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Abstract.  

Geological uncertainty quantification is critical to subsurface modeling and prediction, such as groundwater, oil/gas and 

geothermal, and needs to be continuously updated with new data. We provide an automated method for uncertainty 10 

quantification and updating of geological models using borehole data for subsurface developments within a Bayesian 

framework. Our methodologies are developed with the Bayesian Evidential Learning protocol for uncertainty quantification. 

Under such framework, newly acquired borehole data directly and jointly update geological models (structure, lithology, 

petrophysics and fluids), globally and spatially, without time-consuming model re-buildings. To address the above, an 

ensemble of prior geological models is first constructed by Monte Carlo simulation from prior distribution. Once the prior 15 

model is tested by means of falsification process, a sequential direct forecasting is designed to perform the joint uncertainty 

quantification. The direct forecasting is a statistical learning method that learns from a series of bijective operations to establish 

“Bayes-linear-Gauss” statistical relationships between model and data variables. Such statistical relationships, once 

conditioned to actual borehole measurements, allows for fast computation posterior geological models. The proposed 

framework is completely automated in an opensource project. We demonstrate its application by applying to a generic gas 20 

reservoir dataset. The posterior results show significant uncertainty reduction in both spatial geological model and gas volume 

prediction, and cannot be falsified by new borehole observations. Furthermore, our automated framework completes the entire 

uncertainty quantification process efficiently for such large models.  
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1. Introduction 

Uncertainty quantification (UQ) is at the heart of decision making. This is particularly true in subsurface applications such as 

groundwater, geothermal, fossil fuels, CO2 sequestration, or minerals resources. Uncertainty on the geological structures, rocks 

and fluids is due to the lack of access to the subsurface geological medium. For most of the subsurface applications, knowledge 

of the geological settings is mainly gained through the drilling of well boreholes where geophysical or rock physical 5 

measurements are made. For example, from several to tens or hundreds of boreholes are drilled in geothermal or groundwater 

appraisals (e.g. Le Borgne et al., 2006; Klepikova et al., 2011; Vogt et al., 2010), while in mineral resources and shale gas, the 

number of boreholes can be up to even thousands (e.g. Curtis, 2002; Territory et al., 2013). From borehole data, geological 

models are constructed for appraisal and uncertainty quantification, such as estimating water volumes stored in groundwater 

systems or heat storage in a geothermal system. Realistic geological modelling involves complex procedures (Caumon, 2010, 10 

2018; de la Varga et al., 2019). This is due to the hierarchical nature of geological formations: fluids are contained in a porous 

medium, the porous medium is defined by various lithologies, lithological variation is contained in faults and layers (structure). 

In addition, boreholes are not drilled all at once, but throughout the lifetime of managing the Earth resource.  

 

Representing the unknown subsurface geological reality by a single deterministic model has been commonly used (Beven, 15 

1993; Royse, 2010), mostly by means of a single realization of the structure (layers/faults), rock and fluid model derived from 

the borehole data with other supporting geological and geophysical interpretations (e.g., Fischer et al., 2015; Kaufmann and 

Martin, 2008). However, relying on a single model cannot reflect the inherent geological uncertainty (Neuman, 2003). Recent 

advances in geostatistics have shown the importance of using multiple model realizations for uncertainty quantification in 

many geoscience fields, including glaciology (e.g., Cullen et al., 2017), hydrogeology (e.g., Barfod et al., 2018; Zhou et al., 20 

2014), hydrology (e.g. Goovaerts, 2000; Marko et al., 2014), hydrocarbon reservoir modelling (e.g., Caers and Zhang, 2004; 

Christie et al., 2002; Dutta et al., 2019; Yin et al., 2019), geothermal (e.g. Rühaak et al., 2015; Vogt et al., 2010). Geostatistical 

approaches can provide multiple geological models that are conditioned/constrained to borehole data). When new boreholes 

are drilled, uncertainty needs to be updated. While uncertainty updating in forms of data assimilation are commonly applied 

in various subsurface applications, they are rarely used for updating to newly drilled borehole data, often termed “hard data” 25 

in geostatistical literatures (Goovaerts, 1997). Elfeki and Dekking (2007) used coupled Markov chain (CMC) approach to 

calibrate hydrogeological lithology model by conditioning on boreholes in the central Rhine-Meuse delta from the Netherlands, 

and then ran Monte Carlo simulation to re-evaluate the hydrogeological uncertainty. Similar approach was also used by Li et 

al. (2016) to reduce the uncertainty in near-surface geology for the risk assessment of soil slope stability and safety in Western 

Australia. Jiménez et al. (2016) updated 3D hydrogeological models by adding new geological features identified from 30 

borehole tracer tests. Eidsvik and Ellefmo (2013) and Soltani-Mohammadi et al. (2016) investigated the value of information 

of additional boreholes for uncertainty reduction in mineral resource evaluations.  

 



3 

 

The problem of geological uncertainty, due to its interpretative nature and the presence of prior information, is often handled 

in a Bayesian framework (Scheidt et al., 2018). The key part often lies in the joint quantification of the prior uncertainty on all 

modeling parameters, whether structural, lithological, petrophysical and fluid. A common problem is that the observed data 

may lie outside the defined prior model, hence is falsified. Another major issue is that most of the state-of-the-art uncertainty 

updating practices deal with each geological model component separately (a silo treatment of each UQ problem). However, 5 

the borehole data informs all components jointly, and hence any separate treatment ignores the likely dependency between the 

model components, possibly returning unrealistic uncertainty quantification. A final concern, more practically, lies around the 

automating any uncertainty updating. Geological modeling often requires significant individual/group expertise and manual 

intervention to make the model adhere to geological rules, hence requiring often months of work when new data is acquired. 

There is to date, no method that addresses, with borehole data, the falsification, the joint uncertainty quantification and the 10 

automation problem.  

 

Recently, a uncertainty quantification protocol termed Bayesian Evidential Learning has been proposed to address decision 

making under uncertainty, and applied to cases in oil/gas, groundwater contaminant remediation and geothermal energy 

(Athens and Caers, 2019a; Hermans et al., 2018, 2019; Scheidt et al., 2018). It provides explicit standards that need to be 15 

reached at each stage of its UQ design with the purpose of decision making, including, model falsification, global sensitivity 

analysis, prior elicitation and data-science driven uncertainty reduction under the principle of Bayesianism. Compared to the 

previous works on BEL, model falsification, statistical learning-based uncertainty reduction approaches and automation are 

what is of concern in this paper. Also, we will deal with one specific data source: borehole data, through logging or coring, for 

geological uncertainty quantification. First, we will introduce a scheme to address the model falsification problem involving 20 

borehole data by using robust Mahalanobis distance. We will then extend a statistical learning approach termed direct 

forecasting (Hermans et al., 2016; Satija et al., 2017; Satija and Caers, 2015) to reduce uncertainty of all geological model 

parameters, jointly, using all (new) borehole data simultaneously. To achieve this, we will present a model formulation that 

involves updating based on the hierarchy typically found in subsurface formation: structures, then lithology, then property and 

fluid distribution. Finally, we will show how the proposed framework can be completely automated in an opensource project. 25 

With a generalized field case study of uncertainty quantification of gas volume in an offshore reservoir, we will illustrate our 

approach and emphasize the need for automation, minimizing the need for tuning parameters that require human interpretation. 

2. Methodology 

2.1 Bayesian Evidential Learning 

2.1.1 Overview  30 

We establish the geological uncertainty quantification framework based on Bayesian Evidential Learning (BEL), which is 

briefly reviewed in this section. BEL is not a method, but a prescriptive & normative data-scientific protocol for designing 
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uncertainty quantification within the context of decision making (Athens and Caers, 2019b; Hermans et al., 2018; Scheidt et 

al., 2018). It integrates four constituents in UQ – data, model, prediction and decision under scientific methods and philosophy 

of Bayesianism. In BEL, the data is used as evidence to infer model or/and prediction hypotheses via “learnings” from the 

prior distribution, whereas decision making is ultimately informed by the model and prediction hypotheses. The BEL protocol 

consists of six UQ steps: 1) formulating the decision questions and prediction variables; 2) statement of model parametrization 5 

and prior uncertainty; 3) Monte Carlo and prior model falsification with data; 4) global sensitivity analysis between data and 

prediction variables; 5) uncertainty reduction based on statistical learning methods that reflect the principle of Bayesian 

philosophy; 6) posterior falsification and decision making. Bayesian methods, particularly in the Earth Science rely on the 

statement of prior uncertainty. However, such statement may be inconsistent with data in the sense that the prior cannot predict 

the data, hence the important falsification step. We provide next important elements of BEL within the problem of this paper: 10 

prior model definition, falsification & inversion by direct forecasting. 

2.1.2 Hierarchical model definition 

In geological uncertainty quantification any prior uncertainty statement needs to involve all model components jointly. A 

geological model 𝐦 typically consists of four components that are modelled in hierarchical order: structural model 𝛘 (e.g. 

faults, stratigraphic horizons), rock types 𝛇 (which are categorical, e.g. sedimentary or architectural facies), petrophysics model 15 

𝛋 (e.g. density, porosity, permeability), and subsurface fluid distribution 𝛕 (e.g. water saturation, salinity).  

𝐦 = {𝛘, 𝛇, 𝛋, 𝛕}            (1) 

The uncertainty model then becomes the following sequential decomposition: 

f(𝐦) = f(𝛘, 𝛇, 𝛋, 𝛕) = f(𝛕|𝛘, 𝛇, 𝛋)f(𝛋|𝛘, 𝛇)f(𝛇|𝛘)f(𝛘)        (2) 

 20 

In addition, because of the spatial context of all geological formations, we divide the model variables into global and spatial 

ones. The global variables, such as proportions, depositional system interpretation, or trend, are scalars and not attached to any 

specific grid locations, whereas the spatial variables are gridded. Here, we term the global variables as 𝐦gl, and the spatial as 

𝐦sp. In this way, the geological model variables are: 

𝐦 = {(𝛘gl, 𝛘sp), (𝛇gl, 𝛇sp ), (𝛋gl, 𝛋sp), (𝛕gl, 𝛕sp)}      (3) 25 

The prior uncertainty f(𝐦) of the global and spatial variables needs to be specified for each model component; this is problem 

specific and may require substantial amount of work by considering the existing data (e.g. the system is deltaic) and any prior 

knowledge about the interpreted systems. Using the prior distribution f(𝐦), we run Monte Carlo to generate a set of L model 

realizations {𝐦(1), 𝐦(2), … , 𝐦(L)}. This means instantiating all geological variables 𝛘, 𝛇, 𝛋, 𝛕 jointly. 

 30 

Since borehole data provide information at the locations of drilling, we define the data variables 𝐝 through an operator 𝐆d. 

𝐝 = 𝐆d𝐦              (4) 
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𝐆d is simply a matrix in which each element is either 0 or 1 identifying the locations of boreholes in the model 𝐦. In this 

sense, borehole data are linear data because of the linear forward operator. By applying 𝐆d  to prior geological model 

realizations, we obtained a set of L samples of the borehole data variable.  

𝐝 = {𝐝(1), 𝐝(2), … , 𝐝(L)}           (5) 

Note that we term the actual acquired data as 𝐝obs. 5 

The prediction variable h, such as storage volume of a ground water aquifer, or the heat storage of a geothermal reservoir, is 

defined through another operator (linear or nonlinear): 

𝐡 = 𝐆h(𝐦)             (6) 

Applying this function to the prior model realizations we get  

𝐡 = {𝐡(1), 𝐡(2), … , 𝐡(L)}           (7) 10 

A common problem in practice is that the statement of prior may be too narrow (overconfidence) and hence may not in fact 

predict the observed data. In falsification, we use hypothetic-deductive reasoning to attempt to reject the prior by means of 

data, namely we state the null-hypothesis: the prior can predict the observation and attempt to reject it. This step does not 

involve matching models to data, it is only a statistical test. One way of achieving this is using outlier detection as discussed 

in the next section. 15 

2.1.3 Falsification using multivariate outlier detection 

The goal of falsification of is to test that the prior model is not wrong. The prior model should be able to predict the data. Our 

reasoning then is that a prior model is falsified if the observed data 𝐝obs is not within the same population as the samples 

𝐝(1), 𝐝(2), … , 𝐝(𝐿), i.e. 𝐝obs is an outlier. Evidently, the data variable can be high-dimensional due to a large number of wells 

with various types of measurements on structure, facies, petrophysics and saturation, which calls for multi-variate outlier 20 

detection. We propose in this paper to use a robust statistical procedure based on Mahalanobis distance to perform the outlier 

detection.  The robust Mahalanobis distance (RMD) for each data variable realization 𝐝(ℓ) or 𝐝obs is calculated as:  

RMD(𝐝(ℓ)) = √(𝐝(ℓ) − 𝛍)T𝚺−1(𝐝(ℓ) − 𝛍) , for ℓ = 1, 2, … , L      (8) 

where 𝛍 and 𝚺 are the robust estimation of mean and covariance of the data (Hubert and Debruyne, 2010; Rousseeuw and 

Driessen, 1999). Assuming 𝐝 distributes as multivariate Gaussian, the distribution of [RMD(𝐝(ℓ))]2 will be Chi-Squared χd
2 . 25 

We will use choose the 97.5 percentile of √χd
2  as the tolerance for the multivariate dimensional points 𝐝(ℓ). If the RMD(𝐝obs) 

falls outside the tolerance (RMD(𝐝obs) > √χ𝐝,97.5
2 ), the 𝐝obs will be considered as outliers, which means the prior model has 

very small probability to predict the actual observations, hence is falsified. It should be noted that the 𝐝obs dealt in this paper 

is at model grid resolution. Outlier detection using the Mahalanobis distance has the advantages of providing robust statistical 

calculations. In addition, diagnostic plots can be used to visualize the result for high-dimensional data. However, it requires 30 
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the marginal distribution of data to be Gaussian. If the data variables are not Gaussian, other outlier detection approaches such 

as one-class SVM (Schölkopf et al., 2001) or Isolation Forest (Liu et al., 2008) can be used.  

2.2 Direct forecasting 

2.2.1 Review  

If the prior model cannot be falsified, we will use direct forecasting to reduce geological model uncertainty. Direct forecasting 5 

(DF) is a prediction-focused data science approach for inverse modeling (Hermans et al., 2016; Satija et al., 2017; Satija and 

Caers, 2015). The aim is to estimate/learn the conditional distribution f(𝐡|𝐝) between the prediction variable h and data 

variable d from prior Monte Carlo samples. Then, instead of using traditional inverse methods that require re-building models 

to update prediction, direct forecasting directly calculates the conditional prediction distribution f(𝐡|𝐝obs)  through the 

statistical learning based on data. The learning strategy of direct forecasting is that, by employing bijective operations, the 10 

non-Gaussian problem f(𝐡|𝐝) can be transformed into a linear-Gauss problem of transformed variables (𝐡∗, 𝐝∗): 

𝐡∗~ exp (−
1

2
(𝐡∗ − 𝐡prior

∗ )
T

Cprior
−1 (𝐡∗ − 𝐡prior

∗ )) ; 𝐝obs
∗ ; 𝐝∗ = 𝐆𝐡∗       (9) 

where 𝐆 is coefficients that linearly map 𝐡∗ to 𝐝∗. This makes f(𝐡∗|𝐝obs
∗ ) become a “Bayes-linear-Gauss” problem that has an 

analytical solution: 

E[𝐡∗|𝐝obs
∗  ] = 𝐡posterior

∗ = 𝐡prior
∗ + Cprior𝐆T(𝐆CproirGT)

−1
(𝐝obs

∗ − 𝐆𝐡prior
∗ ) 15 

Var[𝐡∗|𝐝obs
∗  ] = Cposterior = Cprior − Cprior𝐆T(𝐆CpriorGT)

−1
GCprior       (10) 

In detail, the specific steps of direct forecasting are:  

1. Monte Carlo: generate L samples of prior model, and run forward function to evaluate data and prediction variables.  

2. Orthogonality: PCA (Principal Component Analysis) on data variable d and prediction variable h.  

3. Linearization: maximize linear correlation between the orthogonalized data and variables by Normal Score Transform 20 

and CCA (Canonical Component Analysis), obtaining transformed 𝐡∗, 𝐝∗. 

4. Bayes-linear-Gauss: calculate conditional mean and covariance of the transformed prediction variable 

5. Sampling: sample from the posterior distribution of transformed prediction variable 𝐡posterior
∗  

6. Reconstruction: invert all bijective operations, obtaining 𝐡posterior in the original space. 

One key question in direct forecasting is how to determine the Monte Carlo samples size L. Usually, the samples size L lies 25 

between 100-1000, according to the studies in water resources (Satija and Caers, 2015), hydrogeophysics (Hermans et al., 

2016), hydrocarbon reservoirs (Satija et al., 2017).  

 

The direct forecasting can also be extended to update model variables, by simply replacing the prediction variable h by model 

variable m in the above algorithms, to obtain f(𝐦|𝐝obs) without conventional model inversions (Park, 2019). However, the 30 

high dimensionality of spatial models (millions of grid cells) imposes challenge to such extension. This is because CCA 
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requires that the sum of input data and model variables dimensions to be smaller than the Monte Carlo samples size L: L >

dim(𝐝) + dim(𝐦). Otherwise it will always produce perfect correlations (correlation coefficients be 1) (Pezeshki et al., 2004). 

Although PCA can significantly reduce the dimensionality of m from L×P to L×L, where P is the number of model parameters 

and L≪P, this requirement is still difficult to meet. Global Sensitivity Analysis is therefore applied, to select a subset of the 

PCA orthogonalized m that is most informed by the data variables. The subset 𝐦 may retain only a few principal components 5 

(PCs) (Hoffmann et al., 2019), depending on how informative the boreholes are. For unselected (non-sensitive) model variables, 

they remain random according to their prior empirical distribution. Both the sensitive and non-sensitive variables will be used 

for posterior reconstruction at step 6. In this paper, we use a Distance-Based Generalized Sensitivity Analysis (DGSA) method 

(Fenwick et al., 2014; Park et al., 2016) to perform sensitivity analysis. Compared to the other global sensitivity analysis such 

as variance-based methods (e.g. Sobol, 2001, 1993), regionalized methods (e.g. Pappenberger et al., 2008; Spear and 10 

Hornberger, 1980), or tree-based method (e.g. Wei et al., 2015), DGSA has its specific advantages for high-dimensional 

problems while requiring no functional form between model responses and model parameters. It can efficiently compute global 

sensitivity, which makes it preferred for our geological UQ problem where the models are large and computationally intensive. 

When performing PCA on the data variable 𝐝, we select the PCs by preserving 90% variance. Note that borehole data are in 

much lower dimension than spatial models, hence already low dimension.  15 

2.2.2 Direct forecasting on a sequential model decomposition  

We defined our prior uncertainty model (Eq.2) through a sequential decomposition of hierarchical model components. 

Likewise, the conditioning of such model components to borehole data will be done, using direct forecasting in a sequential 

fashion: 

f(𝛘, 𝛇, 𝛋, 𝛕|𝐝obs) =20 

f(𝛕|𝛘posterior, 𝛋posterior, 𝛇posterior, 𝐝obs,τ)f(𝛋| 𝛘posterior, 𝛇posterior, 𝐝obs,κ)f(𝛇|𝛘posterior, 𝐝obs,ζ)f(𝛘|𝐝obs,χ)   (11) 

Following this equation, the joint uncertainty quantification is equivalent to a sequential uncertainty quantification, where 

uncertainty quantification of one model component conditions to borehole data and posterior models of the previous 

components. Direct forecasting has not been applied within this framework of Eq (11), hence this is one of the new 

contributions in this paper. In applying direct forecasting we will use the posterior realizations of 𝛘 and prior realizations of 𝛇 25 

to determine a conditional distribution f(𝛇 |𝛘posterior), then we evaluate this using borehole observations 𝐝obs,ζ of 𝛇.  

To apply this framework to discrete variables such as lithology, we need a different method for dimension reduction than using 

PCA. PCA relies on a reconstruction by linear combination of principal component vectors, which becomes challenging when 

the target variable is discrete. Figure 1 shows this problem that discrete lithology model cannot be recovered from inverse 

PCA. To avoid this, a level set method of signed distance function (Osher and Fedkiw, 2003; Deutsch and Wilde, 2013) is 30 

employed to transform rock type models into a continuous scalar field of signed distances before applying PCA. Here, 

considering S discrete rock types in model 𝛇, for each s-th (s = 1, 2, … , S) rock type, the signed distance ψs(𝐱) from location 

𝐱 to its closest boundary 𝐱β can be computed as:  
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ψs(𝐱) = {
+‖𝐱 − 𝐱β‖, if 𝛇(𝐱) = s

−‖𝐱 − 𝐱β‖, otherwise 
   s = 1, 2, … , S       (12) 

Figure 2 illustrates the concept of using a signed distance function to first transform a sedimentary lithology model to 

continuous signed distances for PCA. We observe that, with the signed distance as an intermediate transformation, the inverse 

PCA recovers the lithology model. In the case of multiple categories, we will have multiple signed distance functions. 

 5 

 

Figure 1. PCA on discrete lithology model: (a) the original lithology model (b) Scree plot of PCA on the lithology model. (c) The 

reconstructed model from inverse PCA using the preserved PCs (marked by the red dash line on the scree plot).  

 

Figure 2. Example of transforming categorical lithology model to continuous signed distances for performing PCA.  10 
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2.3 Automation and Code 

Our objective of automation is to allow for seamless uncertainty quantification once the prior uncertainty models have been 

established. Therefore, following the above described geological UQ strategies, we design a workflow in Figure 3 to automate 

the implementation. The workflow starts with the prior model Monte Carlo (MC) samples and borehole observations as input. 

All following steps including extraction of borehole data variables, prior falsification, sequential direct forecasting, posterior 5 

prediction and falsification (if required) are completely automated. With this workflow, we develop an open source Python 

implementation to execute the automation (named “Auto-BEL”). This opensource project can be accessed from Github 

(repository: https://github.com/sdyinzhen/AutoBEL-v1.0, DOI: 10.5281/zenodo.3479997). Figure 4 briefly explains the 

structure of the Python implementation. This automation implementation allows that, once new borehole observation and prior 

model is provided from “Input” directory, the uncertainty quantitation and updating can be performed automatically by running 10 

the Jupyter Notebook “Control panel”. The results from the automated uncertainty quantification are stored in the “Output”, 

classified as “Model”, “Data”, and “Prediction”.  

 

Figure 3. Proposed workflow to automate the geological uncertainty quantification.  

https://github.com/sdyinzhen/AutoBEL-v1.0
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Figure 4. The structure of the Auto-BEL python implementation project.  

3. Application example 

3.1 The field case  

We demonstrate the application of the automated UQ framework using synthetic dataset inspired by a gas reservoir located 5 

offshore Australia. This case study is considered as synthetic due to simplification for generic application and because of 

confidentiality issues. Its spatial size is around 50 km (EW) ×25km (NS) with thickness ranging from 75 meter to 5 meters. 

The reservoir rocks deposited at shallow marine environment, with four lithological facies belts corresponding to four different 

types of porous rocks (Figure 5a). The rock porous system contains natural gas and formation water. The major challenges lie 

in quantifying spatial geological uncertainty, appraising gas initially in place (GIIP), and then fast updating the uncertainty 10 

quantification when new boreholes are drilled. This will directly impact the economic decision making for reservoir 

development.  

 

Initially, the reservoir geological variation is represented on a 3D model (Figure 5b) with a total of 1.5million grid cells with 

dimension of 200 ×100 ×75 (layers). Companies often drill exploration and appraisal wells before going ahead with producing 15 

the reservoir. They would like to decrease uncertainty by such drilling to a point where the risk is considered tolerable to start 

actual production. To mimic such setting, we consider that initially 4 well-bores (w1, w2, w3, w4, marked in Figure 5b) have 

been acquired and that models have been built using the data from these wells. Then 9 new wells (w5 to w13 in Figure 5b) are 

drilled, and uncertainty needs to be updated. The idea is to use the 9 new wells to automatically update the reservoir uncertainty 

using the above developed procedures. In order to validate our results, we will use observations from w7 to w13 to reduce the 20 

uncertainty, whereas observations from w5 and w6 to analyze the obtained uncertainty quantification. 
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Figure 5. (a) The field geology conceptual model with the four facies belts. (b) The initial 3D geological model of facies with locations 

of existing boreholes and newly drilled boreholes.  

3.2 Prior model parameterization and uncertainty 

3.2.1 Approaches 5 

The reservoir geological properties responsible for reserve appraisals are spatial variations of (1) reservoir thickness, spatial 

distributions of (2) lithological facies belts, (3) 3D porosity, (4) 3D formation water (saturation); while the spatial heterogeneity 

of (5) 3D permeability is critical to future production of gas, but not used in volume appraisal. Constructing a prior uncertainty 

model for these properties requires a balance between considering aspects of the data and overall interpretation based on such 

data. The strategy in the BEL framework is not to state too narrow uncertainty initially, rather to explore a wide range of 10 

possibilities. Based on interpretation from data, Table 1 containing all uncertainties and their prior distribution was constructed. 

We will clarify how these uncertainties were obtained.   
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Table 1. The global model parameter 𝐦𝐠𝐥  and its prior uncertainty distribution 𝐟(𝐦𝐠𝐥) . The initial prior distributions of the 

parameters are mostly assumed to be uniform (formulated as U[min, max]) due to limited available data.  

Model Global parameters: 𝐦gl 
Prior uncertainty: 

𝐟(𝐦𝐠𝐥) 

Source for prior 

uncertainty statement 

Reservoir 

Thickness 

Thickness expectation – Zmean U[36, 51] meter 

Geophysical seismic 

interpretations, initial 

borehole measurements. 

Variogram range of trend – Trange U[10000, 40000] meter 

Variogram sill of trend – Tsill U[350, 650] 

Variogram range of residual – Rrange  U[1000, 5000] meter 

Variogram sill of residual – Rsill U[4, 100] 

Lithological  

Facies 

Proportion of facies 1 – fac1 U[0.22, 0.36] 
Boreholes gamma ray logs, 

seismic amplitude maps,  
Proportion of facies 2 – fac2 U[0.07, 0.27] 

Proportion of facies 3 – fac3 U[0.13, 0.19] 

Porosity &  

Permeability 

Porosity mean in facies 1 – ϕ1 U[0.175, 0.225] 

Borehole neutron porosity 

logs, 

laboratory measurements  

on core samples 

Porosity mean in facies 2 – ϕ2  U[0.275, 0.325] 

Porosity mean in facies 3 – ϕ3 U[0.225, 0.275] 

Porosity mean in facies 0 – ϕ0 U[0.125, 0.175] 

Variogram range of porosity – ϕrange U[4000,10000] meter 

Variogram sill of porosity – ϕsill U[0.0015 0.003] 

Correlation coeff. between Porosity 

and log-perm –  rϕk  
Normal(0.80, 0.0025) 

log-perm mean in facies 1 – k1 U[0.3, 1.3] log(mD) 

log-perm mean in facies 2 – k2 U[1.6, 2.6] log(mD) 

log-perm mean in facies 3 – k3 U[1, 2] log(mD) 

log-perm mean in facies 0 – k0 U[-1.6, -0.6] log(mD) 

Variogram range of permeability – 

krange 
U[4000,10000] meter 

Variogram sill of permeability – ksill U[0.9, 1.4] 

Saturation 

(Sw) 

Coeff. a of Eq.14 (capillary pressure 

model) – a 
U[0.041, 0.049] Laboratory capillary pressure 

experiments on rock core and 

fluid samples 
Coeff. b of Eq. 14 – b U[0.155, 0.217] 

Coeff. c of Eq. 14 – c U[0.051, 0.203] 
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Thickness 

First, the thickness uncertainty is mainly due to limited resolution of the geophysical seismic data and uncertainty in velocity 

modeling (not shown in this paper). Seismic interpretations show no faults in the geological system, but the thickness variations 

follow a structural trend. To model thickness uncertainty, we decompose thickness Z(𝐱) into an uncertain trend T(𝐱) and 

uncertain residual R(𝐱)  5 

 

Z(𝐱)  =  T(𝐱)  +  R(𝐱)            (13) 

 

Note that most common geostatistical approaches do not consider uncertainty in trend. Uncertainty in T(𝐱) can be estimated 

using geophysical data such as seismic, electrical resistivity tomography or airborne electromagnetic. This case study uses 10 

seismic data. We describe uncertainty on trend using a 2D Gaussian process (Goovaerts, 1997) with uncertain expectation and 

spatial covariance. The expectation is interpreted from seismic data with vertical resolution of 15 meters, while the uncertain 

spatial covariance is modeled using a geostatistical variogram on seismic data with uncertain range (spatial correlation length) 

and sill (variance). The residual R(𝐱) is modeled using a zero-mean 2D Gaussian process with unknown spatial covariance. 

This term is highly uncertain, in particular the covariance, because the residual term is observed only at 4 initial borehole 15 

locations. However, the variogram range is assumed to be much smaller than the trend variogram, as residuals aim to represent 

more local features. Once the Gaussian process is defined, it can be constrained (conditioned) to the actual thickness 

observation at the vertical boreholes through the generation of conditional realizations. Note that these conditional realizations 

contain the uncertainties of trend and residual terms (Figure 6).  

 20 

Facies 

The lithological facies are considered to have rather simple spatial variability and described as “belts” (see Figure 5a). These 

are common in the stratigraphic progression, typical of shallow marine environments. To describe such variation, we use a 3D 

Gaussian process that is truncated (Beucher et al., 1993), thereby generating discrete variables. This truncated Gaussian process 

has specific advantage in reproducing simple organizations of ordered lithologies, thus making a useful model in our case. 25 

Because 4 facies exist, three truncations need to be made on the single Gaussian field. The truncation bounds are determined 

based on facies proportions. The uncertain facies proportions are obtained from lithological interpretations on borehole gamma 

ray logs and geophysical seismic interpretation. 

 

Porosity and permeability 30 

For each facies belt, rock porosity and permeability (logarithmic scale, termed as log-perm) are modelled, using two correlated 

3D Gaussian processes. The cross-covariances of these processes are determined via Markov-models (Journel, 1999) that only 

require the specification of a correlation coefficient. Laboratory measurements on the borehole rock core samples show that 

permeability is linearly correlated to porosity with a coefficient 0.80, and a small experimental error (around 6% random error 
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according to the lab scientists by repeating the experiments). The marginal distributions of porosity and log-perm are assumed 

to be normal but with uncertain mean and variances. The mean of porosity and log-perm is based on borehole neutron porosity 

logs and core sample measurements. Similar to the thickness residual modelling, the spatial covariances are modeled via a 

variogram respectively for porosity and permeability, with uncertain range and sill. Limited wellbore observations make 

variogram range and sill highly uncertain, and therefore large uncertainty bounds are assigned.  5 

 

Saturation 

Rocks contain gas and water; hence the uncertain saturation of water (Sw) will affect the uncertain gas volume calculations. 

The modelling of Sw is based on a classical empirical capillary pressure model from Leverett J-function (Leverett et al., 1942), 

formulated as:  10 

 

Sw = 10−a∗[log(j)]2−b∗log(j)−c          (14) 

 

where j = 0.0055 ∗ h√∅/𝐤 , and h is height above the reservoir free water level. The uncertainty parameters in this fluid 

modelling are the coefficients a, b, c. Their prior distributions are provided by capillary pressure experiments using rock core 15 

plugs and reservoir fluids as shown in Table 1.  

3.2.2 Monte Carlo 

By running Monte Carlo from the given prior distribution in Table 1 

3.2.2 Monte Carlo 

, a set of 250 geological model realizations are generated. Figure 6 displays Monte Carlo realizations of the geological model: 20 

thickness trend and corresponding thickness model, facies, porosity, permeability (log-perm) and Sw. With prior samples of 

geological model, prior prediction of GIIP are calculated, using the following linear equation:  

 

GIIP = study area ∗  thickness ∗  porosity ∗  (1 − Sw)/Bg       (15) 

 25 

where the Bg is the gas formation volume factor provided from laboratory measurements. The calculated GIIP prediction is 

plotted in Figure 7. The plot shows that the initial prediction of reservoir gas storage volume has wide range, which means 

significant risk can exist during decision makings for field development. 
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Figure 6. Layer view of prior Monte Carlo model samples of thickness trend and corresponding thickness, facies, porosity, 

permeabilty (logarithmic, termed as log-perm), and Sw. 
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Figure 7. Uncertainty quantifiation of GIIP based on prior uncertainty and 4 boreholes.  

3.3 Prior falsification with newly acquired borehole data 

Table 1 is a subjective statement of prior uncertainty. When new data is acquired, this statement can be tested, using a statistical 

test (section 2.1.3) that may lead to a falsified prior. To perform falsification, borehole data variables at the seven new well 5 

locations (from w7 to w13) are extracted by applying the data forward operator 𝐆d to the 250 prior model realizations. It 

simply means extracting all thickness, facies, petrophysics and saturation at the borehole locations in the prior model. For the 

2D thickness model, the new boreholes provide seven data extraction locations. For the 3D model of facies, porosity, 

permeability and Sw, each vertical borehole drills through 75 grid layers, thus the seven boreholes provide 2100 extracted data 

measurements (75 data measurements/well × 7 wells × 4 model components = 2100 data measurements). The dimensionality 10 

of data variable 𝐝 in this case therefore equals to 2107. The actual observations of these data (𝐝obs) are measured from the 

borehole wireline logs and upscaled to the model resolution vertically. As described in section 2.1.3, prior falsification is then 

conducted by applying the Robust Mahalanobis Distance outlier detection to 𝐝 and 𝐝obs. Figure 8 shows the calculated RMD 

for 𝐝obs and the 250 samples of 𝐝, where the distribution of the calculated RMD(𝐝) falls to a Chi-Squared distribution, with 

the RMD(𝐝obs) falls below the 97.5 percentile threshold. This shows with (97.5) confidence that the prior model is not wrong.  15 
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Figure 8. Prior falsification using robust Mahalanobis Distance (RMD). Circle dots represent the caculated RMD for data variable 

samples. The red-squared dot is the RMD for borehole observations. The red dash line is the 97.5 percentile of the Chi-Squared 

distributed RMD.  

3.4 Automatic updating of uncertainty with new boreholes  5 

After attempting to falsify the prior uncertainty model, we use the automated framework to jointly update model uncertainty 

with the new boreholes. The joint model uncertainty reduction is performed sequentially as explained in section 2.2.2. Under 

the AutoBEL GitHub repository instruction (https://github.com/sdyinzhen/AutoBEL-v1.0/blob/master/README.md), we 

also provide a supplement YouTube video to demonstrate how this automated update is performed. 

3.4.1. Thickness and facies 10 

Uncertainty in facies and thickness models can be updated jointly, as they are two independent components for this case. The 

Auto-BEL first transforms the categorical facies to continuous model using signed distance function. The transformed signed 

distances are  then combined with thickness model to perform orthogonalization using mixed PCA (Abdi et al., 2013). As 

shown in Figure 9, the first eigen-image (first principal components (PC1)) of thickness reflects the global variations of 

reservoir thickness, while higher order eigen-images (e.g. eigen-image of PC40) represent more local variation features. To 15 

evaluate what model variables impact thickness variation at the boreholes, DGSA (Fenwick et al., 2014) is then performed to 

analyze the sensitivity of model variables to data. Figure 10(a) plots the main effects in a Pareto plot. As shown in the plot, 

DGSA identifies sensitive (measure of sensitivity >1) and non-sensitive (measure of sensitivity <1) model variables. Thickness 

global parameters of both trend (Zmean, Trange, Tsill) and residuals (Rrange) show sensitivity to the borehole data. In terms of 

facies, proportions of the facies 1 (fac1) and 2 (fac2) are sensitive. There are totally 26 sensitive principal components from 20 

the spatial model. These sensitive global variables and principal component scores are now selected for uncertainty 

quantification.  

https://github.com/sdyinzhen/AutoBEL-v1.0/blob/master/README.md
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Following the steps of direct forecasting (see section 2.2.1), uncertainty reduction proceeds by mapping all sensitive model 

variables into a lower dimensional space such that the “Bayes-linear-Gauss” model can be applied. This requires the application 

of CCA to the selected model variables and data variables, then normal score transformation. Figure 10b shows two examples 

of cross-plot between model and data variables of the first and tenth canonical components, where we observe linear correlation 5 

coefficient of 0.84 even for the tenth canonical components. Once the Bayesian model is specified, one can sample from the 

posterior distribution and back-transform from lower-dimensional scores into actual facies and thickness models. Figure 10c 

shows the distribution of the posterior model realizations in comparison to the corresponding prior, showing the reduction of 

the model uncertainty. Figure 10d shows the comparison between the prior and posterior distributions of the scores for the first 

4 sensitive PCs, where the reduction of uncertainty is observed (while noting that uncertainty quantification involves all the 10 

sensitive PC score variables).  

 

 

Figure 9. Example of applying PCA on thickness model. One model realization 𝓵 (𝓵 = 𝟏, 𝟐, … , 𝐋) can be represented by the linear 

combination of eigen-images scaled by the PC scores 𝐦𝓵
∗ . 15 
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Figure 10. Uncertainty reduction of thickness and facies: (a) global sensitivity of model parameters to borehole data. (b) First and 

tenth canonical covaraites of data and model variables. The dash redline is the observation data. (c) Posterior and prior distributions 

of model variables (first and tenth canonical components, corresponding to b). (d) Prior and posterior PC score distributions of first 

4 sensitive PCs. 5 
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Figure 11 plots the reconstructed posterior global parameters in comparison to the prior. Uncertainty reduction of sensitive 

global parameters is observed, while the distribution of non-sensitive global parameters (Rsill and fac3) is unchanged. To 

assess the reconstructed posterior spatial model realizations, we calculate the mean for thickness (namely “ensemble mean”), 

and the median realization of facies. Variance is also calculated for thickness and facies respectively (“ensemble variance”). 

Figure 12 shows show the ensemble mean and median of the thickness and facies realizations, while the ensemble variances 5 

is shown in Figure 13. The results in Figure 12 imply that the posterior model thickness is thicker on average than the prior. 

This change mainly occurs in areas where the new boreholes are drilled. Referring to the actual borehole observations plotted 

on Figure 12, we also find that the posterior thickness adjusts to the borehole observations at both training (w7-w13) and 

validating (w5, w6) locations. This improvement is significant compared to the prior model. Furthermore, the ensemble 

variances (Figure 13) are reduced in the posterior model, mostly in vicinity of the new boreholes. This implies reduction of 10 

the spatial uncertainty. One should note that our method does (not yet) result in an exact match of the thickness at borehole 

data. This is an issue we will comment on in the discussion and conclusion section. For the facies model, the magnitudes of 

the uncertainty reduction are not as remarkable, because prior uncertainty at borehole locations was small to start with.  

 

 15 

Figure 11. Uncertainty updating of (a) sensitive, and (b) non-sensitive global model parameters at the first sequence. The dashed 

lines are estimated kernel density with Gaussian kernels.  
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Figure 12. First row: ensemble mean of posterior and prior thickness. Second row: the median realization of posterior and prior 

facies. The dots are borehole locations and their color represent the actual borehole observation values. The boreholes and models 

share the same color legend.  

 5 

Figure 13. Ensemble variance of the posterior and prior thickness and facies models from the first sequence.  

3.4.2 Porosity, permeability and saturation  

Auto-BEL is now applied to update uncertainty of porosity, permeability, and saturation under the sequentially decomposition.  
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The prior Monte Carlo samples have provided a full distribution of porosity for each facies. This allows for the calculation of 

posterior porosity to fit the obtained posterior facies models. Therefore, we condition to posterior facies model and borehole 

porosity observations in Auto-BEL to calculate the posterior porosity. Similarly, for permeability and saturation model, the 

Auto-BEL is applied by additionally conditioning to posterior models from previous model components. 

 5 

Figure 14, Figure 15 and Figure 16 show the results. In Figure 14, we see sensitive global and spatial model variables that are 

selected for uncertainty reduction. Figure 15 shows the constructed the linear correlation between data and sensitive model 

variables by means of CCA. Figure 16 plots the posterior model realizations (250 realizations) computed from the “Bayes-

linear-Gauss” model, where reduced uncertainty is observed when comparing to the prior. The posterior spatial model PC 

scores are also plotted in Figure 17.  10 

 

Finally, by back-transformation, we can reconstruct all original model variables. Figure 18 compares ensemble means and 

variances of the reconstructed posterior porosity, log-perm and Sw, to their corresponding prior models, with actual borehole 

observations plotted on the top. Taking w7 for example, the actual borehole observations show low values of porosity, 

permeability and Sw, while the prior model initially expects those values to be large at this location.  This is adjusted in the 15 

posterior. From the ensemble variance maps, we notice that spatial uncertainty is significantly reduced from prior to posterior 

in areas near w7. The updates of model expectations and reduction of spatial uncertainty are also observed from the other 

wells. It implies that the posterior models have been constrained by the borehole observations. 

 

Figure 19 shows one example realization of the spatial models. It shows that, same as the hierarchical order in the prior (Figure 20 

19a), the spatial distributions of posterior porosity and log-perm follow the spatial patterns of their corresponding facies belts 

(Figure 19b). However, if the joint model uncertainty reduction is performed without the sequential decomposition (not 

conditioning to the posterior models from previous sequences), the model hierarchy from facies to porosity and permeability 

is lost (marked by the purple boxes on Figure 19c). This is because they are treated as independent model variables, which 

violates the imposed geological order of variables. The linear correlation between porosity and log-perm is also preserved due 25 

to the sequential decomposition. We observe similar correlation coefficients from prior (Figure 20a) to posterior (Figure 20b). 

But without sequential decomposition, this important feature cannot be maintained as the results shown from Figure 20c: 1) 

the four clouds pattern (representing the four facies) of the covariate distribution between porosity and log-perm is lost; 2) the 

correlation coefficient has changed significantly for facies 0, 2 and 3. 
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Figure 14. Results from global sensitivity analysis using DGSA at (a) porosity (b) log-perm and (c) Sw. 

 

Figure 15 First canonical covariates of data and model variables from (a) porosity (b) log-perm and (c) Sw.  
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Figure 16. Reduction of uncertainty of the first model canonical component: (a) porosity (b) log-perm and (c) Sw 

 

Figure 17. Prior and posterior distribution of the scores of the two sensitive PCs with highest variances: (a) porosity (b) log-perm 

and (c) Sw.  5 

 
Figure 18. Ensemble mean and variance of posterior and prior geological models: (a) porosity; (b) log-perm; (c) Water saturation. 

The dots represents locations of the boreholes, where color of the dots represents observation values.  
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Figure 19. Prior and posterior facies, porosity and log-perm of realization #1 (a) prior model; (b) posterior model from the sequential 

decomposition; (c) posterior from joint uncertainty reduction without sequential decomposition.  

 

Figure 20.Bivarite distribution between porosity and log-perm model of realization #1 (a) prior; (b) posterior from the sequential 5 
decomposition; (c) posterior without performing sequential decomposition. The correlation coefficeint is examined for each facies.  
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3.4.3 Posterior prediction and falsification 

Gas storage volume is calculated using the posterior geological models and plotted in Figure 21. The result highlights a steep 

uncertainty reduction in comparison to the initial prior prediction. The posterior predicted GIIP leads to a major shift of the 

expected gas volumes to a more positive direction (higher than initially expected). More importantly, the forecast range is 

significantly narrowed. This provides critical guidance to the financial decisions on the field development. It also in return 5 

confirms the value of the information of the newly drilled wells. In total, the whole application of “Auto-BEL” to this test case 

took about 45 minutes (not including the time on prior modeling) when running on a laptop with an Intel Core i7-7820HQ 

processor and 64 GB of Ram. 

 

Figure 21.The prior and posterior prediction of GIIP  10 

 

To test the posterior, we perform posterior falsification using data from validating boreholes (w5 and w6). Figure 22 plots the 

result from applying Robust Mahalanobis Distance outlier detection to the posterior data of the two wells. The statistical test 

shows that the test borehole observation falls within the main population of data variables, below the 97.5 threshold percentile. 

We also want to further examine if the posterior models can predict the validating boreholes (regarded as future drilling wells) 15 

with reduced uncertainty. To do so, we compare the prior and posterior predicted thickness at the two borehole locations, 

together with their actual measurements (Figure 23). For 3D models of facies, porosity, log-perm and Sw, this comparison is 

performed on vertical average values across the 75 layers. We notice that these future borehole observations are predicted by 

posterior models with significantly reduced uncertainty.  

 20 
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Figure 22. Posterior falsification using the Robust Mahalanobis Distance outlier detection method using the data from (w5 and w6).  

 

Figure 23. Prior and posterior predicted thickness, facies, porosity, log-perm and Sw at validating boreholes. The bule and brown 

colored dots respectively represents the prior and posterior prediction, while red squared dots are the actural observations. 5 
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4. Discussion 

One main purpose of this paper is to introduce automation to geological uncertainty quantification when new borehole data is 

acquired. We tackle this challenge by following the protocol of Bayesian Evidential Learning to build an automated UQ 

framework. BEL formulates a protocol involving falsification, global sensitivity analysis, and statistical learning uncertainty 

reduction. When establishing such framework for geological UQ, three important questions have to be addressed. The first is 5 

on how to preserve the hierarchical relationships and correlations that commonly exist in geological models. We propose a 

sequential decomposition by following the chain rule under Bayes’ theorem. This allows to assess the joint distribution of 

multiple model components while honoring the geological rules. The second one is on how to falsify the geological model 

hypotheses, especially when data becomes highly dimensional. We employ multivariate outlier detection methods. They 

provide quantitative and robust statistical calculations when attempting to falsify the model using high dimensional data. The 10 

last but most practical one, is to deploy data-science driving uncertainty reduction. Uncertainty reduction of geological model 

is usually time-consuming, because conventional inverse methods require iterative model rebuilding. When it comes to real 

cases, the daunting time-consumption and computational efforts of conventional methods can hamper practical 

implementations of automation. Direct forecasting helps to avoid this, as it mitigates the uncertainty reduction to a linear 

problem in much lower dimension. There are many dimension reduction methods for complex models such as deep neural 15 

network (Laloy et al., 2017, 2018), but here we use PCA because it is simple and bijective, and the structure models are not 

complex (e.g. channels). However, direct forecasting of geological model is faced with two new challenges. One is to 

accommodate direct forecasting algorithm to the sequential model decomposition. This is achieved by additionally 

conditioning to the posterior from previous sequences. The other challenge is that DF cannot be directly applied to categorical 

models such as lithological facies. We therefore introduce signed distance function to convert categorical models to continuous 20 

properties before performing the DF. Field application has shown benefits of using the proposed framework. Since the posterior 

in the case study cannot be falsified, its uncertainty can be further reduced by repeating the automated procedures with the 

validating borehole observations. This suggests that the proposed framework has potentials for life-of-field uncertainty 

quantification for applications where new boreholes are regularly drilled.  

 25 

The main challenge addressed in this paper is to apply such uncertainty quantification within a Bayesian framework. Most 

method applied in this context simply rebuild the models by repeating the same geostatistical methods that were used to 

construct the prior model. In such approach, all global variables and their uncertainty need to be re-assessed. The problem with 

such approach is twofold. First, it does not address the issue of falsification: the original models may not be able to predict the 

data. Hence, using the same approach to update models with a prior that may have been falsified may lead again to falsification, 30 

thereby leading to invalid and ineffective uncertainty quantification. As a result, the uncertainty quantification of some 

desirable property, such as volume exhibits a yoyo effect (low variance in each UQ but shifting mean). Second, there is no 

consistent updating of global model variables. Often such uncertainties are assessed independently of previous uncertainties. 

The challenge addressed in this paper is to jointly update global and spatial variables and do this jointly for all properties. 
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The proposed method offers a Bayesian consistency to uncertainty quantification in the geological modeling setting. However, 

unlike geostatistical methods, the posterior models do not fully match to local borehole observations. The current method is 

only designed to globally adjust the model, not locally at the borehole observation. This can be an important issue if using the 

model for subsurface flow simulations. To tackle this problem, one possible path we like to explore in the future is to combine 5 

geostatistical conditional simulation as posterior step to the current methodology. A second limitation is that the method does 

(not yet) treat discrete global variables, such as a geological interpretation. In the cased study, only one interpretation of the 

lithology was used. The way such variables would be treated is by assigning prior probabilities to each interpretation (e.g. of 

depositional system), then updating them into posterior probabilities. This has been done by treating the interpretation 

independent of other model variables in some studies (e.g. Aydin and Caers, 2017; Grose et al., 2018; Wellmann et al., 2010). 10 

For example, one could first update the probabilities of geological scenarios, then update the other variables (Lopez-Alvis et 

al., 2019). Regarding the automation of BEL, its intermediate steps can also be adjusted depending on users’ specific 

applications. Taking the direct forecasting step for example, here we adapt it for uncertainty quantification using borehole data, 

which is a linear problem. But for more complex non-linear inverse problems, it may be difficult to use CCA to derive a 

“Bayes-linear-Gauss” relationship in DF. Statistical estimation approaches such as kernel density estimation (Lopez-Alvis et 15 

al., 2019) can be used for such cases, and there are also extensions of CCA to tackle non-linear problems(e.g., Lai and Fyfe, 

1999). AutoBEL can also be adapt if other types of parameters (other than spatial model parameters) are used for uncertainty 

quantification. This can be done by simply adding the additional parameters to the model variable 𝐦. A final, and perhaps 

more fundamental concern not limited to our approach is on what should be done when the prior model is falsified with new 

data. According to the Bayesian philosophy this would mean that any of the following could have happened: uncertainty ranges 20 

are too small; model is too simple or some combination of both. The main problem is that it is difficult to assess what the 

problem is exactly. Our future work will focus on this issue. 

5. Conclusions 

In conclusion, we generalized a Monte Carlo-based framework for geological uncertainty quantification and updating. This 

framework, based on Bayesian Evidential Learning, was demonstrated under the context of geological model updating using 25 

borehole data. Within the framework, a sequential model decomposition was proposed, to address the geological rules when 

assessing joint uncertainty distribution of multiple model components. For each component, we divided model parameters into 

global and spatial ones, thus facilitating the uncertainty quantification of complex spatial heterogeneity. When new borehole 

observations are measured, instead of directly reducing model uncertainty, we first strengthen the model hypothesis by 

attempting to falsify it via statistical tests. Our second contribution was to show how direct forecasting can jointly reduce 30 

model uncertainty under the sequential decomposition. This requires posterior model from previous sequences as additional 

inputs to constrain the current prior. Such sequential direct forecasting showed to maintain important geological model features 

of hierarchy and correlation, whilst avoiding the time-consuming conventional model rebuilding. In terms of discrete model 
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such as lithology, signed distance function was employed, before applying directly forecasting to reduce uncertainty. The third 

contribution, but maybe more important, is that the proposed framework allows automation of geological UQ. We developed 

an opensource Python project for this implementation. Its application to a large reservoir model showed that the automated 

framework ensures the model is objectively informed by data at each step of uncertainty quantitation. It jointly quantified and 

updated uncertainty of all model components, including structural thickness, facies, porosity, permeability and water 5 

saturation. The posterior model showed to be constrained by new borehole observations globally and locally, with 

dependencies and correlations between the model components preserved from the prior. It predicted validating observations 

(future drilling boreholes) with reduced uncertainty. Since posterior cannot be falsified, the uncertainty reduced GIIP 

prediction can be used for decision makings. The whole process takes less than 1 hour on a laptop workstation for this large 

field case, thus demonstrating efficiency of the automation  10 

Code availability.  

AutoBEL is a free, open-source Python library. It is available at https://doi.org/10.5281/zenodo.3479997, and the source code 

is maintained on GitHub https://github.com/sdyinzhen/AutoBEL-v1.0 under MIT license. 
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