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Final response in the interactive discussion  

  

Dear Referees, dear Editor,  

  

We would like to thank you very much for your positive comments and constructive suggestions to our manuscript “Retrieving 

monthly and interannual pHT on the East China Sea shelf using an artificial neural network: ANN-pHT-v1”.   

In this document, we would like to provide our responses to the comments of each of the referees in one single document and 

to outline the corresponding changes to the manuscript. We will represent the referee comment in bold font, and our response 

in normal font. Quotations from the original manuscript will be in italics, changes as part of the manuscript revision will be 

highlighted as underlined. For the sake of clarity and brevity, we have omitted the introductory parts of the referee report (this 

omittance is marked as [...]).  

  

We hope that our response together with the revision of the manuscript sufficiently addresses the referee’ concerns.  

  

Sincerely,  

Xiaoshuang Li (on behalf of the author team) 

 

Referee comment #1 (by Richard Mills) 

[…] I came away from my reading of the paper with the following major questions/concerns which, if addressed, will 

greatly improve the quality of the paper:  

1. First, since the paper has been submitted to a model development journal, I would like to see more information on 

how and why the authors arrived at the particular form of the machine-learning model they used, and how this 

model performed against some other possible model architectures. The authors have used a feed-forward 

multilayer perceptron network with two hidden layers (with 40 neurons in the first layer and 16 in the second) and 

full connectivity between the layers. Why did the authors decide on two layers, and how did they choose the number 

of neurons in each layer? (They do state that they tried varying the number of neurons in each layer, but don’t 

give further details.) How did they choose the activation function? And why did they choose a neural network, 

instead of another approach such as k-nearest neighbors, random forest regression, or support vector regression? 

When I first started working in machine learning, around two decades ago, it would not have been expected for 

authors to try a variety of different types of models, as this would likely involve substantial code development effort, 

as well as possibly significant computational expense for training models. Today, however, it is easy to try many 

different models, as code provided in many easily obtained packages such as Scikit-learn or those provided by 

Matlab (the environment that the authors use for this study), and it is becoming the norm for papers presenting 

the development of machine-learning models to compare several types to determine the one that performs best for 

the chosen task. I would like to see some comparison against other models (some of the ones easily constructed 

using Matlab) to demonstrate that the ANN is the most appropriate choice. 

 

We thank the referee for the suggestion: the required details should, in fact, be provided to the reader. We will add, in the 

revised manuscript, the corresponding information (Why did the authors decide on two layers, and how did they choose the 

number of neurons in each layer? How did they choose the activation function? And why did they choose a neural network, 

instead of another approach such as k-nearest neighbors, random forest regression, or support vector regression?)—as follows 

II. 111-127 and 160-163 of the revised manuscript: 

  

II. 111-127 of the revised manuscript: 

 

In our study, calculations were done in the MathWorks Matlab environment, using the Deep Learning Toolbox. 

First, we compared the performance of one hidden layer vs. two hidden layers in predicting independent validation data. The 

number of neurons varied from 22 to 28 for the first hidden layer and was fixed at four in the second hidden layer for the two 
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hidden layers model; the number of neurons in the first layer was the same in the one hidden layer vs. two hidden layers model 

(Fig. 4). The ten-fold cross-validation showed that the model with two hidden layers performed better as the number of neurons 

increased. Second, in order to choose suitable training techniques and activation functions of the ANN model with two hidden 

layers, we tested three training functions (Gradient descent backpropagation (trainGD), Levenberg-Marquardt 

backpropagation (trainLM), and Scaled conjugate gradient backpropagation (trainSCG)), which differed in how the weights 

are modified, and three transfer functions (Log-sigmoid transfer function (logsig), Hyperbolic tangent sigmoid transfer 

function (tansig), and Positive linear transfer function (poslin)) (Fig. 5). The output values of logsig, tansig and poslin were 

compressed onto [0, 1], [-1, 1], and [0, +∞], respectively (Fig. S1). As the number of neurons increased, the performances of 

trainGD and tansig became poor. Although there was no obvious difference between trainLM and trainSCG, the training 

technique trainSCG was selected and the transfer function logsig was applied to two hidden layers considering the overall 

performance (Fig. 5). Third, in the training phase of the ANN model, the number of neurons was tested, varying from 4 to 128 

for two hidden layers (Table S1). Best performance for both training data and independent validation data was obtained with 

40 neurons in the first hidden layer and 16 neurons in the second layer. Finally, different combinations of input variables were 

tested to choose the optimal architecture of the ANN model (Table 2); best performance was obtained using longitude, latitude, 

month, T, S, DO, N, P and Si as input variables. 

 

Figure 4 (revised): Comparison of the performance of one hidden layer vs. two hidden layers in predicting independent validation data. The 

number of neurons in the first hidden layer was the same in the one hidden layer vs. two hidden layers model, numbers in parentheses show 

the number of neurons in the second hidden layer (for the two hidden layers model). Bars show the mean and standard deviation of the Root-

Mean-Square-Error over a ten-fold cross-validation, for different numbers of neurons in the first hidden layer. 
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Figure 5 (revised): Comparison of the performance of different training functions and transfer functions on independent validation data. 

(a)-three training functions: Gradient descent backpropagation (trainGD), Levenberg-Marquardt backpropagation (trainLM), and Scaled 

conjugate gradient backpropagation (trainSCG); (b) three transfer functions: Log-sigmoid transfer function (logsig), Hyperbolic tangent 

sigmoid transfer function (tansig), and Positive linear transfer function (poslin). Bars show the mean and standard deviation of the Root-

Mean-Square-Error over a ten-fold cross-validation, for different numbers of neurons in the first hidden layer. 

 

 

Figure S1 (revised): Comparison of three transfer functions. (a)-Log-sigmoid transfer function (logsig); (b) Hyperbolic tangent sigmoid 

transfer function (tansig); (c)-Positive linear transfer function (poslin). 

 

Table S1 (revised): The performance of different number of neurons for two hidden layers in the training step. Three statistics are the 

coefficient of determination (R2), the root mean squared error (RMSE), and the mean absolute error (MAE). 

Model Number of neurons Training data Independent validation data 

first hidden 

layer 

second hidden 

layer 

R2 RMSE MAE R2 RMSE MAE 

1 4 4 0.68 0.071 0.054 0.67 0.072 0.057 

2 8 4 0.70 0.070 0.050 0.67 0.069 0.050 

3 16 4 0.76 0.062 0.045 0.76 0.062 0.045 

4 32 4 0.74 0.063 0.046 0.79 0.062 0.048 

5 40 4 0.76 0.062 0.044 0.76 0.061 0.045 

6 64 4 0.79 0.058 0.041 0.78 0.056 0.043 

7 128 4 0.76 0.062 0.045 0.74 0.062 0.044 

8 8 8 0.73 0.065 0.047 0.73 0.065 0.048 

9 16 8 0.78 0.059 0.042 0.78 0.058 0.044 
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10 32 8 0.78 0.059 0.042 0.83 0.053 0.039 

11 40 8 0.79 0.059 0.042 0.77 0.055 0.040 

12 64 8 0.77 0.061 0.044 0.76 0.059 0.042 

13 128 8 0.77 0.060 0.042 0.79 0.059 0.043 

14 16 16 0.79 0.057 0.041 0.85 0.054 0.041 

15 32 16 0.80 0.057 0.040 0.69 0.059 0.043 

16 40 16 0.82 0.054 0.039 0.81 0.053 0.039 

17 64 16 0.79 0.059 0.041 0.76 0.057 0.040 

18 128 16 0.79 0.058 0.040 0.78 0.059 0.043 

19 32 32 0.78 0.059 0.042 0.75 0.058 0.039 

20 40 32 0.79 0.058 0.041 0.79 0.055 0.040 

21 64 32 0.78 0.059 0.042 0.83 0.052 0.040 

22 128 32 0.79 0.058 0.041 0.79 0.056 0.041 

23 40 40 0.77 0.060 0.043 0.77 0.060 0.044 

24 64 40 0.79 0.058 0.042 0.75 0.060 0.043 

25 128 40 0.80 0.057 0.040 0.78 0.057 0.042 

26 64 64 0.78 0.060 0.042 0.78 0.057 0.040 

27 128 64 0.72 0.068 0.050 0.65 0.067 0.048 

28 128 128 0.72 0.067 0.049 0.65 0.072 0.051 

 

II. 160-163 of the revised manuscript: 

 

(Dai and Trenberth, 2002). As a reference, the performance of some other empirical approaches, including MLR, multi-variate 

nonlinear regression (MNR), decision tree, random forest, and Support Vector Machine (SVM) regression, is shown in Table 

3. The selected ANN model (Table 2, Model#10) showed better performance than the other tested approaches using the same 

input variables (Table 3). 

 

Table 3 (revised): Model comparison between traditional empirical methods (MLR and MNR) and mechine-learning based empirical 

methods (Decision tree, Random Forest, and SVM). The statistics was derived from confimatory dataset (training data independent 

validation data) using input variables: T, S, DO, N, P, and Si. Note R2 statistics in our study was based on the calculation of coefficient of 

determination, therefore negative R2 could be derived if there were strong bias. 

Model Kernel Function Input variables RMSE R2 MAE 

MLR - T, S, DO, N, P, Si 0.078 0.56 0.062 

MNR - T, S, DO, N, P, Si 0.060 0.74 0.047 

Decision Tree Simple Tree T, S, DO, N, P, Si 0.064 0.71 0.047 

 Medium Tree T, S, DO, N, P, Si 0.060 0.74 0.044 

 Complex Tree T, S, DO, N, P, Si 0.061 0.73 0.043 

Random Forest Boosted Trees T, S, DO, N, P, Si 0.340 -7.51 0.339 

 Bagged Trees T, S, DO, N, P, Si 0.056 0.77 0.04 

SVM Linear T, S, DO, N, P, Si 0.079 0.55 0.061 

 Quadratic T, S, DO, N, P, Si 0.061 0.73 0.046 

 Cubic T, S, DO, N, P, Si 0.060 0.74 0.043 

 Fine Gaussian T, S, DO, N, P, Si 0.064 0.70 0.042 

 Medium Gaussian T, S, DO, N, P, Si 0.054 0.79 0.041 

 Coarse Gaussian T, S, DO, N, P, Si 0.069 0.65 0.054 

 

Referee comment #1 (by Richard Mills) 

2. Second, the authors do a good job of citing other papers in which authors have used similar ANN approaches for 

similar biogeochemical prediction tasks in marine waters, and compare the RMSE of their model with published 

values from other models. I think that the paper would be greatly improved if the authors could do a direct 

comparison. For instance, the authors cite the CANYON neural network model of Sauzede et al., 2017, which has 
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been developed for the global ocean, but note that "coastal seas tend to show greater temporal and spatial 

variability than open oceans", which I believe is an argument for why they developed the model presented in their 

paper. I can easily imagine that the model presented here will outperform the CANYON model for prediction on 

the East China Sea shelf, but I think it would be interesting for the authors to demonstrate this: The CANYON 

model appears to be freely available online, and it would be interesting to see how much better a model trained 

speficially for the East China Sea shelf will outperform one developed for the global ocean. 

 

We would like to thank the referee very much for his suggestion. We applied the CANYON model developed by Sauzède et 

al. (2017) to exploratory dataset, result showed that the ANN model presented here outperformed the CANYON model 

developed for the global ocean for predicting pHT on the ECS shelf. We will add the corresponding information in the revised 

manuscript—as follows II. 187-194 of the revised manuscript: 

 

Sauzède et al. (2017) developed a neural network method to estimate pH with RMSE of 0.02 in the global ocean. As a further 

comparison we applied the CANYON model developed by Sauzède et al. (2017) to our coastal exploratory dataset (Fig. 8b), 

and obtained an RMSE of 0.09 and MAE of 0.06. It is not surprising that the ANN model (developed here for the ECS shelf) 

outperforms the CANYON model (developed for the global ocean) for predicting pHT on the ECS shelf. The carbon chemistry 

parameters in this region are not only under the direct impact of Taiwan Warm Current and remote control of the Kuroshio 

water intrusion into the shelf, but are also significantly controlled by seasonal variations of the Changjiang discharge (e.g., 

Isobe and Matsuno, 2008; Chen et al., 2008; Chou et al., 2009). Taking into account the highly complex hydrographic, 

biological and chemical conditions, the accuracy of pHT presented is promising. 

 

 

Figure 8 (revised): Comparison of retrieved pHT with corresponding observations for exploratory dataset. (a)-pHT retrieved by the ANN 

model vs observations; (b)-pHT retrieved by CANYON (Sauzède et al., 2017) vs observations. The red circles represent March 2018, the 

blue squares represent July 2018, the green triangles represent October 2018. The 1:1 line is shown in the plot as visual reference. Three 

statistics approaches used are the mean absolute error (MAE), the coefficient of determination (R2), and the root mean squared error (RMSE). 

N represents the number of data points.  

 

Referee comment #1 (by Richard Mills) 

3. Finally, the authors perform an intersting study in which they use prognostic variables from the Changjian Biology 

Finite-Volume Coastal Ocean Model (FVCOM) as input to their ANN model in order to recover the pHT. I am not 

a marine biogeochemistry modeler, so perhaps I am missing something obvious, but I am guessing that mechanistic 

models like FVCOM can provide prognostic pHT. Is this available from the FVCOM runs that were used, or could 

it be obtained using FVCOM, or ROMS, or another, similar model? If so, how would the prognostic pHT from 

FVCOM (or similar) compare to the pHT from the authors’ own ANN model? And what is the motivation for using 

the ANN? Is it because it can potentially provide a more accurate pHT, or because it can provide pHT for situations 
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in which it is not desirable to run a forward simulation or reanalysis to get the pHT, or some other reason? This 

may be obvious to an marine biogeochemist, but I and many of the readers of GMD don’t have this expertise. The 

motivation needs to be explained for the general GMD audience. 

 

We fully agree with the referee. We will compare the prognostic pHT from FVCOM with retrieved pHT from our ANN model 

and add the following sentence to the paragraph in II. 222-225 of the revised manuscript: 

 

Comparisons of monthly average pHT from the Changjiang Biology FVCOM model with pHT retrieved by the ANN model 

suggested that the ANN model can potentially provide a more accurate pHT (Fig. S3). The possible reason was that the 

carbonate system from the Changjiang Biology FVCOM was not optimized due to challenges obtaining sufficient boundary 

information. 

 

 

Figure S3 (revised): Comparison of monthly average pHT on the East China Sea shelf. Blue solid line represents retrieved pHT by the ANN 

model using Changjiang Biology FVCOM output; green solid line represents simulated pHT by the Changjiang Biology FVCOM; red points 

show monthly average pHT observations from 2013-2016. (a)-surface; (b)-bottom. 

 

Referee comment #1 (by Richard Mills) 

4. Detailed comments:  

Lines 34-35: The authors state, while comparing ANNs to multiple linear regression, that ANNs have the advantage of 

not requiring ’an a priori model but rather "learn" the model from existing data’. I think it would be more precise to 

say that they are nonparametric models and do not require assuming any underlying statistical distribution.  

 

We agree with the referee. See II. 37-38 of the revised manuscript: 

they do not require an a priori model but rather “learn” the model from existing data may be a greater flexibility and versatility 

in modelling complex nonlinear relationships. 
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Lines 75 and 78: The authors say that samples were "poisoned" by addition of HgCl2. I think it may be more idiomatic 

to say "sterilized".  

 

We agree with the referee. See Lines 79 and 86 of the revised manuscript: 

poisoned sterilized 

 

Line 81: "The final number of data used by the ANN model was 1854". I would say the final number of "observations" 

or "records", to be precise.  

 

We agree with the referee. See Lines 93-94 of the revised manuscript: 

The final number of observations in the confirmatory dataset was 1854 (see Table 1 for more detailed information on the field 

survey). 

 

Line 94: The authors talk about a model being "over-matched". I believe that "overfitted" is the term they mean.  

 

We agree with the referee. See Line 107 of the revised manuscript: 

the testing set was used to monitor whether the model was over-fittedmatched 

 

 

 

Referee comment #2  

1. Choice of inputs: A total of nine variables were used as inputs to the ANN, six of which were direct measurements 

(T, S, DO, N, P, and Si). Lines 105-107 notes "We found geographical information to be a powerful addition in 

improving the skill of the method (see Table 2), allowing the network to learn spatio-temporal patterns that could 

not be explained by other input variables (Sasse et al., 2013)." Adding geographical information does appear to 

improve the performance for the initial model training (Table 2). However, the cruise tracks are only sampling 

certain latitudes lead to a biased sampling. BUT can this lead to a geographically biased training? This bias may 

not be apparent even in the validation using data from three cruises, since they too are in same bands as before. 

But when applied to data from FVCOM, there are biases reported in Figure 5. Is it possible that the model is not 

generalized enough for other regions? 

 

We agree with the referee. The model is not generalized enough for other regions. This model was trained using cruises datasets 

on the ECS shelf, can be applied to retrieve pHT on the ECS shelf. But this approach can be applied to other regions to predict 

pH by suitably adapting the input variables and network structure using local datasets. 

 

2. Lines 100-109 explains the choice of variables for all but one variable "month". I assume the variable was added 

to capture the seasonality. However, a significant bias was still reported in August 2013, and July 2016. These 

biases are being attributed to sudden increase in the river discharge, but did that not affect July 2014, 2015, 2017? 

What is the role "month" is playing in the ANN model? Once trained is the expectation for the model to be able to 

interpolate between the month when the samples were not taken? 
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In order to retrieve monthly pHT, the monthly T, S, DO, N, P and Si from the Changjiang Biology Finite-Volume Coastal 

Ocean Model (FVCOM) (http://47.101.49.44/wms/demo) were fed into the ANN model as input variables. Here a significant 

bias was reported in August 2013 and July 2016. See Lines 229-232 of the revised manuscript: 

 

Overall, the retrieved pHT agrees well (within the ANN model accuracy: ANN±RMSE) with the observed values at the surface, 

except for three samples in summer (Fig. 10). There are relatively large deviations (greater than the RMSE of 0.04) in August 

2013 at station A1-5 and A6-9, and in July 2016 at station A8-5. 

The reduced performance in summer can be attributed in large part a reduced performance of the Changjiang Biology FVCOM 

in predicting summertime input variables S, DO, and nutrients (Fig. S2). See Lines 219-222 of the revised manuscript: 

 

Comparisons of monthly-average FVCOM model variables with surface and bottom observations on the ECS shelf showed 

that simulated T was close to observed values (Fig. S2a), simulated S was also close to observed values except at the bottom 

in August 2013 and at the surface in July 2016 (Fig. S2b), simulated DO was higher than observed at the bottom (Fig. S2c), 

and simulated nutrients were higher than observed at the surface (Fig. S2d-S2f). 

 

Figure S2: Comparison of monthly-average environmental variables from the Changjiang Biology FVCOM with the corresponding 

observations at the surface and bottom on the East China Sea shelf. Blue and green solid lines represent surface and bottom simulated data 

from the Changjiang Biology FVCOM, respectively; red and black points show surface and bottom observation data from 2013 to 2016, 

respectively. (a)-temperature; (b)-salinity; (c)-dissolved oxygen; (d)-nitrate; (e)-phosphate; (f)-silicate. 

 

The variable “month” was added to capture the seasonality. The reliability of the ANN model was evaluated using independent 

observations from 3 cruises (March, July, and October) in 2018, and showed a root mean square error accuracy of 0.04. The 

cruise dataset during October was not used in ANN model development.  

 

3. ANN application to FVCOM: Inputs to the ANN models training, based on cruise observations, were instantaneous 

measurements. What was the spatial resolution, time step and temporal output frequency from FVCOM model to 

provide comparable outputs. If monthly averages were used, please comment on applicability and validity of 

applying model trained based on instantaneous measurements to monthly averages? 

 

We agree with the referee. We will compare monthly input variables from FVCOM model with instantaneous observations 

and add the following sentence to the paragraph in II. 217-222 of the revised manuscript: 
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The resolution of the Changjiang Biology FVCOM output is 1-10 km in the horizontal, 10 depth levels in the vertical, and day 

in the temporal (refered Ge et al., (2013) for detail information). Comparisons of monthly-average FVCOM model variables 

with surface and bottom observations on the ECS shelf showed that simulated T was close to observed values (Fig. S2a), 

simulated S was also close to observed values except at the bottom in August 2013 and at the surface in July 2016 (Fig. S2b), 

simulated DO was higher than observed at the bottom (Fig. S2c), and simulated nutrients were higher than observed at the 

surface (Fig. S2d-S2f). 

 

4. Application to FVCOM, scales the model to extended space and time, which I think is a key strength and 

contribution of this work. Spatial bias has been discussed and reported in the manuscript, but it would 

be important to discuss the model performance in time. Cruise observations were only from select few 

months, but is the model able to fill in between the seasons reasonably? And if yes, why? If no, why not? 

Final output of ANN applied to FVCOM data would be a time series of full spatial data i.e. pixel-wise 

pH estimate for ECS. That product is a key contribution that should be included in the manuscript, and 

spatial and temporal patterns of the outputs should be discussed. 

 

We agree with the referee, we trained the ANN model only using few months observations. In order to assess the ability of the 

ANN model to fill in other months not used in ANN model development, we applied it to October (not used) in 2018 with a 

root mean square error accuracy of 0.04; we also added spatial and temporal patterns of ANN-derived pHT. See Section 3.4.2 

of the revised manuscript, as follows: 

3.4.2 Spatial and temporal patterns of ANN-derived pHT  

The temporal and spatial variations of monthly surface pHT from 2000-2016 based on Changjiang Biology FVCOM output 

are shown in Figure 13. During the dry season (November to March of the next year), pHT values vary from ~7.62 to ~8.24. 

Relatively higher pHT values are found in the southeastern of the study area (Chou et al., 2011), whereas lower pHT values 

are found in the northeastern of the study area. During the wet season (April to October), pHT values vary from ~7.77 to ~8.35, 

water of higher pHT corresponded well to the seasonal dispersion of the Changjiang Dilute Water (Chou et al., 2009, 2013). 

Water of higher pHT is found in the center of the study area during April, spreads to the southwestern part of the study area 

(along the coast of China) during May and June, shifts to the northeastern part of the study area during August. In September 

and October, water of higher pHT is found in the southeastern part of the study area, strongly influenced by the Taiwan Warm 

Current (Qu et al., 2015). 

A clear seasonality is that surface pHT gradually increases during spring (March to May), after which it gradually decreases 

during summer and fall (June to November) (Fig. 14). The surface pHT displays its maximum in May and minimum in 

December, and the pHT varies seasonally by up to ~0.3 unit. Larger changes in pH were also discovered in the Washington 

Shelf, the pH varied ~1.0 unit over the seasons and ~1.5 unit spanning 8 years (Wootton et al., 2008). Accordingly, seasonal 

dynamics of surface pHT can be mainly attributed to temperature changes and strong biological activities (production and 

respiration processes) over the season. From March to June, a rapid increase in surface pHT indicates that production 

increases faster than respiration, which can be reflected in the drop in surface phosphate (Fig. S5d) and apparent oxygen 

utilization (AOU) (Fig. S5c). It may be driven by the Changjiang discharge (Fig. S4), which carries large amount of nutrients, 

result in stronger primary production in warm seasons under the combined action of nutrients and suitable temperature (Gong 

et al., 2011). From July to October, although surface temperature remains at a high level (Fig. S5a), the rise in surface AOU 
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(Fig. S5c) suggest a decrease in primary production or increase of respiration, which leads to a gradual drop in surface pHT 

(Wootton et al., 2012). It implies respiration processes dominate relative to primary production during summer and fall.  

 

Figure 13: Spatial distribution of monthly average surface pHT retrieved by the ANN model using Changjiang Biology FVCOM output. (a)-

January; (b)-February; (c)-March; (d)-April; (e)-May; (f)-June; (g)-July; (h)-August; (i)-September; (j)-October; (k)-November; (l)-

December. 
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Figure 14: Seasonal cycles of surface pHT on the East China Sea shelf from 2000-2016. The green circles represent monthly regional 

average, the blue dashed represents mean value of each month. 

 

 

Figure S4: Monthly average water discharge and its standard deviation (DaTong Station, data derived from the Hydrological Information 

Center of China, http://www.hydroinfo.gov.cn/).  
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Figure S5: Seasonal cycles of surface T (a), S (b), AOU (c), and P (d) from Changjiang Biology FVCOM output on the East China Sea 

shelf from 2000-2016. The green circles represent monthly regional average, the blue dashed represents mean value of each month. 

 

5. Variable importance in the ANN model: The methodology here is not clear to me. What does adding 5% to 

environmental variable separately means? Is this a perturbation to the data to test its sensitivity? In either case, I 

am not at all convinced that this can be quantified as variable importance. There also is mention of "variable with 

greatest weight was DO, followed by S and T". What weights are looking at here, is this from the final trained 

model? From first layer, from second layer, or both? This section need additional detail and discussion to convey 

and convince the interpretation of variable importance. 

 

We agree with the referee. We only want to test the ANN model sensitivity to environmental input variables, and we re-wrote 

section 3.3. See Section 3.3 of the revised manuscript, as follows: 

3.3 ANN model sensitivity to environmental input variables 

To assess the ANN model sensitivity to different environmental input variables, we added 5% perturbation for each 

environmental variable separately. Statistically, with 5% T errors added, the ANN model showed slight overestimation in pHT, 

with mean bias (MB) of 0.0059, RMSE of 0.0079, and R2 of 0.9949 (Fig. 9a); with 5% DO errors added, the ANN model also 

showed slight pHT overestimation, with MB of 0.0050, RMSE of 0.0090, and R2 of 0.9934 (Fig. 9c); with 5% S errors added, 

the ANN model showed overestimation in pHT, with MB of -0.0111, RMSE of 0.0162, and R2 of 0.9789 (Fig. 9b). These results 

suggested that the ANN model responded to T and DO errors in a positive way, S errors in a negative way. The positive 

response to increasing DO reflects positive correlation between pHT and DO (Cai et al., 2011), which can be attributed to the 

processes of photosynthesis (generating DO and removing CO2, hence increasing pH) and aerobic respiration (consuming 
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DO and generating CO2, hence lowering pH); the negative response to increasing S reflects the influence of the (lower salinity) 

Changjiang discharge, carrying large amounts of nutrients that fuel increased primary production (uptake of nutrients and 

CO2, hence raising the pH) in surface waters during warm seasons (Gong et al., 2011). It was found that the ANN model was 

insensitive to nutrients errors (Fig. 9d-9f) and most sensitive to S errors (Fig. 9b), followed by DO and T errors. 

 

 

Figure 9: Sensitivity of the ANN model for environmental input variables. (a)-temperature (T); (b) salinity (S); (c)-dissolved oxygen (DO); 

(d)-nitrate (N); (e)-phosphate (P); (f)-silicate (Si). Three statistics approaches used are the mean bias (MB), the root mean squared error 

(RMSE), and the coefficient of determination (R2). N represents the number of data points. 

 

6. In Figures 9 and 11, I am unable to understand what "ANN Model - RMSE" and "ANN Model + RMSE", 

and thus the related discussions. 

 

“ANN model + RMSE” and “ANN model - RMSE” represent upper and lower bounds of the ANN model accuracy. See Figure 

10 (Line 533) and 12 (Line 541) of the revised manuscript. 

 

Referee comment #1 and #2 

There are problems with low resolution for all of the figures. Figure 1 is not really even readable. Figures need to be 

re-generated with much higher resolution, or using vector, rather than raster, formats.              From comment#1 

Please improve the quality of figures 1 and 6, as they are difficult to read and follow.                  From comment#2 

 

We agree with the referees. Figures will be re-generated with higher resolution or using vector. As follows: 
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Figure 1 (revised): Sampling stations during 11 cruises (the confirmatory dataset) from 2013 to 2017 on the East China Sea shelf. 

 

 

Figure 2 (revised): Sampling stations for three cruises (the exploratory dataset) used to extend the utility of the ANN model. The 

green circles represent March 2018, the purple squares represent July 2018, the red triangles represent October 2018. 
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Figure 3 (revised): Schematic representation of the neural network algorithm to retrieve pHT. (a)-the architecture of the ANN model. 

Input variables are observed temperature, salinity, dissolved oxygen, nitrate, phosphate, and silicate together with the geolocation 

(longitude and latitude) and time (month) of sampling; (b)-data distribution diagram for training and prediction. 

 

Figure 4 (revised): Comparison of the performance of one hidden layer vs. two hidden layers in predicting independent validation 

data. The number of neurons in the first hidden layer was the same in the one hidden layer vs. two hidden layers model, numbers in 

parentheses show the number of neurons in the second hidden layer (for the two hidden layers model). Bars show the mean and 

standard deviation of the Root-Mean-Square-Error over a ten-fold cross-validation, for different numbers of neurons in the first 

hidden layer. 
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Figure 5 (revised): Comparison of the performance of different training functions and transfer functions on independent validation 

data. (a)-three training functions: Gradient descent backpropagation (trainGD), Levenberg-Marquardt backpropagation (trainLM), 

and Scaled conjugate gradient backpropagation (trainSCG); (b) three transfer functions: Log-sigmoid transfer function (logsig), 

Hyperbolic tangent sigmoid transfer function (tansig), and Positive linear transfer function (poslin). Bars show the mean and 

standard deviation of the Root-Mean-Square-Error over a ten-fold cross-validation, for different numbers of neurons in the first 

hidden layer. 

 

 

Figure 6 (revised): Comparison of pHT retrieved by the ANN model with corresponding observations. (a)-Training data (90% of 

confirmatory dataset); (b)-Independent validation data (10% of confirmatory dataset); (c)-Histogram of residuals for confirmatory 

dataset. The 1:1 line is shown in each plot as visual reference. Three statistics are the mean absolute error (MAE), the coefficient of 

determination (R2), and the root mean squared error (RMSE). N represents the number of data points. 
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Figure 7 (revised): Box plots of the differences between retrieved pHT minus the observations. (a)-the differences vs longitude 

(Mean±SE); (b)-the differences vs latitude (Mean±SE). The height of each box represents the mean value of the differences, the 

whisker represents the standard error (SE) value of the differences. 

 

Figure 8 (revised): Comparison of retrieved pHT with corresponding observations for exploratory dataset. (a)-pHT retrieved by the 

ANN model vs observations; (b)-pHT retrieved by CANYON (Sauzède et al., 2017) vs observations. The red circles represent March 

2018, the blue squares represent July 2018, the green triangles represent October 2018. The 1:1 line is shown in the plot as visual 

reference. Three statistics approaches used are the mean absolute error (MAE), the coefficient of determination (R2), and the root 

mean squared error (RMSE). N represents the number of data points.  
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Figure 9 (revised): Sensitivity of the ANN model for environmental input variables. (a)-temperature (T); (b) salinity (S); (c)-dissolved 

oxygen (DO); (d)-nitrate (N); (e)-phosphate (P); (f)-silicate (Si). Three statistics approaches used are the mean bias (MB), the root 

mean squared error (RMSE), and the coefficient of determination (R2). N represents the number of data points. 

 

Figure 10 (revised): Comparison of surface pHT retrieved by the ANN model using Changjiang Biology FVCOM output with 

corresponding observations at six sites repeated sampling for 3 to 4 years. Red dots represent observations pHT, blue solid line 

represents retrieved pHT, black dotted lines represent upper and lower bounds of the ANN model accuracy (ANN ± RMSE). (a)-

station A1-5; (b)-station A1-6; (c)-station A6-7; (d)-station A6-9; (e)-station A7-5; (f)-station A8-5. 
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Figure 11 (revised): Comparison of water column pHT retrieved by the ANN model using Changjiang Biology FVCOM output with 

corresponding observations at six sites repeated sampling for 3 to 4 years. The 1:1 line is shown in the plot as a visual reference. 

Skill statistics include the mean absolute error (MAE), the coefficient of determination (R2), and the root mean squared error 

(RMSE). N represents the number of data points. 

 

Figure 12 (revised): Comparison of monthly average pHT on the East China Sea shelf. Blue solid line represents retrieved pHT by 

the ANN model using Changjiang Biology FVCOM output; black dotted lines represent upper and lower bounds of the ANN model 

accuracy (ANN ± RMSE); red points show monthly-average pHT observations from 2013 to 2016. (a)-surface; (b)-bottom. 
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Figure 13 (revised): Spatial distribution of monthly average surface pHT retrieved by the ANN model using Changjiang Biology 

FVCOM output. (a)-January; (b)-February; (c)-March; (d)-April; (e)-May; (f)-June; (g)-July; (h)-August; (i)-September; (j)-

October; (k)-November; (l)-December. 
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Figure 14 (revised): Seasonal cycles of surface pHT on the East China Sea shelf from 2000-2016. The green circles represent monthly 

regional average, the blue dashed represents mean value of each month. 

 

 

 

 

Figure S1 (revised): Comparison of three transfer functions. (a)-Log-sigmoid transfer function (logsig); (b) Hyperbolic tangent 

sigmoid transfer function (tansig); (c)-Positive linear transfer function (poslin). 
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Figure S2 (revised): Comparison of monthly-average environmental variables from the Changjiang Biology FVCOM with the 

corresponding observations at the surface and bottom on the East China Sea shelf. Blue and green solid lines represent surface and 

bottom simulated data from the Changjiang Biology FVCOM, respectively; red and black points show surface and bottom 

observation data from 2013 to 2016, respectively. (a)-temperature; (b)-salinity; (c)-dissolved oxygen; (d)-nitrate; (e)-phosphate; (f)-

silicate. 

 

Figure S3 (revised): Comparison of monthly average pHT on the East China Sea shelf. Blue solid line represents retrieved pHT by 

the ANN model using Changjiang Biology FVCOM output; green solid line represents simulated pHT by the Changjiang Biology 

FVCOM; red points show monthly average pHT observations from 2013-2016. (a)-surface; (b)-bottom. 
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Figure S4 (revised): Monthly average water discharge and its standard deviation (DaTong Station, data derived from the 

Hydrological Information Center of China, http://www.hydroinfo.gov.cn/).  

 

Figure S5 (revised): Seasonal cycles of surface T (a), S (b), AOU (c), and P (d) from Changjiang Biology FVCOM output on the East 

China Sea shelf from 2000-2016. The green circles represent monthly regional average, the blue dashed represents mean value of 

each month.  
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Retrieving monthly and interannual pHT on the East China Sea shelf 1 

using an artificial neural network: ANN-pHT-v1 2 
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Abstract. While our understanding of pH dynamics has strongly progressed for open ocean regions, for marginal seas such as 7 

the East China Sea (ECS) shelf progress has been constrained by limited observations and complex interactions between 8 

biological, physical, and chemical processes. Seawater pH is a very valuable oceanographic variable but not always measured 9 

using high quality instrumentation and according to standard practices. In order to predict total scale pH (pHT) and enhance 10 

our understanding of the seasonal variability of pHT on the ECS shelf, an artificial neural network (ANN) model was developed 11 

using 11 cruise datasets from 2013 to 2017 with coincident observations of pHT, temperature (T), salinity (S), dissolved oxygen 12 

(DO), nitrate (N), phosphate (P) and silicate (Si) together with sampling position and time. The reliability of the ANN model 13 

was evaluated using independent observations from 3 cruises in 2018, and showed a root mean square error accuracy of 0.04. 14 

A weight analysis of the ANN model variables suggested that DO, S, T were the most important predictor variables. The ANN 15 

model responded to T and DO errors in a positive way, S errors in a negative way, and the ANN model was most sensitive to 16 

S errors, followed by DO and T errors. Monthly water column pHT for the period 2000-2016 was retrieved using T, S, DO, N, 17 

P, and Si from the Changjiang Biology Finite-Volume Coastal Ocean Model (FVCOM). The agreement is good here in winter, 18 

while the reduced performance in summer can be attributed in large part to limitations of the Changjiang Biology FVCOM in 19 

simulating summertime input variables. 20 

1 Introduction 21 

Atmospheric carbon dioxide (CO2) levels have increased by nearly 46%, from approximately 278 ppm (parts per million) in 22 

1750 (Ciais et al., 2013) to 405 ppm in 2017 (Le Quéré et al., 2018). The oceans have absorbed approximately 48% of the 23 

anthropogenic CO2 emissions (Sabine et al., 2004), resulting in decreasing long-term pH trends of ~0.02 decade-1 in open 24 

ocean waters (e.g., Dore et al., 2009; González-Dávila et al., 2010; Bates et al., 2014; Lauvset et al., 2015). While a gradual 25 

decrease in pH is a predictable open ocean response to elevated anthropogenic CO2 emissions, the seasonal changes and long-26 

term trends in pH in coastal seas have not been fully understood due to the lack of long-term pH data and complexity of coastal 27 

systems. In this context, the development of approaches to predict carbonate chemistry parameters in coastal regions may 28 

assist both the management of local water quality and our wider understanding of the ocean carbon cycle.   29 

Many attempts have been made to predict seawater pH by developing empirical relationships between pH and environmental 30 

variables, such as temperature (T) (Juranek et al., 2011), salinity (S) (Williams et al., 2016), dissolved oxygen (DO) (e.g., 31 

Juranek et al., 2011; Sauzède et al., 2017), nutrients (e.g., Williams et al., 2016; Carter et al., 2016, 2018), and longitude, 32 

latitude (Sauzède et al., 2017). Compared with traditional empirical methods, artificial neural networks (ANNs) have shown 33 

improved performance (Chen et al., 2017). ANNs have been proposed as powerful tools for modelling uncertain and complex 34 

systems such as ecosystems and environmental assessment (e.g., Olden and Jackson, 2002; Olden et al., 2004; Uusitalo, 2007; 35 

Raitsos et al., 2008; Chen et al., 2017). Their main advantage compared with multiple linear regression (MLR) models is that 36 

they do not require an a priori model but rather “learn” the model from existing data may be a greater flexibility and versatility 37 

in modelling complex nonlinear relationships. ANNs have been used for the retrieval of the partial pressure of carbon dioxide 38 

(pCO2) (e.g., Friedrich and Oschlies, 2009; Laruelle et al., 2017), total alkalinity (e.g., Velo et al., 2013; Bostock et al., 2013; 39 

Sasse et al., 2013), total dissolved inorganic carbon (e.g., Bostock et al., 2013; Sasse et al., 2013), and phytoplankton functional 40 
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types (e.g., Raitsos et al., 2008; Palacz et al., 2013). However, these studies mainly focus on the open ocean; relatively few 41 

studies have focused on coastal seas, perhaps because of the complexity and heterogeneity of the continental shelves. Alin et 42 

al. (2012) developed an MLR model to reconstruct pH in the southern California Current System, while Moore-Maley et al. 43 

(2016) evaluated the interannual variability of near-surface pH using a one dimensional, biophysical, mixing layer model in 44 

the Strait of Georgia. To our knowledge, no empirical relationship for pH has yet been established for the ECS. 45 

The ECS is the largest marginal sea in the western North Pacific Ocean and receives massive terrestrial inputs from the 46 

Changjiang (Yangtze River) River (Gong et al., 1996). The shelf shallower than 200 m covers more than 70% of the entire 47 

ECS (e.g., Ichikawa and Beardsley, 2002; Lie and Cho, 2016), where the dominant currents present seasonal circulation 48 

patterns. The spatial and temporal distributions of the carbonate system have been investigated in the ECS (e.g., Chou et al., 49 

2009; Cao et al., 2011; Qu et al., 2015), and were found to largely reflect the distributions of various water masses. The pattern 50 

of carbon sources and sinks exhibits substantial seasonal variation (Guo et al., 2015), and the ECS is generally considered as 51 

a sink of atmospheric CO2 throughout the year except in fall (e.g., Shim et al., 2007; Zhai and Dai, 2009). A mechanistic semi-52 

analytical algorithm (MeSAA) was developed to study pCO2 variations in response to various controlling mechanisms during 53 

summertime (Bai et al., 2015). However, the seasonal variability of pH has been very little studied in the ECS, mainly due to 54 

the limited observational coverage and irregular variability caused by seasonal fluctuations of the Changjiang River discharge 55 

and anthropogenic processes. Developing methods to extend the seasonal coverage of pH data may thus help to improve our 56 

understanding of the ocean carbon cycle in the ECS. 57 

This paper is structured as follows: section 2 describes the cruise data used to build the and ANN model building; section 3 58 

shows the performance, sensitivity and application of the ANN model performance and predictor variable importance, as well 59 

as an application to retrieve monthly pH for the period 2000-2016 on the ECS shelf using the monthly temperature, salinity, 60 

dissolved oxygen, nitrate, phosphate and silicate from the Changjiang Biology Finite-Volume Coastal Ocean Model (FVCOM). 61 

Summary and cConclusions and perspectives are summarized in the last section. 62 

2 Data and method 63 

2.1 Data 64 

Ten Eleven cruises were conducted on the ECS shelf from 2013 to 2017 (Fig. 1). Ten of these were carried out during the 65 

“Fund Committee Innovation Group Project” (Y22323101B) from 2013 to 2017 (Fig. 1), the summer cruise from 17 to 28 66 

August 2013, 10 to 17 July 2014, 9 to 20 July 2015, 4 to 28 July 2016, 20 to 30 July 2017, the winter cruise from 21 to 28 67 

February 2014, 15 to 28 February 2017, the spring cruise from 4 to 20 March 2013, 11 to 21 March 2015, 7 to 19 March 2016;. 68 

the remaining cruise was carried out on the ECS shelf during 12–24 May 2017. Water samples were collected at three or four 69 

different depths during all cruises. T and S profiles were obtained directly using a conductivity temperature-depth/pressure 70 

(CTD) recorders (SBE 25plus or 911plus). Measurement of DO followed the Winkler procedure, as described previously by 71 

Zhai et al. (2014). Nutrients samples were first filtered with 0.45 μm Whatman GF/F membrane, then stored in 250 mL HDPE 72 

bottles until chemical analysis. Nitrate (N), phosphate (P) and silicate (Si) were determined using a segmented flow analyzer 73 

(Model: Skalar SANPLUS, Netherlands) with a precision < 3% (Zhang et al., 2007), the detection limits are 0.14 μM for N, 0.06 74 

μM for P, and 0.07 μM for Si.  During the May 2017 survey, pH samples were stored in 500 mL high-quality borosilicate glass 75 

bottles without filtering and poisoned by addition of 200 μL saturated HgCl2 solution until measured in the lab. The pHT (total 76 

scale) was measured using an Automated Flow-through system for Embedded Spectrophotometry (AFtes) with a precision of 77 

0.0005 pHT unit and uncertainty of < 0.003 (Reggiani et al., 2016). During all other cruises, pH samples were stored in 140 78 

mL brown borosilicate glass bottles and poisoned sterilized by addition of 50 μL saturated HgCl2 solution. Three traceable pH 79 

buffers were used including NIST (National Institute of Standards and Technology) buffers pH = 4.00, 7.02, 10.09. As 80 
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described by Zhai et al. (2012, 2014), we converted it into total scale by subtracting 0.143 and the overall accuracy of the pHT 81 

data was estimated as 0.01.  82 

Three cruises were carried out on the ECS shelf in 2018 (Fig. 2) during the “National Natural Science Foundation Shared 83 

Voyage Plan”, from 10 to 19 March, 12 to 20 July, 12 to 21 October, and one cruise was carried out near the Changjiang 84 

Estuary during May 2017 (Fig. 1). The measurement methods of T, S, DO, and nutrients are the same as that of the above ten 85 

voyages. pH samples were stored in 500 mL high-quality borosilicate glass bottles without filtering and sterilized by addition 86 

of 200 μL saturated HgCl2 solution until measurement in the lab. The pHT was measured at the temperature in the flow cell 87 

using an Automated Flow-through system for Embedded Spectrophotometry (AFtes) with a precision of 0.0005 pH unit and 88 

uncertainty of < 0.003 (Reggiani et al., 2016). Water samples were collected at three or four different depths during all cruises. 89 

We omitted data points where one or more other physical variables were missing. The final number of data used by the ANN 90 

model was 1854, and the distribution of the sampling sites from the 11 cruises is shown in Fig. 1. The three cruises during 91 

2018 (Fig. 2) were used to estimate model predicted performance as an exploratory dataset, while the remaining eleven cruises 92 

(Fig. 1) were used to train the model as a confirmatory dataset. The final number of observations in the confirmatory dataset 93 

was 1854 (see Table 1 for more detailed information on the field survey). 94 

2.2 Artificial neural network development  95 

The ANN we used is a feed-forward multilayer perceptron (Tamura and Tateishi, 1997) with two hidden layers. The neurons 96 

of each layer are connected with the neurons of the previous layer and the next layer by weights (Fig. 23a). The coefficients 97 

of the weight matrix are iteratively tuned in the training step. Here we used the back-propagation conjugate-gradient technique 98 

(Hornik et al., 1989). In order to avoid overfitting, a ten-fold cross-validation was used to assess model prediction accuracy 99 

(Fig. 3b). Here, the cruise data were the confirmatory dataset was randomly divided into ten equal subsamples. One subsample 100 

was used as the independent validation data (10% of all cruise data the confirmatory dataset), which and was always excluded 101 

from training; and the remaining nine remaining subsamples were together used as training data (90% of all cruise data the 102 

confirmatory dataset). The training data were further divided randomly into a training set (70% of the training data), validation 103 

set (15% of the training data), and testing set (15% of the training data) during the training process. The training set was used 104 

for computing the gradient and updating the network weights and biases. T; the validation set was used to monitor the error 105 

and control model stop during the training process, and the testing set was used to monitor whether the model was over-106 

fittedmatched (Palacz et al., 2013). We compared performances in predicting the independent validation data from the ten-fold 107 

cross-validation and selected the optimal model based on the lowest root mean square error (RMSE). Then we applied the 108 

optimal model to the exploratory dataset (Fig. 2) and evaluated model performance by calculating error statistics. In our study, 109 

calculations were done in the MathWorks Matlab environment, using the Deep Learning Toolbox. 110 

First, we compared the performance of one hidden layer vs. two hidden layers in predicting independent validation data. The 111 

number of neurons varied from 22 to 28 for the first hidden layer and was fixed at four in the second hidden layer for the two 112 

hidden layers model; the number of neurons in the first layer was the same in the one hidden layer vs. two hidden layers model 113 

(Fig. 4), The ten-fold cross-validation showed that the model with two hidden layers performed better as the number of neurons 114 

increased. Second, in order to choose suitable training techniques and activation functions of the ANN model with two hidden 115 

layers, we tested three training functions (Gradient descent backpropagation (trainGD), Levenberg-Marquardt 116 

backpropagation (trainLM), and Scaled conjugate gradient backpropagation (trainSCG)), which differed in how the weights 117 

are modified, and three transfer functions (Log-sigmoid transfer function (logsig), Hyperbolic tangent sigmoid transfer 118 

function (tansig), and Positive linear transfer function (poslin)) (Fig. 5). The output values of logsig, tansig and poslin were 119 

compressed onto [0, 1], [-1, 1], and [0, +∞], respectively (Fig. S1). As the number of neurons increased, the performances of 120 

trainGD and tansig became poor. Although there was no obvious difference between trainLM and trainSCG, the training 121 

technique trainSCG was selected and transfer function logsig was applied to two hidden layers considering the overall 122 
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performance (Fig. 5). Third, in the training phase of the ANN model, the number of neurons was tested, varying from 4 to 128 123 

for two hidden layers (Table S1). Best performance for both training data and independent validation data was obtained with 124 

40 neurons in the first hidden layer and 16 neurons in the second layer. Finally, dDifferent combinations of input variables 125 

were tested to choose the optimal architecture of the ANN model (Table 2); best performance was obtained using As shown 126 

in Fig. 2, input variables include longitude, latitude, month, T, S, DO, N, P and Si as input variables. We selected these variables 127 

as principal inputs for the following reasons The utility of these variables for predicting pH has a strong a priori basis: the 128 

carbonate system thermodynamic relationships depend on T and S (Lueker et al., 2000); DO was expected to vary with pH 129 

and there was a tight positive link a positive correlation is expected between DO and pH (Wootton et al., 2012) because of the 130 

role of photosynthesis and respiration in removing or generating CO2 in the water; various nutrients influence phytoplankton 131 

growth and abundance, which might thereby increaseing organic carbon fixation, increasing inorganic carbon/uptake and 132 

increasing pH (Wootton et al., 2008, 2012). We found geographical information to be a powerful addition in improving the 133 

skill of the method (see Table 2), allowing the network to learn spatio-temporal patterns that could not be explained by other 134 

input variables (Sasse et al., 2013). The number of neurons in the two hidden layers was tested, varying between 1 and 100 for 135 

the first hidden layer and between 1 and 50 for the second hidden layer. The optimal architecture was composed of two hidden 136 

layers with 40 neurons in the first and 16 neurons in the second. 137 

In order to avoid bias towards high-value inputs/outputs and to eliminate the dimensional influence of the data, all data used 138 

by the ANN model were normalized using the following equation (e.g., Sauzède et al., 2015, 2016): 139 

𝑥𝑖,𝑗 =
2

3
∗
𝑥𝑖,𝑗−𝑚𝑒𝑎𝑛(𝑥𝑖,𝑗)

𝜎(𝑥𝑖,𝑗)
          (1)                                         140 

with σ the standard deviation of the considered input variables or output variable pHT. Similar to the approach of Sauzède et 141 

al. (2015, 2016), the longitude and month input variables were transformed as follows to account for the periodicity: 142 

slongitude = sin (
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180
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)  (3) 144 

The latitude variable was transformed into the range of the sigmoid function by dividing by 90 (Sauzède et al., 2015), then 145 

normalized using (1). 146 

3 Result and discussion 147 

3.1 The ANN model performance 148 

To evaluate the performance of the ANN model, we compared model simulated pHT (pHT
M) with corresponding observations 149 

(pHT
O) using several statistical indices, including the mean absolute error (MAE), the coefficient of determination (R2), and 150 

the root mean squared error (RMSE). The model simulated pHT with a RMSE = of 0.04 and R2 = of 0.88 for the training data 151 

(90% of all data, Fig 3a confirmatory dataset, Fig. 6a), and predicted pHT with a RMSE = of 0.03 and R2 = of 0.93 for the 152 

independent validation data (10% of all data, Fig 3b confirmatory dataset, Fig. 6b). The distributions of the differences (pHT
M 153 

- pHT
O) were approximately normal with no obvious outliers (Fig. 4). The histogram of residuals in confirmatory dataset (Fig. 154 

6c) showed that 68% of the residuals were within the RMSE of 0.04. 155 

In order to further explore where the ANN model may lead to large errors, we plotted distributions of differences (pHT
M - 156 

pHT
O) with respect to the longitude and latitude (Fig. 57). The points with large errors are mainly concentrated in the longitude 157 

range [122.5°E, 123°E] and the latitude range [321°N, 32.5°N], in an area strongly influenced by the Changjiang Dilute Water 158 

(CDW). The reduced performance of the ANN model here may be primarily due to the strong seasonal oscillations of the 159 

Changjiang River discharge (Dai and Trenberth, 2002). As a reference, the performance of some other empirical approaches, 160 

including MLR, multi-variate nonlinear regression (MNR), decision tree, random forest, and Support Vector Machine (SVM) 161 

regression, is shown in Table 3. The selected ANN model (Table 2, Model#10) showed better performance than the other 162 
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tested approaches using the same input variables (Table 3). Although the RMSE for pHT we obtained here was higher than 163 

obtained in some previous studies (e.g., Juranek et al., 2011; Williams et al., 2016; Sauzède et al., 2017), their research regions 164 

were open ocean regions, not coastal seas. For example, Juranek et al. (2011) developed empirical algorithms to estimate pH 165 

with RMSE of 0.018 for data between 30-500 m in the NE subarctic Pacific; Williams et al. (2016) also developed empirical 166 

algorithms to predict pH with RMSE of 0.01 in the Southern Ocean; Sauzède et al. (2017) developed a neural network method 167 

to estimate pH with RMSE of 0.02 in the global ocean. However, coastal seas tend to show greater temporal and spatial 168 

variability than open oceans. Alin et al. (2012) developed a MLR approach to reconstruct pH with RMSE of 0.024 in the 169 

southern California Current System. Zhai et al. (2014) compared the field-measured pH with calculated pH from measured 170 

total alkalinity and dissolved inorganic carbon using the program CO2SYS.xls (Pelletier et al., 2011) and obtained 171 

discrepancies with standard deviation 0.05. Carbon chemistry parameters in this region are not only under the direct impact of 172 

Taiwan Warm Current and remote control of the Kuroshio water intrusion into the shelf but also significantly controlled by 173 

seasonal variations of the Changjiang River discharge (e.g., Isobe and Matsuno, 2008; Chen et al., 2008; Chou et al., 2009). 174 

Taking into account the highly complex hydrographic, biological and chemical conditions, the accuracy of pHT presented is 175 

promising. 176 

3.2 Comparison with new field data ANN model validation using the exploratory dataset 177 

To further assess the ability of the ANN model to estimate pHT on the ECS shelf, we applied the ANN model to an exploratory 178 

dataset data from three cruises not used in the ANN model development (Fig. 6): and sampled during March, July, and October 179 

2018 (Fig. 2). Scatterplots of retrieved pHT vs observations (Fig. 78a) showed that the ANN model predicts pHT with an RMSE 180 

of 0.04, MAE of 0.03 and R2 of 0.80 for these cruise data. This result is which is consistent with the result performance of the 181 

training data (Fig. 36a), which further reflects the stability and reliability of the ANN model on the ECS shelf. Although the 182 

RMSE for pHT we obtained here was higher than obtained in some previous studies (e.g., Juranek et al., 2011; Williams et al., 183 

2016; Sauzède et al., 2017), these latter studies considered open ocean regions, not coastal seas. For example, Juranek et al. 184 

(2011) developed empirical algorithms to estimate pH with RMSE of 0.018 for data between 30-500 m in the NE subarctic 185 

Pacific; Williams et al. (2016) also developed empirical algorithms to predict pH with RMSE of 0.01 in the Southern Ocean; 186 

Sauzède et al. (2017) developed a neural network method to estimate pH with RMSE of 0.02 in the global ocean. As a further 187 

comparison we applied the CANYON model developed by Sauzède et al. (2017) to our coastal exploratory dataset (Fig. 8b), 188 

and obtained an RMSE of 0.09 and MAE of 0.06. It is not surprising that the ANN model (developed here for the ECS shelf) 189 

outperforms the CANYON model (developed for the global ocean) for predicting pHT on the ECS shelf. The carbon chemistry 190 

parameters in this region are not only under the direct impact of Taiwan Warm Current and remote control of the Kuroshio 191 

water intrusion into the shelf, but are also significantly controlled by seasonal variations of the Changjiang discharge (e.g., 192 

Isobe and Matsuno, 2008; Chen et al., 2008; Chou et al., 2009). Taking into account the highly complex hydrographic, 193 

biological and chemical conditions, the accuracy of pHT presented is promising. 194 

3.3 Variable importance in the ANN model ANN model sensitivity to environmental input variables 195 

To assess the ANN model sensitivity to relative importance of different environmental input variables in the ANN model, we 196 

added 5% perturbation for each environmental variable separately. Statistically, with 5% T errors added, the ANN model 197 

showed slight overestimation in pHT, with mean bias (MB) of 0.0059, RMSE of 0.0079, and R2 of 0.9949 (Fig. 9a); with 5% 198 

DO errors added, the ANN model also showed slight pHT overestimation, with MB of 0.0050, RMSE of 0.0090, and R2 of 199 

0.9934 (Fig. 9c); with 5% S errors added, the ANN model showed overestimation in pHT, with MB of -0.0111, RMSE of 200 

0.0162, and R2 of 0.9789 (Fig. 9b). These results suggested that the ANN model responded to T and DO errors in a positive 201 

way, S errors in a negative way. we used the following method: for each environmental variable separately, add 5% and 202 

calculate the resulting percentage change in the predicted pHT. Predicted pHT responded positively to (T, DO) and negatively 203 
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to S (Fig. 8). The variable with the greatest weight was DO, followed by S and T, and the weights of nutrients were relatively 204 

small.This is consistent with (Cai et al., 2011) where The positive response to increasing DO reflects positive correlations 205 

between pHT and DO (Cai et al., 2011), which in the Gulf of Mexico and ECS were can be attributed to the processes of 206 

photosynthesis (generating DO and removing CO2, hence increasing pH) and aerobic respiration (consuming DO and 207 

generating CO2, hence lowering pH). Thise negative response to increasing S reflects the influence of the (lower salinity) 208 

Changjiang River discharge, carrying large amounts of nutrients that fuel increased primary production (uptake of nutrients 209 

and CO2, hence raising the pH) in surface waters during warm seasons (Gong et al., 2011). It was found that the ANN model 210 

was insensitive to nutrients errors (Fig. 9d-9f) and most sensitive to S errors (Fig. 9b), followed by DO and T errors. 211 

3.4 ANN model application 212 

3.4.1 Comparison 213 

In order to retrieve monthly pHT on the ECS shelf, the monthly T, S, DO, N, P and Si from the Changjiang Biology Finite-214 

Volume Coastal Ocean Model (FVCOM) (http://47.101.49.44/wms/demo) were fed into the ANN model as input variables. 215 

Monthly pHT for the period 2000-2016 was obtained at the spatial resolution of the Changjiang Biology FVCOM output: 1-10 216 

km in the horizontal, 10 depth levels in the vertical, and 12 months. The resolution of the Changjiang Biology FVCOM output 217 

is 1-10 km in the horizontal, 10 depth levels in the vertical, and day in the temporal (refered Ge et al., (2013) for detail 218 

information). Comparisons of monthly-average FVCOM model variables with surface and bottom observations on the ECS 219 

shelf showed that simulated T was close to observed values (Fig. S2a), simulated S was also close to observed values except 220 

at the bottom in August 2013 and at the surface in July 2016 (Fig. S2b), simulated DO was higher than observed DO at the 221 

bottom (Fig. S2c), and simulated nutrients were higher than observed nutrients at the surface (Fig. S2d-S2f). Comparisons of 222 

monthly average pHT from the Changjiang Biology FVCOM model with pHT retrieved by the ANN model suggested that the 223 

ANN model can potentially provide a more accurate pHT (Fig. S3). The possible reason was that the carbonate system from 224 

the Changjiang Biology FVCOM was not optimized due to challenges obtaining sufficient boundary information. 225 

Considering the discreteness and discontinuity of the sampling sites, we compared retrieved pHT retrieved by the ANN model 226 

using the Changjiang Biology FVCOM output with the corresponding observations at some sites with repeated sampling for 227 

3 to 4 years. These sites were A1-5 (123.0140°E, 32.2145°N), A1-6 (123.2750°E, 32.2679°N), A6-7 (122.9880°E, 30.7050°N), 228 

A6-9 (123.4990°E, 30.5723°N), A7-5 (123.4990°E, 30.2523°N), and A8-5 (123.4930°E, 29.9940°N). Overall, the retrieved 229 

pHT from the Changjiang Biology FVCOM output agrees well (within the ANN model accuracy: ANN±RMSE) with the 230 

observed values at the surface, except for three samples in summer (Fig. 910). There are relatively large deviations (greater 231 

than the RMSE of 0.04) in August 2013 at station A1-5 and A6-9, and in July 2016 at station A8-5. These may be primarily 232 

attributed to the sudden increase in the Changjiang River discharge (Dai and Trenberth, 2002). To illustrate the application 233 

performance in the water column, a scatterplot of retrieved pHT vs observations at six sites with repeated sampling for 3 to 4 234 

years (Fig. 101) showed that the ANN model predicted pHT with a RMSE of 0.05 and R2 of 0.71.  235 

We further compared monthly pHT retrieved by the ANN model using the Changjiang Biology FVCOM output with retrieved 236 

pHT using measured T, S and DO, and in situ measured pHT values (Fig. 112). The agreement is good (within the ANN model 237 

accuracy: ANN±RMSE) here in winter, but large deviations (greater than the RMSE of 0.04) appear in summer. The reduced 238 

performance in summer can be attributed in large part a reduced performance of the Changjiang Biology FVCOM model in 239 

predicting summertime input variables S, DO, and nutrients (Fig. S12); using the observed values of DO, S, etc. as predictor 240 

variables, the skill of the ANN pHT predictions is much improved (RMSE = 0.09 vs. RMSE = 0.02). 241 

3.4.2 Spatial and temporal patterns of ANN-derived pHT  242 

The temporal and spatial variations of monthly surface pHT from 2000-2016 based on Changjiang Biology FVCOM output 243 

are shown in Figure 13. During the dry season (November to March of the next year), pHT values vary from ~7.62 to ~8.24. 244 
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Relatively higher pHT values are found in the southeastern of the study area (Chou et al., 2011), whereas lower pHT values are 245 

found in the northeastern of the study area. During the wet season (April to October), pHT values vary from ~7.77 to ~8.35, 246 

water of higher pHT corresponded well to the seasonal dispersion of the Changjiang Dilute Water (Chou et al., 2009, 2013). 247 

Water of higher pHT is found in the center of the study area during April, spreads to the southwestern part of the study area 248 

(along the coast of China) during May and June, shifts to the northeastern part of the study area during August. In September 249 

and October, water of higher pHT is found in the southeastern part of the study area, strongly influenced by the Taiwan Warm 250 

Current (Qu et al., 2015). 251 

A clear seasonality is that surface pHT gradually increases during spring (March to May), after which it gradually decreases 252 

during summer and fall (June to November) (Fig. 14). The surface pHT displays its maximum in May and minimum in 253 

December, and the pHT varies seasonally by up to ~0.3 unit. Larger changes in pH were also discovered in the Washington 254 

Shelf, the pH varied ~1.0 unit over the seasons and ~1.5 unit spanning 8 years (Wootton et al., 2008). Accordingly, seasonal 255 

dynamics of surface pHT can be mainly attributed to temperature changes and strong biological activities (production and 256 

respiration processes) over the season. From March to June, a rapid increase in surface pHT indicates that production increases 257 

faster than respiration, which can be reflected in the drop in surface phosphate (Fig. S5d) and apparent oxygen utilization 258 

(AOU) (Fig. S5c). It may be driven by the Changjiang discharge (Fig. S4), which carries large amount of nutrients, result in 259 

stronger primary production in warm seasons under the combined action of nutrients and suitable temperature (Gong et al., 260 

2011). From July to October, although surface temperature remains at a high level (Fig. S5a), the rise in surface AOU (Fig. 261 

S5c) suggest a decrease in primary production or increase of respiration, which leads to a gradual drop in surface pHT (Wootton 262 

et al., 2012). It implies respiration processes dominate relative to primary production during summer and fall.  263 

4 Summary and cConclusions and perspectives 264 

We have developed an artificial neural network (ANN) model, demonstrated its reliability, and used it to retrieve monthly pHT 265 

for the period 2000-2016 on the East China Sea shelf. This model predicts the water column pHT using nine input components, 266 

and the three most important environmental input variables were dissolved oxygen, salinity and temperature. We trained this 267 

ANN model using 11 cruise datasets from 2013 to 2017. In order to choose the optimal architecture of the ANN model, we 268 

tested different training and transfer functions, the number of neurons in two hidden layers, and different combinations of input 269 

variables. We also validated the reliability of the ANN model with a root mean square error accuracy of 0.04 using three 270 

cruises in 2018 as exploratory dataset. The ANN model responded to temperature and dissolved oxygen errors in a positive 271 

way, salinity errors in a negative way, and was most sensitive to salinity errors, followed by dissolved oxygen and temperature 272 

errors. We also retrieved monthly-average pHT using the ANN model in combination with input variables from the Changjiang 273 

Biology Finite-Volume Coastal Ocean Model (FVCOM). 274 

The approach has several potential applications. First, it can provide estimates of seawater pHT with known accuracies for the 275 

East China Sea shelf and the period 2013-2018. Within this region the model could be used as a cost-effective way to handle 276 

restrictions of marine observations conducted from ships, such as coarse resolution and under-sampling of carbonate system 277 

variables. Second, while the ANN model is not a replacement for direct measurements of the carbonate system, it may be a 278 

valuable tool for understanding the seasonal variation of pHT in poorly observed regions. Third, this approach can be applied 279 

to other regions to predict pH by suitably adapting the input variables and network structure using local dataset. The MATLAB 280 

code used in this study to develop and apply the ANN model is freely available, and is accompanied by a README file 281 

providing detailed guidance on how to use and adapt the code. 282 

Code and data availability 283 

Matlab code of the ANN model for pHT estimation and datasets are available: 284 
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http://doi.org/10.5281/zenodo.3519219 285 

The monthly-average input variables (T, S, DO, N, P, Si) from the Changjiang Biology Finite-Volume Coastal Ocean Model 286 

and retrieved pHT values from 2000 to 2016 on the East China Sea shelf and three cruises data during 2018 used to evaluate 287 

the ANN model are available: 288 

http://doi.org/10.5281/zenodo.3519236 289 

Requests to access the raw data should be directed to Richard Bellerby: Richard.Bellerby@niva.no 290 

Six stations with repeated sampling for 3 to 4 years and corresponding retrieved pH values from the Changjiang Biology 291 

FVCOM output are available: http://doi.org/10.5281/zenodo.3491747 292 

Video supplement 293 

Monthly distribution of surface pHT on the East China Sea shelf from 2000 to 2016 year: 294 

http://doi.org/10.5281/zenodo.2672943 295 

Profile distribution of pHT at 31°N on the East China Sea shelf from 2000 to 2016 year: 296 

http://doi.org/10.5281/zenodo.2672929 297 
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Figure 1: Sampling stations from during 11 cruises (the confirmatory dataset) from 2013 to 2017 on the East China Sea shelf. 490 

 491 

 492 

 

Figure 2: Sampling stations for three cruises (the exploratory dataset) used to extend the utility of the ANN model. The green circles 493 
represent March 2018, the purple squares represent July 2018, the red triangles represent October 2018. 494 
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 495 

 

Figure 3: Schematic representation of the neural network algorithm to retrieve pHT. (a)-the architecture of the ANN model. Input 496 
variables are observed temperature, salinity, dissolved oxygen, nitrate, phosphate, and silicate together with the geolocation 497 
(longitude and latitude) and time (month) of sampling; (b)-data distribution diagram for training and prediction. 498 

 499 

 

Figure 4: Comparison of the performance of one hidden layer vs. two hidden layers in predicting independent validation data. The 500 
number of neurons in the first hidden layer was the same in the one hidden layer vs. two hidden layers model, numbers in parentheses 501 
show the number of neurons in the second hidden layer (for the two hidden layers model). Bars show the mean and standard 502 
deviation of the Root-Mean-Square-Error over a ten-fold cross-validation, for different numbers of neurons in the first hidden layer. 503 
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Figure 5: Comparison of the performance of different training functions and transfer functions on independent validation data. (a)-506 
three training functions: Gradient descent backpropagation (trainGD), Levenberg-Marquardt backpropagation (trainLM), and 507 
Scaled conjugate gradient backpropagation (trainSCG); (b) three transfer functions: Log-sigmoid transfer function (logsig), 508 
Hyperbolic tangent sigmoid transfer function (tansig), and Positive linear transfer function (poslin). Bars show the mean and 509 
standard deviation of the Root-Mean-Square-Error over a ten-fold cross-validation, for different numbers of neurons in the first 510 
hidden layer. 511 

 

Figure 6: Comparison of pHT retrieved by the ANN model with corresponding observations. (a)-Training data (90% of confirmatory 512 
dataset); (b)-Independent validation data (10% of confirmatory dataset); (c)-Histogram of residuals for confirmatory dataset. The 513 
1:1 line is shown in each plot as visual reference. Three statistics are the mean absolute error (MAE), the coefficient of determination 514 
(R2), and the root mean squared error (RMSE). N represents the number of data points. 515 
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Figure 7: Box plots of the differences between retrieved pHT minus the observations. (a)-the differences vs longitude (Mean±SE); 517 
(b)-the differences vs latitude (Mean±SE). The height of each box represents the mean value of the differences, the whisker represents 518 
the standard error (SE) value of the differences. 519 

 

Figure 8: Comparison of retrieved pHT with corresponding observations for exploratory dataset. (a)-pHT retrieved by the ANN 520 
model vs observations; (b)-pHT retrieved by CANYON (Sauzède et al., 2017) vs observations. The red circles represent March 2018, 521 
the blue squares represent July 2018, the green triangles represent October 2018. The 1:1 line is shown in the plot as visual reference. 522 
Three statistics approaches used are the mean absolute error (MAE), the coefficient of determination (R2), and the root mean 523 
squared error (RMSE). N represents the number of data points.  524 
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Figure 9: Sensitivity of the ANN model for environmental input variables. (a)-temperature (T); (b) salinity (S); (c)-dissolved oxygen 527 
(DO); (d)-nitrate (N); (e)-phosphate (P); (f)-silicate (Si). Three statistics approaches used are the mean bias (MB), the root mean 528 
squared error (RMSE), and the coefficient of determination (R2). N represents the number of data points. 529 

 530 

 

Figure 10: Comparison of surface pHT retrieved by the ANN model using Changjiang Biology FVCOM output with corresponding 531 
observations at six sites repeated sampling for 3 to 4 years. Red dots represent observations pHT, blue solid line represents retrieved 532 
pHT, black dotted lines represent upper and lower bounds of the ANN model accuracy (ANN ± RMSE) retrieved pHT ± RMSE. (a)-533 
station A1-5; (b)-station A1-6; (c)-station A6-7; (d)-station A6-9; (e)-station A7-5; (f)-station A8-5. 534 
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Figure 11: Comparison of water column pHT retrieved by the ANN model using Changjiang Biology FVCOM output with 536 
corresponding observations at six sites repeated sampling for 3 to 4 years. The 1:1 line is shown in the plot as a visual reference. 537 
Skill statistics include the mean absolute error (MAE), the coefficient of determination (R2), and the root mean squared error 538 
(RMSE). N represents the number of data points. 539 

 

Figure 12: Comparison of monthly average pHT on the East China Sea shelf. Blue solid line represents retrieved pHT by the ANN 540 
model using Changjiang Biology FVCOM output; black dotted lines represent upper and lower bounds of the ANN model accuracy 541 
(ANN ± RMSE) retrieved pHT ± RMSE; red points show monthly-average pHT observations from 2013 to 2016. (a)-surface; (b)-542 
bottom. 543 
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Figure 13: Spatial distribution of monthly average surface pHT retrieved by the ANN model using Changjiang Biology FVCOM 552 
output. (a)-January; (b)-February; (c)-March; (d)-April; (e)-May; (f)-June; (g)-July; (h)-August; (i)-September; (j)-October; (k)-553 
November; (l)-December. 554 

 555 
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Figure 14: Seasonal cycles of surface pHT on the East China Sea shelf from 2000-2016. The green circles represent monthly regional 556 
average, the blue dashed represents mean value of each month. 557 

 558 

 559 

Table 1: Field survey information and measurements of water temperature, salinity, dissolved oxygen, nitrate, phosphate, silicate 560 
and pHT (Mean±SE). 561 

Sampling period Temperature  

(℃) 

Salinity Dissolved oxygen  

(mmol m-3) 

Nitrate  

(mmol m-3) 

Phosphate  

(mmol m-3) 

Silicate  

(mmol m-3) 

pHT 

March 4th-20th, 2013 11.54±1.34 32.04±2.26 275.28±19.30 12.25±8.25 0.58±0.17 17.54±7.65 8.19±0.04 

August 17th-28th, 2013 23.45±3.17 32.32±2.91 142.22±63.45 12.16±8.05 0.55±0.32 16.47±12.18 8.04±0.18 

February 21th-28th, 2014 9.56±2.38 32.14±1.78 293.07±19.52 11.92±9.17 0.59±0.18 12.52±6.50 8.10±0.04 

July 10th-17th, 2014 21.66±2.13 29.50±5.10 186.44±43.29 21.57±22.10 0.57±0.46 21.45±17.76 8.07±0.11 

March 11th-21th, 2015 11.42±1.44 31.57±2.60 279.72±15.29 22.04±18.88 0.81±0.35 16.48±11.64 8.19±0.03 

July 9th-20th, 2015 22.14±1.55 29.73±4.71 207.32±56.12 19.73±18.62 0.60±0.42 20.87±17.48 8.13±0.09 

March 7th-19th, 2016 10.77±2.02 30.85±2.92 284.00±31.40 20.26±12.80 0.82±0.25 19.17±11.62 8.20±0.05 

July 4th-28th, 2016 23.19±3.19 28.17±6.67 122.90±49.97 25.77±23.60 0.63±0.46 28.56±25.03 8.06±0.16 

February 15th-28th, 2017 11.03±2.57 32.00±2.43 296.21±21.27 12.30±9.13 0.56±0.18 13.09±7.45 8.13±0.05 

May 12th-24th, 2017 17.71±1.54 29.62±2.79 171.58±49.52 12.60±4.83 0.29±0.24 10.95±4.29 8.08±0.13 

July 20th-30th, 2017 24.85±3.41 27.70±6.31 192.11±76.55 20.57±23.23 0.42±0.34 19.28±18.92 8.09±0.18 
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Table 2: Different model structures and their performance in the training step. The variables (Lon (longitude), Lat (latitude), Month 571 
(month), T (temperature), S (salinity), DO (dissolved oxygen), N (nitrate), P (phosphate), Si (silicate)) marked with 1 represent the 572 
input variables. Skill statistics include the coefficient of determination (R2), the root mean squared error (RMSE), and the mean 573 
absolute error (MAE). 574 

Model Lon Lat Month T S DO N P Si Training data Independent 

validation data 

R2 RMSE MAE R2 RMSE MAE 

1      1    0.40 0.092 0.068 0.47 0.076 0.058 

2    1  1    0.62 0.073 0.053 0.62 0.067 0.051 

3    1 1 1    0.69 0.065 0.048 0.72 0.060 0.044 

4    1 1 1 1   0.76 0.057 0.044 0.77 0.052 0.041 

5    1 1 1  1  0.81 0.051 0.040 0.79 0.051 0.040 

6    1 1 1   1 0.77 0.056 0.044 0.79 0.054 0.043 

7    1 1 1 1 1  0.80 0.053 0.042 0.79 0.051 0.041 

8    1 1 1  1 1 0.81 0.051 0.040 0.81 0.049 0.039 

9    1 1 1 1  1 0.76 0.058 0.044 0.77 0.054 0.044 

10    1 1 1 1 1 1 0.83 0.048 0.037 0.86 0.046 0.037 

11   1 1 1 1 1 1  0.85 0.046 0.035 0.87 0.043 0.032 

12   1 1 1 1  1 1 0.85 0.046 0.034 0.85 0.045 0.035 

13   1 1 1 1 1  1 0.82 0.049 0.036 0.84 0.050 0.036 

14   1 1 1 1 1 1 1 0.84 0.046 0.035 0.87 0.045 0.033 

15 1 1 1 1 1 1 1   0.86 0.044 0.033 0.79 0.046 0.034 

16 1 1 1 1 1 1  1  0.87 0.043 0.032 0.87 0.044 0.034 

17 1 1 1 1 1 1   1 0.87 0.043 0.033 0.82 0.045 0.035 

18 1 1 1 1 1 1 1 1  0.88 0.040 0.031 0.88 0.039 0.031 

19 1 1 1 1 1 1  1 1 0.87 0.042 0.032 0.87 0.042 0.033 

20 1 1 1 1 1 1 1  1 0.84 0.046 0.035 0.85 0.047 0.036 

21 1 1 1 1 1 1 1 1 1 0.88 0.040 0.031 0.93 0.033 0.024 

 575 

Table 3: Model comparison between traditional empirical methods (MLR and MNR) and mechine-learning based empirical methods 576 
(Decision tree, Random Forest, and SVM). The statistics was derived from confimatory dataset (training data independent validation 577 
data) using input variables: T, S, DO, N, P, and Si. Note R2 statistics in our study was based on the calculation of coefficient of 578 
determination, therefore negative R2 could be derived if there were strong bias. 579 

Model Kernel Function Input variables RMSE R2 MAE 

MLR - T, S, DO, N, P, Si 0.078 0.56 0.062 

MNR - T, S, DO, N, P, Si 0.060 0.74 0.047 

Decision Tree Simple Tree T, S, DO, N, P, Si 0.064 0.71 0.047 

 Medium Tree T, S, DO, N, P, Si 0.060 0.74 0.044 

 Complex Tree T, S, DO, N, P, Si 0.061 0.73 0.043 

Random Forest Boosted Trees T, S, DO, N, P, Si 0.340 -7.51 0.339 

 Bagged Trees T, S, DO, N, P, Si 0.056 0.77 0.04 

SVM Linear T, S, DO, N, P, Si 0.079 0.55 0.061 

 Quadratic T, S, DO, N, P, Si 0.061 0.73 0.046 

 Cubic T, S, DO, N, P, Si 0.060 0.74 0.043 

 Fine Gaussian T, S, DO, N, P, Si 0.064 0.70 0.042 

 Medium Gaussian T, S, DO, N, P, Si 0.054 0.79 0.041 

 Coarse Gaussian T, S, DO, N, P, Si 0.069 0.65 0.054 
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 580 

Supplementary material 581 

Table S1: The performance of different number of neurons for two hidden layers in the training step. Three statistics are the 582 

coefficient of determination (R2), the root mean squared error (RMSE), and the mean absolute error (MAE). 583 

Model Number of neurons Training data Independent validation data 

first hidden 

layer 

second hidden 

layer 

R2 RMSE MAE R2 RMSE MAE 

1 4 4 0.68 0.071 0.054 0.67 0.072 0.057 

2 8 4 0.70 0.070 0.050 0.67 0.069 0.050 

3 16 4 0.76 0.062 0.045 0.76 0.062 0.045 

4 32 4 0.74 0.063 0.046 0.79 0.062 0.048 

5 40 4 0.76 0.062 0.044 0.76 0.061 0.045 

6 64 4 0.79 0.058 0.041 0.78 0.056 0.043 

7 128 4 0.76 0.062 0.045 0.74 0.062 0.044 

8 8 8 0.73 0.065 0.047 0.73 0.065 0.048 

9 16 8 0.78 0.059 0.042 0.78 0.058 0.044 

10 32 8 0.78 0.059 0.042 0.83 0.053 0.039 

11 40 8 0.79 0.059 0.042 0.77 0.055 0.040 

12 64 8 0.77 0.061 0.044 0.76 0.059 0.042 

13 128 8 0.77 0.060 0.042 0.79 0.059 0.043 

14 16 16 0.79 0.057 0.041 0.85 0.054 0.041 

15 32 16 0.80 0.057 0.040 0.69 0.059 0.043 

16 40 16 0.82 0.054 0.039 0.81 0.053 0.039 

17 64 16 0.79 0.059 0.041 0.76 0.057 0.040 

18 128 16 0.79 0.058 0.040 0.78 0.059 0.043 

19 32 32 0.78 0.059 0.042 0.75 0.058 0.039 

20 40 32 0.79 0.058 0.041 0.79 0.055 0.040 

21 64 32 0.78 0.059 0.042 0.83 0.052 0.040 

22 128 32 0.79 0.058 0.041 0.79 0.056 0.041 

23 40 40 0.77 0.060 0.043 0.77 0.060 0.044 

24 64 40 0.79 0.058 0.042 0.75 0.060 0.043 

25 128 40 0.80 0.057 0.040 0.78 0.057 0.042 

26 64 64 0.78 0.060 0.042 0.78 0.057 0.040 

27 128 64 0.72 0.068 0.050 0.65 0.067 0.048 

28 128 128 0.72 0.067 0.049 0.65 0.072 0.051 

 584 

 585 
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Figure S1: Comparison of three transfer functions. (a)-Log-sigmoid transfer function (logsig); (b) Hyperbolic tangent sigmoid 586 
transfer function (tansig); (c)-Positive linear transfer function (poslin). 587 

 588 

 

Figure S2: Comparison of monthly-average environmental variables from the Changjiang Biology FVCOM with the corresponding 589 
observations at the surface and bottom on the East China Sea shelf. Blue and green solid lines represent surface and bottom 590 
simulated data from the Changjiang Biology FVCOM, respectively; red and black points show surface and bottom observation data 591 
from 2013 to 2016, respectively. (a)-temperature; (b)-salinity; (c)-dissolved oxygen; (d)-nitrate; (e)-phosphate; (f)-silicate. 592 
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Figure S3: Comparison of monthly average pHT on the East China Sea shelf. Blue solid line represents retrieved pHT by the ANN 593 
model using Changjiang Biology FVCOM output; green solid line represents simulated pHT from the Changjiang Biology FVCOM; 594 
red points show monthly average pHT observations from 2013-2016. (a)-surface; (b)-bottom. 595 

 

Figure S4: Monthly average water discharge and its standard deviation (DaTong Station, data derived from the Hydrological 596 
Information Center of China, http://www.hydroinfo.gov.cn/).  597 
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Figure S5: Seasonal cycles of surface T (a), S (b), AOU (c), and P (d) from Changjiang Biology FVCOM output on the East China 601 
Sea shelf from 2000-2016. The green circles represent monthly regional average, the blue dashed represents mean value of each 602 
month. 603 


