
ESMValTool v2.0 - Technical overview

M. Righi et al.

Replies to referees comments

We are grateful to the two referees for reviewing our manuscript and providing insightful comments and

suggestions. Please find below a detailed response to each comment: reviewers’ comments are marked in blue,

authors’ reply in black, quoted text from the paper in “italic red”.

In addition to the changes to address the reviewers’ comments, a few updates have been introduced to the

manuscript to document some new features implemented in the latest release of the code. In particular:

 Two new preprocessors are now described in Sect. 4: detrend (Sect. 4.4) and land/sea fraction

weighting (Sect. 4.9);

 A new feature of the task manager which prioritizes the tasks which are listed first in the recipe is now

mentioned in Sect. 6;

 Table 1 has been extended to document the settings of the two new preprocessors mentioned above,

while some settings have been renamed and/or extended (e.g., for the temporal statistics);

 Table 2 has been updated with a few more derived variables, while some were removed since they

calculation can now be performed using the preprocessor;

 Table 3 has been extended with more observational datasets, for which a cmorization script is now

available in the ESMValTool;

 Figure 1 has been revised to include the two new preprocessors mentioned above.

Anonymous referee #1

In section 5.3, you describe a continuous integration server to improve code stability, maintenance, and

software quality. The tools used to create a continuous integration server are not open-source tools. They have

proprietary licenses with a free plan option in which minimum services are offered. Why have not you chosen

to use free software tools to create a continuous integration environment? Jenkins, for example, is a solution

with these characteristics to manage a continuous integration server and execute automated tests. Another

alternative to static code analysis is "Sonarcloud": a tool that detects bugs, duplication and vulnerabilities on

code with the possibility to directly integrate with GitHub.

We have chosen not to host our own services, because this requires considerable effort to set up and maintain.

We use the free services for open source projects provided by CircleCI and Codacy to run open source

software. Should these services no longer be free at some point, we could easily move to another service

because very little configuration is required and all the tools we use for testing and static code analysis are free

and open source.

We have updated section 5.3 to make this clearer: “CircleCI and Codacy offer free services for open source

projects. We use these services to run open source software that could equally easily be run on other

infrastructure. On CircleCI the unit tests are run in a Debian Linux docker container with a minimal version of

Anaconda pre-installed (https://hub.docker.com/r/continuumio/miniconda3). On Codacy we make use of the

various open source Python linters that are bundled into Prospector (https://prospector.readthedocs.io). These

tools can also be installed and used on contributors own computers with a minimal effort, as described in our

contribution guidelines.”

Finally, another thing that has caught my attention is that the branches that make up the Git repository are not

explained anywhere in the paper or the attached documentation of the software. This makes it very confusing

to select and download a specific version of the software, that is, download the version of the master branch,

the development branch, preproduction branch... So, I consider necessary an explanation of this, for example

in the "readme.md" file

https://hub.docker.com/r/continuumio/miniconda3

The branch structure of the ESMValTool (ESMValCore) was admittedly a bit confusing, so it was revised and

simplified. The CONTRIBUTING.md files were updated accordingly. The stable branch is now called master in

both repositories and the user is always pointed to this branch when accessing the code on GitHub. The same

happens when a pull request is submitted: by default, the target branch is always set to master. All other

branches are feature branches that may at some point be merged, after a pull request is submitted by the

corresponding developer and approved by the core development team.

The ESMValTool (ESMValCore) version described in the paper refers to the latest release of the code and is

clearly linked in the Code Availability section with a doi to a Zenodo repository, which always points to the

latest release. The latest releases can also be retrieved directly from our GitHub repositories, as also mentioned

in the Code Availability section.

When reading the document, the display of some data is a bit tricky: the information of some data are in tables

and the position of them is a little uncomfortable when reading. Table 2 is mentioned on page 9 but does not

appear until page 16, it could be on page 13 to facilitate its location. Tables 3 and 4 appear before you mention

them. They should be mentioned and then appear in a position as close to where they have been mentioned.

Thank you for this suggestion. Usually these editorial aspects are taken care of by the production office once

the paper is accepted and the final version is generated. We will make sure that all tables are correctly placed

during the proof-reading stage.

Finally, in this paper, the license of the software tool presented is only mentioned one time. Geosci. Model

Dev. is a scientific journal that promotes scientific reproducibility and, therefore, open-source/free software.

You could place greater emphasis on the type of software license that ESMValTool has to ensure the

reproducibility of the EMSValTool. Therefore, I think you should highlight the license of the ESMValTool, as well

as all the tools used throughout the software life cycle, as I mentioned in the first item and how they can help

to improve the reproducibility of the CMIP process.

Licensing aspects and free availability of the used packages is already mentioned in several parts of the papers,

but we tried to improve this, putting more stress on these aspects as suggested by the reviewer:

 “To support the community in this big data challenge, the ESMValTool (Eyring et al., 2016c) has been

developed to provide an open-source, standardized, community-based software package for the

systematic, efficient and well documented analysis of ESM results.” (Introduction)

 “As for v1.0, ESMValTool v2.0 is released under the Apache license. The source code of both ESMValTool

and ESMValCore is freely accessible on the GitHub repository of the project

(https://github.com/ESMValGroup) and is fully based on freely available packages and libraries.”

(Introduction)

 “ESMValTool v2.0 is distributed as an open-source package containing the diagnostic code and related

interfaces” (Section 2)

 “Support for other freely available programming languages for the diagnostic scripts can be added on

request.” (Section 2)

 “The ESMValTool v2.0 preprocessor is entirely written in Python and takes advantage of the Iris library

(v2.2.1) developed by the Met Office (Met Office, 2010-2019). Iris is an open-source, community-driven

Python 3 package for analyzing and visualizing Earth science data, building upon the rich software stack

available in the modern scientific Python ecosystem.” (Section 4).

