic consequences (e.g. Stevanović et al., 2016; Wiebe

et al., 2015). Multiple studies using different crop or climate models concur in projecting sharp yield reductions on currently15

cultivated cropland under business-as-usual climate scenarios, although their yield projections show considerable spread (e.g.

Rosenzweig et al., 2014; Schauberger et al., 2017; Porter et al. (IPCC), 2014, and references therein). Although forecasts of

future yields reductions can be made with simple statistical models based on regressions in historical weather data, process-

based models, which simulate the effect of temperature, water and nutrient availability, and atmospheric CO2 concentration on

the process of photosynthesis and the biology and phenology of individual crops, play a critical role in assessing the impacts20

of climate change.

Process-based models are necessary for understanding crop yields in novel conditions not included in historical data, in-

cluding higher CO2 levels, out-of-sample combinations of rainfall and temperature, cultivation in areas where crops are not

currently grown, and differing management practices (e.g. Pugh et al., 2016; Roberts et al., 2017; Minoli et al., 2019). Process-

based models have therefore been widely used in studies on future food security (Wheeler and Von Braun, 2013; Elliott et al.,25

2014a; Frieler et al., 2017), options for climate mitigation (Müller et al., 2015) and adaptation (Challinor et al., 2018), and fu-

ture sustainable development (Humpenöder et al., 2018; Jägermeyr et al., 2017). Process-based models also allow for the
::::
They

::
are

::
a
::::::::
necessity

::
for

:
global gridded simulationsneeded for ,

::::::
which

:::::
allow understanding the global dynamics of agricultural trade,

including cultivation area changes and crop selection switching under climate change (Rosenzweig et al., 2018; Ruane et al., 2018)

because global market mechanisms may strongly modulate climate change impacts
:::
can

::::::::
strongly

::::::::
modulate

:::
the

:::::::::
economic30

::::::
impacts

::
of

:::::::
regional

:::::
yield

:::::::
changes (Stevanović et al., 2016; Hasegawa et al., 2018). Global crop model experiments are needed

for systematic climate change assessments (Müller et al., 2017)
:::::::::
simulations

:::
are

:::::::::
especially

::::::::
necessary

::
in

::::::::
studying

::::::::::
agricultural

:::::
effects

::
of

:::::::
climate

::::::
change

:::::::::::::::::
(Müller et al., 2017),

:::::
since

:::::::::
systematic

::::::
climate

::::::::::
assessments

:::::
must

::::::
account

:::
for

:::::::::
cultivation

::::
area

:::::::
changes

2



:::
and

::::
crop

:::::::
selection

::::::::
switching

:::::::::::::::::::::::::::::::::::::
(Rosenzweig et al., 2018; Ruane et al., 2018)

:::
and

:::::
must

:::::::
consider

:::::::::::
inter-regional

:::::::::
differences

::::::::::::::::::::::::::::::::::::
(e.g. Nelson et al., 2014; Wiebe et al., 2015)

.

Modeling crop responses, however, continues to be challenging, as crop growth is a function of complex interactions between

climate inputs, soil, and management practices (Boote et al., 2013; Rötter et al., 2011). Models tend to agree broadly in major

response patterns, including a reasonable representation of the spatial pattern in historical yields of major crops and projections5

of shifts in yield under future climate scenarios (e.g. Elliott et al., 2015; Müller et al., 2017). But process-based models still

struggle with some important details, including reproducing historical year-to-year variability in many regions (e.g. Müller

et al., 2017; Jägermeyr and Frieler, 2018), reproducing historical yields when driven by reanalysis weather (e.g. Glotter et al.,

2014), and low sensitivity to extreme events (e.g. Glotter et al., 2015; Schewe et al., 2019).
:::::
Global

:::::::
models

::::
pose

:::::::::
additional

::::::::
challenges

::::
due

::
to

:::::::
variable

:::::
input

::::
data

::::::
quality

:::
and

::::::
limited

::::::
ability

:::
for

::::::
model

:::::::::
calibration.

:
Long-term projections therefore retain10

considerable uncertainty (Wolf and Oijen, 2002; Jagtap and Jones, 2002; Iizumi et al., 2010; Angulo et al., 2013; Asseng et al.,

2013, 2015).

Model intercomparison projects such as the Agricultural Model Intercomparison and Improvement Project (AgMIP, Rosen-

zweig et al., 2013) are crucial in quantifying uncertainties in model projections (Rosenzweig et al., 2014). Intercomparison

projects have also been used to develop protocols for evaluating overall model performance (Elliott et al., 2015; Müller et al.,15

2017) and to assess the representation of individual physical mechanisms such as water stress and CO2 fertilization (e.g.

Schauberger et al., 2017). However, to date, few such projects have systematically sampled critical factors that may interact

strongly in affecting crop yields. A number of modeling exercises in the last five years have begun to use systematic param-

eter sweeps in crop model evaluation and emulation (e.g. Ruane et al., 2014; Makowski et al., 2015; Pirttioja et al., 2015;

Fronzek et al., 2018; Snyder et al., 2018; Ruiz-Ramos et al., 2018), but all involve limited sites and most also limited crops and20

scenarios.

The Global Gridded Crop Model Intercomparison (GGCMI) Phase II
:
2
:
experiment is the first global gridded crop model

intercomparison involving a systematic parameter sweep across critical interacting factors. GGCMI Phase II
:
2 is an ac-

tivity of AgMIP, and a continuation of a multi-model comparison exercise begun in 2014. The initial GGCMI Phase I
:
1

::::::::::::::::::::::::::::::::
(Elliott et al., 2015; Müller et al., 2017) compared harmonized yield simulations over the historical period, with primary goals25

of model evaluation and understanding sources of uncertainty (including model parameterization, weather inputs, and culti-

vation areas)(Elliott et al., 2015; Müller et al., 2017; Folberth et al., 2016; Porwollik et al., 2017). GGCMI Phase II .
::::

See
::::
also

:::::::::::::::::
Folberth et al. (2019)

:::
and

::::::::::::::::::::
Porwollik et al. (2017)

::
for

:::::
more

:::::::::::
information.

:::::::
GGCMI

:::::
Phase

::
2
:
compares simulations across a set

of inputs with uniform perturbations to historical climatology, including CO2, temperature, precipitation, and applied ni-

trogen(collectively referred to as “CTWN”), as well as adaptation to shifting growing seasons . The CTWN
::::::::::
(collectively30

::::::
referred

:::
to

::
as

:::::::::::
“CTWN-A”).

::::
The

:::::::::
CTWN-A experiment is inspired by AgMIP’s Coordinated Climate-Crop Modeling Project

(C3MP Ruane et al., 2014; McDermid et al., 2015)
:::::::::::::::::::::::::::::::::::::::::::::
(C3MP, see Ruane et al., 2014; McDermid et al., 2015) and contributes to

the AgMIP Coordinated Global and Regional Assessments (CGRA) (Ruane et al., 2018; Rosenzweig et al., 2018)
::::::::::::::::::::::::::::::::::::::::::::::
(CGRA, see Ruane et al., 2018; Rosenzweig et al., 2018)

.
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In this paper, we describe the GGCMI Phase II
:
2 model experiments and present initial summary results. In the sections that

follow, we describe the experimental goals and protocols; the different process-based models included in the intercomparison;

the levels of participation by the individual models. We then provide an assessment of model fidelity based on observed yields

at the country level, and show some selected examples of the simulation output dataset to illustrate model responses across the

input dimensions.5

2 Simulation objectives and protocol

2.1 Goals

The guiding scientific rationale of GGCMI Phase II
:
2
:
is to provide a comprehensive, systematic evaluation of the response of

process-based crop models to critical interacting factors, including CO2, temperature, water, and applied nitrogen under two

contrasting assumptions on growing season adaptation (CTWN-A). The dataset is designed to allow researchers to:10

– Enhance understanding of models ’ sensitivity to climate and nitrogen drivers.

– Study the interactions between climate variables and nitrogen inputs in driving modeled yield impacts.

– Characterize differences in crop responses to climate change across the Earth’s climate regions.

– Provide a dataset that allows statistical emulation of crop model responses for downstream modelers.

– Explore the potential effects on future yield changes of adaptations in growing season length.15

2.2 Modeling protocol

The GGCMI Phase I
:
1
:
intercomparison was a relatively limited computational exercise, requiring yield simulations for 19

crops across a total of 310 model-years of historical scenarios, and had the participation of 14 modeling groups. The GGCMI

Phase II
:
2 protocol is substantially larger, involving over 1400 individual 30-year global scenarios, or over 42,000 model-years;

12 modeling groups nevertheless participated. To reduce the computational load, the GGCMI Phase II
:
2 protocol reduces the20

number crops to 5 (maize, rice, soybean, spring wheat, and winter wheat). The reduced set of crops includes the three major

global cereals and the major legume and accounts for over 50% of human calories in 2016: nearly 3.5 billion tons or 32% of

total global crop production by weight (FAO, 2018). This set of major crops has the advantage of historical yield data globally

available at sub-national scale (Ray et al., 2012; Iizumi et al., 2014), and has been frequently used in subsequent analyses (e.g.

Müller et al., 2017; Porwollik et al., 2017).25

The Phase II
:
2 protocol involves a suite of uniform perturbations from a historical climate timeseries. The baseline climate

scenario for GGCMI Phase II
:
2 is one of the weather products used in Phase I

:
1, daily climate inputs for 1980-2010 from the 0.5

degree NASA AgMERRA (“Agricultural”-modified Modern Era Retrospective analysis for Research and Applications) gridded

re-analysis product. AgMERRA is specifically designed for agricultural modeling, with satellite-corrected precipitation (Ruane
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Figure 1. Left panel: Cultivated areas for maize, rice, and soybean are taken from the MIRCA2000 (“Monthly Irrigated and Rainfed Crop

Areas around the year 2000”) dataset (Portmann et al., 2010). Blue indicates grid cells with more that 20,000 hectares (10% of the equatorial

grid cell) and gray contour shows gridcells with more that 10 hectares cultivated. Areas for winter and spring wheat areas are adapted from

MIRCA2000 and two other sources; see text for details. For irrigated crops, see supplemental Figure S1. Right panel: Number of models

providing simulations for each grid cell. All models provide the minimum areal coverage of the GGCMI Phase II
:
2
:

protocol, but some

provide extra coverage at high latitudes or in arid or otherwise unsuitable areas.
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Table 1. GGCMI Phase II
:
2 input parameter levels for each dimension. Temperature and precipitation values indicate the perturbations from

the historical climatology. Irrigated (W1) simulations assume the maximum beneficial levels of water. Bold font indicates the ‘baseline’ or

historical level for each dimension. One model provided simulations at the T + 5 level.

Input variable Simulation input values Unit

CO2 (C) 360, 510, 660, 810 ppm

Temperature (T) -1, 0, 1, 2, 3, 4, 6 �C

Precipitation (W) -50, -30, -20, -10, 0, %

10, 20, 30, (and W1)

Applied nitrogen (N) 10, 60, 200 kg ha�1

Adaptation (A) A0: none, A1: new cultivar to maintain original growing season length -

et al., 2015). The experimental protocol consists of 9 levels for water supply perturbations, 7 for temperature, 4 for CO2, and 3

for applied nitrogen, for a total of 756 simulations (Table 1), 672 for rainfed agriculture and an additional 84 for irrigated (W1).

In irrigated simulations, crops are assumed to have no water constraints, i.e. all crop water requirements are fulfilled regardless

of local water supply limitations. Given that the irrigated scenario (W1) is one element of the water supply levels, irrigated

simulations use the same growing seasons and areas as all other simulations. All other water supply levels are implemented5

as relative variations of precipitation. Values of climate variable perturbations are selected to represent reasonable ranges for

changes over the medium term (to 2100) under business-as-usual emissions.
:::::
Values

:::
for

:::::::
nitrogen

:::::::::
application

:::::
levels

:::
are

::::::::
intended

::
to

::::
cover

::
a
::::
wide

:::::
range

::
of

:::::::::
potentials.

:
The resulting GGCMI Phase II dataset therefore

:
2

::::::
dataset captures the distribution of crop

model responses over the
:
a

::::
wide range of potential future climate

:::
and

::::::::::
management

:
conditions.

While all
:::
The

:::::::
protocol

:::::::
samples

::::
over

:::
all

:::::::
possible

:::::::::::
permutations

::
of

:::::::::
individual

::::::::::::
perturbations,

:::
i.e.

::
all

::::::
values

:::
are

::::::
applied

::::::
across10

::
all

:::::
crops

:::
and

:::::::
regions,

:::
so

:::
that

::::
the

:::::::
protocol

:::::::
includes

:::::
many

::::::::::::
combinations

:::
that

:::
are

:::
not

::::::::
realistic.

:::
For

::::::::
example,

:::
we

::::::::
simulate

::::
high

:
N
::::::::::

application
::
to

::::::::
soybeans,

::::::
which

:::
are

:::::::
N-fixers

:::
and

:::::
need

::::
little

::::::::
fertilizer.

::::
This

::::::
choice

::::
also

:::::
means

::::
that

::::
CO2:::::::

changes
:::
are

:::::::
applied

:::::::::::
independently

::
of

:::::::
changes

::
in

:::::::
climate

::::::::
variables,

::
so

:::
that

::::::
higher

::::
CO2::

is
:::
not

:::::::::
associated

::::
with

:::::
higher

:::::::::::
temperatures

::
or

:::::
other

::::::::
particular

::::::
climate

:::::::
changes.

::::
The

:::::::
purpose

::
of

:::
the

:::::::::
experiment

::
is
:::
not

::
to

:::::::
produce

:::::::::
individual

::::::::
scenarios

:::
that

::::::::
represent

:::::::
realistic

:::::
future

::::::
states,

:::
but

::
to

::::::
sample

::::
over

:
a
::::
wide

:::::
range

:::
of

::::::::
parameter

:::::
space

::
to

::::::
enable

::::::::::::
understanding

:::
the

::::::
factors

:::
that

:::::
drive

:::::::::
agricultural

::::::::
changes.15

:::::
While

:::
all

::::::
CTWN

:
perturbations are applied uniformly across the historical timeseries, they are applied in different ways.

While precipitation perturbations are applied as fractional changes, temperature
::::
CO2 :::

and
::::::::

nitrogen
:::::
levels

:::
are

::::::::
specified

:::
as

::::::
discrete

::::::
values

::::::
applied

:::::::::
uniformly

::::
over

:::
all

:::
grid

:::::
cells.

:::::::::::
Temperature perturbations are applied as absolute offsets from the daily

mean, minimum, and maximum temperature timeseries for each grid cell. CO2 and nitrogen levelsare specified as discrete

values applied uniformly over all grid cells. The protocol samples over all possible permutations of individual perturbations20

. This choice means that CO2 changes are applied independently of changes in climate variables, so that higher CO2 is not
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associated with particular climate changes, e. g. higher temperatures. ,
::::
and

:::::
water

:::::::::::
perturbations

::
are

:::::::
applied

::
as

::::::::
fractional

:::::::
changes

::
to

::::
daily

:::::::::::
precipitation.

::::
The

:::::::
irrigated

::::::::
scenario

:::::
(W1)

::
is

:
a
:::::::::

particular
::::
case

::
of

:::::
water

::::::
supply

::::::
levels,

::
in

:::::
which

:::::
crops

:::
are

::::::::
assumed

::
to

::::
have

::
no

:::::
water

::::::::::
constraints.

:::::
That

::
is,

:::
all

::::
crop

:::::
water

:::::::::::
requirements

:::
are

:::::::
fulfilled

:::::::::
regardless

:::
of

::::
local

:::::
water

::::::
supply

::::::::::
limitations.

:::
To

:::::::
facilitate

:::::::::::
comparison,

:::::::
irrigated

::::::::::
simulations

::::
use

:::
the

:::::
same

:::::::
growing

:::::::
seasons

::
as
:::

all
:::::

other
:::::::::::
simulations,

::::
even

::::::
though

:::
in

::::::
reality

:::::::
irrigated

:::::::
growing

:::::::
seasons

::::
may

:::
be

:::::::
different

:::::::::::::::::::
(Portmann et al., 2010)

:
,
:::
and

:::::
both

:::::::
irrigated

::::
and

::::::
rainfed

:::::
cases

:::
are

::::::::
simulated

:::::
with5

:::::::::
near-global

::::::::
coverage.

:

:::
The

:::::::
uniform

:::::::::::
perturbations

::
of

:::
the

:::::::
GGCMI

:::::
Phase

:
2
:::::::
protocol

::::::
require

:::::
some

::::
care

::
in

:::::::::::
interpretation.

:::::::::::
Temperature

:::
and

:::::::::::
precipitation

:::::::::::
perturbations

:::::
should

:::
be

:::::::::
considered

::
as

::::::::::
differences

::::
from

::::::::
historical

::::::::::
climatology

::::::
within

:::
the

:::::::
growing

::::::
season

:::::
only.

::::
That

::
is,

::
a
::::
T+1

::::::::
simulation

:::::::::
represents

:
a
::
1

::
�C

:::::::
warmer

:::::::
growing

::::::
season,

:::
not

:
a
::
1

::
�C

:::::::
warmer

::::::
annual

::::
mean

:::::::::::
temperature.

::::
(The

:::::::::
distinction

::
is

::::::::
important

::::::
because

::
in
:::::::

climate
::::::::::
projections,

::::::
winters

::::::::
generally

:::::
warm

:::::
more

::::
than

::::::::
summers

:::::::::::::::::::::
(e.g. Haugen et al., 2018)

:
.)
::
In

:::
the

:::::::
GGCMI

::::::
Phase10

:
2
::::::::
protocol,

::::::::::
temperature

:::
and

:::::::::::
precipitation

:::::::::::
perturbations

:::
are

::::::
applied

:::::::::
uniformly

::
in

::::::
space,

:::
but

:::::
future

:::::::
changes

::
in

::::::::::
temperature

::::
and

::::::::::
precipitation

::::
will

:::
not

::
be

:::::::
spatially

::
or

:::::::::
temporally

::::::::
uniform.

::
In

:
a
:::::::
realistic

::::::
climate

::::::::::
projection,

:::::
higher

:::::::
latitudes

::::::::
generally

:::::
warm

:::::
more

:::::::
strongly

::::
than

:::::
lower

:::::::
latitudes

:::::::::::::::::::::
(e.g. Hansen et al., 1997),

::::
and

:::
the

:::::::
northern

::::
high

::::::::
latitudes

:::::
warm

:::::
more

::::::
quickly

::::
than

:::
the

::::::::
southern

::::
ones.

::
A

:::::::
GGCMI

::::::
Phase

:
2
:::::::::
simulation

::::::::
therefore

:::::::::
represents

:
a
:::::::
possible

:::::
future

:::::
state

:::
that

:::::
could

::::
occur

::
in

::::
each

::::
grid

::::
cell,

:::
but

:::
not

::::
one

:::
that

::::::
would

::
in

:::::
reality

:::::
occur

:::::::::::::
simultaneously

::
in

:::
all

:::
grid

:::::
cells

:::::
across

:::
the

::::::
globe.

:::
The

::::::::
GGCMI

:::::
Phase

:
2
::::::::::
simulations

:::
are

::::::::
intended

::
to15

::
be

::::
used

:::
for

::::::
climate

::::::
impact

::::::::::
assessment

:::
not

:::::::
directly

:::
but

::::::
instead

::
as

:
a
::::::::
“training

::::
set”

:::
for

::::::::
statistical

::::::::
emulation

::
of

:::::
each

::::
crop

::::::
model.

::::
Once

:::
an

:::::::
emulator

::
is

::::::::::
constructed

::::
from

:::
the

::::::
outputs

::::::::
described

:::::
here,

:
it
::::
can

::
be

:::::
driven

::::
with

:::::::::::::
growing-season

:::::::
climate

::::::::
anomalies

:::::
from

:::
any

::::::
climate

::::::
model

:::::::::
projection.

::::
The

:::::::
GGCMI

::::::
Phase

:
2
::::::::

protocol
::::
does

:::
not

:::::::
involve

:::
any

:::::::::
simulated

:::::::
changes

::
in

:::::::
climate

:::::::::
variability,

:::
but

::::::::::::::::
Franke et al. (2020)

::::::::::
demonstrate

::::
that

::::
these

::::::
effects

:::
are

::::::::
relatively

:::::
minor

::::
and

:::
that

:::::::
GGCMI

::::::
Phase

:
2
::::::::
emulators

::::
can

:::::::::
effectively

::::::::
reproduce

::::
crop

::::::
model

:::::
yields

:::::
under

:::::::
realistic

:::::
future

::::::
climate

:::::::::
scenarios.20

Each model is run at 0.5 degree spatial resolution and covers all
:::
The

::::
area

:::::::::
simulated

::
in

::::
the

:::::::
GGCMI

:::::
Phase

::
2
::::::::

protocol

::::::
extends

:::::::::::
considerably

::::::
outside

:
currently cultivated areasand much of the uncultivated land area,

:::::::
because

:::::::::
cultivation

:::::
may

::::
shift

:::::
under

::::::
climate

::::::
change. Figure 1 , left, shows

:::::
shows

::::
both

:
the present-day cultivated area of rainfed crops and

::::
(left)

:::
and

::::::
model

:::::::
coverage

::::::
(right).

:::::
(See Supplemental Figure S1-2 that for irrigated crops. Cultivated areas are provided by the MIRCA2000

(Monthly Irrigated and Rainfed Crop Area) data product (Portmann et al., 2010).Coverage extends considerably outside
:::
for25

:::::::
currently

:::::::::
cultivated

::::
area

:::
for

:::::::
irrigated

::::::
crops;

::::::
model

:::::::
coverage

::
is
::::

the
::::::
same.)

::::
Each

::::::
model

::::::
covers

:::
all currently cultivated areas

because cultivation will likely shift under climate change
:::
and

:::::
much

:::
of

:::
the

::::::::::
uncultivated

::::
land

:::::
area,

:::
run

:::
at

:::
0.5

::::::
degree

::::::
spatial

::::::::
resolution. To reduce the computational burden, however, the protocol requires simulation only over

:::
over

::::
only

:
80% of Earth

land surface area. Areas are not simulated if they are ,
::::::::

omitting
:::::
areas assumed to remain non-arable even under an extreme

climate change; these regions include
:
,
::::::::
including

:
Greenland, far-northern Canada, Siberia, Antarctica, the Gobi and Sahara30

Deserts, and Central Australia. The protocol also eliminates
:::::
allows

::::::::
omitting regions judged unsuitable for cropland for non-

climatic reasons. Selection criterion involve a combination of soil suitability indices at 10 arc-minute resolution and excludes

those 0.5 degree grid cells in which at least 90% of the area is masked as unsuitable according to any single index, and which do

not contain any currently cultivated cropland.
::::::::
Currently

::::::::
cultivated

:::::
areas

:::
are

:::::::
provided

:::
by

:::
the

:::::::::::
MIRCA2000

::::::::
(Monthly

::::::::
Irrigated

:::
and

:::::::
Rainfed

::::
Crop

:::::
Area)

::::
data

:::::::
product

:::::::::::::::::::
(Portmann et al., 2010).

:
Soil suitability indices measure excess salt, oxygen availability,35
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rooting conditions, toxicities, and workability, and are provided by the IIASA (International Institute for Applied Systems

Analysis) Global Agro-Ecological Zone model (GAEZ, FAO/IIASA, 2011). The procedure follows that proposed by Pugh

et al. (2016). All modeling groups simulate the minimum required coverage, but some provide simulations that extend into

masked zones, including e.g. the Sahara Desert and Central Australia (Figure 1, right).

2.3 Harmonization between models5

The 12 models included in GGCMI Phase II
:
2
:
are all process-based crop models that are widely used in impacts assessments

(Table 3). Although some models share a common base (e.g. the LPJ family or the EPIC family
:
or

:::::
EPIC

:::::::
families

:
of models),

they have subsequently developed independently. Wherever possible, the GGCMI Phase II
:
2 protocol harmonizes inputs, but

differences in model structure mean that several key factors cannot be fully standardized across the experiment. These include

soil treatment (which affects soil organic matter and carry-over effects of soil moisture across growing years) and baseline10

climate inputs.

While 10 of the 12 models participating in GGCMI Phase II
:
2
:

use the AgMERRA historical daily climate data product,

two models require sub-daily input data and thus use different baseline climate inputs: PROMET uses ERA-Interim reanalysis

(Dee et al., 2011); ,
::::
and JULES uses a bias-corrected version of ERA-Interim, the 3-hour WFDEI (WATCH-Forcing-Data-

ERA-Interim) (Weedon et al., 2014), selecting
:::::::::
specifically

:::
the WFDEI version with precipitation bias-corrected against the15

CRU TS3.101/TS3.21 precipitation totals (Harris et al., 2014). The data products show some differences (Figures S3-S4, which

compare data products over currently cultivated areas for each crop). For example, for maize
::::::::::::
maize-growing

::::
areas, ERA-Interim

daily precipitation is biased high from that in AgMERRA by 7% (< 1 sigma), while mean daily precipitation in WFDEI is only

3% higher. Precipitation differences are largest in wheat areas, where ERA-Interim is substantially wetter (+60mm
::
60

::::
mm

year�1 or 10%). Temperatures for maize are very similar between data products
::::::::::
Temperature

::::::::::
differences

:::
are

::::::
largest

:::
for

:::
rice,20

with ERA-Interim 0.45
:
1�C cooler and WFDEI 0.1�C warmer. Differences are largest for rice,

:::
than

:::::::::::
AgMERRA,

:::
and

:::::::
smaller

::
for

:::::
other

:::::
crops,

:::
e.g.

::::::
maize with ERA-Interim 1

::::
0.45�C cooler

:::
and

::::::
WFDEI

::::::
0.1�C

::::::
warmer. These differences are relatively small

compared to the perturbations tested in the protocol.

Planting dates and growing season lengths are standardized across models, following the procedure described in Elliott

et al. (2015) for the fullharm setting. In contrast to GGCMI Phase I (Elliott et al., 2015), we here assume
::::
(The

:::::::::
exception25

:
is
::::

that
:::::
Phase

:::
2,

:::::
unlike

::::::
Phase

::
1,

::::
uses

:
identical growing seasons for rainfed and irrigated scenarios

:::::
cases, to allow for direct

comparability
:::::::::
comparison

:
of simulations along the W dimension, in which irrigation (W1) is one element. (See Table 1.)

While
::
.)

::::
This

::::::::::::
harmonization

:
is
:::::::::
important

::::::
because

:::
the

:::::::::::::
parametrization

:::
of

:::::::
growing

::::::
seasons

::::
can

::::
have

:::::
strong

::::::
effects

::
on

:::::::::
simulated

:::::
yields

::::::::::::::::::::::::::::::::::::::::
(Müller et al., 2017; Jägermeyr and Frieler, 2018)

:
.
::
In

::
all

:::
the

:::::::
GGCMI

::::::
Phase

:
2
::::
crop

:::::::
models,

:
sowing dates are prescribed

directlyand held fixed in models,
:
,
:::
but

:
the length of the growing season is a product of crop phenology, which in turn is30

mostly driven
:
is
::::::

driven
::::::
mostly

:
by phenological parameters and temperature. Modelers are

::::
were

::::::::
therefore asked to adjust

the
::::
their

:
phenological parameters so that

:::
the

:::::::
average

:
growing season length of the baseline scenario (C=360, T=0, W=0)

on average matches
:::::::
matched

:
the harmonization target. Given that temperature varies between years, individual years can

vary from the harmonization target. Growing seasons are harmonized across models but are
::::
(The

::::
one

:::::::::
exception

::
to

::::
this
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::::::::::::
harmonization

:::::::
protocol

:::::::
involves

:::::::::
CARAIB,

::::::
whose

::::
team

:::::
kept

::::
their

::::
own

:::::::
growing

::::::
season

::::::::::::
specifications

:::::
rather

:::::
than

:::::
tuning

:::
to

:::::::
standard

:::::::
lengths.)

:::::
Two

::::::
aspects

:::
of

:::
the

::::::::
procedure

:::::::
should

::
be

::::::
noted.

:::::
First,

:::
the

:::::
target

:::::::
growing

:::::::
seasons

:::::
used

::
in

:::::::
GGCMI

::::::
Phase

:
2
:::
are

:
crop- and location-specific. For example, at present

:::::::::
present-day

:
maize is sown in March in Spain, in July in Indone-

sia, and in December in Namibia (Portmann et al., 2010). The one exception to the harmonization protocol described above

involves CARAIB, which for technical reasons kept their own growing season specifications rather than tuning to standard5

lengths
::::::
Second,

:::::::
because

::::::::::
temperature

:::::
varies

:::::::
between

:::::
years

::
in

:::
the

:::::::
30-year

:::::::
baseline

::::::::::
climatology,

:::::::
realized

:::::::
growing

::::::
season

::::::
length

:::
will

::::
still

::::
vary

::
in

::::::::
individual

:::::
years

::::
even

::::
after

::::::::::::
harmonization.

Because harvest dates are a function of climate parameters , simulations with the harmonized phenological parameters

described above generally result in shorter
:::
The

::::::::::
dependence

::
of

::::::
harvest

:::::
dates

::
on

:::::::
climate

:::::::::
parameters

::::::
means

:::
that

:::::::
growing

:::::::
seasons

:::
will

::::
alter

::::::
under

::::::
climate

:::::::
change

::
in

::
a

:::::
model

:::::
with

:::::::::::
phenological

:::::::::
parameters

:::::
tuned

:::
to

:::::
match

::::::
target growing seasons in future10

warmer scenarios
:::
the

:::::::
baseline

:::::::
climate.

::
In

:::::::
general,

::::::
warmer

::::::
future

::::::::
scenarios

:::::::
produce

::::::
shorter

:::::::
growing

:::::::
seasons. We denote these

simulations
:::::::::
simulations

:::
that

:::::
allow

:::::
these

:::::
future

:::::::
changes

:
as “A0” experiments, where 0 denotes “no adaptation”. To account for

potential adaptation in crop cultivars, the GGCMI Phase II
:::
The

:::::::
GGCMI

:::::
Phase

::
2 protocol includes a second set of experiments,

“A1”, that assume that
::::
future

:
cultivars are modified to adjust to changes along the T dimension in the CTWN experiment. For

these simulations, modelers adjust parameters
:::::::::::
phenological

:::::::::
parameters

:::
for

::::
each

::::::::::
temperature

:::::::
scenario

:
to hold growing season15

length approximately constantacross the different warming scenarios. (CARAIB simulations follow the same principle, fixing

growing season length at their baseline levels.)
::::
That

::
is,

:::
the

:::
A1

::::::::::
simulations

::::::
require

::::::
running

::
a
:::::
model

::::
with

:::::
seven

:::::::
different

:::::::
choices

::
of

::::::
cultivar

::::::::::
parameters,

:::
one

:::
per

::::::::
warming

:::::
level.

::::::::
Parameter

:::::::
settings

:::
for

:::
T=0

:::
are

::::::::
identical

::
in

::::
both

:::
A0

:::
and

::::
A1. The A1 simulations

roughly capture the case in which adaptive crop cultivar choice ensures that crops reach maturity at roughly the same time

as in the current temperature regime. This assumption is simplistic, and does not reflect realistic opportunities and limitations20

to adaptation (Vadez et al., 2012; Challinor et al., 2018), but provides some insight into how crop modifications could alter

projected impacts on yields and is sufficiently easy to implement in a large model intercomparison project as GGCMI.

Growing seasons for maize, rice, and soybean are taken from the SAGE (Center for Sustainability and the Global Environ-

ment, University of Wisconsin) crop calendar (Sacks et al., 2010), gap-filled with the MIRCA2000 crop calendar (Portmann

et al., 2010) and, if no SAGE or MIRCA2000 data are available, with simulated LPJmL growing seasons (Waha et al., 2012)25

and are identical to those used in GGCMI Phase I
:
1
:
(Elliott et al., 2015). In GGCMI Phase II

:
2, we separately treat spring and

winter wheat and so must define different growing seasons for each. As for the other crops, we use the SAGE crop calendar,

which separately specifies spring and winter wheat, as the primary source for 69% of grid cells. In the remaining areas where

no SAGE information is available, we turn to, in order of preference, the MIRCA2000 crop calendar (Portmann et al., 2010)

and to simulated LPJmL growing seasons (Waha et al., 2012). These datasets each provide several options for wheat growing30

season for each grid cell, but do not label them as spring or winter wheat. We assign a growing season to each wheat type for

each location based on its baseline climate conditions. A growing season is assigned to winter wheat if all of the following

hold, and to spring wheat otherwise:

– the monthly mean temperature is below freezing point (<0�C) at most for 5 months per year (i.e. winter is not too long)
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– the coldest 3 months of a year are below 10�C (i.e. there is a winter)

– the season start date fits the criteria that:

– if in the N. hemisphere, it is after the warmest or before the coldest month of the year (as winter is around the

end/beginning of the calendar year)

– if in the S. hemisphere, it is after the warmest and before the coldest month of the year (as winter is in the middle5

of the calendar year)

Nitrogen (N) application is standardized in timing across models. N fertilizer is applied in two doses, as is often the norm

in actual practice, to reduce losses to the environment. In the GGCMI Phase II
:
2 protocol, half of the total fertilizer input is

applied at sowing and the other half on day 40 after sowing, for all crops except for winter wheat. For winter wheat, in practice

the application date for the second N fertilizer application varies according to local temperature, because the length of winter10

dormancy can vary strongly. In the GGCMI Phase II
:
2 protocol, the second fertilization date for winter wheat must lie at least

40 days after planting and – if not contradicting the distance to planting – no later than 50 days before maturity. If those limits

permit, the second fertilization is set to the middle day of the first month after sowing that has average temperatures above 8�C.

All stresses in models are disabled other than those related to nitrogen, temperature, and water. For example, model responses

to alkalinity, salinity, and non-nitrogen nutrients are all disabled. No other external N inputs are permitted – that is, there is no15

atmospheric deposition of nitrogen – but some models allow additional release of plant-available nitrogen through mineraliza-

tion in soils. In LPJmL, LPJ-GUESS and APSIM, soil mineralization is a part of model treatments of soil organic matter and

cannot be disabled. Some additional differences in model structure mean that several key factors are not standardized across the

experiment. For example, carry-over effects across growing years including residue management and soil moisture are treated

differently across models.20

2.4 Output data products

All models in GGCMI Phase II provide 7 mandatory output variables if available (Table 2, bold). For
:
2
:::::::
provide

:::::::
30-year

::::::::
timeseries

::
of

::::::
annual

::::
crop

::::::
yields

::
for

:
each scenario, 0.5 degree grid cell and crop, models provide 30-year timeseries of annual

crop yields in units of tons ha�1 year�1, as well as .
:::::
They

::::
also

::::::
provide

:::
all

:::::::
available

::::::::
variables

::
of

:::
the

:::::::::
following

::
6: total above-

ground biomass yield; the dates of planting, anthesis , and maturity; applied irrigation water in irrigated scenarios; and total25

evapotranspirtation. (Note that several
:::::::::::::::
evapotranspiration.

:::
We

::::
term

:::::
these

::
7
::::::::
variables

:::
the

:::::::::::
“mandatory”

:::::::
outputs,

:::
but

::::
note

::::
that

::::
some

:
models do not output

:::::::
compute

:::
all

::
of

:::::
them,

:::
e.g.

::::::::
CARAIB

::::
does

:::
not

::::::::
compute the anthesis date. ) Besides these mandatory

::::::
Besides

:::::
these

:
7 data products,

::::::::::
“mandatory”

::::
data

::::::::
products

::::::
(Table

::
2,

:::::
bold),

:
the protocol requests any or all of 18 optional

::::::::
“optional”

:
additional output variables (Table 2, plain text). Participating modeling groups provided between 3 (PEPIC) and 18

(APSIM-UGOE) of these optional variables.30

All output data is supplied as netCDF version 4 files, each containing values for one variable in a 30-year timeseries asso-

ciated with a single scenario, for all grid cells. File names follow the naming conventions of GGCMI Phase I
:

1 (Elliott et al.,

2015), which themselves are derived from those of ISIMIP (Frieler et al., 2017). File names are specified as

10



Table 2. Output variables, naming convention, and units in the GGCMI Phase II
:
2
:

protocol. Items in bold are the mandatory minimum

requirements
:
(if

:::::
model

::::::::
capacities

::::
allow

:::
for

::::
these

::::::
outputs). Other variables are optionally provided depending on availability and participating

modeling groups provided between 3 (PEPIC) and 18 (APSIM-UGOE) of these optional variables.

Variable variable name units

Yield yield_<crop> t ha�1 yr�1 (dry matter)

Total above ground biomass yield biom_<crop> t ha�1 yr�1 (dry matter)

Actual planting date plant-day_<crop> day of year

Anthesis date
:
† anth-day_<crop> days from planting

Maturity date maty-day_<crop> days from planting

Applied irrigation water pirrww_<crop> mm yr�1

Evapotranspiration (growing season sum) etransp_<crop> mm yr�1 (W1 scenarios only)

Transpiration (growing season sum) transp_<crop> mm yr�1

Evaporation (growing season sum) evap_<crop> mm yr�1

Runoff (total growing season sum, subsurface + surface) runoff_<crop> mm yr�1

Total available soil moisture in root zone * trzpah2o_<crop> mm yr�1

Total root biomass rootm_<crop> t ha�1 yr�1 (dry matter)

Total Reactive Nitrogen (Nr) uptake (growing season sum) tnrup_<crop> kg ha�1 yr�1

Total Nr inputs (growing season sum) tnrin_<crop> kg ha�1 yr�1

Total Nr losses (growing season sum) tnrloss_<crop> kg ha�1 yr�1

Gross primary production (GPP) gpp_<crop> gC m�2 yr�1

Net primary production (NPP) npp_<crop> gC m�2 yr�1

CO2 response scaler on NPP co2npp_<crop> - {0..inf}

Water response scaler on NPP h2onpp_<crop> - {0..1}

Temperature response scaler on NPP tnpp_<crop> - {0..1}

Nr response scaler on NPP nrnpp_<crop> - {0..1}

Other nutrient response scaler on NPP ornpp_<crop> - {0..1}

CO2 response scaler on transpiration co2trans_<crop> - {0..1}

Maximum stress response scaler maxstress_<crop> - {0..1}

Maximum Leaf Area Index (LAI) laimax_<crop> m2 m�2

* growing season sum, basis for computing average soil moisture

:
†
:::::::
provided

:::::
where

::::::
possible
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[model]_[climate]_hist_fullharm_[variable]_[crop]_global_annual_[start� year]_[end� year]_[C]_[T ]_[W ]_[N ]_[A].nc4

Here [model] is the crop model name; [climate] is the original climate input dataset (typically AgMERRA); [variable] is the

output variable (of those in Table 2); [crop] is the crop abbreviation (“mai” for maize, “ric” for rice, “soy” for soybean, “swh”

for spring wheat, and “wwh” for winter wheat); and [start� year] and [end� year] specify the first and last years recorded

on file. [C], [T ], [W ], [N ] and [A] indicate the CTWN-A settings, each represented with the respective uppercase letter and5

the number indicating the level (e.g. “C360_T0_W0_N200” see Table 1). Except for the CTWN-A letters, the entire file name

needs to be in small caps. All filenames include the identifiers global and annual to distinguish them as global, annual model

output, following the updated ISIMIP file naming convention (Frieler et al., 2017).

Output data is provided on a regular geographic grid, identical for all models. Grid cell centers span latitudes -89.75 to

89.75� and longitudes from -179.75 to 179.75�. Missing values where no crop growth has been simulated are distinguished10

from crop failures: a crop failure is reported as zero yield but non-simulated areas (including ocean grid cells) have yields

reported as “missing values” (defined as 1.e+20 in the netCDF files). Following NetCDF standards, latitude, longitude and

time are included as separate variables in ascending order, with units “degrees north”, “degrees east”, and “growing seasons

since 1980-01-01 00:00:00”.

Following GGCMI Phase I
:
1 standards, the first entry in each file describes the first complete cropping cycle simulated from15

the given climate input timeseries. In the AgMERRA timeseries used for GGCMI Phase II
:
2, the first year provided is 1980

but the date of the first entry can vary by crop and location. In the northern hemisphere, for summer crops like maize (sown in

spring 1980 and harvested in fall 1980), the first harvest record would be of 1980, but for winter wheat (sown in fall 1980 and

harvested in spring 1981) the first harvest record would be of 1981. Output files report the sequence of growing periods rather

than calendar years. While there is generally one sowing event per calendar year (since simulations with harmonized growing20

seasons do not permit double-cropping), in some cases harvest events may skip or repeat within a calendar year. For example,

because soybeans in North Carolina are typically harvested well into December, some calendar years may include no harvest

(if it is not completed until after Dec. 31) or two harvests (one in January and one 11 months later in the following December).

3 Models contributing

:::
The

::
12

:::::::
models

::::::::::
participating

::
in

:::::::
GGCMI

:::::
Phase

::
2

::
are

:::::
listed

::
in

:::::
Table

::
3.

::::::
Models

:::::
differ

::::::::::
substantially

::
in

::::::::
structure

:::
and

::::::::::::::
parameterization25

:::
and

:::
can

::
be

::::::::
separated

::::
into

::::
two

:::::
broad

:::::::::
categories:

::::::::
site-based

::::::::::
(field-scale)

:::::::
models,

:::
and

::::::
global

::::::::
ecosystem

:::::::
models.

::::
The

:
6
:::::::::
site-based

::::::
models

:::
are

:::::::
APSIM,

::::::::
pDSSAT,

::::
and

:::
the

:::::
EPIC

:::::
family

:::
of

:::::::
models;

:::
the

:
6
:::::::::
ecosystem

:::::::
models

:::
are

:::::::
LPJmL,

:::::::::::
LPJ-GUESS,

:::::::::
PROMET,

::::::::
CARAIB,

:::::::::::
ORCHIDEE,

:::
and

:::::::
JULES.

::::::
Models

:::::::
employ

:
a
::::::
variety

::
of

:::::::::
approaches

:::
for

:::
the

::::
core

:::::::
modules

::::
such

::
as

:::::::
primary

:::::::::
production

::
or

:::::::::::::::
evapotranspiration.

::::
For

::::::
primary

::::::::::
production,

:::::::::
site-based

::::::
models

:::::::
employ

::::
light

:::
use

::::::::
efficiency

::::::::::
approaches

:::
and

:::::::::
ecosystem

:::::::
models

:::
use

::::::::::::
photosynthesis

:::::::::::
approaches.

:::
For

::::::::::::::::
evapotranspiration,

:::::
most

::::::
models

:::
use

::::::::::::::
Priestley-Taylor,

::::::::::::::::
Penman-Monteith

::
or

::::::::::
Hargreaves30

:::::::
schemes,

::::
but

::::::
JULES

::::
and

::::::::
PROMET

::::::
utilize

::
a

::::
land

::::::
surface

::::::
model

::::::::
approach

:::::::
instead.

:::::
Note

:::
that

:::::::
models

:::
that

:::::
share

::
a
::::::::
common

::::::::
genealogy

:::::
may

:::
still

::::
use

::::::::
different

:::::::
schemes

:::
for

:::::::::::::::::
evapotranspiration:

:::
for

::::::::
example,

:::::::::::
EPIC-TAMU

:::::
uses

:::::::::::::::
Penman-Monteith

::::
and

::::::::::
EPIC-IIASA

:::::
uses

::::::::::
Hargreaves.

:::
To

:::::::
describe

:::::
soils,

:::::
most

:::::::
models

:::
use

::::::
either

:::
the

:::::::::::
Harmonized

:::::
World

::::
Soil

:::::::::
Database

::::::::
(HWSD)
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Table 3. Models included in GGCMI Phase II
:
2 and the number of CTWN-A simulations performed. The maximum number is 756 for

A0 (no adaptation) experiments, and 648 for A1 (maintaining growing length) experiments, since T0 is not simulated under A1. “N-Dim.”

indicates whether the models are able to represent varying nitrogen levels. Each model provides the same set of CTWN simulations across

all its modeled crops, but some models omit individual crops. (For example, APSIM-UGOE does not simulate winter wheat.)

Model (Key Citations) Maize Soybean Rice Winter

wheat

Spring

wheat

N dim. Sims per crop

(A0 / A1)

APSIM-UGOE, Keating et al. (2003); Holz-

worth et al. (2014)

X X X – X X 44 / 36

CARAIB, Dury et al. (2011); Pirttioja et al.

(2015)

X X X X X – 252 / 216

EPIC-IIASA, Balkovič et al. (2014) X X X X X X 39 / 0

EPIC-TAMU, Izaurralde et al. (2006) X X X X X X 756 / 648

JULES, Osborne et al. (2015); Williams and

Falloon (2015); Williams et al. (2017)

X X X – X – 252 / 0

GEPIC, Liu et al. (2007); Folberth et al. (2012) X X X X X X 430 / 181

LPJ-GUESS, Lindeskog et al. (2013); Olin

et al. (2015)

X – – X X X 756 / 648

LPJmL, von Bloh et al. (2018) X X X X X X 756 / 648

ORCHIDEE-crop, Wu et al. (2016) X – X X – X 33 / 0

pDSSAT, Elliott et al. (2014b); Jones et al.

(2003)

X X X X X X 756 / 648

PEPIC, Liu et al. (2016a, b) X X X X X X 149 / 121

PROMET, Hank et al. (2015); Mauser et al.

(2015)

X X X X X X 261 / 232

Totals 12 10 11 10 11 10 5240 | 3378

::::
from

:::
the

::::
FAO

::::::::::::::::::
(Fischer et al., 2008)

::
or

:::
the

:::::::::::
ISRIC-WISE

::::::::
database

::::::::::::
(Batjes, 2005)

::
or

::
a

::::::::
derivation

:::::::
thereof.

::::::::::::
Supplemental

:::::
Table

::
S1

::::::::
provides

::::::
details

::
on

:::::
these

::::::
model

::::::::::::
characteristics

:::
as

::::
well

::
as

:::
on

::::::::::::::
implementation,

::::::::
including

:::::::
spin-up,

::::::::::
calibration

:::::
other

::::
than

:::::::
growing

::::::
season,

::::::
residue

:::::::::::
management,

::::
and

::::::::
irrigation

:::::
rules,

The simulation output contributions of the 12 crop models
:::::
Table

:
3
::::
also

::::::::
describes

:::
the

:::::::::
simulation

:::::
output

::::::::::
contribution

:::
of

::::
each

:::::
model

:
to the GGCMI Phase II archiveare described in Table 3

:
2

::::::
archive. Not all modeling groups provided simulations for the5
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full protocol described above. Given the substantial computational requirements, different participation tiers were specified

to allow submission of smaller sub-sets of the full protocol. These subsets were designed as alternate samples across the 4

dimensions of the CTWN space,with full (12) and low (4) options for the C · N variables, and full (63), reduced (31), and

minimum (9) options for T · W variables (described below). All participating modeling groups provided identical coverage

of the CTWN parameter space for different crops, but most differed in CTWN coverage of A0 and A1 scenarios. Since the5

adaptation dimension was defined as a secondary priority for GGCMI Phase II
:
2, some models provided a more limited set of

A1 scenarios. Of these, EPIC-IIASA, JULES, and ORCHIDEE-crop provided no A1 scenarios.

The different participation levels are defined by combining the CxN sets with the TxW sets:

– full: all 756 A0 simulations (all 12 CxN * all 63 TxW)

– high: 362 simulations (all 12 CxN combinations · reduced TxW set of 31 combinations)10

– mid: 124 simulations (low 4 CxN combinations · reduced TxW set of 31 combinations)

– low: 36 simulations (low 4 CxN combinations · minimum TxW set of 9 combinations)

Of the 12 models submitting data, 6 followed the full protocol; these are marked with italic text in
:::
bold

::::
text

::
in

:::
the

:::
last

:::::::
column

::
of Table 3. However, note that two of these models (CARAIB and JULES) cannot represent nitrogen effects explicitly and so

do not sample over the nitrogen dimension. Two models followed high with minor modifications (GEPIC adding an additional15

T level and PROMET omitting the intermediate N level). One model (PEPIC) followed mid but included an additional C level.

Three models approximately followed low with APSIM-UGOE and EPIC-IIASA providing some additional TxW levels and

ORCHIDEE-crop omitting some TxW combinations.

The combinations of perturbation values in the CxN and TxW parameter spaces used in the various participation levels are

chosen to provide maximum coverage over plausible future values. For the CxN space, we specify:20

– full as 12 pairs, with 4 C values (360,
::::
510, 660, 810 ppm) and 3 N (10, 60, 200 kg ha�1 yr�1)

– low as only 4 pairs: C360_N10, C360_N200, C660_N60, C810_N200

For the TxW space we specify:

– full as all 7 T levels and 9W levels.

– reduced as 31 alternating combinations, with different Ws for even Ts than for odd Ts. For even Ts (i.e. T0,T2,T4,T6),25

we use W = -50,-20,0,+30 = 4·4 = 16 pairs. For odd Ts (i.e. T-1,T1,T3) , we use W = -30, -10, +10, +30, inf = 3·5 = 15

pairs.

– minimum as 9 combinations: T-1W-10, T0W10, T1W-30, T2W-50, T2W20, T3W30, T4W0, T4Winf, T6W-20
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4 Results

To illustrate the properties of the GGCMI Phase II
:
2 model simulations, we provide an evaluation of model performance by

comparing model and historical yields, and show example results that demonstrate the spread of model responses to climate

and management inputs.

4.1 Evaluation of model performance5

:::
All

::::::
models

:::::::::::
participating

::
in

:::::::
GGCMI

::::::
Phase

:
2
:::::
have

::
be

::::::::
evaluated

:::::::
against

::::::::
historical

:::::
yields

::::
and

:::
site

:::::::
specific

:::::::::::
experimental

:::::
data.

::::
Most

:::::::
models

::
(9

::
of

::::
12,

::
all

::::
but

::::::::
CARAIB,

:::::::
JULES,

::::
and

:::::::::
PROMET)

:::::
have

::::
been

:::::::::
evaluated

::
in

::::
their

::::::
global

:::::
setup

::
in

:::
the

::::::::
GGCMI

:::::
Phase

:
1
:::::::::
evaluation

:::::::
exercise

:::::::::::::::::
(Müller et al., 2017)

:
,
:::
and

:::::
many

:::::
have

::::
used

:::
the

:::::::
GGCMI

::::::
Phase

:
1
::::::
online

::::
tool

::
to

::::::::
similarly

:::::::
evaluate

:::::::::
subsequent

:::::
model

::::::::
versions

::::::::::::::::::::::
(e.g. von Bloh et al., 2018).

:
Evaluating the performance of crop models in the GGCMI Phase II

:
2

archive is complicated by the artificial nature of the protocol: the settings in the CTWN-A experiment design do not reflect10

actual conditions in the real world. The protocol includes one scenario of near-historical climate inputs (T0, W0, C360), but

the prescribed uniform nitrogen application levels do not reflect real-world fertilizer practices. Models also omit detailed

calibrations to reflect the performance of historical cultivars.

We provide a partial evaluation of the models’ ’
:

skill in reproducing crop yield characteristics using the methodology of

Müller et al. (2017), developed for GGCMI Phase I.
:
1.
:
Müller et al. (2017) evaluate how well model crop yield responses in15

a historical run capture real-world yield variations driven by year-to-year temperature and precipitation variations. Following

this approach, we compare yields in the GGCMI Phase II
:
2
:

baseline simulations with detrended historical yields from the

Food and Agriculture Organization of the United Nations (FAO, 2018) by calculating the Pearson product moment correlation

coefficient over 26 years of yield. The procedure is sensitive to the detrending method and the area mask used to aggregate

yields; we use a 5-year running mean removal and the MIRCA2000 cultivation area mask for aggregation. In some cases the20

model timeseries are shifted by one year to account for discrepancies in FAO or model year reporting. Because the GGCMI

Phase II
:
2 protocol imposes fixed, uniform nitrogen application levels that are not realistic for individual countries, we evaluate

control runs for each model at multiple N levels whenever possible. Nine of the GGCMI Phase II
:
2 models (Table 3) provide

historical runs for all three nitrogen levels (10, 60, and. 200 kg ha�1 yr�1).

As expected due to the unrealistic features described above, correlation coefficients for the GGCMI Phase II
:
2 simulations25

are slightly lower than those found in the Phase I
:
1
:
evaluation, but models show reasonable fidelity at capturing year-over-year

variation (Figure 2). For example, global correlation coefficients for maize in Phase I and Phase II
::
in

:::::
Phase

::
1

:::
and

::::::
Phase

::
2,

::::::::::
respectively,

:
are 0.89 and 0.74 , respectively; for wheat

:::
for

::::::
maize, 0.67 and 0.64 , and for soybeans

:::
for

::::::
wheat,

:::
and

:
0.64 and

0.59 . (Compare to Müller et al. (2017)
:::
for

::::::::
soybeans.

::::::
(Phase

::
1

:::::
values

::::
are

::::
from

:
Figures 1–4 and 6.

:
6
::
in

:::::::::::::::::
Müller et al. (2017).)

Differences in fidelity between regions and crops exceed differences between models: that is, Figure 2
::::::
(c)–2(f)

:
shows more color30

similarity in horizontal than vertical bars. For example, maize in the United States is consistently well-simulated while maize in

Indonesia is problematic (mean Pearson correlation coefficients of 0.68 and 0.18, respectively). Note that in this methodology,

simulations of crops with low year-to-year variability such as irrigated rice and wheat will tend to score more poorly than those

15



Figure 2. Assessment of crop model performance in GGCMI Phase II
:
2, following the protocol of GGCMI Phase I

:
1
:
(Müller et al., 2017).

Top: example timeseries comparison between simulated crop yield and FAO country statistics (FAO, 2018) at the country level for two

example high production countries: US maize, and rice in India, both for the 200 kg ha�1 nitrogen application level. Bottom: heatmaps

illustrating the Pearson r correlation coefficient between the detrended simulated and observed country-level mean yields for the top 10

countries by production for each crop, of those countries with continuous FAO data over 1981-2010. We show separate comparisons for

simulations with the three different nitrogen application levels, denoted 1, 2, 3 for 10, 60, and 200 kg N ha�1, respectively. Left column

shows correlation of ensemble mean yields with FAO data Because FAO does not distinguish between wheat types, we sum simulated spring

and winter wheat for models that provide both (See Table 3.). Note that differences by region and crop are stronger than difference between

models, e.g. horizontal bars are more similar in color than vertical bars. Countries are ordered alphabetically, not by production quantity.
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with higher variability. In some cases, especially in the developing world, low correlation coefficients may point to reporting

problems in the FAO statistics and to real-world variability caused by variations in management rather than weather (Ray et al.,

2012; Müller et al., 2017). No single model consistently exhibits greater fidelity than others. Instead, each model shows near

best-in-class performance for at least one location-crop combination. For example, pDSSAT is the best model for maize in the

US, LPJmL and GEPIC are best in Germany, PROMET is best in Argentina, and PEPIC and LPJ-GUESS are best in France.5

4.2 Model crop yield responses under CTWN forcing

Crop models in the GGCMI Phase II
:
2 ensemble show broadly consistent responses to climate and management perturbations

in most regions, with a strong negative impact of increased temperature in all but the coldest regions. Mapping the distribution

of baseline yields and yield changes shows the geographic dependencies that underlie these results. Absolute yield potentials

show strong spatial variation, with much of the Earth’s surface area unsuitable for any of these crops (Figure 3, left). Crop10

yield changes under climate perturbations also show distinct geographic patterns (Figure 3, right, which shows fractional yield

differences between the
:::::::
baseline

:::
and

:
T+4 scenario and the baseline scenario with historical climatology

:::
A0

::::::::
scenarios). In

general, models agree most on yield response in regions where yield potentials are currently high and therefore where crops

are currently grown. Models
::
In

:::
A0

::::::::::
simulations,

:::::::
models show robust decreases in yields at low latitudes, and highly uncertain

ensemble mean increases at most high latitudes. Models
::::
Low

::::::
latitude

:::::
yield

:::::::::
reductions

:::
are

::::
due

::
in

::::
part

::
to

:::::::::
shortening

:::
of

:::
the15

:::::::
growing

::::::
season

:::::
under

::::::::
warming

:::
and

:::
in

::::
part

::
to

:::
the

:::::
direct

:::::::
effects

::
of

::::::
higher

:::::::::::
temperature.

::
In

:::
A1

:::::::::::
simulations,

:::::
where

::::::::
growing

::::::
seasons

::::::
length

::::
does

:::
not

:::::::
change,

:::::::::::::::::
temperature-related

:::::::::
reductions

::
in

::::
yield

::::
are

::::
more

::::::
muted

::::
(see

::::::::::::
Supplemental

:::::
Figure

:::::
S14).

:::
In

::::
both

:::
A0

:::
and

:::
A1

::::::::::
simulations,

::::::
models

:
show some increases in high mountain regions that are currently cold-limited.

Projections of strong yield growth at higher latitudes should be treated with caution, since the effects evident in Figure 3

are due in part to inaccuracies in model representations of present-day crop yields. For example, at latitudes north of 45�,20

the GGCMI Phase II
:
2
:

models collectively suggest strong (but uncertain) growth in soybean yields under warmer conditions

(Figure 3, g). However, model differences are greater in the baseline than future simulations, and greatest in currently-cultivated

areas (Figure 4). Both the mean projected growth and the inter-model spread are driven by three models that show almost zero

present-day potential soybean yields across the entire high-latitude region, even in locations where soybeans are currently

grown (Figure 4, left). PROMET, for example, involves a stronger response to cold than other models (e.g. LPJmL) with25

frost below -8 �C irreversibly killing non-winter crops and prolonged periods of below-optimum temperatures also leading to

complete crop failure. Over the high-latitude regions simulated by both models, 52% of grid cells in PROMET report 0 yield

in the present climate vs. 11% of cells in the T+4 scenario, leading to a strong yield gain in warmer future climates. In LPJmL

outputs, the same high-latitude area is deemed suitable for cultivation even in baseline climate, with crop failure rates of 4%

and 5% in present and T+4 cases, so that projected yield changes are modest (Figure 4). These spurious low baseline yields30

result in very large fractional changes in the T+4 warming scenario, when all models agree that conditions become favorable

for soybeans. Those models that most accurately reproduce present-day high-latitude soybean yields of 1-2 ton ha�1 (Ray

et al., 2012) in fact show a slight decrease in yield under a warming scenario (Figure 4, left). Apparent future yield increases

in the multi-model mean are driven by the least realistic simulations.
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Figure 3. Illustration of the spatial patterns of baseline yields (left) and yield changes (right) in the GGCMI Phase II
:
2 ensemble. Left column

shows multi-model climatological(30 year) median yields for the baseline scenario, with white stippling indicating areas where these crops

are not currently cultivated. Areas with less that
:::
than 0.5 ton ha�1 in the baseline are masked. Absence of cultivation aligns well with the

lowest yield contour (0-2 ton ha�1). Right column shows multi-model mean fractional yield changes in the T+4 �C scenario relative to the

baseline scenario. Areas without stippling are those where models agree on changes: the multi-model mean fractional change exceeds the

standard deviation of changes in individual models. Stippling indicates areas of low confidence (�< 1�). Some spatial structure in projected

changes at high latitudes may be due to differences in model coverage; see Figure 1.
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Figure 4. Model probability densities for soybean yields at latitudes north of 45� in historical and warming simulations in the A0 case. While

10 GGCMI Phase II
:
2
:
models provide simulations (Table 3); we show 8 representative models for clarity. Probability density functions are

estimated separately for locations with some current cultivation (left, approximately 2500 grid cells, unweighted by cultivated area) and for

uncultivated locations (right, approximately 1500 grid cells), for baseline historical (solid) and T+4 (�C) (dashed) simulations. Black line

in left panel shows actual yields from 1997-2003 derived from Ray et al. (2012). For historical simulations, models agree on low potential

yields in currently uncultivated areas (right) but disagree widely on yields in currently cultivated areas (left). Color code groups models into

those with realistic yield distributions peaking at 1-2 ton ha�1 (green), those with flatter distributions extending to unrealistically high values

(red), and those with predominantly zero yields (blue). “Green” models show slight decreases under T+4 warming, “red” models moderate

increases, and “blue” models large increases.

The GGCMI Phase II
:
2
:
exercise offers the opportunity to examine and characterize not just crop response to a single

temperature change but nonlinearities in responses and interactions between factors. We illustrate a few of these relationships

in Figures 5-6 , choosing
::::
using

:::
A0

::::::::::
simulations

::
to

::::::
capture

:::::::::
maximum

::::::
climate

::::::
effects.

:::
We

::::::
choose

:
crops and factors whose effects

are reasonably well understood,
::::
and

:::::
show

:::
that

:::::
these

::::
are

:::::::::
reproduced

:::
in

::::::
models. It is expected, for instance, that increases

in precipitation should buffer the effects of warmer temperatures and that CO2 increases should reduce damage to crops5

in scenarios where water is limited. Models generally confirm expected behavior but also provide insight into unforeseen

interactions. To show geographic effects, we divide model responses in Figures 5-6 by the primary Köppen-Geiger climate

regions (Rubel and Kottek, 2010), showing the yield changes across all simulated grid cells in each region. In each panel we

examine relationships between two factors, showing yield response against one for several scenarios of the other, in box plots

that show the inter-model spread. The responses highlighted here are qualitatively similar across all crops included in this study10

(Supplemental Figures S5 - S8
:::::
S5–S9

:::
for

::
all

::::::::
simulated

::::
area

::::
and

:::::::
S10–S13

:::
for

::::::::
cultivated

::::
area

::::
only).
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Figure 5. Illustration of the distribution of regional yield changes across the multi-model ensemble, split by Köppen-Geiger climate regions,

and with global response in rightmost panel. Y-axis is the fractional change in the regional average climatological (30-year mean) poten-

tial yield relative to the baseline. Box-and-whiskers plots show distribution across models, with median marked; edges are first and third

quartiles and whiskers extend to 1.5·IQR. Figure shows all all simulated grid cells for each model; see Supplemental Figure S10-S13 for

only currently-cultivated land. We highlight responses to individual factors; note that results are not directly comparable to simulations of

realistic projected climate scenarios with identical global mean changes. Models generally agree outside high-latitude regions, with projected

changes exceeding inter-model variance. Top: Response of rainfed maize to applied uniform temperature perturbations, for three discrete

precipitation perturbation levels ( -20%, 0%, and +20%), with CO2 and nitrogen held constant at baseline values (360 pmm and 200 kg ha�1

yr�1). Outliers in the tropics (strong negative impact of higher T) are the pDSSAT model; outliers in the arid region (strong positive impact

of higher P) are JULES. Bottom: Response of rainfed soybeans to applied uniform precipitation perturbations, for two discrete temperature

levels. Cases with reduced precipitation show greater inter-model spread than those with increased precipitation. At very large precipitation

increases, yield changes level out: benefits saturate once water availability is no longer limiting. Precipitation changes are more important in

the arid region, as expected. Note the large uncertainty in the cold continental region, also illustrated in Figures 3 and 4.
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Figure 6. Illustration of the distribution of regional yield changes across the multi-model ensemble, here for soybeans and rice for the A0

case. Conventions as in Figure 5. Top: Response of rainfed soybeans to atmospheric CO2, for three discrete precipitation perturbation levels

with temperature and nitrogen held constant at baseline values. Low outliers are the EPIC-TAMU model and the high outliers in the Arid

region are the JULES model. Reduced precipitation tends to steepen the CO2 response and increased precipitation tends to flatten it, as

expected. Reduced precipitation tends to increase the inter model spread, especially at the highest CO2 levels. Bottom: Response of irrigated

rice for three discrete CO2 levels, with nitrogen and precipitation held constant. CO2 does not change the nature of temperature response

respective to baseline as the slopes at each CO2 level are relatively constant.

For all crops, warming scenarios with precipitation held constant produce yield decreases in most regions. These impacts

are robust for even moderate climate perturbations. For rainfed maize, even a 1�C temperature increase with other factors

held constant produces a median regional decline in potential yield that exceeds the variance across models, in all but the

“cold-continental” regions (Figure 5a). The remaining areas (“warm temperate”, “equatorial”, and “arid”) account for nearly

three-quarters of global maize production. In the high-latitude “cold-continental” region, potential yield changes are positive5

but highly uncertain, for the reasons discussed previously; uncertainties are larger even for maize than for soybeans. (Compare
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Figures 5a and 5b.) Temperature effects are somewhat nonlinear, with the largest impacts for maize in the warm “tropical”

region . (For
:::
(for

:
soybeans, temperature effects are more complex; see Supplemental Figure S5.)

:
).
:
Precipitation effects on

rainfed crops are more strongly nonlinear. The curvature of the precipitation response can be seen by eye in Figure 5b: soybean

yields are strongly negatively impacted by reduced rainfall, peak under increased precipitation of 20%, and actually decline at

higher precipitation levels.5

As expected, precipitation and temperature effects interact, with increases in precipitation buffering yield responses to tem-

perature. Increased rainfall mitigates the negative impacts of warmer temperatures caused by increased evapotranspiration (e.g.

Allen et al., 1998). For maize, the effect is relatively modest outside the “arid” regions (Figure 5a). Globally, a 4�C temperature

rise with no change in precipitation results in median loss of ⇠13% of rainfed maize, with all models showing a negative re-

sponse. With a 20% increase in precipitation, the median yield loss is ⇠8%. For soybeans, the equivalent values are ⇠11% and10

1%, respectively. Decreased rainfall, on the other hand, amplifies yield losses and also increases inter-model variance. That is,

models agree that the response to decreased water availability is negative in sign but disagree on its magnitude. Outside of arid

regions, the interaction effect itself shows little nonlinearity (i.e. response slopes in Figures 5a and 5b are roughly parallel). As

expected, irrigated crops are more resilient to temperature increases in all regions, especially so where water is already limiting

(other than winter wheat, Supplemental Figure S9).15

Increased CO2 boosts yields overall through the well-known CO2 fertilization effect (Figure 6). The effect is strongest for

the C3 crops (wheat, soybeans, and rice), while maize, a C4 grass, has a comparatively muted response. We show irrigated rice

and rainfed soy in Figure 6 as representative C3 crops. The effect of CO2 on yields is nonlinear, as expected, with significant

benefit from small increases but with effects plateauing at higher concentrations (Figure 6). CO2 and temperature effects show

minimal interaction. This effect is seen in Figure 6a, which shows nearly parallel response slopes at different CO2 levels.20

That is, CO2 fertilization does little to change the nature of the temperature response. On the other hand, CO2 and precipitation

effects interact strongly, as expected since higher CO2 levels allow reduced stomatal conductance and evapotranspiration losses,

mitigating the effect of reduced rainfall
::::::::::::::::::::::::::
(e.g. McGrath and Lobell, 2013). This interaction is seen in Figure 6b as smaller yield

losses from reduced rainfall when CO2 levels are higher. For example, for soy, raising CO2 to 510 ppm actually outweighs the

multi-model median damages caused by a 20% precipitation reduction in all climate regions. All crops show similar behavior,25

but note that model uncertainties for wheat are substantially higher than those for other crops. (Compare Figure 6a for soy and

Supplemental Figure S7 for wheat).

:::
We

:::::
show

:::::
some

::::::::
additional

:::::
cases

:::
in

::::::::::::
Supplemental

::::::::
Material.

:::
As

:::::
noted

:::::::::
previously,

::::
the

:::
A1

:::::::::
adaptation

::::::::::
simulations

:::::::
involve

::::::::::
significantly

:::::::::
moderated

::::::::::
temperature

::::::
impacts

:::::::
relative

:
to
:::
the

:::
A0

::::::::::
simulations

:::::
shown

::::
here

::::::::::::
(Supplemental

::::::
Figure

::::
S14).

::::::::::::
Supplemental

::::::
Figures

::::
S15

:::
and

:::::
S16

::::
show

:::
the

::::::::
response

::
in

:::
the

:::::::
nitrogen

:::::::::
dimension

:::
and

:::
an

:::::::
irrigation

:::::
water

:::::::
demand

::::::::
response

:::::::
example.

:
30

5 Discussion and Conclusions

The GGCMI Phase II
:
2 experiment provides a database designed to allow detailed study of crop yields in process-based mod-

els under climate change. While previous crop model intercomparison projects in the climate change context have focused on
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simulations along realistic projected climate scenarios (e.g Rosenzweig et al., 2014)
::::::::::::::::::::::::
(e.g. Rosenzweig et al., 2014), the use of

systematic input parameter variations in GGCMI Phase II (
::
2, with up to 756 scenarios)

:
, allows not only comparing yield sen-

sitivities to changing climate and management inputs but also evaluating the complex interactions between important driving

factors: CO2, temperature, water supply, and applied Nitrogen
:::::::
nitrogen. The global extent of the experiment also allows iden-

tifying geographic shifts in high potential yield locations. With 12 participating models and 31 simulation years per scenario
:
,5

the complete database constitutes over 150,000 years of gridded global yield simulation output for each crop.

Preliminary results shown here highlight some of the insights facilitated by the simulation exercise and lend confidence

in the models. In validation tests of simulations of the historical scenario
:::::::
historical

::::::::::
simulations, year-over-year correlations in

modeled and actual country-level yields are similar to those of GGCMI Phase I. In simulations on
:
1.

::
In

::::::::::
simulations

::
of scenarios

with perturbed climate and management factors, models generally
::::::
broadly agree on changes driven outside the high latitudes,10

with
::
the

:::::::::
magnitude

::
of

:
changes at nearly all perturbation levels exceeding the inter-model spread. (At high latitudes, differences

are often driven by differences in model treatment of crop response to
:::::::
between

::::::
models

::::
may

:::::
result

:::::
from

:::::::::
differences

::
in
:::::

their

:::::::
assumed

:::::
yields

::
in current cold conditions. ) In simulations with multiple perturbations, interactions between major yield drivers

(
:::
e.g. temperature and precipitation in Figure 5,

::
or precipitation and CO2 in Figure 6) generally follow expectations and produce

physically reasonable responses in crop yields.15

Users should however be aware of some limitations of the
:::::::
GGCMI

:::::
Phase

::
2 experiment that affect its potential applica-

tions. First, absolute model yield values in the historical scenario
:::::::
baseline

::::::::
scenario,

:::::
driven

:::
by

::::::::::
1981–2010

::::::::
historical

:::::::
climate,

will generally not match observed yields
:::
over

::::
this

::::
time

::::::
period. In order to match current yields, process-based models must

generally be re-tuned to account for the constant evolution of crop cultivar genetics and management practice (e.g. Jones

et al., 2017). The historical scenario also includes no trend in CO2, and scenarios assume unrealistic globally uniform nitrogen20

application levels (Elliott et al., 2015). GGCMI Phase II
:::::::
GGCMI

:::::
Phase

::
2 is intended as a study of model-projected changes

under broad climate change, which may not be as sensitive
:::::
model

::::::::
responses

:::
to

:::::::
changes

::
in

:::::::
climatic

::::::::::
conditions,

::::::
which

:::
are

:::::::
assumed

:::::::::
insensitive

:
to the adjustments needed to reproduce present-day yields. Note however that the models used in this

exercise cannot simulate some potential climate-related yield changes: those due to factors such as pests, diseases, and

weeds
:::
The

:::::::
baseline

:::::::
scenario

::::
also

:::::::
includes

:::
no

:::::
trend

::
in

::::
CO2,

::::
and

::
no

:::::::::
individual

::::
case

:::::::
involves

:::::::
realistic

::::::::::::::
country-specific

:::::::
nitrogen25

:::::::::
application

:::::
levels

::::::::::::::::
(Elliott et al., 2015).

The second major caveat is that no individual GGCMI Phase II
:
2
:

simulation is itself a realistic future yield projection.

The uniform applied offsets in temperature and precipitation sample over potential changes, but projections of climate change

involve
:::
and

:::
do

:::
not

::::::::::
individually

:::::::
capture

:::
the

:
spatially heterogeneous warming and precipitation changes

::::::::
expected

::
in

:::::::
realistic

::::::
climate

:::::::::
projections. GGCMI Phase II

:
2 simulation results can be used for impacts projection, but only with the construction30

of an emulator of crop yield response to climatological changes, that is then driven by a realistic climate projection. However,

note that the
::::
which

::::
can

::::
then

::
be

::::::
driven

::
by

::::::::
arbitrary

::::::
climate

:::::::::
scenarios.

::::
Such

:::::::::
emulators

:::
are

:::::
shown

::
to

:::::::::
accurately

:::::::::
reproduce

::::
crop

:::::
model

::::::
output

:::::
under

:::::::
realistic

::::::
climate

::::::::::
projections,

::::
even

::::::
though

:::
the

:::::::
GGCMI

::::::
Phase

:
2
:
experiment does not sample over potential

changes in the higher-order moments in the distributions in temperature and precipitation .
::::::::::
distributions

:::::::::::::::::
(Franke et al., 2020)

:
.

::::
Note

:::
that

:::::
some

::::::
factors

::::
that

::::
may

:::::
affect

:::::
future

::::::::::::
climate-driven

:::::
yield

::::::
impacts

::::::
cannot

:::
be

:::::::
captured

:::
by

:::
the

:::::::
GGCMI

:::::
Phase

:
2
:::::::
models35
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::
in

:::
any

::::::
usage,

::::
since

:::::::
models

::
do

:::
not

:::::::
include

::::::::::::
representations

:::
of

:::::
pests,

:::::::
diseases,

::::
and

::::::
weeds.

:::::::
Off-line

::::
crop

:::::
model

::::::::::
simulations

::::
(i.e.

::::
with

::::::::
prescribed

::::::
rather

::::
than

::::::::::
dynamically

::::::::
simulated

:::::::::::
atmospheric

:::::::::
conditions)

::::
can

:::
also

:::
not

:::::::
capture

:::
any

:::::::::
feedbacks

::
on

:::
the

:::::::
climate

::::
from

::::
land

:::
use,

:::::
such

::
as

::::::::
irrigation

::::::
impacts

:::
on

::::::::
humidity

::::::::::::::::::::
(e.g. Decker et al., 2017)

:
.

We expect that the GGCMI Phase II
:
2
:
simulations will yield multiple insights in future studies. Potential applications in-

clude, as mentioned, the construction of emulators and yield response surface, as well as studies of issues such as
:::::::
surfaces5

:::
that

:::
can

:::
be

::::
used

:::
for

:::::
both

:::::
model

:::::::::
diagnosis

:::
and

:::::::
impacts

::::::::::
assessment.

::::::::
Specific

::::::
studies

:::::
could

:::::::
include

::::::::
analyzing

:::
the

::::::
drivers

:::
of

::::::::::::::::
temperature-related

::::
yield

::::::
losses

::::::
(which

::::
may

::
be

:::
due

:::
to

::::
both

:::::
direct

::::::
thermal

::::::
effects

::
or
:::

to
:::::::::
shortening

:::::::
growing

::::::::
seasons); the ben-

efits of adaptation, interactions between the
:
;
::::::::::
interactions

:::::::
between

::::
CO2::::

and
:::::
water

::
or

:::::
other

:
CTWN factors affecting yield,

:
;

changes in nitrogen use efficiency,
:
; geographic shifts in regional production, investigation of core sensitivities to CTWN/A by

region and farm system, identification of
:
;
:::::::
regional

:::::::::
differences

:::
in

::::
yield

::::::::::
sensitivities

::
to

:::::::::
CTWN-A

::::::
factors.

:::::::::
Emulators

:::::
based

:::
on10

::
the

:::::::
dataset

:::
can

::
be

::::
used

:::
to

::::::
identify

:
hotspots of crop system vulnerability,

::
and

:::
to

::::::
conduct

:
rapid assessment of new climate pro-

jections, and many others. In general, the development of multi-model ensembles involving systematic parameters
::::::::
parameter

sweeps has large promise both for increasing understanding of potential future crop responses and for improving process-based

crop models.
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5.1 Data Access

Simulation yield output datasets can be found at the DOIs located in table 4. Data are published in crop- and GGCM-specific

packages, in order to break down the overall data amount into manageable packages (<50GB per archive).

DOI’s for model data outputs. All model output data can be found at https://doi.org/10.5281/zenodo/XX. Where XX is the

value listed in the table. ModelMaizeSoybeanRiceWinter wheatSpring wheatAPSIM-UGOE25825312582535258253325825372582539CARAIB25825222582508258250425825162582499EPIC-IIASA25824532582461258245725824632582465EPIC-TAMU25823492582367258235225823922582418JULES258254325825472582545–2582551GEPIC25822472582258258225125822602582263LPJ-GUESS2581625––25816382581640LPJmL25813562581498258143625815652581606ORCHIDEE-crop2582441–25824452582449–pDSSAT25821112582147258212725821632582178PEPIC25823412582433258234325824392582455PROMET2582467258248825824792582490258249220
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Code and data availability. The simulation outputs of the mandatory 7 output variables (Table 2) are available on zenodo.org. See Table 45

for data DOIs. Data are published in crop- and GGCM-specific packages, in order to break down the overall data amount into manageable

packages (<50GB per archive). All other simulation output variables are available upon request to the corresponding author.

Table 4. DOI’s for model data outputs. All model output data can be found at https://doi.org/10.5281/zenodo/XX. Where XX is the value

listed in the table.

Model Maize Soybean Rice Winter

wheat

Spring

wheat

APSIM-UGOE 2582531 2582535 2582533 2582537 2582539

CARAIB 2582522 2582508 2582504 2582516 2582499

EPIC-IIASA 2582453 2582461 2582457 2582463 2582465

EPIC-TAMU 2582349 2582367 2582352 2582392 2582418

JULES 2582543 2582547 2582545 – 2582551

GEPIC 2582247 2582258 2582251 2582260 2582263

LPJ-GUESS 2581625 – – 2581638 2581640

LPJmL 2581356 2581498 2581436 2581565 2581606

ORCHIDEE-crop 2582441 – 2582445 2582449 –

pDSSAT 2582111 2582147 2582127 2582163 2582178

PEPIC 2582341 2582433 2582343 2582439 2582455

PROMET 2582467 2582488 2582479 2582490 2582492

The scripts for generating the spring wheat and winter wheat growing seasons and second fertilizer dates and the quality screening

script is available at https://github.com/RDCEP/ggcmi/blob/phase2/. All input data are available via globus.org (registration required, free of

charge):Minimum cropland mask is available athttps://app.globus.org/file-manager?origin_id=e4c16e81-6d04-11e5-ba46-22000b92c6ec&10

origin_path=%2FAgMIP.input%2Fother.inputs%2Fphase2.masks%2F choose the file boolean_cropmask_ggcmi_phase2.nc4 Growing

25

https://app.globus.org/file-manager?origin_id=e4c16e81-6d04-11e5-ba46-22000b92c6ec&origin_path=%2FAgMIP.input%2Fother.inputs%2Fphase2.masks%2F
https://app.globus.org/file-manager?origin_id=e4c16e81-6d04-11e5-ba46-22000b92c6ec&origin_path=%2FAgMIP.input%2Fother.inputs%2Fphase2.masks%2F
https://app.globus.org/file-manager?origin_id=e4c16e81-6d04-11e5-ba46-22000b92c6ec&origin_path=%2FAgMIP.input%2Fother.inputs%2Fphase2.masks%2F


period data for wheat is now divided up into winter and spring wheat, available at https://app.globus.org/file-manager?origin_id=

e4c16e81-6d04-11e5-ba46-22000b92c6ec&origin_path=%2FAgMIP.input%2Fother.inputs%2FAGMIP_GROWING_SEASON.HARM.

version2.0%2F whereas all other growing season data (maize, rice, soybean) are the same as in Phase 1 (version 1.25), available

at https://app.globus.org/file-manager?origin_id=e4c16e81-6d04-11e5-ba46-22000b92c6ec&origin_path=%2FAgMIP.input%2Fother.

inputs%2FAGMIP_GROWING_SEASON.HARM.version1.25%2F5

26
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Balkovič, J., van der Velde, M., Skalský, R., Xiong, W., Folberth, C., Khabarov, N., Smirnov, A., Mueller, N. D., and Obersteiner, M.: Global

wheat production potentials and management flexibility under the representative concentration pathways, Global and Planetary Change,20

122, 107 – 121, https://doi.org/10.1016/j.gloplacha.2014.08.010, 2014.

Batjes, N.: ISRIC-WISE global data set of derived soil properties on a 0.5 by 0.5 degree grid (ver. 3.0), 2005.

Bodirsky, B. L., Rolinski, S., Biewald, A., Weindl, I., Popp, A., and Lotze-Campen, H.: Global Food Demand Scenarios for the 21st Century,

PLOS ONE, 10, 1–27, https://doi.org/10.1371/journal.pone.0139201, https://doi.org/10.1371/journal.pone.0139201, 2015.

Boote, K., Jones, J., White, J., Asseng, S., and Lizaso, J.: Putting Mechanisms into Crop Production Models., Plant, cell & environment, 36,25

https://doi.org/10.1111/pce.12119, 2013.

Challinor, A. J., Müller, C., Asseng, S., Deva, C., Nicklin, K. J., Wallach, D., Vanuytrecht, E., Whitfield, S., Ramirez-Villegas, J., and Koehler,

A.-K.: Improving the use of crop models for risk assessment and climate change adaptation, Agricultural systems, 159, 296–306, 2018.

Decker, M., Ma, S., and Pitman, A.: Local land–atmosphere feedbacks limit irrigation demand, Environmental Research Letters, 12, 054 003,

https://doi.org/10.1088/1748-9326/aa65a6, 2017.30

Dee, D. P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer, d. P., et al.: The

ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Quarterly Journal of the royal meteorological

society, 137, 553–597, 2011.

Dury, M., Hambuckers, A., Warnant, P., Henrot, A., Favre, E., Ouberdous, M., and François, L.: Responses of European forest ecosystems

to 21st century climate: assessing changes in interannual variability and fire intensity, iForest - Biogeosciences and Forestry, pp. 82–99,35

https://doi.org/10.3832/ifor0572-004, 2011.

27

https://doi.org/10.1016/j.agrformet.2012.11.017
https://doi.org/10.1038/nclimate1916
https://doi.org/10.1038/nclimate2470
https://doi.org/10.1016/j.gloplacha.2014.08.010
https://doi.org/10.1371/journal.pone.0139201
https://doi.org/10.1371/journal.pone.0139201
https://doi.org/10.1111/pce.12119
https://doi.org/10.1088/1748-9326/aa65a6
https://doi.org/10.3832/ifor0572-004


Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Floerke, M., Wada, Y., Best, N., Eisner, S., Fekete,

B., Folberth, C., Foster, I., Gosling, S., Haddeland, I., Khabarov, N., Ludwig, F., Masaki, Y., and Wisser, D.: Constraints and potentials of

future irrigation water availability on agricultural production under climate change, Proceedings of the National Academy of Sciences of

the United States of America, 111, 3239–3244, https://doi.org/10.1073/pnas.1222474110, 2014a.

Elliott, J., Kelly, D., Chryssanthacopoulos, J., Glotter, M., Jhunjhnuwala, K., Best, N., Wilde, M., and Foster, I.: The par-5

allel system for integrating impact models and sectors (pSIMS), Environmental Modelling and Software, 62, 509–516,

https://doi.org/10.1016/j.envsoft.2014.04.008, 2014b.

Elliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K. J., Büchner, M., Foster, I., Glotter, M., Heinke, J., Iizumi, T., Izaurralde,

R. C., Mueller, N. D., Ray, D. K., Rosenzweig, C., Ruane, A. C., and Sheffield, J.: The Global Gridded Crop Model Intercomparison: data

and modeling protocols for Phase 1 (v1.0), Geoscientific Model Development, 8, 261–277, https://doi.org/10.5194/gmd-2016-207, 2015.10

FAO: FAOSTAT Database, http://www.fao.org/faostat/en/home, 2018.

FAO/IIASA: Global Agro-ecological Zones and FAO-GAEZ Data Portal(GAEZ v3.0), http://www.gaez.iiasa.ac.at/, 2011.

Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H., Verelst, L., and Wiberg, D.: Global Agro-ecological Zones Assessment for

Agriculture (GAEZ 2008), http://webarchive.iiasa.ac.at/Research/LUC/, 2008.

Folberth, C., Gaiser, T., Abbaspour, K. C., Schulin, R., and Yang, H.: Regionalization of a large-scale crop growth model for sub-15

Saharan Africa: Model setup, evaluation, and estimation of maize yields, Agriculture, Ecosystems & Environment, 151, 21 – 33,

https://doi.org/10.1016/j.agee.2012.01.026, 2012.

Folberth, C., Elliott, J., Müller, C., Balkovic, J., Chryssanthacopoulos, J., Izaurralde, R. C., Jones, C. D., Khabarov, N., Liu, W., Reddy, A.,

Schmid, E., Skalský, R., Yang, H., Arneth, A., Ciais, P., Deryng, D., Lawrence, P. J., Olin, S., Pugh, T. A. M., Ruane, A. C., and Wang, X.:

Uncertainties in global crop model frameworks: effects of cultivar distribution, crop management and soil handling on crop yield estimates,20

Biogeosciences Discussions, 2016, 1–30, https://doi.org/10.5194/bg-2016-527, https://www.biogeosciences-discuss.net/bg-2016-527/,

2016.
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