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Abstract. While our understanding of pH dynamics has strongly progressed for open ocean regions, for marginal seas such as 

the East China Sea (ECS) shelf progress has been constrained by limited observations and complex interactions between 

biological, physical, and chemical processes. Seawater pH is a very valuable oceanographic variable but not always measured 

using high quality instrumentation and according to standard practices. In order to predict total scale pH (pHT) and enhance 10 

our understanding of the seasonal variability of pHT on the ECS shelf, an artificial neural network (ANN) model was developed 

using 11 cruise datasets from 2013 to 2017 with coincident observations of pHT, temperature (T), salinity (S), dissolved oxygen 

(DO), nitrate (N), phosphate (P) and silicate (Si) together with sampling position and time. The reliability of the ANN model 

was evaluated using independent observations from 3 cruises in 2018, and showed a root mean square error accuracy of 0.04. 

The ANN model responded to T and DO errors in a positive way, S errors in a negative way, and the ANN model was most 15 

sensitive to S errors, followed by DO and T errors. Monthly water column pHT for the period 2000-2016 was retrieved using 

T, S, DO, N, P, and Si from the Changjiang Biology Finite-Volume Coastal Ocean Model (FVCOM). The agreement is good 

here in winter, while the reduced performance in summer can be attributed in large part to limitations of the Changjiang 

Biology FVCOM in simulating summertime input variables. 

1 Introduction 20 

Atmospheric carbon dioxide (CO2) levels have increased by nearly 46%, from approximately 278 ppm (parts per million) in 

1750 (Ciais et al., 2013) to 405 ppm in 2017 (Le Quéré et al., 2018). The oceans have absorbed approximately 48% of the 

anthropogenic CO2 emissions (Sabine et al., 2004), resulting in decreasing long-term pH trends of ~0.02 decade-1 in open 

ocean waters (e.g., Dore et al., 2009; González-Dávila et al., 2010; Bates et al., 2014; Lauvset et al., 2015). While a gradual 

decrease in pH is a predictable open ocean response to elevated anthropogenic CO2 emissions, the seasonal changes and long-25 

term trends in pH in coastal seas have not been fully understood due to the lack of long-term pH data and complexity of coastal 

systems. In this context, the development of approaches to predict carbonate chemistry parameters in coastal regions may 

assist both the management of local water quality and our wider understanding of the ocean carbon cycle.   

Many attempts have been made to predict seawater pH by developing empirical relationships between pH and environmental 

variables, such as temperature (T) (Juranek et al., 2011), salinity (S) (Williams et al., 2016), dissolved oxygen (DO) (e.g., 30 

Juranek et al., 2011; Sauzède et al., 2017), nutrients (e.g., Williams et al., 2016; Carter et al., 2016, 2018), and longitude, 

latitude (Sauzède et al., 2017). Compared with traditional empirical methods, artificial neural networks (ANNs) have been 

proposed as powerful tools for modelling uncertain and complex systems such as ecosystems and environmental assessment 

(e.g., Olden and Jackson, 2002; Olden et al., 2004; Uusitalo, 2007; Raitsos et al., 2008; Chen et al., 2017). Their main advantage 

compared with e.g. multiple linear regression (MLR) models may be a greater flexibility and versatility in modelling complex 35 

nonlinear relationships. ANNs have been used for the retrieval of the partial pressure of carbon dioxide (pCO2) (e.g., Friedrich 

and Oschlies, 2009; Laruelle et al., 2017), total alkalinity (e.g., Velo et al., 2013; Bostock et al., 2013; Sasse et al., 2013), total 

dissolved inorganic carbon (e.g., Bostock et al., 2013; Sasse et al., 2013), and phytoplankton functional types (e.g., Raitsos et 

al., 2008; Palacz et al., 2013). However, these studies mainly focus on the open ocean; relatively few studies have focused on 
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coastal seas, perhaps because of the complexity and heterogeneity of the continental shelves. Alin et al. (2012) developed an 40 

MLR model to reconstruct pH in the southern California Current System, while Moore-Maley et al. (2016) evaluated the 

interannual variability of near-surface pH using a one dimensional, biophysical, mixing layer model in the Strait of Georgia. 

To our knowledge, no empirical relationship for pH has yet been established for the ECS. 

The ECS is the largest marginal sea in the western North Pacific Ocean and receives massive terrestrial inputs from the 

Changjiang (Yangtze River). The shelf shallower than 200 m covers more than 70% of the entire ECS (e.g., Ichikawa and 45 

Beardsley, 2002; Lie and Cho, 2016), where the dominant currents present seasonal circulation patterns. The spatial and 

temporal distributions of the carbonate system have been investigated in the ECS (e.g., Chou et al., 2009; Cao et al., 2011; Qu 

et al., 2015), and were found to largely reflect the distributions of various water masses. The pattern of carbon sources and 

sinks exhibits substantial seasonal variation (Guo et al., 2015), and the ECS is generally considered as a sink of atmospheric 

CO2 throughout the year except in fall (e.g., Shim et al., 2007; Zhai and Dai, 2009). A mechanistic semi-analytical algorithm 50 

(MeSAA) was developed to study pCO2 variations in response to various controlling mechanisms during summertime (Bai et 

al., 2015). However, the seasonal variability of pH has been very little studied in the ECS, mainly due to the limited 

observational coverage and irregular variability caused by seasonal fluctuations of the Changjiang discharge and anthropogenic 

processes. Developing methods to extend the seasonal coverage of pH data may thus help to improve our understanding of the 

ocean carbon cycle in the ECS. 55 

This paper is structured as follows: section 2 describes the cruise data and ANN model building; section 3 shows the 

performance, sensitivity and application of the ANN model. Summary and conclusions are summarized in the last section. 

2 Data and method 

2.1 Data 

Ten cruises were conducted on the ECS shelf during the “Fund Committee Innovation Group Project” (Y22323101B) from 60 

2013 to 2017 (Fig. 1), the summer cruise from 17 to 28 August 2013, 10 to 17 July 2014, 9 to 20 July 2015, 4 to 28 July 2016, 

20 to 30 July 2017, the winter cruise from 21 to 28 February 2014, 15 to 28 February 2017, the spring cruise from 4 to 20 

March 2013, 11 to 21 March 2015, 7 to 19 March 2016. T and S profiles were obtained directly using a conductivity 

temperature-depth/pressure (CTD) recorders (SBE 25plus or 911plus). Measurement of DO followed the Winkler procedure, 

as described previously by Zhai et al. (2014). Nutrients samples were first filtered with 0.45 μm Whatman GF/F membrane, 65 

then stored in 250 mL HDPE bottles until chemical analysis. Nitrate (N), phosphate (P) and silicate (Si) were determined using 

a segmented flow analyzer (Model: Skalar SANPLUS, Netherlands) with a precision < 5% (Zhang et al., 2007), the detection 

limits are 0.14 μM for N, 0.06 μM for P, and 0.07 μM for Si. pH samples were stored in 140 mL brown borosilicate glass 

bottles and sterilized by addition of 50 μL saturated HgCl2 solution. Three traceable pH buffers were used including NIST 

(National Institute of Standards and Technology) buffers pH = 4.00, 7.02, 10.09. As described by Zhai et al. (2012, 2014), we 70 

converted it into total scale pHT by subtracting 0.143 and the overall accuracy of the pHT dataset was estimated as 0.01. 

Three cruises were carried out on the ECS shelf in 2018 (Fig. 2) during the “National Natural Science Foundation Shared 

Voyage Plan”, from 10 to 19 March, 12 to 20 July, 12 to 21 October, and one cruise was carried out near the Changjiang 

Estuary during May 2017 (Fig. 1). The measurement methods of T, S, DO, and nutrients are the same as that of the above ten 

voyages. pH samples were stored in 500 mL high-quality borosilicate glass bottles without filtering and sterilized by addition 75 

of 200 μL saturated HgCl2 solution until measurement in the lab. The pHT was measured at the temperature in the flow cell 

using an Automated Flow-through system for Embedded Spectrophotometry (AFtes) with a precision of 0.0005 pH unit and 

uncertainty of < 0.003 (Reggiani et al., 2016). Water samples were collected at three or four different depths during all cruises. 

We omitted data points where one or more other physical variables were missing. The three cruises during 2018 (Fig. 2) were 

used to estimate model predicted performance as an exploratory dataset, while the remaining eleven cruises (Fig. 1) were used 80 
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to train the model as a confirmatory dataset. The final number of observations in the confirmatory dataset was 1854 (see Table 

1 for more detailed information on the field survey). 

2.2 Artificial neural network development  

The ANN we used is a feed-forward multilayer perceptron (Tamura and Tateishi, 1997) with two hidden layers. The neurons 

of each layer are connected with the neurons of the previous layer and the next layer by weights (Fig. 3a). The coefficients of 85 

the weight matrix are iteratively tuned in the training step. In order to avoid overfitting, a ten-fold cross-validation was used 

to assess model prediction accuracy (Fig. 3b). Here, the confirmatory dataset was randomly divided into ten equal subsamples. 

One subsample was used as the independent validation data (10% of the confirmatory dataset) and was always excluded from 

training; the remaining nine subsamples were used as training data (90% of the confirmatory dataset). The training data were 

further divided randomly into a training set (70% of the training data), validation set (15% of the training data), and testing set 90 

(15% of the training data) during the training process. The training set was used for computing the gradient and updating the 

network weights and biases, the validation set was used to monitor the error and control model stop, and the testing set was 

used to monitor whether the model was over-fitted (Palacz et al., 2013). We compared performances in predicting the 

independent validation data from the ten-fold cross-validation and selected the optimal model based on the lowest root mean 

square error (RMSE). Then we applied the optimal model to the exploratory dataset (Fig. 2) and evaluated model performance 95 

by calculating error statistics. In our study, calculations were done in the MathWorks Matlab environment, using the Deep 

Learning Toolbox. 

First, we compared the performance of one hidden layer vs. two hidden layers in predicting independent validation data. The 

number of neurons varied from 22 to 28 for the first hidden layer and was fixed at four in the second hidden layer for the two 

hidden layers model; the number of neurons in the first layer was the same in the one hidden layer vs. two hidden layers model 100 

(Fig. 4). The ten-fold cross-validation showed that the model with two hidden layers performed better as the number of neurons 

increased. Second, in order to choose suitable training techniques and activation functions of the ANN model with two hidden 

layers, we tested three training functions (Gradient descent backpropagation (trainGD), Levenberg-Marquardt 

backpropagation (trainLM), and Scaled conjugate gradient backpropagation (trainSCG)), which differed in how the weights 

are modified, and three transfer functions (Log-sigmoid transfer function (logsig), Hyperbolic tangent sigmoid transfer 105 

function (tansig), and Positive linear transfer function (poslin)) (Fig. 5). The output values of logsig, tansig and poslin were 

compressed onto [0, 1], [-1, 1], and [0, +∞], respectively (Fig. S1). As the number of neurons increased, the performances of 

trainGD and tansig became poor. Although there was no obvious difference between trainLM and trainSCG, the training 

technique trainSCG was selected and the transfer function logsig was applied to two hidden layers considering the overall 

performance (Fig. 5). Third, in the training phase of the ANN model, the number of neurons was tested, varying from 4 to 128 110 

for two hidden layers (Table S1). Best performance for both training data and independent validation data was obtained with 

40 neurons in the first hidden layer and 16 neurons in the second layer. Finally, different combinations of input variables were 

tested to choose the optimal architecture of the ANN model (Table 2); best performance was obtained using longitude, latitude, 

month, T, S, DO, N, P and Si as input variables. The utility of these variables for predicting pH has a strong a priori basis: the 

carbonate system thermodynamic relationships depend on both T and S (Lueker et al., 2000); a positive correlation is expected 115 

between DO and pH (Wootton et al., 2012) because of the role of photosynthesis and respiration in removing or generating 

CO2 in the water; various nutrients influence phytoplankton growth and abundance, thereby increasing organic carbon 

fixation/uptake and increasing pH (Wootton et al., 2008, 2012). We found geographical information to be a powerful addition 

in improving the skill of the method (Table 2), allowing the network to learn spatio-temporal patterns that could not be 

explained by other input variables (Sasse et al., 2013).  120 

In order to avoid bias towards high-value inputs/outputs and to eliminate the dimensional influence of the data, all data used 

by the ANN model were normalized using the following equation (e.g., Sauzède et al., 2015, 2016): 
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with σ the standard deviation of the considered input variables or output variable pHT. Similar to the approach of Sauzède et 

al. (2015, 2016), the longitude and month input variables were transformed as follows to account for the periodicity: 125 
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𝐿𝑜𝑛∗𝜋

180
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180
)  (2) 
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𝑚𝑜𝑛𝑡ℎ∗𝜋

6
) , cmonth = cos (

𝑚𝑜𝑛𝑡ℎ∗𝜋

6
)  (3) 

The latitude variable was transformed into the range of the sigmoid function by dividing by 90, then normalized using (1). 

3 Result and discussion 

3.1 ANN model performance 130 

To evaluate the performance of the ANN model, we compared model simulated pHT (pHT
M) with corresponding observations 

(pHT
O) using several statistical indices, including the mean absolute error (MAE), the coefficient of determination (R2), and 

the root mean squared error (RMSE). The model simulated pHT with a RMSE of 0.04 and R2 of 0.88 for the training data (90% 

of confirmatory dataset, Fig. 6a), and predicted pHT with a RMSE of 0.03 and R2 of 0.93 for the independent validation data 

(10% of confirmatory dataset, Fig. 6b). The histogram of residuals in confirmatory dataset (Fig. 6c) showed that 68% of the 135 

residuals were within the RMSE of 0.04. In order to further explore where the ANN model may lead to large errors, we plotted 

distributions of differences (pHT
M - pHT

O) with respect to the longitude and latitude (Fig. 7). The points with large errors are 

mainly concentrated in the longitude range [122.5°E, 123°E] and the latitude range [31°N, 32.5°N], in an area strongly 

influenced by the Changjiang Dilute Water (CDW). The reduced performance of the ANN model here may be primarily due 

to the strong seasonal oscillations of the Changjiang discharge (Dai and Trenberth, 2002). As a reference, the performance of 140 

some other empirical approaches, including MLR, multi-variate nonlinear regression (MNR), decision tree, random forest, and 

Support Vector Machine (SVM) regression, is shown in Table 3. The selected ANN model (Table 2, Model#10) showed better 

performance than the other tested approaches using the same input variables (Table 3). 

3.2 ANN model validation using the exploratory dataset 

To further assess the ability of the ANN model to estimate pHT on the ECS shelf, we applied the ANN model to an exploratory 145 

dataset not used in ANN model development and sampled during March, July, and October 2018 (Fig. 2). Scatterplots of 

retrieved pHT vs observations (Fig. 8a) showed an RMSE of 0.04, R2 of 0.80 and MAE of 0.03, which is consistent with the 

performance of the training data (Fig. 6a). Although the RMSE for pHT we obtained here was higher than obtained in some 

previous studies (e.g., Juranek et al., 2011; Williams et al., 2016; Sauzède et al., 2017), these latter studies considered open 

ocean regions, not coastal seas. For example, Juranek et al. (2011) developed empirical algorithms to estimate pH with RMSE 150 

of 0.018 for data between 30-500 m in the NE subarctic Pacific; Williams et al. (2016) also developed empirical algorithms to 

predict pH with RMSE of 0.01 in the Southern Ocean; Sauzède et al. (2017) developed a neural network method to estimate 

pH with RMSE of 0.02 in the global ocean. As a further comparison we applied the CANYON model developed by Sauzède 

et al. (2017) to our coastal exploratory dataset (Fig. 8b), and obtained an RMSE of 0.09 and MAE of 0.06. It is not surprising 

that the ANN model (developed here for the ECS shelf) outperforms the CANYON model (developed for the global ocean) 155 

for predicting pHT on the ECS shelf. The carbon chemistry parameters in this region are not only under the direct impact of 

Taiwan Warm Current and remote control of the Kuroshio water intrusion into the shelf, but are also significantly controlled 

by seasonal variations of the Changjiang discharge (e.g., Isobe and Matsuno, 2008; Chen et al., 2008; Chou et al., 2009). 

Taking into account the highly complex hydrographic, biological and chemical conditions, the accuracy of pHT presented is 

promising. 160 
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3.3 ANN model sensitivity to environmental input variables 

To assess the ANN model sensitivity to different environmental input variables, we added 5% perturbation for each 

environmental variable separately. Statistically, with 5% T errors added, the ANN model showed slight overestimation in pHT, 

with mean bias (MB) of 0.0059, RMSE of 0.0079, and R2 of 0.9949 (Fig. 9a); with 5% DO errors added, the ANN model also 165 

showed slight pHT overestimation, with MB of 0.0050, RMSE of 0.0090, and R2 of 0.9934 (Fig. 9c); with 5% S errors added, 

the ANN model showed overestimation in pHT, with MB of -0.0111, RMSE of 0.0162, and R2 of 0.9789 (Fig. 9b). These 

results suggested that the ANN model responded to T and DO errors in a positive way, S errors in a negative way. The positive 

response to increasing DO reflects positive correlation between pHT and DO (Cai et al., 2011), which can be attributed to the 

processes of photosynthesis (generating DO and removing CO2, hence increasing pH) and aerobic respiration (consuming DO 170 

and generating CO2, hence lowering pH); the negative response to increasing S reflects the influence of the (lower salinity) 

Changjiang discharge, carrying large amounts of nutrients that fuel increased primary production (uptake of nutrients and CO2, 

hence raising the pH) in surface waters during warm seasons (Gong et al., 2011). It was found that the ANN model was 

insensitive to nutrients errors (Fig. 9d-9f) and most sensitive to S errors (Fig. 9b), followed by DO and T errors.  

3.4 ANN model application 175 

3.4.1 Comparison 

In order to retrieve monthly pHT on the ECS shelf, the monthly T, S, DO, N, P and Si from the Changjiang Biology Finite-

Volume Coastal Ocean Model (FVCOM) (http://47.101.49.44/wms/demo) were fed into the ANN model as input variables. 

The resolution of the Changjiang Biology FVCOM output is 1-10 km in the horizontal, 10 depth levels in the vertical, and day 

in the temporal (refered Ge et al., (2013) for detail information). Comparisons of monthly-average FVCOM model variables 180 

with surface and bottom observations on the ECS shelf showed that simulated T was close to observed values (Fig. S2a), 

simulated S was also close to observed values except at the bottom in August 2013 and at the surface in July 2016 (Fig. S2b), 

simulated DO was higher than observed at the bottom (Fig. S2c), and simulated nutrients were higher than observed at the 

surface (Fig. S2d-S2f). Comparisons of monthly average pHT from the FVCOM biogeochemical model with pHT retrieved by 

the ANN model suggested that the ANN model can potentially provide a more accurate pHT (Fig. S3). The possible reason 185 

was that the carbonate system from the Changjiang Biology FVCOM was not optimized due to challenges obtaining sufficient 

boundary information. 

Considering the discreteness and discontinuity of the sampling sites, we compared pHT retrieved by the ANN model using the 

Changjiang Biology FVCOM output with the corresponding observations at some sites with repeated sampling for 3 to 4 years. 

These sites were A1-5 (123.0140°E, 32.2145°N), A1-6 (123.2750°E, 32.2679°N), A6-7 (122.9880°E, 30.7050°N), A6-9 190 

(123.4990°E, 30.5723°N), A7-5 (123.4990°E, 30.2523°N), and A8-5 (123.4930°E, 29.9940°N). Overall, the retrieved pHT 

agrees well (within the ANN model accuracy: ANN±RMSE) with the observed values at the surface, except for three samples 

in summer (Fig. 10). There are relatively large deviations (greater than the RMSE of 0.04) in August 2013 at station A1-5 and 

A6-9, and in July 2016 at station A8-5. To illustrate the application performance in the water column, a scatterplot of retrieved 

pHT vs observations at six sites with repeated sampling for 3 to 4 years (Fig. 11) showed that the ANN model predicted pHT 195 

with a RMSE of 0.05 and R2 of 0.71.  

We further compared monthly pHT retrieved by the ANN model using the Changjiang Biology FVCOM output with in situ 

measured pHT values (Fig. 12). The agreement is good (within the ANN model accuracy: ANN±RMSE) here in winter, but 

large deviations (greater than the RMSE of 0.04) appear in summer. The reduced performance in summer can be attributed in 

large part a reduced performance of the Changjiang Biology FVCOM in predicting summertime input variables S, DO, and 200 

nutrients (Fig. S2). 
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3.4.2 Spatial and temporal patterns of ANN-derived pHT  

The temporal and spatial variations of monthly surface pHT from 2000-2016 based on Changjiang Biology FVCOM output 

are shown in Figure 13. During the dry season (November to March of the next year), pHT values vary from ~7.62 to ~8.24. 

Relatively higher pHT values are found in the southeastern of the study area (Chou et al., 2011), whereas lower pHT values are 205 

found in the northeastern of the study area. During the wet season (April to October), pHT values vary from ~7.77 to ~8.35, 

water of higher pHT corresponded well to the seasonal dispersion of the Changjiang Dilute Water (Chou et al., 2009, 2013). 

Water of higher pHT is found in the center of the study area during April, spreads to the southwestern part of the study area 

(along the coast of China) during May and June, shifts to the northeastern part of the study area during August. In September 

and October, water of higher pHT is found in the southeastern part of the study area, strongly influenced by the Taiwan Warm 210 

Current (Qu et al., 2015). 

A clear seasonality is that surface pHT gradually increases during spring (March to May), after which it gradually decreases 

during summer and fall (June to November) (Fig. 14). The surface pHT displays its maximum in May and minimum in 

December, and the pHT varies seasonally by up to ~0.3 unit. Larger changes in pH were also discovered in the Washington 

Shelf, the pH varied ~1.0 unit over the seasons and ~1.5 unit spanning 8 years (Wootton et al., 2008). Accordingly, seasonal 215 

dynamics of surface pHT can be mainly attributed to temperature changes and strong biological activities (production and 

respiration processes) over the season. From March to June, a rapid increase in surface pHT indicates that production increases 

faster than respiration, which can be reflected in the drop in surface phosphate (Fig. S5d) and apparent oxygen utilization 

(AOU) (Fig. S5c). It may be driven by the Changjiang discharge (Fig. S4), which carries large amount of nutrients, result in 

stronger primary production in warm seasons under the combined action of nutrients and suitable temperature (Gong et al., 220 

2011). From July to October, although surface temperature remains at a high level (Fig. S5a), the rise in surface AOU (Fig. 

S5c) suggest a decrease in primary production or increase of respiration, which leads to a gradual drop in surface pHT (Wootton 

et al., 2012). It implies respiration processes dominate relative to primary production during summer and fall.  

4 Summary and conclusions 

We have developed an artificial neural network (ANN) model, demonstrated its reliability, and used it to retrieve monthly pHT 225 

for the period 2000-2016 on the East China Sea shelf. We trained this ANN model using 11 cruise datasets from 2013 to 2017. 

In order to choose the optimal architecture of the ANN model, we tested different training and transfer functions, the number 

of neurons in two hidden layers, and different combinations of input variables. We also validated the reliability of the ANN 

model with a root mean square error accuracy of 0.04 using three cruises in 2018 as exploratory dataset. The ANN model 

responded to temperature and dissolved oxygen errors in a positive way, salinity errors in a negative way, and was most 230 

sensitive to salinity errors, followed by dissolved oxygen and temperature errors. We also retrieved monthly-average pHT using 

the ANN model in combination with input variables from the Changjiang Biology Finite-Volume Coastal Ocean Model 

(FVCOM). 

The approach has several potential applications. First, it can provide estimates of seawater pHT with known accuracies for the 

East China Sea shelf and the period 2013-2018. Within this region the model could be used as a cost-effective way to handle 235 

restrictions of marine observations conducted from ships, such as coarse resolution and under-sampling of carbonate system 

variables. Second, while the ANN model is not a replacement for direct measurements of the carbonate system, it may be a 

valuable tool for understanding the seasonal variation of pHT in poorly observed regions. Third, this approach can be applied 

to other regions to predict pH by suitably adapting the input variables and network structure using local dataset. The MATLAB 

code used in this study to develop and apply the ANN model is freely available, and is accompanied by a README file 240 

providing detailed guidance on how to use and adapt the code. 
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Code and data availability 

Matlab code of the ANN model for pHT estimation and datasets are available: 

http://doi.org/10.5281/zenodo.3519219 

The monthly-average input variables (T, S, DO, N, P, Si) from the Changjiang Biology Finite-Volume Coastal Ocean Model 245 

and retrieved pHT values from 2000 to 2016 on the East China Sea shelf and three cruises data during 2018 used to evaluate 

the ANN model are available: 

http://doi.org/10.5281/zenodo.3519236 

Requests to access the raw data should be directed to Richard Bellerby: Richard.Bellerby@niva.no 

Six stations with repeated sampling for 3 to 4 years and corresponding retrieved pH values from the Changjiang Biology 250 

FVCOM output are available: http://doi.org/10.5281/zenodo.3491747 

Video supplement 

Monthly distribution of surface pHT on the East China Sea shelf from 2000 to 2016 year: 

http://doi.org/10.5281/zenodo.2672943 

Profile distribution of pHT at 31°N on the East China Sea shelf from 2000 to 2016 year: 255 

http://doi.org/10.5281/zenodo.2672929 
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Figure 1: Sampling stations during 11 cruises (the confirmatory dataset) from 2013 to 2017 on the East China Sea shelf. 

 

Figure 2: Sampling stations for three cruises (the exploratory dataset) used to extend the utility of the ANN model. The green circles 

represent March 2018, the purple squares represent July 2018, the red triangles represent October 2018. 
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Figure 3: Schematic representation of the neural network algorithm to retrieve pHT. (a)-the architecture of the ANN model. Input 

variables are observed temperature, salinity, dissolved oxygen, nitrate, phosphate, and silicate together with the geolocation 445 
(longitude and latitude) and time (month) of sampling; (b)-data distribution diagram for training and prediction. 

 

Figure 4: Comparison of the performance of one hidden layer vs. two hidden layers in predicting independent validation data. The 

number of neurons in the first hidden layer was the same in the one hidden layer vs. two hidden layers model, numbers in parentheses 

show the number of neurons in the second hidden layer (for the two hidden layers model). Bars show the mean and standard 

deviation of the Root-Mean-Square-Error over a ten-fold cross-validation, for different numbers of neurons in the first hidden layer.  450 

 

Figure 5: Comparison of the performance of different training functions and transfer functions on independent validation data. (a)-

three training functions: Gradient descent backpropagation (trainGD), Levenberg-Marquardt backpropagation (trainLM), and 

Scaled conjugate gradient backpropagation (trainSCG); (b) three transfer functions: Log-sigmoid transfer function (logsig), 

Hyperbolic tangent sigmoid transfer function (tansig), and Positive linear transfer function (poslin). Bars show the mean and 

4(4) 8(4) 16(4) 32(4) 64(4) 128(4) 256(4)
0

0.5

1

1.5

2

2.5

3

3.5

Neurons in hidden layer

R
M

S
E

 o
n
 i
n
d
ep

en
d
en

t 
v
al

id
at

io
n
 d

at
a

 

 

one hidden layer

two hidden layers

(4,4) (8,4) (16,4) (32,4) (64,4) (128,4) (256,4)
0

0.5

1

1.5

2

2.5

3

Neurons in hidden layer

R
M

S
E

 o
n

 i
n

d
ep

en
d

en
t 
v

al
id

at
io

n
 d

at
a

 

 

(a)

trainGD

trainLM

trainSCG

(4,4) (8,4) (16,4) (32,4) (64,4) (128,4) (256,4)
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Neurons in hidden layer

 

 

(b)

logsig

tansig

poslin



14 

standard deviation of the Root-Mean-Square-Error over a ten-fold cross-validation, for different numbers of neurons in the first 455 
hidden layer. 

 

 

Figure 6: Comparison of pHT retrieved by the ANN model with corresponding observations. (a)-Training data (90% of confirmatory 

dataset); (b)-Independent validation data (10% of confirmatory dataset); (c)-Histogram of residuals for confirmatory dataset. The 

1:1 line is shown in each plot as visual reference. Three statistics are the mean absolute error (MAE), the coefficient of determination 460 
(R2), and the root mean squared error (RMSE). N represents the number of data points. 

 

 

Figure 7: Box plots of the differences between retrieved pHT minus the observations. (a)-the differences vs longitude (Mean±SE); 

(b)-the differences vs latitude (Mean±SE). The height of each box represents the mean value of the differences, the whisker represents 

the standard error (SE) value of the differences. 465 
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Figure 8: Comparison of retrieved pHT with corresponding observations for exploratory dataset. (a)-pHT retrieved by the ANN 

model vs observations; (b)-pHT retrieved by CANYON (Sauzède et al., 2017) vs observations. The red circles represent March 2018, 

the blue squares represent July 2018, the green triangles represent October 2018. The 1:1 line is shown in the plot as visual reference. 

Three statistics approaches used are the mean absolute error (MAE), the root mean squared error (RMSE), and the coefficient of 470 
determination (R2). N represents the number of data points.  

 

Figure 9: Sensitivity of the ANN model for environmental input variables. (a)-temperature (T); (b) salinity (S); (c)-dissolved oxygen 

(DO); (d)-nitrate (N); (e)-phosphate (P); (f)-silicate (Si). Three statistics approaches used are the mean bias (MB), the root mean 

squared error (RMSE), and the coefficient of determination (R2). N represents the number of data points. 
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Figure 10: Comparison of surface pHT retrieved by the ANN model using Changjiang Biology FVCOM output with corresponding 

observations at six sites repeated sampling for 3 to 4 years. Red dots represent observations pHT, blue solid line represents retrieved 

pHT, black dotted lines represent upper and lower bounds of the ANN model accuracy (ANN ± RMSE). (a)-station A1-5; (b)-station 

A1-6; (c)-station A6-7; (d)-station A6-9; (e)-station A7-5; (f)-station A8-5. 

 

Figure 11: Comparison of water column pHT retrieved by the ANN model using Changjiang Biology FVCOM output with 480 
corresponding observations at six sites repeated sampling for 3 to 4 years. The 1:1 line is shown in the plot as a visual reference. 

Skill statistics include the mean absolute error (MAE), the coefficient of determination (R2), and the root mean squared error 

(RMSE). N represents the number of data points. 
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Figure 12: Comparison of monthly average pHT on the East China Sea shelf. Blue solid line represents retrieved pHT by the ANN 485 
model using Changjiang Biology FVCOM output; black dotted lines represent upper and lower bounds of the ANN model accuracy 

(ANN ± RMSE); red points show monthly-average pHT observations from 2013 to 2016. (a)-surface; (b)-bottom. 
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Figure 13: Spatial distribution of monthly average surface pHT retrieved by the ANN model using Changjiang Biology FVCOM 

output. (a)-January; (b)-February; (c)-March; (d)-April; (e)-May; (f)-June; (g)-July; (h)-August; (i)-September; (j)-October; (k)-

November; (l)-December. 490 
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Figure 14: Seasonal cycles of surface pHT on the East China Sea shelf from 2000-2016. The green circles represent monthly regional 

average, the blue dashed represents mean value of each month. 

 495 

 

 

Table 1: Field survey information and measurements of water temperature, salinity, dissolved oxygen, nitrate, phosphate, silicate 

and pHT (Mean±SE). 

Sampling period Temperature  

(℃) 

Salinity Dissolved oxygen  

(mmol m-3) 

Nitrate  

(mmol m-3) 

Phosphate  

(mmol m-3) 

Silicate  

(mmol m-3) 

pHT 

March 4th-20th, 2013 11.54±1.34 32.04±2.26 275.28±19.30 12.25±8.25 0.58±0.17 17.54±7.65 8.19±0.04 

August 17th-28th, 2013 23.45±3.17 32.32±2.91 142.22±63.45 12.16±8.05 0.55±0.32 16.47±12.18 8.04±0.18 

February 21th-28th, 2014 9.56±2.38 32.14±1.78 293.07±19.52 11.92±9.17 0.59±0.18 12.52±6.50 8.10±0.04 

July 10th-17th, 2014 21.66±2.13 29.50±5.10 186.44±43.29 21.57±22.10 0.57±0.46 21.45±17.76 8.07±0.11 

March 11th-21th, 2015 11.42±1.44 31.57±2.60 279.72±15.29 22.04±18.88 0.81±0.35 16.48±11.64 8.19±0.03 

July 9th-20th, 2015 22.14±1.55 29.73±4.71 207.32±56.12 19.73±18.62 0.60±0.42 20.87±17.48 8.13±0.09 

March 7th-19th, 2016 10.77±2.02 30.85±2.92 284.00±31.40 20.26±12.80 0.82±0.25 19.17±11.62 8.20±0.05 

July 4th-28th, 2016 23.19±3.19 28.17±6.67 122.90±49.97 25.77±23.60 0.63±0.46 28.56±25.03 8.06±0.16 

February 15th-28th, 2017 11.03±2.57 32.00±2.43 296.21±21.27 12.30±9.13 0.56±0.18 13.09±7.45 8.13±0.05 

May 12th-24th, 2017 17.71±1.54 29.62±2.79 171.58±49.52 12.60±4.83 0.29±0.24 10.95±4.29 8.08±0.13 

July 20th-30th, 2017 24.85±3.41 27.70±6.31 192.11±76.55 20.57±23.23 0.42±0.34 19.28±18.92 8.09±0.18 

 500 

 

Table 2: Different model structures and their performance in the training step. The variables (Lon (longitude), Lat (latitude), Month 

(month), T (temperature), S (salinity), DO (dissolved oxygen), N (nitrate), P (phosphate), Si (silicate)) marked with 1 represent the 

input variables. Skill statistics include the coefficient of determination (R2), the root mean squared error (RMSE), and the mean 

absolute error (MAE). 505 

Model Lon Lat Month T S DO N P Si Training data Independent 

validation data 

R2 RMSE MAE R2 RMSE MAE 

1      1    0.40 0.092 0.068 0.47 0.076 0.058 

2    1  1    0.62 0.073 0.053 0.62 0.067 0.051 
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3    1 1 1    0.69 0.065 0.048 0.72 0.060 0.044 

4    1 1 1 1   0.76 0.057 0.044 0.77 0.052 0.041 

5    1 1 1  1  0.81 0.051 0.040 0.79 0.051 0.040 

6    1 1 1   1 0.77 0.056 0.044 0.79 0.054 0.043 

7    1 1 1 1 1  0.80 0.053 0.042 0.79 0.051 0.041 

8    1 1 1  1 1 0.81 0.051 0.040 0.81 0.049 0.039 

9    1 1 1 1  1 0.76 0.058 0.044 0.77 0.054 0.044 

10    1 1 1 1 1 1 0.83 0.048 0.037 0.86 0.046 0.037 

11   1 1 1 1 1 1  0.85 0.046 0.035 0.87 0.043 0.032 

12   1 1 1 1  1 1 0.85 0.046 0.034 0.85 0.045 0.035 

13   1 1 1 1 1  1 0.82 0.049 0.036 0.84 0.050 0.036 

14   1 1 1 1 1 1 1 0.84 0.046 0.035 0.87 0.045 0.033 

15 1 1 1 1 1 1 1   0.86 0.044 0.033 0.79 0.046 0.034 

16 1 1 1 1 1 1  1  0.87 0.043 0.032 0.87 0.044 0.034 

17 1 1 1 1 1 1   1 0.87 0.043 0.033 0.82 0.045 0.035 

18 1 1 1 1 1 1 1 1  0.88 0.040 0.031 0.88 0.039 0.031 

19 1 1 1 1 1 1  1 1 0.87 0.042 0.032 0.87 0.042 0.033 

20 1 1 1 1 1 1 1  1 0.84 0.046 0.035 0.85 0.047 0.036 

21 1 1 1 1 1 1 1 1 1 0.88 0.040 0.031 0.93 0.033 0.024 

 

 

 

Table 3: Model comparison between traditional empirical methods (MLR and MNR) and mechine-learning based empirical methods 

(Decision tree, Random Forest, and SVM). The statistics was derived from confimatory dataset (training data independent validation 510 
data) using input variables: T, S, DO, N, P, and Si. Note R2 statistics in our study was based on the calculation of coefficient of 

determination, therefore negative R2 could be derived if there were strong bias. 

Model Kernel Function Input variables RMSE R2 MAE 

MLR - T, S, DO, N, P, Si 0.078 0.56 0.062 

MNR - T, S, DO, N, P, Si 0.060 0.74 0.047 

Decision Tree Simple Tree T, S, DO, N, P, Si 0.064 0.71 0.047 

 Medium Tree T, S, DO, N, P, Si 0.060 0.74 0.044 

 Complex Tree T, S, DO, N, P, Si 0.061 0.73 0.043 

Random Forest Boosted Trees T, S, DO, N, P, Si 0.340 -7.51 0.339 

 Bagged Trees T, S, DO, N, P, Si 0.056 0.77 0.04 

SVM Linear T, S, DO, N, P, Si 0.079 0.55 0.061 

 Quadratic T, S, DO, N, P, Si 0.061 0.73 0.046 

 Cubic T, S, DO, N, P, Si 0.060 0.74 0.043 

 Fine Gaussian T, S, DO, N, P, Si 0.064 0.70 0.042 

 Medium Gaussian T, S, DO, N, P, Si 0.054 0.79 0.041 

 Coarse Gaussian T, S, DO, N, P, Si 0.069 0.65 0.054 

 


