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Abstract. Atmospheric inversions are used to derive constraints on the net sources and sinks of CO2 and other stable atmo-

spheric tracers from their observed concentrations. The resolution and accuracy the fluxes can be estimated with depends,

among other factors, on the quality and density of the observational coverage, on the precision and accuracy of the transport

model used by the inversion to relate fluxes to observations, and on the adaptation of the statistical approach to the problem

studied (Michalak et al., 2016).5

In recent years, there has been an increasing demand from stakeholders for inversions at higher spatial resolution (country

scale), in particular in the framework of the Paris agreement. This step up in resolution is in theory enabled by the growing

availability of observations from surface in-situ networks (such as ICOS in Europe) and from remote sensing products (OCO-2,

GOSAT-2). The increase in the resolution of inversions is also a necessary step to provide efficient feedback to the bottom-up

modelling community (vegetation models, fossil fuel emission inventories, etc.). It however calls for new developments in10

the inverse models: diversification of the inversion approaches, shift from global to regional inversions, improvement in the

computational efficiency, etc.

We developed the Lund University Modular Inversion Algorithm (LUMIA) as a tool to address some of these new topics.

LUMIA is meant to become a platform for inverse modelling developments at Lund University. It aims at being a flexible,

yet simple and easy to maintain set of tools that the modellers can combine to build inverse modelling experiments. It is in15

particular designed to be transport model agnostic, which should facilitate isolating the transport model errors from those

introduced by the inversion setup itself.

This paper describes briefly the LUMIA framework: the motivations for building it, the development principles, current

status and future prospects. Then a first LUMIA inversion setup is presented, to perform regional CO2 inversions in Europe,

using in-situ data from surface and tall tower observation sites. Since LUMIA doesn’t come with its own transport model,20

the transport of fluxes is computed using a coupling between the Lagrangian FLEXPART transport model (high resolution

foreground transport) and the global coarse resolution TM5 transport model (following the approach of Rödenbeck et al.

(2009)). This particular coupling is new and therefore also described in this paper.
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1 Introduction

The accumulation of greenhouse gases in the atmosphere is the main driver of climate change. The largest contribution of25

anthropogenic activities to global warming is through the release of fossil carbon (mainly as CO2) to the atmosphere, but other

human activities such as land use change (for agriculture, deforestation, etc.) also play a significant role. The climate forcings

from this increased CO2 concentration is likely to induce feedbacks through reactions of the terrestrial ecosystems and of

the oceans (Stocker et al., 2013). Our capacity to correctly predict climate change, anticipate and mitigate its effects depends

therefore largely on our capacity to model and predict the evolution of carbon exchanges between the atmosphere and other30

reservoirs.

For future climate simulations, the only available option is through “direct” (bottom-up) modelling of the different compo-

nents of the biogeochemical cycles, i.e. using models (numerical or statistical) that simulate, as accurately as possible (given

the precision requirements of the simulation), greenhouse gas fluxes to and from the atmosphere. For past periods, however, the

“inverse” (top-down) approach is also possible, in which the greenhouse gas fluxes are diagnosed from their observed impact35

on atmospheric greenhouse gas concentrations.

Direct and inverse approaches are complementary, the former can provide detailed estimates of the spatial and temporal

variability of the fluxes, but often with large uncertainties on the total fluxes Sitch et al. (2015) . On the contrary, inverse

approaches provide robust estimates of total fluxes at large scales consistent with the observations (e.g. Gurney et al. (2002)),

but with poor sensitivity to smaller scales (e.g. Peylin et al. (2013)).40

An atmospheric inverse model typically couples an atmospheric transport model (which computes the relationships between

fluxes and concentrations) with an inversion algorithm, whose task is to determine the most likely set of fluxes, within some

prior constraints and given the information from an observation ensemble (in a Bayesian approach). In practice, inversions are

complex codes, computationally heavy. The complexity arises in a large part from the necessity to combine large quantities

of informations from sometimes very heterogeneous datasets (various types of observations, flux estimates, meteorological45

forcings, etc.). The computational weight depends largely on that of the underlying transport model, which usually needs to be

ran a large number of times (iteratively or as an ensemble).

In recent years, the availability of observations has grown by orders of magnitude, with the deployment of high-density

surface observation networks (such as the Integrated Carbon Observation System, ICOS, in Europe) and the fast developments

in satellite retrievals of tropospheric greenhouse gas concentrations (GOSAT, OCO-2, etc.). Meanwhile, the demand for inver-50

sions is increasing, in particular from stakeholders such as regional, national or trans-national governments who are interested

in country-scale inversions as a means of quantifying their carbon emissions, in connection with emission reduction targets as

defined in the Paris agreement (Ciais et al., 2015).

This context puts strains on the existing inverse models. The larger availability of high quality data means that fluxes can be

constrained at finer scales, but it also means that models of higher definition and precision must be used. The development of55

regional inversions (of varying scales) allows in theory an efficient usage of high resolution data while preserving a reasonable

computational cost, but comes with specific challenges such as the need of more boundary conditions and the lack of options
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for cross-validation when the resolution increases and the domain size shrinks. The demands from various stakeholders (policy

makers, bottom-up modellers, medias, etc.) also call for developments in the inversion techniques, with for instance a more

pronounced focus on the quantification of anthropogenic sources (Ciais et al., 2015) or the optimization of ecosystem models60

parameters instead of CO2 fluxes in carbon cycle data assimilation systems (CCDAS) (Kaminski et al., 2013).

To enable such progress in the method and quality of the inversions, it is important to have a robust and flexible tool. The

purpose of LUMIA (Lund University Modular Inversion Algorithm) is to be a development platform for top-down experiments.

LUMIA was developed from the start as a model-agnostic inversion tool, with a clear isolation of the data stream between the

transport model and the optimization algorithm in an interface module. One of the main aims is to eventually allow a better65

characterization of the uncertainty associated to the transport model. Strong emphasis was put on the usability (low barrier

entry code for newcomers, high degree of modularity to allow users to build their experiments in a very flexible way) and

sustainability of the code (small, easily replaceable one-tasked modules instead of large multi-option ones).

This paper presents the LUMIA inversion framework, as well as a first application of regional (European) CO2 inver-

sions for Europe. The inversions use in-situ CO2 observations from European tall towers (now part of the ICOS network,70

see https://www.icos-ri.eu) and rely on a regional transport model based on a new coupling between the FLEXPART La-

grangian particle dispersion model (Seibert and Frank, 2004; Pisso et al., 2019) (foreground, high resolution transport) and

TM5-4DVAR (Meirink et al., 2008; Basu et al., 2013) (background concentrations). The paper is organized as follows: First,

Section 2 presents the LUMIA framework (general principles and architecture). Then Section 3 presents the specific inverse

modelling setup used here (including the FLEXPART-TM5 coupling). Sections 4 and 5 present the results from two set of75

inversions (against synthetic and real observations). Finally, a short discussion summarises the main outcomes of the paper in

Section 6.

2 The LUMIA framework

2.1 Theoretical background

The general principle of an atmospheric inversion is to determine the most likely estimate of a set of variables controlling the80

atmospheric content and distribution of a tracer (typically sources and sinks, but also initial or boundary conditions), given a set

of observations of that tracer’s distribution in the atmosphere. The link between the set of parameters to optimize (control vector

x, of dimension nx) and the observed concentrations (observation vector y, of dimension ny) is established by a numerical

model of the atmospheric transport (and of any other physical process relating the state and observation vectors):

y+ εy =H(x+ εx)+ εH (1)85

The observation operatorH includes the transport model itself, but also any additional steps needed to express y as a function

of x (aggregation/disaggregation of flux components, accounting of boundary conditions and of non-optimized fluxes, etc.).
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The error terms εy , εx and εH are respectively the observation error, the control vector error and the model error (see Section

3.3.1). In the simplest cases, the system can be solved for x analytically, but most often inversions use the Bayesian inference

approach: the optimal control vector x̂ is the one that allows the best statistical compromise between fitting the observations90

and limiting the departure from a prior estimation of the control vector xb (accounting for the (prescribed) uncertainties in the

observations and the prior). Mathematically, this means finding the vector x̂ that minimizes a cost function J(x) defined (in

our case) as

J(x) =
1

2
(x−xb)

T
B−1 (x−xb)

+
1

2

∑
j

(Hx−yj)
T
R−1 (Hx−yj)

= Jb + Jobs (2)

where the prior (B) and observation (R) error covariance matrices weigh the relative contributions to the cost function of95

each departure from each prior control variable xib and from each observation yj . The optimal control vector x̂ is solved for

analytically (for small scale problems) or approximated step-wise (variational and ensemble approaches are most common

(Rayner et al., 2018)).

An inversion system is therefore the combination of an observation operator (i.e. transport model, sampling operator, etc.),

an inversion technique and a set of assumptions on the prior values of the variables to estimates, their uncertainties and the100

uncertainties of the observations. Each of these components introduces its own share of uncertainty, which makes the results

harder to interpret: which feature of the solution is real, and which is introduced by e.g. the transport model, or incorrect

assumptions on some uncertainties?

2.2 The lumia python package

The LUMIA system is designed with the aim to provide the modularity needed to quantify the impact of the inversion design105

choices on the inversion results themselves. The strict isolation of the transport model also enables the transport model and

the inversion algorithm to evolve independently. On the other hand, the modularity does lead to an increase in the overall

complexity of the code (due to the need to develop and maintain generic interfaces), which can end up being counterproductive

if it limits the performances and/or usability of the system. We nonetheless believe that the benefit of a higher modularity

outweighs the risks. The potential adverse effects can be mitigated by careful design choices. The code is distributed as a110

single python package, with the following structure (see also Figure 1):

– The lumia folder contains the lumia python library, which implements the basic components of the inversion such

as data storage (control vector, fluxes, observations, uncertainty matrices) and functions (forward and adjoint transport,

conversion functions between fluxes and control vector; cost function evaluation, etc.).
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– The transport folder contains the code that was used to implement the TM5-FLEXPART transport model coupling,115

described further in Section 3.2.

– The src folder contains the FORTRAN source code for the conjugate gradient minimizer used in the example inversions

(see Section 3). Replacing this external code by a native python equivalent is planned.

– The doc folder contains a documentation, mainly in the form of jupyter-notebooks, and example data and configuration

files.120

– The GMDD folder contains the scripts and configuration files used for producing the results presented further down in

this manuscript.

The package can be installed using the standard ‘pip’ command, which installs lumia and transport as python modules,

which can then be imported from any python script. The lumia module itself has a relatively flat hierarchy, which limits the

risk that replacing or changing one component prevents the others from working. The implementation of alternative features125

is preferably carried out via the development of alternative classes, which allows each individual class to remain compact and

easy to understand and maintain.

The lumia and transport modules and their submodules can be used totally independently from the inversion scripts

that are provided in the scripts folder. This allows their use in different contexts, such as development, pre/post-processing

of the inversion data or during the analysis of the results (and eventually this helps keeping the inversion scripts compact, as130

they need only to focus on the inversion itself). The scope of the lumia library is intentionally vague: it should permit easily

constructing inversion experiments and is primarily designed for it, but our current design choices should not over-constrain

the alternative use cases (such as e.g. forward transport model experiments or optimization of land surface model parameters).

3 Test inversion setup

Our test inversion setup is designed to optimize the monthly net atmosphere-ecosystem carbon flux (NEE, Net Ecosystem135

Exchange) over Europe at a target horizontal resolution of 0.5◦, using CO2 observations from the European ICOS network

(or similar/precursor sites). Two series of inversions are presented: First, a series of Observing System Synthetic Experiments

(OSSEs), using known truth and synthetic observations; then a series of inversions constrained by real observations. All the

inversions are performed on a domain ranging from 15◦W, 33◦N to 35◦E, 73◦N (illustrated in Figure 2, and hereafter referred

to as the Regional Inversion Domain, RID) and cover the year 2011. The following sections describe the variational inversion140

technique, the transport model and the problem constraints (prior fluxes and observations).

3.1 Inversion approach

We use a Bayesian variational inversion algorithm, similar to that used in TM5-4DVAR inversions (Basu et al., 2013; Meirink

et al., 2008). In a variational inversion, the minimum of the cost function J(x) (Equation 2) is solved for iteratively:
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Figure 1. Inversion flow diagram. The green boxes represent code that is part of the lumia python module; the orange box shows operations
performed by the atmospheric transport model (in our case a simple python script that reads in observations, fluxes and footprints, but a full
transport model could be plugged in instead); the blue boxes show code that is typically user- and application-specific (pre-processing of
data and main inversion control script). The boxes in grey mark on-disk data, and the boxes in purple show external executables

– An initial "prior" run is performed to compute the concentrations (ym =Hxb) corresponding to the prior control vector145

xb (since the transport is linear, H(x)≡Hx).

– The local cost function (J(x= xb)) and cost function gradient (∇xJ(x= xb)) are computed.

– A control vector increment (δx) is deduced from the gradient, and the process is repeated from step 1 (with x= xb + δx),

until a convergence criterion is reached.

The control vector increments are computed using an external library implementing the Lanczos algorithm (Lanczos, 1950).150

For efficiency (reduction of the number of iterations) and practicality (reduction of the number of large matrix multiplications)

reasons, the optimization is performed on the preconditioned variable ω =B−1/2(x−xb) (following Courtier et al. (1994)

and similar to the implementation in Basu et al. (2013). Equation 2 then becomes

J(ω) =
1

2
ωTω+

1

2

(
HB1/2ω+d0

)T
R−1

(
HB1/2ω+d0

)
(3)
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Figure 2. Regional inversion domain and location of the observation sites. The area of the dots is proportional to the number of observations
available at each site (the actual number of observations is reduced by the filtering described in Section 3.3.4) and their color represents the
altitude of the sites.

with d0 =Hxb−y the prior model-data mismatches. In this formulation, the cost function gradient is given by155

∇ωJ = ω+BT/2HTR−1 (Hx−y)

= ω+BT/2∇xJobs (4)

The non-preconditioned observational cost function gradient ∇xJobs =HTR−1 (Hx−y) is computed using the adjoint

technique (Errico, 1997). The transformation matrix B1/2 is obtained by eigen-value decomposition of B. Note that in this

formulation, the inverse of B (or the square root of its inverse) is actually never needed, making it possible to constrain the

inversion with a non invertible matrix. In practice, the preconditioning adds two extra steps to the algorithm described above:160

conversion from ω to x (x=B1/2ω+xb) before applying the transport operator (i.e. running the transport model), just before
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step 1; Conversion from∇xJobs to∇ωJobs (just after step 2). The initial preconditioned control vector is filled with zeros and

corresponds to x0 = xb.

3.2 Observation operator and transport model

The observation operator (H in Equation 2) groups the ensemble of operations to compute the CO2 concentrations correspond-165

ing to a given control vector. In our case, this covers the disaggregation from the monthly fluxes in the control vector to a

3-hourly temporal resolution, the addition of prescribed fluxes (fossil, ocean and biomass burning categories), their transport

to the observations location and the addition of background concentrations.

In this first implementation of CO2 inversions with LUMIA, we opted for a regional transport model based on pre-computed

observational response functions (footprints):170

yim = yibg +
∑
i

∑
c

〈Ki, fc〉 (5)

where the footprint Ki stores the sensitivity of the observation yi to the surface fluxes fc (with the index c referring to the

flux category), and yibg is the contribution of background and historical fluxes to the model estimate yim of observation yi.

The flux vectors fc are constructed from the control vector for the optimized flux category (NEE) and prescribed for the

other fluxes. The relation between the control vector and the fnee is given by:175

f tnee =
xm−xmb

nt
+ f t0nee

xmb =
∑
t

f t0nee
(6)

where f tnee is the NEE flux map at time step t of the month m, f t0nee
is the corresponding prior NEE map, xm and xmb are

the control vector and prior control vector components corresponding to month m at the same spatial coordinates, and nt is

the number of three-hourly intervals in the month m. In other words, the inversion adjusts an offset to the prior, high temporal

resolution fluxes.180

The adjoint operations corresponding to Equations 5 and 6 are summarized by

xmadj =
1

nt

nt∑
t

∑
i

Kt
iδy

i (7)

with δiy the model-data mismatches weighted by their uncertainties (See Section 3.3.1).

Since K and ybg are constant throughout the inversion iterations, they can be pre-computed, which reduces the transport

computations to a set of very simple matrix operations. This tremendously reduces the computational cost of the inversions but185
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increases the I/O and storage requirements (one response function K must be stored for each observation and is read at each

forward and adjoint iteration).

Although the operations described above are all part of the observation operator (‘lumia.obsoperator‘ module), the actual

forward and adjoint flux transport (Equation 5 and its adjoint counterpart fadj =Hadj(dy)) are performed by the transport

model (‘transport‘ python library), called as a subprocess. The transport model relies on pre-computed observation footprints190

(response functions) and time series of background concentrations:

3.2.1 Response functions (regional transport model)

The response functions (K) were computed using the FLEXPART 10.0 Lagrangian transport model (Seibert and Frank, 2004;

Stohl et al., 2010). FLEXPART simulates the dispersion, backwards in time from the observation location, of a large number

of virtual air “particles”. The response function Kφ
i corresponds to the aggregated residence time of the particles released for195

observation yi, in a given space-time grid box φ of the regional inversion, and below a threshold altitude layer arbitrarily set to

100m).

The simulations were driven by ECMWF ERA-Interim reanalysis, extracted at a 3-hourly temporal resolution, and on a

0.5◦× 0.5◦ horizontal resolution, on a regional domain ranging from 25◦W, 23◦N to 45◦W, 83◦N, slightly larger than the

inversion grid, which allows for some accounting of particles re-entry (i.e. when an air mass leaves the inversion domain, and200

re-enters it later, which is not accounted for in the background).

One set of 3-hourly response functions was computed for each observation, up to seven days backward in time (less if

all the particles leave the domain sooner). For plain or low altitude sites (see Table 1), the particles were released from the

sampling height above ground of the observations. For high altitude sites (around which the orography is unlikely to be correctly

accounted for), the particles were released from the altitude above sea level of the observation sites.205

The response functions are stored in HDF5 files, following a format described in SI.

3.2.2 Background concentrations (global transport model)

The background CO2 concentrations (ybg in Equation 5) result from the transport of CO2-loaded air masses from outside

the regional inversion domain to the observation sites. One approach to compute these background concentrations has been

proposed by Rödenbeck et al. (2009), and consists in extracting background concentrations time series at the observation sites210

from the model output of a global, coarse resolution Eulerian transport model, driven by a set of inversion-derived CO2 fluxes.

The background extraction is done in three steps: - A global, coarse resolution inversion is performed, constrained by

a realistic set of prior CO2 fluxes fgloapri, an initial atmospheric distribution of CO2 concentrations (Cini), a set of global,

background surface CO2 observations and a subset of the observations to be used later in the regional, high resolution CO2

inversion. The aim of this step is to obtain a set of CO2 fluxes fglo that leads to a very realistic atmospheric CO2 distribution215

in and around the regional inversion domain (RID). The accuracy of the fluxes themselves has less importance. - The CO2

concentrations ytot corresponding to the transport of the optimized coarse resolution fluxes fglo to the observation sites within

the RID are computed using a forward run of the global transport model used in step 1. The foreground CO2 concentrations
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yfg are computed using a modified version of that same model, in which the fluxes and concentrations are maintained as zero at

all times outside the regional domain, so that the concentrations yfg result only from the transport of the fraction of the fluxes220

fglo that is within the RID. - The background CO2 concentrations are obtained by subtraction of the foreground concentrations

to the total ones (ybg = ytot− yfg).

The underlying assumptions is, that, by the time the air masses originating from outside the RID reach the observation sites,

existing high resolution patterns of CO2 at the regional domain boundaries concentrations would have been dispersed, and

therefore the field of background CO2 concentrations within the RID can be well represented with a coarse resolution transport225

model. On the other hand, this background CO2 distribution should be as realistic as possible (within the limits of the model

resolution), especially in and around the boundaries of the foreground domain, therefore the use of an inversion in step 1 above.

We refer to Rödenbeck et al. (2009) for a much more complete description of the approach.

We implemented the Rödenbeck et al. (2009) approach in a TM5 model setup (Huijnen et al., 2010) with the initial global

inversion (step 1) performed in a TM5-4DVAR setup, based on (Basu et al., 2013). The NEE flux is optimized monthly on a230

global 6◦× 4◦ grid, and three additional prescribed CO2 flux categories are accounted for (fossil fuel, biomass burning and

ocean sink). It covers the entire period of the LUMIA inversion, plus six extra months at the beginning and one at the end to

limit the influence of the initial condition and to ensure that the background concentrations in the last month of the LUMIA

inversion are well constrained by the observations (observations provide important constraints on the fluxes from the preceding

month).235

The inversion is constrained by flask observations from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling

Network (Dlugokencky et al., 2019) outside the European domain, and by a subset of the observations used for the regional

inversion within the European domain (see Section 3.3 for references, and Table SI1 for a full list of the sites used in that step).

Since the focus of this inversion is to produce a realistic CO2 distribution around the European domain, the choice of a

prior matters a lot less than the selection of observations. For practical reasons, prior fluxes from the CarbonTracker 2016240

release were used (Peters et al., 2007): the NEE prior is generated by the SibCASA model (Schaefer et al., 2008); fossil

fuel emissions spatially distributed according to the EDGAR4.2 inventory (https://edgar.jrc.ec.europa.eu/overview.php?v=42);

biomass burning emissions are based on the GFED4.1s product (Van Der Werf et al., 2017) and the ocean flux is based on the

Takahashi et al. (2009) climatology. We refer to the official CarbonTracker 2016 documentation (https://www.esrl.noaa.gov/

gmd/ccgg/carbontracker/CT2016) and to references therein for further documentation on these priors.245

The total (ytot) and foreground (yfg) CO2 concentration time series at the observation sites are extracted using a modified

forward TM5 run implementing the step 2 of the background extraction approach described above. The foreground and total

CO2 time series were saved for each observation site, both as continuous (every 30 minutes) concentration time series, sampled

at the actual altitude (above sea level) of the observation site, but also as vertical profiles between the surface (as defined in the

TM5 orography) and 5000 m.a.s.l (with a vertical resolution of 250 m and a temporal resolution of 30 minutes). The latter is250

used to construct a part of the observation uncertainties.
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3.3 Observations and observational uncertainties

Observations from the GLOBALVIEWplus 4.2 obspack product were used in the inversions (NOAA Carbon Cycle Group

ObsPack Team, 2019). For the year 2011, the product includes observations from 26 sites within our regional domain (in

addition to observations from mobile platforms, which were not used). Continuous observations are available at 18 of these255

26 sites and nine sites are high altitude. Most of these observation sites are now part of the European ICOS network. A list of

the sites (coordinates, observation frequency, sampling height and data provider) is provided in Table 1, and the location of the

observations is also reported in Figure 2.

3.3.1 Observation uncertainties

The observation uncertainty matrix (R) accounts for both the measurement uncertainties (εobs) and the model representation260

uncertainty (εH , i.e. the incapacity of the model to represent perfectly well the observations, even given perfect fluxes). In

theory, the diagonal of the matrix stores the absolute total uncertainty associated to each observation while the off-diagonals

should store the observation error correlations. In practice, these correlations are difficult to quantify, and the size of the matrix

would anyway make it impractical to invert. The off-diagonals are therefore ignored in our system (as in most similar inversion

setups) and the observation uncertainty is stored in a simpler observation error vector, εy .265

Our inversion system uses an observation operator that decomposes the background and foreground components of the CO2

mixing ratio, therefore the model uncertainty can itself be decomposed in foreground and background uncertainties:

εy =
√
max{εobs,εminobs }2 + ε2bg + ε2fg (8)

The instrumental error (εy) is provided by the data providers for most of the observations, and typically ranges between

0.1-0.7 ppm (see Figure 3). We enforced a minimum instrumental error (εminobs ) of 0.3 ppm for all the observations.270

The model representation error can not be formally quantified, as this would require knowing precisely the CO2 fluxes that

the inversion is attempting to estimate. One can, however, assign representation error estimates (foreground and background)

based, in particular, on assumptions of situations that would normally lead to a degradation of the model performances (for

instance late-night/early-morning observations, with a development of the boundary layer that may not be well captured by the

model, or observations in regions with a complex orography). Transport model comparisons can also provide representation275

error estimates based on the difference in their results.

3.3.2 Foreground model uncertainties

As described in Section 3.2.2, the TM5 simulation used for computing background CO2 concentrations, also computes the

foreground concentrations at each observation site. We performed a forward transport simulation with the regional transport

model in LUMIA, using both the background concentrations and the foreground fluxes from that TM5 simulation, so that the280
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two simulations differ only by their regional transport model. A comparison between the concentrations computed by the two

models is shown in Figure 4. The bias between the two models is very contained during the summer months (it is below 0.2

ppm from April to September, and goes as low as 0.01 ppm in July), but rises during the winter months (up to 1.45 ppm in

November). The mean average difference between the two simulations is also much larger in winter: it ranges from 0.82 ppm

in September to 4.3 ppm in November, with a yearly average of 3.3 ppm.285

This comparison is not a formal performance assessment of either TM5 or of the FLEXPART-based transport used in

LUMIA, and it particular the bias should be interpreted with care as the sign of the total net foreground flux changes during

the year (which mechanically leads to a change of the sign of the bias). Nonetheless, it provides an indication on the order of

magnitude of the foreground model transport errors. We use the absolute differences between the two models as a proxy for

εfg .290

3.3.3 Background model uncertainties

Background concentrations are expected to be accurately estimated by the global TM5 inversion when the dominant winds

are from the West and that any signal from a strong point CO2 source or sink has had time to dissipate along the air mass

trajectory over the Atlantic Ocean. In less favourable conditions, there can be entries of less well-mixed air inside the domain,

in particular in case of Easterly winds or in events of re-entry of continental air that would have previously left the domain.295

These events are less likely to be well captured by the TM5 inversion and should be attributed a higher uncertainty.

There is no perfect and easy way to detect these events, but one of their consequences would be a less homogeneous

background CO2 distribution around the observation sites when they occur. As part of the TM5 simulation, vertical profiles of

background concentrations were stored for each observation (from the surface to 5000 m.a.s.l, at a 250m vertical resolution).

We set the background uncertainty of each observation (εbg) to the standard deviation of its corresponding background CO2300

vertical profile. εbg is on average 0.36 ppm, one order of magnitude lower than εfg , and it is also more constant (it ranges

between 0.01 and 3.6 ppm). Note that these statistics are computed before the observation selection procedure, described in

the following section. The different components of the observation uncertainty are compared in Figure 3 for two representative

sites.

3.3.4 Observation selection305

The inversions are performed on a subset of the observations included in the obspack product. Only observations for which the

transport model simulation is expected to result in accurate concentrations are kept. In practice, one of the main difficulties of

transport modelling is to correctly compute the mixing of air in the lower troposphere below the boundary layer. The lowest

model representation error is expected for observations that are either within the boundary layer when it is most developed

(in the afternoon), or well above the boundary layer for high-altitude sites (during the night). For each site with continuous310

observations, we selected only observations sampled during the time range for which the model is expected to perform the

best. The time ranges are based on the “dataset_time_window_utc” flag in the metadata of the observation files from

the obspack. For sites with discrete sampling, all observations were used.
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Figure 3. Decomposition of the modelled mixing ratio and of the observation uncertainties at two sites (Cabauw, The Netherlands and Hegy-
hatsal, Hungary). The “TM5 total” line is the concentration computed in the coarse resolution TM5 inversion from which the background
(thick black line) is extracted. The LUMIA prior concentration is shown in red and the green and orange shaded areas show respectively
the contribution of the prior biosphere flux and of the other CO2 fluxes to the difference between that prior and the background. The lower
series of lines in each plot (with y-axis on the right) shows the total observation uncertainty (blue shaded area), and the contributions of the
foreground, background and observational uncertainties.
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Figure 4. LUMIA (CO2 concentrations obtained with TM5-FLEXPART vs. with TM5, using the CO2 fluxes used as prior of the TM5
inversion (background). The color of the dots show the observation month.

A second filter, used in some of the inversions and in the background TM5 inversion (Section 3.2.2), is the limitation of a

maximum of one observation per 24 hours at each observation site (the one that has the lowest observation uncertainty, as per315

the definition in the previous above). This is justified by the fact that two observations at a same site, within a small time interval

have strongly correlated model representation errors and do therefore not provide independent information. In the absence of

a proper accounting of observational error correlations, it may be preferable to limit the number of assimilated observations.

The use of this second observation filter is discussed in further details in Section 5.

3.4 Prior and prescribed fluxes320

In addition of the Net Ecosystem Exchange (NEE, net atmosphere-land CO2 flux) that is optimized in the inversions, the

simulations also account for anthropogenic CO2 emissions (combustion of fossil fuels, bio fuels and cement production), for

biomass burning emissions (large scale forest fires) and for the ocean-atmosphere CO2 exchanges.

The NEE prior is taken from simulations of the LPJ-GUESS and ORCHIDEE vegetation models: in the OSSEs (Section 4)

ORCHIDEE fluxes are used as prior and LPJ-GUESS fluxes are used as truth, while in inversions against real data LPJ-GUESS325

fluxes are used as prior. Both vegetation models provide 3-hourly fluxes, on a horizontal 0.5◦× 0.5◦ grid.

LPJ-GUESS (Smith et al., 2014) is a dynamic global vegetation model (DGVM), which combines process-based descriptions

of terrestrial ecosystem structure (vegetation composition, biomass and height) and function (energy absorption, carbon and

nitrogen cycling). The vegetation is simulated as a series of replicate patches, in which individuals of each simulated plant

functional type (or species) compete for the available resources of light and water, as prescribed by the climate data. The model330
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Code Name Lat
(◦E)

Lon
(◦N )

Alt
(m.a.s.l)

Intake
Height

(m.a.g.l)

Nobs Time
range

(h)

sets Data
provider

BAL Baltic Sea 55.35 17.22 3 25 53 all P 1
BSC Black Sea, Constanta 44.18 28.66 0 5 17 all P 1
CES200 Cesar, Cabauw 51.97 4.93 -1 200 306 11-15 P 2
CIB005 Centro de Investigacion de la

Baja Atmosfera (CIBA)
41.81 -4.93 845 5 49 * A 1

CMN Mt. Cimone Station 44.18 10.70 2165 12 549 23-3 A 3
CRP Carnsore Point 52.18 -6.37 9 14 589 12-16 P 4
ELL Estany Llong 42.57 0.95 2002 3 8 11-15 A 5
HEI Heidelberg 49.42 8.67 116 30 632 11-15 P 6
HPB054 Hohenpeissenberg 47.80 11.02 936 54 47 all A 1
HUN115 Hegyhatsal 46.95 16.65 248 115 685 11-15 P 7
JFJ Jungfraujoch 46.55 7.99 3570 10 461 23-3 A 8
KAS Kasprowy Wierch 49.23 19.98 1989 5 481 23-3 A 9
LMP005 Lampedusa 35.52 12.62 45 5 35 all P 1
LMP008 Lampedusa 35.52 12.62 45 8 418 10-14 PA 10
LUT Lutjewad 53.40 6.35 1 60 289 11-15 P 11
MHD024 Mace Head 53.33 -9.90 5 24 352 12-16 P 12
OPE120 Observatoire Perenne de

l’Environnement
48.56 5.50 390 120 405 11-15 P 12

OXK163 Ochsenkopf 50.03 11.81 1022 163 48 all A 1
PAL Pallas-Sammaltunturi 67.97 24.12 565 5 654 22-2 PA 13
PRS Plateau Rosa Station 45.93 7.70 3480 10 445 23-3 A 14
PUI Puijo 62.91 27.65 232 84 170 11-15 P 13
PUY010 Puy de Dome 45.77 2.97 1465 10 409 23-3 A 12
PUY015 Puy de Dome 45.77 2.97 1465 15 141 23-3 A 12
SSL Schauinsland 47.92 7.92 1205 12 625 23-3 A 15
TRN180 Trainou 47.96 2.11 131 180 539 11-15 P 12
TTA Tall Tower Angus 56.56 -2.99 400 222 435 12-16 PA 16
WAO Weybourne, Norfolk 52.95 1.12 20 10 1078 12-16 P 17
WES WES 54.93 8.32 12 0 1377 11-15 P 18

Table 1. Observation sites used in the inversions. Data providers: 1:NOAA Carbon Cycle Group ObsPack Team (2019); 2:Vermeulen et al.
(2011); 3:Ciattaglia et al. (1987); 4:D. Dodd (EPA Ireland); 5:J.A. Morgui and R. Curcoll (ICTA-UAB, Spain); 6:Hammer et al. (2008);
7:Haszpra et al. (2001); 8:Uglietti et al. (2011); 9:Rozanski et al. (2014); 10:A. G. di Sarra (ENEA, Italy); 11:van der Laan et al. (2009);
12:Yver et al. (2011); 13:Hatakka et al. (2003); 14:F. Apadula (RSE, Italy); 15:Schmidt (2003); 16:Ganesan et al. (2015); 17:Wilson (2012);
18:K. Uhse (UBA, Germany)

is forced using the WFDEI meteorological data set (Weedon et al., 2014) and produces 3-hourly output of gross and net carbon

fluxes.

ORCHIDEE is a global processed-based terrestrial biosphere model (initially described in Krinner et al. (2005)) that com-

putes carbon, water and energy fluxes between the land surface and the atmosphere and within the soil-plant continuum. The

model computes the Gross Primary Productivity with the assimilation of carbon based on the Farquhar et al. (1980) for C3335

plants and thus account for the response of vegetation growth to increasing atmospheric CO2 levels and to climate variability.
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Category Product Original resolution Data provider Total (min/max) flux
(PgC/year)

Biosphere LPJ-GUESS 0.5◦× 0.5◦; 3-hourly Lund University -0.33 (-2.65 / 1.85)
Biosphere ORCHIDEE 0.5◦× 0.5◦; 3-hourly LSCE (P. Peylin, pers. comm) -0.28 (-3.73 / 2.14)

Fossil EDGARv4.3 0.1◦× 0.1◦; hourly ICOS-CP + JRC 1.53
Ocean CarboScopev (oc_v1.7) 5◦× 3.83◦; daily Rödenbeck et al. (2013) -0.11 (-0.05 / 0.01)
Fires GFEDv4 0.5◦× 0.5◦; 3-hourly Van Der Werf et al. (2017) 0.01

Table 2. Prior and prescribed CO2 fluxes. Min/Max values are provided for the fluxes that have both positive and negative components, and
correspond to the minimum and maximum values of the 3-hourly flux aggregated over the entire domain, in PgC/year.

The land cover change (including deforestation, regrowth and cropland dynamic) were prescribed using annual land cover

maps derived from the Harmonized land use data set (Hurtt et al., 2011) combined with the the ESA-CCI land cover products.

The net and gross CO2 fluxes used for this project correspond to the one provided for Global Carbon Project inter-comparison

(Le Quéré et al., 2018) with a model version that was updated recently (Peylin et al., in preparation).340

Fossil fuel emissions are based on a pre-release of the EDGARv4.3 inventory for the base year 2010 (Janssens-Maenhout

et al., 2019). This specific dataset includes additional information on the fuel mix per emission sector and thus allows for

a temporal scaling of the gridded annual emissions for the inversion year (2011) according to year-to-year changes of fuel

consumption data at national level (bp2, 2016), following the approach of Steinbach et al. (2011). A further temporal disaggre-

gation into hourly emissions is based on specific temporal factors (seasonal, weekly, and daily cycles) for different emission345

sectors (Denier van der Gon et al., 2011).

The ocean-atmosphere flux is taken from the Jena CarboScope v1.5 product, which provides temporally and spatially re-

solved estimates of the global sea-air CO2 flux, estimated by fitting a simple data-driven diagnostic model of ocean mixed-layer

biogeochemistry to surface-ocean CO2 partial pressure data from the SOCAT v1.5 database (Rödenbeck et al., 2013).

A biomass burning flux category was also included in the inversion, based on fluxes from the Global Fire Emission Database350

v4 (Giglio et al., 2013). In our European domain biomass burning emissions are negligible regarding the other CO2 emission

sources, however, we include it for completeness.

All fluxes are regridded on the same 0.5◦× 0.5◦, 3-hourly resolution (by simple aggregation or re-binning). A summary of

the prior fluxes sources, original resolution and yearly totals is provided in Table 2.

3.4.1 Prior uncertainties355

The background error covariance matrix (B in Equation 2) is constructed following the “correlation length” approach used

in many other inversion systems (e.g. Houweling et al. (2014); Thompson et al. (2015); Chevallier et al. (2005)): The error

covariance between fluxes x1 and x2 at grid cells with coordinates p1 = (i1, j1, t1) and p2 = (i2, j2, t2) is defined as:

cov(x1,x2) = σ2
x1
.σ2

x2
e−(d(p1,p2)/Lh)

2

e−|t1−t2|/Lt (9)
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where σ2
x1

and σ2
x2

are the variances assigned to the prior monthly NEE at coordinates p1 and p2, and Lh and Lt are360

correlation lengths, which define how rapidly the correlation between two components drops as a function of their distance in

time and space.

The true uncertainty of the prior fluxes (σ2
x) is difficult to evaluate and is therefore constructed on reasonable but arbi-

trary assumptions. We tested several approaches, further discussed in Section 4: 1) Scaling the uncertainties linearly to the

absolute next monthly flux; 2) Scaling the uncertainties to the absolute net 3-hourly flux (and then cumulating these 3-hourly365

uncertainties to the monthly scale); 3) Enforcing constant monthly uncertainties throughout the year, at the domain-scale.

3.5 Inversions performed

We performed two ensembles of inversions. The first ensemble consists of Observing System Simulation Experiments (OSSEs)

to assess the theoretical performance of the system. Here, the LPJ-GUESS NEE dataset was taken as an arbitrary truth, and a

dataset of synthetic pseudo-observations was generated at times and locations of the actual observations listed in Table 1, by370

forward propagation of the “true” NEE flux with the transport model (including also the contributions of non-optimized fluxes

listed in Section 3.4). Random perturbations were then added, to mimic the measurement error (y = ytruth+N (0,σ2
y), with

σ2
y the uncertainty of each observation as defined in the matrix R).

The OSSEs use this set of pseudo-observations as observational constraint and the ORCHIDEE NEE dataset as a prior. The

reference OSSE, SRef, uses a prior error covariance matrix (B) constructed with prior uncertainties set to 25% of the absolute375

prior value (σ2
xb

= 0.25|xb|) and with covariances constructed from a horizontal correlation length (LH ) of 200 km and a

temporal correlation length (Lt) of 30 days. In the sensitivity tests we vary the correlation lengths (SC.100 and SC.500), the

prescribed prior uncertainties (SE.3H, SE.3Hcst, SE.x2) and the extent of the observation network (SO.A, SO.P).

The second ensemble is essentially identical to the OSSE ensemble of inversions, except that it is using real observations,

and the LPJ-GUESS flux dataset as a prior. The details of the two ensembles of inversions are listed in Table 3380

4 OSSEs

We first analyze the capacity of SRef to reconstruct various characteristics of the “true” LPJ-GUESS NEE fluxes (monthly and

annual NEE budget, aggregated at spatial scales ranging from the entire domain down to single pixels). Then we use a series

of sensitivity experiments to verify how sensitive the results are to a range of reasonable assumptions in the inversion settings.

4.1 Reference inversion (SRef)385

Figure 5 shows monthly and annual time series of NEE and NEE error (with respect to the prescribed truth) aggregated over

the entire domain.

At the domain-scale, the prior estimate for the annual NEE is very close to the “truth” (respectively -0.28 and -0.34

PgC/year), but the amplitude in the prior is more than double that of the truth, with monthly NEE ranging from +0.26

PgC/month in October to -0.66 PgC/month in June in the prior, compared to +0.08 PgC/month (in January) to -0.29 PgC/month390
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Simulation Prior Observations σ2
x Lh Lt

SRef ORCHIDEE pseudo 25% of monthly prior 200 km 1 month
SC.500 - - - 500 km (exp) -
SC.100 - - - 100 km (exp) -
SE.x2 - - 50% of monthly prior 200 km -
SE.3H - - 12.5% of 3-hourly prior 200 km -

SE.3Hcst - -
12.5% of 3-hourly prior, scaled to
the same total value every month - -

SO.P - pseudo (set P) - 200 km -
SO.A - pseudo (set A) - 200 km -
RRef LPJ-GUESS real 25% of monthly prior 200 km 1 month

RC.500 - - - 500 km (exp) -
RC.100 - - - 100 km (exp) -
RE.x2 - - 50% of monthly prior 200 km -
RE.3H - - 12.5% of 3-hourly prior 200 km -

RE.3Hcst - -
12.5% of 3-hourly prior, scaled to
the same total value every month - -

RO.P - real (set P) - 200 km -
RO.A - real (set A) - 200 km -

Table 3. List of inversion experiments performed. The R and B letters in the Observations column refer respectively to a random error
perturbation (R, proportional to the assigned individual uncertainty of each observation) and to a systematic bias (B), described in the main
text of Section 4. The restricted observation sets A and P are reported in Table 1.

(in May) in the truth. In total, the absolute prior error slighly exceeds 3 PgC and peaks in June and July and is the lowest in

December-February.

The inversion improves the estimation of the seasonal cycle at the domain scale, with a seasonal cycle amplitude reduced to

a range of -0.36 PgC (May) to +0.16 PgC (December), much closer to the truth and the absolute error is reduced by nearly 40%

to 1.87 PgC/year. However since the positive flux corrections in the summer months largely exceed the negative corrections395

from September to April, this results in a strong degradation of the annual European NEE estimate, with a near-balanced

posterior flux of -0.05 PgC/year. Figure 6 illustrates the spatial distribution of the error reduction. While the largest prior errors

are found north of the Black Sea and in North-Africa, the error reduction is rather homogeneous, except for North-Africa and

Turkey (which are not really constrained by the observation network), and some patches in Western Europe (mainly in the UK,

but also in Ireland, France and the Benelux) where the error actually increases. In total, these localized error enhancements400

amount to 0.16 PgC (lower panel of Figure 5). These isolated occurrences of error enhancements are not a sign of malfunction

of the inversion system, but they highlight its limitations: they result from attributions of flux corrections to the incorrect grid

cells, which can happen if the resolution of the inversion is not adapted to the constraints provided by the observation network

(i.e. smoothing and aggregation errors, as defined in Turner and Jacob (2015)).

Although our control vector contains the flux estimates at the native spatial resolution of the transport model, the effec-405

tive resolution of the inversion is further constrained by the covariances contained in the prior error-covariance matrix B.

Furthermore, the fluxes are only optimized monthly, while the actual prior error varies at a 3-hourly resolution. It may there-
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Figure 5. Upper row, left axis: Monthly prior NEE (dashed blue line), true NEE (solid black line), posterior NEE (blue), absolute prior error
(dashed orange line) and posterior error (orange) ; Upper row, right axis: Total error increase (i.e. positive component of the error reduction,
green). The SRef inversion is shown as solid lines, the ensemble is shown as a shaded area. Second, third and fourth rows: same variables,
but aggregated annually.

fore be possible to reduce these errors by increasing the resolution of the inversion, but since the observation network is not

homogeneous, this may lead to increased posterior error in other parts of the domain.
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4.2 Sensitivity tests410

We performed a series of sensitivity tests to assess the robustness of the results. The sensitivity experiments can be grouped in

three series: First, SC.100 and SC.500 test the sensitivity to the spatial covariance lengths used to construct B. Then, SE.3H,

SE.3Hcst and SE.x2 test the sensitivity of the results to the prior uncertainty themselves (i.e. diagonal elements of B). Finally,

SO.A and SO.P test the sensitivity of the results to the network density.

The total NEE flux, absolute error and error increase are shown in Figure 5, for the individual sensitivity experiments at the415

annual scale and as an ensemble shape for the monthly scale (the monthly-scale results of the individual simulations can be

found in Figure SI2).

4.2.1 Sensitivity to the error distribution

Inversions SE.3H, SE.3Hcst and SE.x2 were designed to test the impact of the prescribed prior uncertainty vector (e.g. diagonal

of B) on the inversion:420

20



– In SE.3H, the prior uncertainty is set proportional to the sum of the uncertainties on the 3-hourly fluxes: σxb
= 0.13

T

∑T
t |ft|.

This avoids the situation where GPP and respiration are significant but compensate each other, leading to a near zero

NEE as well as a near zero prior uncertainty, which can happen when the prior uncertainty is calculated following the

approach used in SRef. The factor 0.13 was chosen to lead to a total annual uncertainty comparable to that of SRef. This

leads to an overall redistribution of the uncertainties from the winter to the summer period, which is closer to the actual425

distribution of differences between the prior and truth fluxes (see Figure SI1).

– In SE.3Hcst, the prior uncertainty is computed as in SE.3H, but it is then scaled monthly, so as to lead to a flat distribution

of the uncertainties across the year.

– In SE.x2, the prior uncertainty is simply doubled compared to SRef.

SE.3Hcst leads to an improved value of the annual budget of NEE at the domain scale, but this is due to a poorer estimation430

of the summer fluxes (since the uncertainty is lower in summer, the inversion sticks more to its prior). On the contrary, SE.3H

leads to further degradation of the annual budget, without achieving better performances than SRef at the monthly scale. For

both inversions, this translates into a slightly larger total posterior error (2.15 and 2.20 PgC/year, respectively, compared to

2.03 in SRef). The doubling of the prior uncertainty in SE.x2 allows it to depart more from the prior and to derive better

domain-scale flux estimates, both monthly and annually, but it also leads to an increase in the “added error” (lower panel of435

Figure 5).

4.2.2 Sensitivity to the error covariance structure

Inversion SC.100 and SC.500 use prior error covariance matrices constructed using respectively shorter (100 km) and longer

(500 km) horizontal correlation lengths (LH ) than SRef. The longer covariance length in SC.500 forces the inversion to

favour large-scale, low amplitude flux corrections over localized strong adjustments. Since the prior error follows a relatively440

homogeneous pattern, SC.500 effectively produces a better estimation of the NEE, especially in Eastern Europe where the

network is sparse (Figure SI4b). The opposite happens with SC.100, which tends to concentrate the flux adjustments in the

vicinity of the observation sites.

At the domain scale, the annual budgets are nearly identical in SC.100, SC.500 and SRef. However the total error reduction is

lower in SC.100 and higher in SC.500, compared to SRef (respectively 0.78, 1.28 and 1.02 PgC/year), but the “added error” is445

larger in SC.500 (0.23 PgC/year) and lower in SC.100 (0.10 PgC/year): this confirms the hypothesis that these are aggregation

errors, that can be reduced by increasing the number of degrees of freedom in the inversion (for instance by reducing the

covariance constraints).

4.2.3 Sensitivity to the observation network density

Compared to SRef, SO.A uses only high-altitude observations (plus LMP and TTA as these were the only sites available in their450

region) and SO.P uses only low altitude sites. In terms of annual budget, SO.P outperforms most of the other inversions, but as
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for SE.3Hcst, this results from poorer flux corrections in summer rather than from a better overall reduction of the uncertainties.

On the contrary SO.A leads to results very comparable to SRef at the domain scale, with a nearly identical seasonal cycle and

net annual flux. The net error reduction remains however slightly better in SRef (see also Figure SI1 for the seasonal cycles of

SO.A and SO.P).455

4.3 Evolution of the fit to the observations

The comparison of the prior and posterior model fit to observations is a classical diagnostics of atmospheric inversions (Micha-

lak et al., 2017). The inversion is expected to improve the overall fit to the observation ensemble, and a lack of statistical

improvement would generally be a sign of a malfunctioning inversion algorithm. At a finer scale, analysis of the when and

where the representation of the observations is most improved (or degraded), can provide useful insights on the performances460

of the inversion (adequacy of the definition of uncertainties) and on those of the underlying transport model.

In the right panel of Figure 7, we compare the statistical distribution of prior and posterior observation fit residuals for in-

version Sref. The plot confirms that the inversion leads to an overall improvement of the representation of observations, albeit

modest (prior bias (model-obs): 0.2 ppm; posterior bias: 0.05 ppm; prior RMSE: 4.9 ppm; posterior RMSE: 3.75 ppm). The left

panel shows the RMSE reduction at each observation site (the size of the dots is proportional to the number of assimilated ob-465

servations at each site, and the color shows the net RMSE reduction). At all sites the inversion leads to improvements in the fit,

but those are generally much more modest in Western Europe, which can be explained by the (coincidental) good performance

of the prior in that region (see Figure 6), but also by the strong sensitivity of these sites to background concentrations. Sites in

the UK and, in particular, Ireland sample very little continental air, which leaves little margin for the inversion to improve the

representation of their observations.470

The center panel of Figure 7 compares the RMSE reduction of inversion SRef to that of the other OSSEs. The best perfor-

mances are logically achieved by SE.x2, which can depart much more from its prior than the other inversions. On the other

hand, SC.100 systematically underperforms the ensemble, which is coherent with its poorer flux error reduction. In general

however, the reduction of misfits are very similar and are not good indicators for the quality of the optimized fluxes.

5 Inversions with real observations475

The OSSEs presented above neglect several complications of real inversions, in particular transport model errors (the observa-

tions were generated using the same transport model as the one used in the inversions). While it is not within the scope of this

paper to quantify precisely these errors, we nonetheless performed a series of inversions constrained by real observations, to

assess to which extent the characteristics of the inversions results identified with the ensemble of OSSEs remain under a more

realistic situation.480

The ensemble of inversions used here is identical to the OSSEs ensemble, except that real observations are used and that the

LPJ-GUESS flux is used as a prior (instead of ORCHIDEE in the OSSEs). The inversion settings are reported in Table 3.

22



HU
N1

15 PA
L

CI
B0

05 BS
C

KA
S

HE
I

BA
L

LM
P0

05
OP

E1
20 SS

L
PU

I
CM

N
PU

Y0
10

HP
B0

54
W

AO
LM

P0
08

TR
N1

80
OX

K1
63

CE
S2

00 LU
T

PU
Y0

15 JFJ PR
S

TT
A

CR
P

EL
L

MH
D0

24

0.0

0.5

1.0

1.5

2.0

2.5

RM
SE

 re
du

ct
io

n 
(p

pm
)

SRef
SC.100
SC.500
SE.3H
SE.3Hcst

SE.x2
SO.A
SO.P
SRefG

10 5 0 5 10

apri
apos
truth

3 2 1 0 1 2 3
RMSE reduction (ppm) 10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Po
st

er
io

r b
ia

s (
pp

m
)

Figure 7. Left: Map of the observation sites in Sref, with the area of the dots proportional to the number of assimilated observation at each
site, and the color proportional to the RMSE reduction (prior RMSE minus posterior RMSE). Center: RMSE reduction at each site, for the
five sensitivity OSSEs. Right: distribution of observation residuals with the prior, posterior (SRef) and truth fluxes. The cyan and blue line
plots in the center plot show the prior (blue) and posterior (cyan) mean biases at each site (right axis)
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5.1 Posterior fluxes

The monthly and annual prior and posterior NEE are shown in Figure 8, for the reference RRef inversion and for the sensitivity

tests. The inversion leads to a slight increase in the seasonal cycle amplitude, with a peak summer uptake increased by 24% in485

May (-0.36 PgC/month, instead of -0.24 PgC/month in the prior) and a nearly doubling of the CO2 emissions in winter (+0.12

PgC/month instead of +0.07 PgC/month in the prior in November). It also leads to a delayed date for the change of sign of the

net flux, both in the spring and in the autumn (the net prior flux becomes negative in March in the prior, and positive again in

August, while it only becomes negative in April, and positive in October in RRef).

These monthly flux adjustments do not result in a change in the net annual flux (-0.33 PgC/year, both in the prior and in the490

RRef posterior). As seen when analysing the OSSEs results, the net annual budget is not well constrained by the inversions and

the absence of change is here purely coincidental.

In contrast to the OSSEs, the transport model error is not zero, which may explain the slightly higher sensitivity of the results

to the extent of the observation network: RO.P and RO.A differ by, on average, 0.02 PgC/month, the double of the average

difference between SO.P and SO.A. However the overall spread of results in that second ensemble of inversions is on the495

same order of magnitude to that obtained with the OSSEs, with a monthly spread ranging from 0.02 PgC/month (January and

September) to 0.07 PgC/month (March and August). This indicates that the conclusions of the OSSEs regarding the robustness

of the results can be generalized to these inversions with real data.

Maps of the prior and posterior fluxes, as well as the flux adjustments obtained with RRef are shown in Figure 9, for three

4-months periods. The January to April and September to December periods correspond approximately to the time of the year500

when a positive NEE correction is obtained by the inversion, while May to August is the period when the inversion finds

increased uptake compared to the prior. While at large scales, the inversion preserves well the spatial distribution of NEE,
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the flux adjustment is not as homogeneous as what was obtained with the OSSEs (see also monthly flux adjustments maps in

Figure SI5b).

The ensemble variability (lower row of Figure 9) is much higher than in the OSSEs in North-Western Europe (Northern505

France, Ireland and the UK), and in Hungary, around the Hegyhatsal observation site (see also Figure 6). In the latter case, this

is mainly due to the inclusion or not of this site in the inversions (i.e. RO.A/RO.P inversions). The discrepancies in North-West

Europe were already present in the OSSEs, but here with real observations the inversions additionally have to compensate for

the inaccuracy of the transport model. In particular, errors in the prescribed background concentrations will have a stronger

impact on the optimized fluxes in the vicinity of sites that sample predominantly background concentrations, such as the sites510

in Ireland and the UK. But also, observation sites downwind of large urban areas are more susceptible to be impacted by errors

in the prescribed fossil fuel emissions, either because the emission scenario itself is incorrect, or the transport model resolution

is too coarse to correctly represent the impact of these emissions at the observation site.
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5.2 Reduction of the observation misfits

Figure 10 provides an overview of the model-data mismatches for RRef and, at the site level, for the sensitivity experiments.515

As expected, the inversion leads to a reduction in the RMSE, from 5.8 ppm in the prior to 4.8 ppm in the posterior, and to a

slight reduction of the mean bias (from -0.2 ppm to -0.1 ppm). These values are slightly larger than the ones obtained in the

OSSEs, which is consistent with the presence of a non-perfect transport model and boundary conditions.

At the site level, the prior biases are more variable than in the OSSEs ensemble, from -9.1 ppm at Baltic Sea (BSC) to +2ppm

at Ochsenkopf (OXK). The bias corrections remain very modest at most sites (the bias even slightly increase at a few sites). The520

large (7.5 ppm) bias at BSC (Black Sea) is computed from a very small number of observations is very small (17 in total, with

observational errors up to 8 ppm), which have therefore very little weight in the inversion. The RMSE is generally reduced,

except at ELL (Estany LLong, Spain) and OXK (Ochsenkopf, Germany), where the fit to the observations is slightly degraded.

Both sites are located in relative proximity to other observation sites, with which their footprints overlap: the degradation of the

RMSE results from contradictory constraints provided to the inversions by these different sites. The inversion does not have525

sufficient degrees of freedom to improve simultaneously the fit at all sites, and therefore degrades the fit to the OXK and ELL

observations, which have only few observations (48 and 8, respectively). The problem is common to all the sensitivity runs,

and the mean posterior biases are also very similar across the ensemble.
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As seen with the OSSEs, a better performance in the fit to observations is not necessarily an indication of a more accurate

optimized solution. The site-by-site analysis of the misfits might point to limitations of the transport operator, but a more530

in-depth analysis would be required, which is out of the scope of this paper.
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6 Discussion and conclusions

We have setup an atmospheric inversion system based on an implementation of the variational inversion approach (Section

3.1) with a transport model based on an offline coupling between FLEXPART (high-resolution regional transport) and TM5

(coarse-resolution transport of the background fluxes and historical atmospheric CO2 burden). The inversion was tested through535

a series of synthetic experiments and realistic inversions, which show that it is working as expected. In this section we discuss

separately three aspects of the paper. First the inversion results themselves, then the TM5-FLEXPART coupling and finally the

LUMIA system.

6.1 Inversion approach and results

We have setup a variational inversion framework, to optimize European NEE at a monthly, 0.5◦ scale. The setup is intentionally540

simple: the aim at this stage was to develop a robust technical base and to have a reference setup for future developments. The

transport model is a transposition to TM5 and FLEXPART of the off-line coupling developed by Rödenbeck et al. (2009) for

TM3 and STILT, and the optimization itself shares many similarities with existing inversion systems, e.g. TM5-4DVAR (Basu

et al., 2013), TM3-STILT (Kountouris et al., 2018) or even PyVAR-CHIMERE (Broquet et al., 2011), which should facilitate

the comparison of results with these systems.545

The first inversion results suggest that the inversion system is working as expected. In the context of OSSEs, the inversions

enable on average a 40% reduction of the flux error at the grid-cell, monthly scale, and the differences between the optimized
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fluxes obtained from different sensitivity runs are in line with what could be expected from the different settings used. However,

these local error reduction can be of opposite sign, and do not always add up to a net error reduction at larger scales. In

particular, while the NEE estimate is generally always improved at the monthly scale, the positive corrections in summer are550

much stronger than the negative corrections in winter, which results in an overall degradation of the annual NEE.

Using an even month-to-month distribution of the uncertainties (SE.3Hcst inversion) leads to a more realistic annual esti-

mate, but also to a higher occurrence of local degradations of the solution, which further complicates the interpretation of the

results. This high sensitivity of the annual NEE to the different choices of prior uncertainty show that this metric is not well

constrained in our inversions: unless additional constraints are introduced in the system, it will remain difficult to provide a555

more robust estimate of the annual European NEE than what can be obtained through other estimation techniques (bottom-

up modelling, global inversions, etc.). In particular, making use of constraints on the large-scale gradients from the global

inversion (background) to the regional one would be beneficial.

Another approach is to accept that this metric (the annual European NEE) can remain under-constrained in our inversions,

and focus on the aspects of the solution that the inversions really improve: in the OSSEs, regardless of the specific inversion560

setup, the posterior provides a much more realistic depiction of the seasonal cycle of NEE, and of its spatial variability.

Furthermore the results gain in consistency (i.e. become less sensitive to sensitivity experiments) where the observation network

is dense, which is encouraging since the observation network in Europe has significantly expanded compared to the data

selection used in this paper. The inversions provide relevant information that can help identifying specific shortcomings in the

prior flux estimates, and the practice of performing an ensemble of sensitivity runs greatly helps in identifying the most robust565

features. It is here facilitated by the low marginal computational cost of computing additional inversions.

The OSSEs systematically lead to some degradation of the solution in the parts of the domain that are very densely covered

by the observation network, which is counter-intuitive. It may be partly because the prior was already very close to the truth

in this part of the domain, which makes it difficult for the inversion to further optimize the solution, but a complementary

explanation is that the system may not have sufficient degrees of freedom to adjust the fluxes to simultaneously improve570

the fit at all observation sites. In particular, the optimization of monthly fluxes is very restrictive. The implementation of an

optimization at a higher temporal resolution will therefore be an important next step. In addition, varying the resolution of

the optimization according to the density of the observation network may also help (either by varying the resolution of the

optimized fluxes, or by varying the covariance lengths in the prior error-covariance matrix).

The application of the same inversion approach to real observations leads to smaller flux adjustments than in the OSSEs.575

This could be a sign that the difference between the LPJ-GUESS prior (used in this second set of inversions) and the true fluxes

is smaller than that between the prior and synthetic truth in the OSSEs, but the analysis of the observation misfits reduction also

point to potential site-dependent transport model errors. One of the next steps towards improving our inversions will therefore

have to be a thorough model calibration effort. In that sense, the flexibility of LUMIA with regards to the transport model is

particularly adapted.580

27



6.2 TM5-FLEXPART coupling

The inversions rely on an offline coupling between the FLEXPART Lagrangian transport model (for regional, high resolution

transport) and TM5-4DVAR for providing background concentrations. The setup replicates the 2-step scheme of Rödenbeck

et al. (2009) but with different models.

A succint comparison between this "TM5-FLEXPART" transport model and TM5 itself was performed (Section 3.3.1) and is585

used as a proxy for the transport model error. It doesn’t show any global bias between the two models, but a possible seasonal

offset towards the month of November. The prescribed observation uncertainties are scaled up to account for this possible

larger model error, so the impact on inversions should be limited. Nonetheless, that possible seasonal bias would need to be

investigated and accounted for before deriving scientific conclusions from inversions against real observations.

The choice of the models and of that specific coupling was driven in part by the perspective of exchanges with other590

groups using similar setups. In the current stage, replacing the FLEXPART response functions from another similar Lagrangian

transport model (STILT(Lin et al., 2003), NAME (Jones et al., 2007), etc.) or the TM5 background time series by data generated

with a different model (using either the same or a different technique to estimate background concentrations at the observation

sites) is straightforward and will facilitate a better evaluation of the model performance.

Note also that the Rödenbeck et al. (2009) approach means that there is no ’hard’ coupling between the two models meaning595

that there is no risk of having to use an older version of one model because of the lack of implementation of the coupling in

newer code. This, of course, also facilitates the exchange of one transport model against another as mentioned above.

From a practical and technical point of view, the current setup presents the advantage of speed and scalability: the application

of the transport operator is done independently for each observation and therefore can be distributed on as many CPUs as

available. Inversions can thus be performed in very limited (user) time (5-8 hours wall time per inversion on 24 CPUs for600

the inversions in this paper). This time efficiency is critical for running not only single inversions, but inversion ensembles,

which provide a better representation of the real uncertainties. Evolutions of the code for very large ensemble of observations

(such as from satellite retrievals) may, however, benefit from further developments (aggregation of observations and footprints;

reduction of the number of grid points where possible; etc.).

6.3 The LUMIA framework: conclusions and future perspectives605

We have developed the LUMIA inversion framework, and performed a first set of inversions with it. The framework is initially

designed for the purpose of performing regional CO2 inversions in Europe, however it is designed and developed as a flexible

and adaptable inversion system, which enables the easy exchange of major components of the system, such as the transport

model or the minimization algorithm, to isolate and study their impact on the inversion results. LUMIA is designed to be

transport-model agnostic, i.e. it is not constructed on top of an existing model and it calls the transport model via a well-610

defined interface.

Technically, the inversion framework presented in this paper includes three major components: the lumia python library,

which contains most of the actual inversion code in the form of independent modules; a transport component, which relies
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on pre-computed observation footprints and background concentrations; the inversion scripts themselves, which use the lumia

library and the transport model to implement the inversion experiment.615

The lumia python library defines an ensemble of classes corresponding to basic elements of the inversion setup, e.g. control

vector, gradient descent algorithm, transport model interface, observations database, etc. The library is distributed on a git server

and is installable via the standard pip tool, which means it can be installed in one single command on a new computer. Although

the library is developed and designed for the purpose of inversions, we have made particular effort to ensure the modularity of

the code: the different modules can be imported independently and be used to construct new experiments. On the short-term,620

this design facilitates the re-use of the code in pre-/post-processing steps of the inversions, as well as during the analysis of

inversion results. On the longer term, the intention is to avoid that our initial design choices restrict the implementation of

future experiments.

For this initial paper, we have performed regional CO2 inversions, intentionally using a rather ’classical’ inversion design to

ensure comparability with other similar setups and to have a reference of comparison for future inversions, but also because it625

enablesd us to focus on the technical robustness of the code. The transport is performed by a script which relies on pre-computed

FLEXPART observation footprints, and on background concentrations pre-computed with the global coarse resolution TM5-

4DVAR inverse model (although technically, nothing limits the use of alternative models to compute these footprints and

background concentrations). This TM5-FLEXPART setup replicates the 2-step TM3-STILT inversion proposed by Rödenbeck

et al. (2009).630

Although the inversion setup lacks the maturity of established systems, it offers promising computational performances and

the results suggest interesting scientific questions regarding the capacity of regional inversion systems to constrain the annual

budget of CO2, and point to specific improvements of the inversion approach, which will be implemented in the near future,

e.g. the optimization of fluxes at a higher temporal resolution. On the longer term, the aim is to use LUMIA as a platform for

testing innovative inversion approaches (multiple transport models, use of satellite data, multi-tracer inversions, optimisation635

of vegetation model parameters (CCDAS), etc.). The code corresponding to the inversions in this manuscript is provided for

the research community on https://lumia.nateko.lu.se, and the access to the git server can be granted on demand.

Code availability. The LUMIA source code used in this paper as well as updates can be downloaded from the lumia website: https://lumia.

nateko.lu.se
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