

Figure S1:

2

6

- 4 Same as Fig. 2, but for cloud radiative effects: (a) shortwave, (b) longwave, and (c) net cloud
- 5 radiative effects.

A. Derivation of velocities of falling cloud ice

A.1 Terminal velocity of cloud ice particles and mass equivalent diameter

The mass equivalent diameter D_m (cm)¹ is defined as follows using mass M (g):

$$M = \rho_{\rm ice} \frac{\pi}{6} D_m^3 \tag{S1}$$

- where ρ_{ice} (g cm⁻³) is the density of ice and $\rho_{ice} = 0.91$ (g cm⁻³) is used here.
- On the other hand, Heymsfield and Iaquinta (2000) proposed the mass of each cloud ice
- particle M (g) and the terminal velocity V_t (cm s⁻¹) as functions of the maximum length D_L (cm),
- 14 with $M(D_L)$ given by:

7

8

$$M(D_L) = \alpha D_L^{\beta} \tag{S2}$$

- Values of α and β vary depending on the crystal shape of cloud ice. Columns for $D_m < 0.01$ (cm)
- and bullet rosettes for $D_m > 0.01$ (cm) are assumed in this study in accordance with
- Zurovac-Jevtic and Zhang (2003). Based on the above assumptions, the values for columns $\alpha =$
- 1.649 \times 10⁻³ and β = 2.20 are used for D_m < 0.01 (cm), and the values for bullet rosettes α = 3.99
- $\times 10^{-4} n_b$ and $\beta = 2.27$ are used for $D_m > 0.01$ (cm) (Zurovac-Jevtic and Zhang 2003) where n_b is
- 21 the number of bullets in a rosette and $n_b = 2$ is assumed here. Then $V_t(D_L)$ is given by:

$$V_t(D_I) = x D_I^{\ y} \tag{S3}$$

- Though x and y vary depending on the shapes of cloud ice, the values for columns x = 3086 and
- y = 1.26 are used for $D_m < 0.01$ (cm), and the values for bullet rosettes x = 492 and y = 0.70 are
- used for $D_m > 0.01$ (cm) under the same assumptions as mentioned above (Zurovac-Jevtic and
- 26 Zhang, 2003).
- Eq. (S3) can be written as follows using Eq. (S1) and Eq. (S2):

¹ In Supplement A, the CGS system of units is used in the derivation in order to refer directly to the original papers. However, as an exception we use the unit kg m⁻³ for ice water content IWC.

$$V_t(D_m) = x \left(\frac{\pi \rho_{\text{ice}} D_m^3}{6\alpha}\right)^{\frac{y}{\beta}}$$
 (S4)

29 A.2 Size-distribution function of cloud ice

- 30 McFarquhar and Heymsfield (1997; hereafter MH97) derived a number distribution
- function $N(D_m)$ for particles with mass-equivalent diameter D_m based on observations of cirrus.
- This subsection is a brief extract from MH97.
- 33 $N(D_m)$ for $D_m < 0.01$ (cm) is as follows:

$$N(D_m) = \frac{6IWC_{\text{all}}\alpha_{<100}{}^5D_m}{\pi\rho_{\text{ice}}\Gamma(5)} \exp(-\alpha_{<100}D_m)$$
 (S5)

- where Γ is the gamma function and IWC_{all} is ice water content (kg m⁻³) for the whole cloud ice.
- $\alpha_{<100}$ is a parameter that determines the shape of the distribution, and it can be represented as
- follows using ice water content with size smaller than 0.01cm, IWC_{<100} (kg m⁻³).

38
$$\alpha_{<100} = b_{\alpha} - m_{\alpha} \log_{10} \left(\frac{\text{IWC}_{<100}}{\text{IWC}_0} \right)$$
 (S6)

- 39 where $b_{\alpha} = -49.9 \pm 55.0 \text{ (cm}^{-1})$, $m_{\alpha} = 494 \pm 29 \text{ (cm}^{-1})$ and $IWC_0 = 1 \times 10^{-3} \text{ (kg m}^{-3})$. These
- 40 equations mean that the peak of the distribution moves toward a larger value of D_m with
- 41 increasing ice water content with size smaller than 0.01cm, IWC_{<100}
- 42 For $D_m > 0.01$ (cm), the distribution is as follows:

43
$$N(D_m) = \frac{6IWC_{all}}{\pi^{\frac{3}{2}}\rho_{ice}\sqrt{2}\exp\left(3\mu_{>100} + \frac{9}{2}\sigma_{>100}^2\right)D_m\sigma_{>100}D_0^3}\exp\left[-\frac{1}{2}\left(\frac{\log\frac{D_m}{D_0} - \mu_{>100}}{\sigma_{>100}}\right)^2\right]$$
 (S7)

- where $D_0 = 1 \times 10^{-4}$ (cm), and $\mu_{>100}$ and $\sigma_{>100}$ are parameters that determine the peak and the
- width of the distribution, respectively. These are given as follows in terms of ice water content
- with size larger than 0.01cm, $IWC_{>100}$ (kg m⁻³).

47
$$\mu_{>100} = a_{\mu}(T) + b_{\mu}(T)\log_{10}\left(\frac{\text{IWC}_{>100}}{\text{IWC}_0}\right)$$
 (S8)

48
$$\sigma_{>100} = a_{\sigma}(T) + b_{\sigma}(T)\log_{10}\left(\frac{\text{IWC}_{>100}}{\text{IWC}_{0}}\right)$$
 (S9)

where $a_{\mu}(T)$, $b_{\mu}(T)$ and $a_{\sigma}(T)$, $b_{\sigma}(T)$ are constants that depend on temperature. In this study, a_{μ} = 49 5.148, b_{μ} = 0.089, a_{σ} =0.396 and b_{σ} =0.044 are adopted (values for -50°C < T < -40 °C were 50 chosen as representative values for cirrus ice). These equations mean that the peak of the 51 52 distribution moves toward a larger value of D_m and the width of the distribution expands as ice water content whose size is larger than 0.01cm, IWC>100, becomes greater. 53

On the other hand, IWC_{<100} can be calculated as follows:

IWC_{<100} = min
$$\left[IWC_T, a \left(\frac{IWC_T}{IWC_0} \right)^b \right]$$
 (S10)

where a and b are constants taken as 2.52×10^{-4} (kg m⁻³) and 0.837, respectively, and IWC_T is 56 ice water content (kg m⁻³) for the whole cloud ice. IWC_{>100} can be calculated from the relation IWC_T = IWC_{<100} + IWC_{>100}. The term α_i in the text refers to the ratio IWC_{<100} / IWC_T; this α_i is shown in Fig. S2 in this supplement.

57

58

59

54

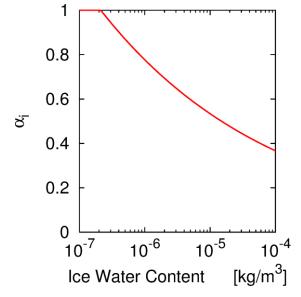


Figure S2:

Ratio of particles smaller than 100 µm to total ice water content, α_i (MH97). The abscissa shows total ice water content IWC_T (kg m⁻³).

A.3 Velocities of falling cloud ice

- 71 The procedure in the following derivation is similar to Zurovac-Jevtic and Zhang (2003).
- Although they derived one velocity, two separate velocities that correspond to small and large
- particles are derived here.

74

75

70

A.3.1 Fall velocity for ice particles smaller than 100 µm

- Bulk fall velocity for cloud ice particles smaller than 0.01cm, v_i , was derived as follows by
- integration using Eq. (S4) and Eq. (S5).

78
$$v_{i} = \int_{0}^{0.01 \text{cm}} V_{t}(D_{m}) N(D_{m}) \rho_{\text{ice}} \frac{\pi}{6} D_{m}^{3} dD_{m} / \text{IWC}_{<100}$$

79
$$= \frac{IWC_{all}}{\Gamma(5)} x \left(\frac{\pi \rho_{ice}}{6\alpha \alpha_{<100}^{3}}\right)^{\frac{y}{\beta}} \int_{0}^{0.01\alpha_{<100}} t^{4+\frac{3y}{\beta}} \exp(-t) dt / IWC_{<100}$$
 (S11)

- On the other hand, the relation between IWC_{<100} and IWC_{all} is as follows ($t \equiv \alpha_{<100} D_m$), using Eq.
- 81 (S5):

82
$$IWC_{<100} = \int_{0}^{0.01 \text{cm}} N(D_m) \rho_{\text{ice}} \frac{\pi}{6} D_m^3 dD_m$$

$$= \frac{IWC_{\text{all}}}{\Gamma(5)} \int_{0}^{0.01\alpha_{<100}} t^4 \exp(-t) dt$$
(S12)

- This relationship should be used because the number distribution function for $D_m < 0.01$ (cm)
- still has a non-negligible value in the region where D_m is larger than 0.01 cm. Using Eq. (S11)
- and Eq. (S12), v_i can be written as follows:

87
$$v_i = \chi \left(\frac{\pi \rho_{\text{ice}}}{6\alpha \alpha_{<100}^3}\right)^{\frac{y}{\beta}} \frac{\int_0^{0.01\alpha_{<100}} t^{4+\frac{3y}{\beta}} \exp(-t)dt}{\int_0^{0.01\alpha_{<100}} t^4 \exp(-t)dt}$$
(S13)

- Because $\alpha_{<100}$ given by Eq. (S6) is a function of IWC $_{<100}$, the ratio of the two integrations in
- 89 Eq. (S13) can be derived as a function of $IWC_{<100}$ numerically. It was fitted by $IWC_{<100}$ as
- 90 follows:

91
$$\frac{\int_0^{0.01\alpha_{<100}} t^{4+\frac{3y}{\beta}} \exp(-t)dt}{\int_0^{0.01\alpha_{<100}} t^4 \exp(-t)dt} = 17.86 \exp(-1.211 \times 10^4 \text{IWC}_{<100} + 3.64 \times 10^7 \text{IWC}_{<100}^2)$$

92 Then Eq. (S13) results in the following:

93
$$v_i = 17.86x \left(\frac{\pi \rho_{\text{ice}}}{6\alpha \alpha_{<100}^3}\right)^{\frac{y}{\beta}} \exp\left(-1.211 \times 10^4 \text{IWC}_{<100} + 3.64 \times 10^7 \text{IWC}_{<100}^2\right)$$

- The final form was derived by fitting the above equation by IWC_{<100} again (note that the unit of
- v_i is (m s⁻¹) in this final form).

$$v_i = 1.56 \text{IWC}_{<100}^{0.24}$$

A.3.2 Fall velocity for ice particles larger than 100 µm

Bulk fall velocity for cloud ice particles larger than 0.01 cm, v_s , was derived as follows by integration using Eq. (S4) and Eq. (S7). The function was integrated over the whole size range because the number distribution function has a value small enough in the range smaller than 0.01 cm and the contribution of that part to the derived velocity is insignificant. In this case, the integration simplifies as:

104
$$v_{s} = \int_{0.01 \text{cm}}^{\infty} V_{t}(D_{m}) N(D_{m}) \rho_{\text{ice}} \frac{\pi}{6} D_{m}^{3} dD_{m} / \text{IWC}_{\text{all}}$$

$$\approx \int_{0}^{\infty} V_{t}(D_{m}) N(D_{m}) \rho_{\text{ice}} \frac{\pi}{6} D_{m}^{3} dD_{m} / \text{IWC}_{\text{all}}$$

$$= x \left(\frac{\pi \rho_{\text{ice}}}{6 \alpha} \right)^{\frac{y}{\beta}} \left(D_{0} e^{\left(\mu_{>100} + \frac{3}{2} \left(2 + \frac{y}{\beta} \right) \sigma_{>100}^{2} \right)} \right)^{3\frac{y}{\beta}}$$
106

The equation above can be modified as follows by substituting Eq. (S8) and Eq. (S9), and then by fitting using IWC_{>100} (note that the unit of v_s is (m s⁻¹) in this final form):

$$v_{\rm S} = 2.23 \text{IWC}_{>100}^{0.074}$$