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with the downscaleR package: Contribution to 
the VALUE intercomparison experiment”  
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Response to reviewer #1 
We thank the referee for the time devoted to review our manuscript, and the 
positive feedback provided. Along the next lines, the different comments 
posed by the reviewer are reviewed point by point. The referee’s comments 
are indicated in black, and the author responses in blue fonts. 
 
A step commonly carried out when assessing the ’quality’ or ’value’ of climate 
data is the comparison with observed data, normally applying a downscaling 
step. This paper presents a reproducible R-based workflow in the context of 
the COST action VALUE. The paper presents a workflow (also shared as R 
Markdown notebook) which start with data loading to the visualisation of the 
results. In this workflow the authors compare different downscaling 
techniques. 
 
I have a few comments here that I think would improve the submitted paper: 
 
1. In the Section 4.1 the authors might add some numbers to Figure 6 (even a 
separate table) showing average (possibly also std or quantiles) values of 
RMSE, Correlation and variance ratio. Comparing M1, M6 and their -L version 
graphically is not easy. 
 
We have included the numbers corresponding to the validation of the 
pan-european experiment in the new Table 3 (p. 26) of the revised manuscript 
version. 
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2. Again in Figure 6 I don’t understand the meaning of ’A factor of 0.1 has 
been applied to RMSE for better comparability of results.’, why not leaving the 
original values?  
 
We decided to apply a scaling factor of 0.1 to the RMSE values in order to 
make their magnitude comparable to that of the other validation measures, so 
they can be visually compared in the same plot. We have replace the caption 
of Fig. 6 (p. 25) indicating that “[...] The colour bar indicates the mean value of 
each measure. A factor of 0.1 has been applied to RMSE in order to attain the 
same order of magnitude in the Y-axis for all the validation measures”, hoping 
that it is now more clear. 
 
3. The authors should say something on the computation time needed for the 
experiments described in the Figure. 
 
We have included a new section in Appendix 1 devoted to a more detailed 
analysis of computing times. We expect these results to help users to have an 
approximate idea of the computational effort required for running the different 
experiments carried-out in the study, also indicating those tasks (mostly 
predictor configuration and model fitting) that require more time to be 
accomplished. All the experiments have been undertaken in a single machine 
and without applying the parallelization option available, so these results can 
be directly extrapolated to the common situation in which most users run their 
computations. 
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Figure 1. Cross-validation times required for the downscaling models 
developed in the Iberian experiment. The computational times of the 
generalized linear models configurations include both the downscaling of the 
occurrence and amount of precipitation, whereas for the analogs both aspects 
are downscaled simultaneously. More information about the configurations 
can be found in Tables A1 and 2 in the Appendix A1 of the revised 
manuscript. 
 
4. How the developed package is able to deal with large datasets 
(10-100-500GB)? Is there any support to larger-than-memory computing 
(e.g.Python Dask)? 
 
Current on-going work is being done in order to handle larger matrices using 
the bigmemory package. Also, we are considering future developments in 
order to be able to run scalable applications in the climate4R Hub (a 
cloud-based facility allowing to remotely running climate4R applications). In 
the meantime, some large tasks can be conveniently sliced using the helper 
function downscaleChunk. For brevity, we have not included further details on 
these new developments in this paper, given that most statistical downscaling 
applications commonly used in impact studies are undertaken at local/regional 
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scales and therefore do not handle huge datasets. However, there is a related 
article currently under interactive discussion in this journal in which some of 
these features are presented. The application of deep learning in downscaling 
applications is presented and some features to handle large datasets are here 
presented: https://www.geosci-model-dev-discuss.net/gmd-2019-278/. We 
have included citation to this article in the new revised version of the 
manuscript, L193. 
 
5. Can the authors say something about the importance of choosing the right 
domain to compute the EOF? Sometimes the results can be very sensitive to 
the choice of the domain. 
 
As the referee points out, the domain selection is an important part of model 
building, being an important decision affecting model performance. In this 
paper, we show how domain selection can be very easily accomplished with 
just changing simple parameters (lonLim and latLim) either on the predictor 
dataset loading (function loadGridData) or by recursively subsetting the 
already loaded predictor set (using the function subsetGrid). This allows for a 
flexible configuration of experiments in which different alternative domains can 
be easily tested. However, in this paper we stick to the domains already well 
tested in previous studies over the Iberia Peninsula (Gutiérrez et al. 2013) and 
over Europe, using to this aim the experimental protocols of the VALUE 
experiment, to which downscaleR has contributed with the methods here 
analysed. Even though domain screening is out of the scope of this article 
(focused on the presentation of the downscaling tool), we indicate how these 
type of experiments can be easily undertaken. As an interesting alternative to 
this time-consuming task, we show that a local predictor approach, based on 
the use of local predictors close the predictand location, can be used without 
significant changes in the future deltas obtained. This is one of the key results 
of this study, and so has been highlighted in the conclusions. To better 
illustrate this finding, we include further details on the future climate deltas in 
the new revised section 4.2, and the new Fig. 8 of the revised manuscript 
shows how the local predictor approach does not significantly alter the deltas 
obtained. We explicitly indicate that this approach has the additional 
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advantage of avoiding the task of optimal sub-domain selection for predictor 
configuration (including EOF calculation). 
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Interactive comment on “Statistical 
downscaling with the downscaleR package: 
Contribution to the VALUE intercomparison 
experiment”  
https://doi.org/10.5194/gmd-2019-224-RC2 
 

Response to reviewer #2 

We thank the referee for her/his time and the insightful feedback provided. 
In this document we include a point-by-point response to the comments 
received. The new revised version of the manuscript includes a number of 
modifications following the referee’s advice, in which we have invested 
considerable effort and interest. We hope that the referee will deem the 
revised manuscript version of sufficient quality for publication. In this 
response, the referee’s comments are indicated in black, and the author 
responses in blue fonts. 
 

Major Issues 
 
The authors present the R package downscaleR. In principle this is a very 
useful contribution and worth publishing in GMD. But before publication I 
ask the authors to address the following major issues, plus a series of 
minor but still important ones. 
 
In section 4 the authors consider a pan-European setting, and explore 
whether models using a European predictor domain with additional local 
predictors perform equally well as the corresponding models with predictors 
defined on regional domains as used in VALUE. If these models would 
indeed perform well, this would mean a substantial simplification, e.g., for 
large-scale ESD applications such as in EURO-CORDEX. I am afraid, 
however, that the reasoning is not quite stringent. The validation is based 
on ERA-Interim predictors, which should well represent local predictors 
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given that local observations have been assimilated. In a GCM context, 
these local predictors may not fulfill the perfect prog condition, i.e., they 
may not be bias free.  If this were the case,the GCM-based projections 
could be substantially biased,  and the use of local predictors were not 
permitted. In fact, biases may also affect the climate change signal. I 
therefore ask the authors to test the PP assumption: first, they should use 
the historical simulations of their GCM-predictor experiment and check the 
perfect prog assumption. And second, they should investigate whether the 
climate change signals simulated by the local implementations differs from 
those of the VALUE implementations.  If the PP assumption was not 
fulfilled, and/or if the climate change signal was modified, the au-thors 
should change their conclusions correspondingly.  Even in a positive result, 
the authors should mention that care is required for the reasons given 
above. 
 
In the new revised manuscript we have addressed this question by 
evaluating the distributional similarity between GCM and reanalysis 
predictors. To this aim, we have created maps of the distributional similarity 
between ERA-Interim and the EC-EARTH historical simulation considering 
the Kolmogorov-Smirnov (KS) statistic. We have also reinforced Section 2 
of the manuscript (p. 4-6) in order to provide a more thorough description of 
the perfect-prog assumptions, and we have included a new Section 4.2.1 
(p.25-27) in which the ability of the GCM to represent the predictors is 
carefully analysed.  
 
The results from this analysis are summarized in Fig. 7 of the new revised 
manuscript, although more details for all predictor variables and a seasonal 
analysis is included in the companion paper notebook (Section Code and 
Data Availability, updated). For brevity, in the paper the disaggregated 
results by seasons are omitted, and only two variables, the one that 
performs best (sea-level pressure) and the one that performs worst 
(specific humidity at 500 mb) are displayed. The companion paper 
notebook has been updated, and further details on how to perform this 
analysis have been included. This new analysis has entailed an update to 
the core package VALUE to include a new measure implementing the 
corrected p-value of the KS score. 
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1b. Second, they should investigate whether the climate change signals 
simulated by the local implementations differs from those of the VALUE 
implementations. If the PP assumption was not fulfilled, and/or if the 
climate change signal was modified, the authors should change their 
conclusions correspondingly. Even in a positive result, the authors should 
mention that care is required for the reasons given above. 
 
After having verified the perfect-prog assumption regarding the adequate 
representation of the predictors by the GCM, we have investigated whether 
the projected climate change deltas are robust to the alternative use of the 
local predictor approach. Our results indicate that overall, the projected 
climate change signals for the target indices are not significantly altered, 
and that the SD method (GLM vs. analogs) adds much more uncertainty to 
the projected deltas that the predictor configuration approach. These 
results are consistent with previous findings by San-Martón et al. 2016, as 
indicated in the new revised version of the manuscript (Section 4.2.2). In 
conclusion, our results further support the use of local windows centered on 
the predictand locations, always subject to the cautionary assessments of 
the perfect prog hypothesis previously undertaken, as the referee 
points-out. 
 
2. I am wondering how downscaleR is placed relative to ESMValTool. This 
is a widely used tool mainly (but not exclusively) in the GCM community, 
and it should be possible to combine analyses and results from the different 
tools. It would be disappointing if the two packages would not be 
compatible (beyond the exchange of NetCDF files), so a discussion is 
absolutely necessary, and compatibility very much desired. 
 
ESMValTool is aimed at creating a unified framework for the assessment 
and evaluation of GCMs. Beyond this primary objective, it exists the 
possibility of adding further user-tailored layers of functionality by means of 
the so called “recipes” but, in general, the code is quite complex (using 
different languages for different modules) and extending the functionality is 
not straightforward (Moreover, the framework is not fully open source, since 
there is one private core version). The framework is conceived as a 
pipeline of data access (via CMOR compliant NetCDF files), 
post-processing, and evaluation (or recipes). Therefore, the most 
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straightforward way to use ESMValTool is to produce NetCDF files (with 
downscaled results) and use the standard pipeline (with the standard 
GCM-oriented validation tools). downscaleR can export the results as 
NetCDF files, so in principle there is the potential to “integrate” both tools. 
 
downscaleR is envisaged as a fully open specific tool for undertaking 
statistical downscaling experiments within a single computing environment 
(R), and seamlessly integrated with other components allowing  for the 
development of end-to-end application, from data retrieval to 
transformation, visualization, analysis and validation, handling the typical 
data structures required in most climate applications (that is, 
regular/irregular gridded datasets and point observations, including 
additional dimensions such as members and/or initialization times). The 
whole framework has been branded as “climate4R”, and it is since the 
beginning a completely independent development of the ESMValTool. Of 
course, this doesn’t preclude from an eventual convergence to the 
ESMValTool workflow, although this idea has not been considered in the 
development of the different climate4R components. 
 
ESMValTool applies validation measures to files or sets of files based on a 
convention for file/attribute naming that can be configured via recipes. 
ESMValTool has a default configuration for CMIP5 and CMIP6 with 
predefined DRS configurations. Some authors of the manuscript have 
previous experience in extending ESMValTool with some configurations for 
CORDEX in the framework of C3S, thus using the tool for the validation of 
other types of datasets different from GCMs. In principle, and based on this 
previous experience, it would be possible to  apply the measures defined 
by ESMValTool to the downscaleR outputs, after export to netcdf using the 
climate4R tools to this aim (package loadeR.2nc, 
https://github.com/SantanderMetGroup/loadeR.2nc) using an appropriate 
recipe to this aim. However, the compatibility of ESMValTool to station data 
remains as something that requires more time and careful consideration. 
To our knowledge ESMValTool does not provide support to point data, thus 
precluding from a straightforward application of downscaling experiments to 
point stations, as in VALUE. 
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3. The conclusions are quite weak. I would really appreciate if the authors 
could discuss what the purpose of the package is, and where it sits in the 
wide landscape of downscaling and evaluation tools in climate sciences, 
and what the specific advantages are. This has been touched in the 
introduction, but here it should be referred back, and some substantial 
statements should be made. 
 
Following the referee’s advice, we have strengthened the conclusions of 
the manuscript, better highlighting the main features of downscaleR and its 
unique characteristics within the plethora of tools currently available. 
 

Minor issues 
 
In general, some minor grammatical errors (e.g. l 192 "analogs 
performance") need to be corrected. 
l 5: VALUE is a network, not a project. You might also call it an initiative. 
Fixed. The imprecise term VALUE “Project” has been replaced by 
initiative/framework throughout the manuscript. 
l 25: "are not suitable" This is not always true. Please replace by "are often 
not suitable" 
Done (L25) 
l 32:  "SD" here you could refer to a recent review or introductory text, e.g., 
Maraun &Widmann, CUP, 2018. 
Done (L32) 
l 40: "It must be noted" is a zero phrase. Start with "SD techniques are..." 
Rephrased 
l 45: Here it would be fair to cite Barsugli et al., EOS, 2013. 
Thanks for the reference, this has been added (L45) 
l 55:  Here it would be useful to cite the synthesis article,  Maraun et al., 
IJC, 2019,highlighting that this article aims at giving an overall assessment 
of relative merits and limitations. 
Done (L54) 
l 66: "It is worth mentioning here": Again, a zero phrase.  You could rather 
state "This toolbox complements/adds to other existing tools..." 
Done 
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l 106: somewhere in the introduction you should mention ECMValTool 
For the reasons explained above (major comment 2), we don’t see exactly 
where the ESMValTool fits here and its relationship with downscaleR. For 
this reason, we did not include a specific mention to this tool. 
l 113:  here you should really also refer to Maraun & Widmann, CUP, 2018. 
It is the most comprehensive discussion of the two approaches in a climate 
change context. 
Done (L115) 
l  119:  no  -  the  term  "perfect"  refers  to  the  assumption  that  the 
predictors  are  bias free. In particular in weather forecasting, also for MOS 
the day-to-day correspondence is given.  For the MOS discussion you 
should make clear that the limitation of having homogeneous 
predictor-predictand relationships applies only in a climate context. This is 
also the reason why MOS in climate research is typically just bias 
correction.  In weather forecasting, you are as free as in PP. 
130: you may consider presenting the updated assumptions formulated by 
Maraun &Widmann, CUP, 2019. They are more precise and include the 
often neglected requirement that the model structure should be applicable. 
l 169: you may consider to add a comment that often predictors are proxies 
for physical processes, which is a main reason for non stationarities in the 
predictor/predictand relationship, as amply discussed in Maraun & 
Widmann, CUP, 2019. In this context, you should mention that predictor 
selection and the training of transfer functions are carried out on short term 
variability in present climate, whereas the aim is typically to simulate long 
term changes of short term variability (same reference, and Huth, J. Clim., 
2004) 
Thanks for the clarifications and valuable comments above. The whole 
section has been rewritten to include all the referee’s suggestions and 
clarifications regarding the characteristics and application of MOS and PP 
techniques. (L125-140). 
l 194:  it should be pointed out that this is true only for analog methods, 
which use the same sequence of analogs for different locations.  Otherwise 
spatial coherence is underestimated. This has been demonstrated by the 
cited Widmann et al., IJC, 2019. 
Corrected. (L208-210) 
l 196: this statement could be formulated much stronger. I am not aware of 
any region in the world, where climate change will be so moderate, that the 
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analog method still ap-plies in the far future, when temperature and directly 
related variables are considered. 
The statement has been reformulated accordingly (L214) 
l 205: somewhere you should mention that the main advantage of GLMs is 
to simulate(non-normal) variance not explained by the predictors (e.g.,  von 
Storch,  J. Climate,2000, although, strangely, not all models make use of 
that).Fig 5: the violin plot needs some explanation. It is not quite clear what 
the distribution shows. Densities across stations? Is there some kernel 
smoothing applied? Also: is this an annual analysis? The same holds for 
the following figures as well. 
Violin plots have been explained in more detail in the revised version of the 
manuscript (L560-572). Please not that the inputs for each validation 
measure are indicated in Table 1. In the caption of each violin.plot Figure 
(Figs.5 and 6) we indicate the sample size (number of stations) for each 
violin. 
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Abstract. The increasing demand for high-resolution climate information has attracted a growing attention for statistical down-

scaling methods (SD), due in part to their relative advantages and merits as compared to dynamical approaches (based on

regional climate model simulations), such as their much lower computational cost and their fitness-for-purpose for many local-

scale applications. As a result, a plethora of SD methods is nowadays available for climate scientists, which has motivated5

recent efforts for their comprehensive evaluation, like the VALUE Project
:::::::
initiative (http://www.value-cost.eu). The systematic

intercomparison of a large number of SD techniques undertaken in VALUE, many of them independently developed by differ-

ent authors and modeling centers in a variety of languages/environments, has shown a compelling need for new tools allowing

for their application within an integrated framework. With this regard, downscaleR is an R package for statistical down-

scaling of climate information which covers the most popular approaches (Model Output Statistics —including the so called10

‘bias correction’ methods— and Perfect Prognosis) and state-of-the-art techniques. It has been conceived to work primarily

with daily data and can be used in the framework of both seasonal forecasting and climate change studies. Its full integration

within the climate4R framework (Iturbide et al., 2019) makes possible the development of end-to-end downscaling applica-

tions, from data retrieval to model building, validation and prediction, bringing to climate scientists and practitioners a unique

comprehensive framework for SD model development.15

In this article the main features of downscaleR are showcased through the replication of some of the results obtained

in the VALUEProject
:::::::
VALUE, making an emphasis in the most technically complex stages of perfect-prog model calibration

(predictor screening, cross-validation and model selection) that are accomplished through simple commands allowing for

extremely flexible model tuning, tailored to the needs of users requiring an easy interface for different levels of experimental

complexity. As part of the open-source climate4R framework, downscaleR is freely available and the necessary data and20

R scripts to fully replicate the experiments included in this paper are also provided as a companion notebook.

Copyright statement. Copyright © 2019 Authors of this article
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1 Introduction

Global Climate Models (GCMs) —atmospheric, coupled oceanic-atmospheric, and earth system models— are the primary

tools used to generate weather and climate predictions at different forecast horizons, from intra-seasonal to centennial scales.25

However, raw model outputs are
::::
often

:
not suitable for climate impact studies due to their limited resolution (typically hundreds

of kilometers) and the presence of biases in the representation of regional climate (Christensen et al., 2008), attributed to a

number of reasons such as the imperfect repr esentation
::::::::::::
representation of physical processes and the coarse spatial resolution

that does not permit an accurate representation of small-scale processes. A
::
To

::::::::
partially

::::::::
overcome

:::::
these

::::::::::
limitations,

:
a
:
wide

variety of downscaling techniques exist to partially overcome these limitations
:::
have

:::::
been

:::::::::
developed, aimed at bridging the30

gap between the coarse-scale information provided by GCMs and the regional/local climate information required for climate

impact and vulnerability analysis. To this aim both dynamical (based on regional climate models, RCMs; see, e.g. Laprise,

2008) and empirical/statistical approaches have been introduced during the last decades. In essence, statistical downscaling

(SD)
:::::::::::::::::::::::::::::
(SD, Maraun and Widmann, 2018) methods rely on the establishment of a statistical link between the local-scale mete-

orological series (predictand) and large-scale atmospheric variables at different pressure levels (predictors, e.g.: geopotential,35

temperature, humidity . . . ). The statistical models/algorithms used in this approach are first calibrated using historical (ob-

served) data of both coarse predictors (reanalysis) and local predictands for a representative climatic period (usually a few

decades) and then applied to new (e.g., future or retrospective) global predictors (GCM outputs) to obtain the corresponding

locally downscaled predictands (von Storch et al., 1993). SD techniques were first applied in short-range weather forecast

(Klein et al., 1959; Glahn and Lowry, 1972) and later adapted to larger prediction horizons, including seasonal forecasts and40

climate change projections, being the latter problem the one that has received the most extensive attention in the literature. It

must be noted that SD techniques are often also applied to RCM outputs (usually referred to as ‘hybrid downscaling’, e.g.,

Turco and Gutiérrez, 2011), and therefore both approaches (dynamical and statistical) can be regarded as complementary rather

than mutually exclusive .

Notable efforts have been done in order to assess the credibility of regional climate change scenarios. In the particular case45

of SD, a plethora of methods exists nowadays, and a thorough assessment of their intrinsic merits and limitations is required

to guide practitioners and decision-makers with credible climate information
:::::::::::::::::
(Barsugli et al., 2013). In response to this chal-

lenge, the COST Action VALUE (Maraun et al., 2015, http://www.value-cost.eu) is an open collaboration that has established

a European network to develop and validate downscaling methods, fostering collaboration and knowledge exchange between

dispersed research communities and groups, with the engagement of relevant stakeholders (Rössler et al., 2019). VALUE has50

undertaken a comprehensive validation and intercomparison of a wide range of SD methods (over 50), representative of the

most common techniques covering the three main approaches, namely perfect prognosis, model output statistics —including

bias correction— and weather generators (Gutiérrez et al., 2019). VALUE also provides a common experimental framework for

statistical downscaling and has developed community-oriented validation tools specifically tailored for the systematic valida-

tion of different quality aspects that had so far received little attention
:::::::::::::::::::::::::::::::::::
(see Maraun et al., 2019b, for an overview), such as the55

ability of the downscaling predictions to reproduce the observed temporal variability (Maraun et al., 2019a), the spatial vari-
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ability among different locations (Widmann et al., 2019), reproducibility of extremes (Hertig et al., 2019) , and process-based

validation (Soares et al., 2019).

The increasing demand for high-resolution predictions/projections for climate impact studies, and the relatively fast develop-

ment of SD in the last decades, with a growing number of algorithms and techniques available, has motivated the development60

of tools to bridge
::
for

::::::::
bridging the gap between the inherent complexities of SD and the user’s needs, able to provide end-to-end

solutions in order to link the outputs of the GCMs and ensemble prediction systems to a range of impact applications. One

pioneer service was the interactive, web-based Downscaling Portal (Gutiérrez et al., 2012) developed within the EU-funded

ENSEMBLES project (van der Linden and Mitchell, 2009), integrating the necessary tools and providing the appropriate

technology for distributed data access and computing, enabling user-friendly development and evaluation of complex SD ex-65

periments for a wide range of alternative methods (analogs, weather typing, regression . . . ). The downscaling portal is in turn

internally driven by MeteoLab, (https://meteo.unican.es/trac/MLToolbox/wiki), an open-source Matlab™ toolbox for statistical

analysis and data mining in meteorology, focused on statistical downscaling methods.

It is worth mentioning here
:::::
There

:::
are

:
other existing tools available for the R computing environment implementing SD

methods (beyond the most basic MOS and ‘bias correction’ techniques not addressed in this study, but see Sec. 2). For70

instance
:
,
:::
like

:
the R package esd (Benestad et al., 2015), freely available from the Norwegian Meteorological Institute (MET

Norway). This package provides utilities for data retrieval and manipulation, statistical downscaling and visualizationand

implementats
:
,
::::::::::::
implementing several classical methods (EOF analysis, regression, canonical correlation analysis, regression,

canonical correlation analysis, multi-variate regression and weather generators, among others). A more specific downscaling

tool is provided by the package Rglimclim (https://www.ucl.ac.uk/~ucakarc/work/glimclim.html), a multivariate weather75

generator based on generalised linear models (see Sec. 2.2) focused on model fitting and simulation of multisite daily climate

sequences, including the implementation of graphical procedures for examining fitted models and simulation performance (see

e.g. Chandler and Wheater, 2002).

More recently, the climate4R framework (Iturbide et al., 2019), based on the popular R language (R Core Team, 2019)

and other external open-source software components (netCDF-Java
:::::::::::
NetCDF-Java, THREDDS etc.), has also contributed with80

a variety of methods and advanced tools for climate impact applications, including statistical downscaling. climate4R is

formed by different seamlessly integrated packages for climate data access, processing (e.g. collocation, binding, and sub-

setting), analysis and visualization, tailored to the needs of the climate impact assessment communities in various sectors

and applications, including comprehensive metadata and output traceability (Bedia et al., 2019), and provided with exten-

sive documentation, wiki pages and worked examples (notebooks) allowing reproducibility of several research papers
:::
(see85

:::
e.g.:

:
https://github.com/SantanderMetGroup/notebooks

:
). Furthermore, the climate4R Hub is a cloud-based computing facil-

ity that allows to run climate4R on the cloud using docker and jupyter-notebook (https://github.com/SantanderMetGroup/

climate4R/tree/master/docker). The climate4R framework is presented by Iturbide et al. (2019), and some of its specific

components for sectoral applications are illustrated e.g. in Cofiño et al. (2018) —seasonal forecasting—, Frías et al. (2018)

—visualization—, Bedia et al. (2018) —forest fires—, or Iturbide et al. (2018) —species distributions— among others. In this90

context, the R package downscaleR has been conceived as a new component of climate4R to undertake SD exercises,
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allowing for a straightforward application of a
:

wide range of methods. It builds on the previous experience of the MeteoLab

Toolbox in the design and implementation of advanced climate analysis tools, and incorporates novel methods and enhanced

functionalities implementing the state-of-the-art SD techniques to be used in forthcoming intercomparison experiments in the

framework of the EURO-CORDEX initiative (Jacob et al., 2014), in which the VALUE activities have merged and will follow95

on. As a result, unlike previous existing SD tools available in R, downscaleR is integrated within a larger climate processing

framework providing end-to-end solutions for the climate impact community, including efficient access to a wide range of data

formats, either remote or locally stored, extensive data manipulation and analysis capabilities, and export options to common

geoscientific file formats (such as netCDF), thus providing maximum interoperability to accomplish successful SD exercises

in different disciplines and applications.100

This paper introduces the main features of downscaleR for perfect-prognosis statistical downscaling (as introduced in

Sec. 2) using to this aim some of the methods contributing to the VALUEproject
::::::
VALUE. The particular aspects related to data

preprocessing (predictor handling, etc.), SD model configuration, and downscaling from GCM predictors are described, thus

covering the whole downscaling cycle from the user’s perspective. In order to showcase the main downscaleR capabilities

and its framing within the ecosystem of applications brought by climate4R, the paper reproduces some of the results of105

the VALUE intercomparison project presented by Gutiérrez et al. (2019), using public datasets (described in Sec. 3.1), and

considering two popular SD techniques (analogs and generalized linear models), described in Sec. 2.2. The downscaleR

functions and the most relevant parameters used along the experiments
:
in
:::::
each

:::::::::
experiment

:
are shown in Sections 4 and 3.3

:::
3.3

:::
and

:
4, after a schematic overview of the different stages involved in a typical perfect-prog SD experiment (Sec. 2.1). Finally in

Sec. 4.2, locally downscaled projections of precipitation for a high emission scenario (RCP 8.5) are calculated for the future110

period 2071-2100 using the output from one state-of-the-art GCM contributing to the CMIP5 Project.

2 Perfect-prognosis Statistical Downscaling (SD): downscaleR

The application of SD techniques to the global outputs of a GCM (or RCM) typically entails two phases. In the

training phase, the model parameters (or algorithms) are fitted to data (or tuned/calibrated) and cross-validated

using a representative historical period (typically a few decades) with existing predictor and predictand data.115

In the downscaling phase, which is common to all SD methods, the predictors given by the GCM outputs are

plugged into the models (or algorithms) to obtain the corresponding locally downscaled values for the predic-

tands. According to the approach followed in the training phase, the different SD techniques can be broadly clas-

sified into two categories (Rummukainen, 1997, also see Marzban et al. (2006) for a discussion on these approaches)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rummukainen, 1997; Marzban et al., 2006, also see Maraun and Widmann (2018) for a discussion on these approaches),120

namely Perfect Prognosis (PP) and Model Output Statistics (MOS). In the PP approach, the statistical model is calibrated

using observational data for both the predictands and predictors (see, e.g., Charles et al., 1999; Timbal et al., 2003; Bürger

and Chen, 2005; Haylock et al., 2006; Fowler et al., 2007; Hertig and Jacobeit, 2008; Sauter and Venema, 2011; Gutiérrez

et al., 2013). In this case, ‘observational’ data for the predictors is taken from a reanalysis (which assimilates day by day the
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(calibration)
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(GCM outputs)
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Stations Gridded 
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downscaleCV prepareData downscaleTrain downscalePredict
prepareNewData

loadStationData loadGridData

climate4R.value loadeR downscaleR

Figure 1. Schematic overview of the R package downscaleR and its framing into the climate4R framework for climate data access

and analysis. The typical perfect-prog downscaling phases are indicated by the grey arrows. i) In first place, model setup is undertaken.

This process is iterative and usually requires testing many different model configurations under a cross-validation set up until an optimal

configuration is achieved. The downscaleCV function (and prepareData under the hood) is used in this stage for a fine-tuning of the

model. Model selection is determined through the use of indices and measures reflecting model suitability for different aspects that usually

depend on specific research aims (e.g. good reproducibility of extreme events, temporal variability, spatial dependency across different loca-

tions . . . ). The validation is achieved through the climate4R.value package (red-shaded callout), implementing the VALUE validation

framework. ii) Model training: once an optimal model is achieved, model training is performed using the downscaleTrain function.

iii) Finally, the calibrated model is used to undertake downscaling (i.e. model predictions) using the function downscalePredict. The

data to be used in the predictions requires appropriate pre-processing (e.g. centering and scaling using the predictor set as reference, projec-

tion of PC’s onto predictor EOF’s, etc.) that is performed under the hood by function prepareNewData prior to model prediction with

downscalePredict.

available observations into the model space). Thus
:
In

:::::::
general,

::::::::::
reanalyses

:::
are

:::::
more

:::::::::
constrained

:::
by

::::::::::
assimilated

:::::::::::
observations125

:::
than

:::
by

:::::::
internal

:::::
model

:::::::::
variability

::::
and

:::
thus

::::
can

:::::::::
reasonably

:::::::
assumed

:::
to

:::::
reflect

:::::::
‘reality’

:::::::::::
(Sterl, 2004).

::::
The

::::
term

::::::::
’perfect’

::
in

:::
PP

:::::
refers

::
to

:::
the

::::::::::
assumption

:::
that

:::
the

:::::::::
predictors

:::
are

::::::::
bias-free.

::::
This

::::::::::
assumption

::
is
::::::::
generally

::::::::
accepted

::::::
(albeit

:
it
:::::

may
::::
hold

:::
not

::::
true

::
in

:::
the

::::::
tropics,

::::
see

:::
e.g.

:::::::::::::::::
Brands et al. (2012)

:
).

:::
As

:
a
::::::

result, in the PP approach predictors and predictand preserve day-to-day

correspondence(hence the term ‘perfect’). Unlike PP, in the MOS approach the predictors are taken from the same GCM (or
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RCM) for both the training and downscaling phases. Therefore
:::
For

:::::::
instance,

::
in

:::::
MOS

::::::::::
approaches,

::::
local

:::::::::::
precipitation

:
is
::::::::
typically130

:::::::::
downscaled

:::::
from

:::
the

:::::
direct

:::::
model

:::::::::::
precipitation

::::::::::
simulations

:::::::::::::::::::
(Widmann et al., 2003).

::
In

:::::::
weather

::::::::::
forecasting

::::::::::
applications

:::::
MOS

:::::::::
techniques

:::
also

::::::::
preserve

:::
the

:::::::::
day-to-day

:::::::::::::
correspondence

::::::::
between

::::::::
predictors

::::
and

:::::::::
predictand

::::
but,

:::::
unlike

:::
PP,

::::
this

:::::::
doesn’t

::::
hold

:::
true

::
in

:
a
:::::::
climate

:::::::
context.

::
As

::
a

:::::
result, MOS methods typically work with the (locally-interpolated) predictions and observations

of the variable of interest (a single predictor). For instance, in MOSapproaches, local precipitation is typically downscaled

from the direct model precipitation simulations (Widmann et al., 2003). Many
::
In

:::::
MOS,

:::
the

::::::::
limitation

::
of

::::::
having

::::::::::::
homogeneous135

::::::::::::::::
predictor-predictand

:::::::::::
relationships

::::::
applies

:::::
only

::
in

:
a
:::::::
climate

:::::::
context,

:::
and

::::::::
therefore

:::::
many

:
popular ‘bias correction‘ techniques

(e.g. linear scaling, quantile-quantile mapping
:::
etc.) lie in this category. Unlike PP techniques, in MOS

::
In

:::
this

:::::
case, the focus

is on the statistical similarity between predictor and predictand, and there is no day-to-day correspondence of both series

during the calibration phase. The application of MOS techniques
::
in

:
a
::::::
climate

:::::::
context using downscaleR is already shown in

Iturbide et al. (2019). Here, the focus is done on the implementation of PP methods, that entail greater technical complexities140

for their application from a user’s perspective, but have received less attention from the side of climate service development.

A schematic diagram showing the main phases of perfect-prog downscaling is shown in Fig. 1.

2.1 SD model setup: Configuration of predictors

As general recommendations, a number of aspects need to be carefully addressed when looking for suitable predictors in

the PP approach (Wilby et al., 2004; Hanssen-Bauer et al., 2005): i) The predictors should account for a major part of the145

variability in the predictands, ii) the links between predictors and predictands should be temporally stable/stationary and

iii) the large-scale predictors must be realistically reproduced by the global climate model. Since different global models

are used in the calibration and downscaling phases, large-scale circulation variables well represented by the global mod-

els are typically chosen as predictors in the PP approach, whereas variables directly influenced by model parametrizations

and/or orography (e.g. precipitation) are usually not considered. For instance, predictors generally fulfilling these condi-150

tions for downscaling precipitation are humidity, geopotential or air temperature (see Sec. 3.1.2) at different surface pres-

sure vertical levels. Only sea-level pressure and 2 m air temperature are usually used as near-surface surface predictors.

::
An

::::::::
example

::
of

:::::::::
evaluation

:::
of

:::
this

:::::::::
hypothesis

::
is
:::::

later
::::::::
presented

::
in

::::
Sec.

:::::
4.2.1

::
of
::::

this
:::::
study.

::::::
Often,

:::::::::
predictors

:::
are

:::::::
proxies

:::
for

:::::::
physical

::::::::
processes,

::::::
which

::
is

:
a
:::::
main

::::::
reason

:::
for

::::::::::::::
non-stationarities

::
in

:::
the

:::::::::::::::::
predictor/predictand

:::::::::::
relationship,

::
as

:::::
amply

:::::::::
discussed

::
in

::::::::::::::::::::::::
Maraun and Widmann (2018)

:
. Furthermore, reanalysis choice has been reported as an additional source of uncertainty155

for SD model development (Brands et al., 2012), although its effect is of relevance only in the tropics , as shown by

(Manzanas et al., 2015). Therefore
::::::::::::::::::::::::::
(see e.g.: Manzanas et al., 2015).

::
In

::::::
regard

::::
with

:::
the

::::::::::
assumption

:::
ii.),

::::::::
predictor

:::::::
selection

::::
and

::
the

:::::::
training

:::
of

::::::
transfer

::::::::
functions

::::
are

::::::
carried

:::
out

:::
on

::::
short

:::::
term

::::::::
variability

:::
in

::::::
present

:::::::
climate,

:::::::
whereas

:::
the

::::
aim

::
is

::::::::
typically

::
to

:::::::
simulate

::::
long

::::
term

:::::::
changes

::
of

:::::
short

::::
term

::::::::
variability

:::::::::::::::::::::::::::::::::::
(Huth, 2004; Maraun and Widmann, 2018)

:
,
:::::
which

:::::
limits

:::
the

:::::::::::
performance

::
of

::
PP

::::
and

:::::
makes

::
it
::::::::::
particularly

:::::::
sensitive

::
to

:::
the

:::::::
method

::::
type

:::
and

:::
the

::::::::
predictor

:::::
choice

:::::::::::::::::::
(Maraun et al., 2019b).

:
160

:::
For

::
all

:::::
these

:::::::
reasons, the selection of informative and robust predictors during the calibration stage is a crucial step in SD

modelling (Fig. 1), being model predictions very sensitive to the strategy used for predictor configuration (see e.g. Benestad,

2007; Gutiérrez et al., 2013).
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PP techniques can consider point-wise and/or spatial-wise predictors, using either the raw values of a variable over a region

of a user-defined extent or only at nearby grid boxes and/or the Principal Components (PCs) corresponding to the Empirical165

Orthogonal Functions (EOFs, Preisendorfer, 1988) of the variables considered over a representative geographical domain

(which must be also conveniently determined). Usually, the latter are more informative in those cases where the local climate

is mostly determined by synoptic phenomena whereas the former may be needed to add some information about the local

variability in those cases where small-scale processes are important (see e.g. Benestad, 2001). Sometimes, both type
:::::
types of

predictors are combined in order to account for both synoptic and local effects. In this sense, three non-mutually exclusive170

options are typically used in downscaling experiments next summarized:

1. Using raw atmospheric fields for a given spatial domain, typically continental- or national-wide for downscaling monthly

and daily data, respectively. For instance, in the VALUE experiment, predefined subregions within Europe are used for

training (Fig. 2), thus helping to reduce the dimension of the predictor set. Alternatively, step-wise or regularized methods

can be used to automatically select the predictor set from the full spatial domain.175

2. Using principal components obtained from these fields (Benestad, 2001). Working with PCs allows to filter-out high

frequency variability which may be not properly linked to the local-scale, greatly reducing the dimensionality of the

problem related to the deletion of redundant and/or colinear information from the raw predictors. These predictors

convey large-scale information to the predictor set, and are often also referred to as ‘spatial predictors’. These can be

either a number of principal components calculated upon each particular variable (e.g. explaining 95% of the variability),180

and/or a combined PC calculated upon the (joined) standardized predictor fields (‘combined’ PCs).

3. The spatial extent for of each predictor field may have a strong effect on the resulting model. Some variables of the

predictor set may have explanatory power only nearby the predictand locations, while the useful information is diluted

when considering larger spatial domains. As a result, it is common practice to include local information in the predictor

set by considering only a few gridpoints around the predictand location for some of the predictor variables (this can be185

just the closest grid point or a window of a user-defined width). This category can be regarded as a particular case of

point 1, but considering a much narrower window size
::::::
centered

:
around the predictand location. This local information

is combined with the ‘global’ information provided by other global predictors (either raw fields —case 1— or principal

components —case 2—) encompassing a larger spatial domain.

Therefore, predictor screening (i.e. variable selection) and their configuration is one of the most time-consuming tasks in190

perfect-prog experiments due to the potentially huge number of options required for a fine-tuning of the predictor set (spatial,

local or a combination of both, number of principal components and methodology for their generation etc.). As a result, SD

model tuning is iterative and usually requires testing many different model configurations until an optimal one is attained (see

e.g. Gutiérrez et al., 2013), as next described in Sec. 2.3. This requires a flexible, yet easily configurable interface, enabling

users to launch complex experiments for testing different predictor setups in a straightforward manner. In downscaleR, the195

function prepareData has been designed to this aim, providing maximum user flexibility for the definition of all types of

predictor configurations with a single command call, building upon the raw predictor information (see Sec. 3.3).
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2.2 Description of SD methods

downscaleR implements several PP techniques, ranging from the classical analogs and regression to more recent and so-

phisticated machine learning methods
::::::::::::::::::::::
(Baño-Medina et al., 2019). For brevity, in this study we focus on the standard ap-200

proaches contributing to the VALUE intercomparisonproject, namely analogs, linear models and generalized linear models,

next briefly introduced; the up-to-date description of methods is available at the downscaleR wiki (https://github.com/

SantanderMetGroup/downscaleR/wiki).

All the SD methods implemented in downscaleR are applied using unique workhorse functions such as downscaleCV

(cross-validation), downscaleTrain (for model training), downscalePredict (for model prediction), etc. (Fig. 1), that205

receive the different tuning parameters for each method chosen, providing maximum user flexibility for the definition and

calibration of the methods. Their application will be illustrated throughout Sections 3.3 and 4.

2.2.1 Analogs

This is a non-parametric analog technique (Lorenz, 1969; Zorita and von Storch, 1999), based on the assumption that similar

(or analog) atmospheric patterns (predictors) over a given region lead to similar local meteorological outcomes (predictand).210

For a given atmospheric pattern, the corresponding local prediction is estimated according to a determined similarity measure

(tipically the Euclidean norm, which has been shown to perform satisfactorily in most cases, see e.g.: Matulla et al., 2008) from

a set of analog patterns within a historical catalog over a representative climatological period. In PP, this catalog is formed by

reanalysis data. In spite of its simplicity, analogs
:::::
analog

:
performance is competitive against other more sophisticated tech-

niques (Zorita and von Storch, 1999), being able to take into account the non-linearity of the relationships between predictors215

and predictands. Additionally, it is spatially coherent by construction, preserving the spatial covariance structure of the local

predictands
::
as

::::
long

::
as

:::
the

:::::
same

::::::::
sequence

::
of

:::::::
analogs

:::
for

:::::::
different

::::::::
locations

::
is
:::::
used,

:::::
being

::::::
spatial

:::::::::
coherence

:::::::::::::
underestimated

::::::::
otherwise (Widmann et al., 2019). Hence, analog-based methods have been applied in several studies both in the context of

climate change (see, e.g., Gutiérrez et al., 2013) and seasonal forecasting (Manzanas et al., 2017). The main drawback of the

analog technique is that it cannot predict values outside the observed range, being therefore particularly sensitive to the non-220

stationarities arising in climate change conditions (Benestad, 2010; Bedia et al., 2013)
::::::::::::::
(Benestad, 2010),

::::
thus

:::::::::
preventing

:::::
from

::
its

:::::::::
application

::
to

:::
the

:::
far

::::::
future,

:::::
when

::::::::::
temperature

:::
and

:::::::
directly

::::::
related

:::::::
variables

:::
are

:::::::::
considered

:::::::::::::::::::::::
(see e.g. Bedia et al., 2013).

2.2.2 Linear Models (LMs)

(Multiple) linear regression is the most popular downscaling technique for suitable variables (e.g., temperature), although

it has been also applied to other variables after suitable transformation (e.g., to precipitation, typically taking the cubic root).225

Several implementations have been proposed including both spatial (PC) and/or local predictors. Moreover, automatic predictor

selection approaches (e.g., stepwise) have been also applied (see Gutiérrez et al., 2019, for a review).
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2.2.3 Generalized Linear Models (GLMs)

They were formulated by Nelder and Wedderburn (1972) in the 1970’s and are an extension of the classical linear regression

which allows to model the expected value of a random predictand variable whose distribution belongs to the exponential family230

(Y ) through an arbitrary mathematical function called link function (g) and a set of unknown parameters (β), according to

E(Y ) = µ= g−1(Xβ), (1)

where X is the predictor and E(Y ) the expected value of the predictand. The unknown parameters, β, can be estimated by

maximum likelihood, considering a least-squares iterative algorithm.

GLMs have been extensively used for SD in climate change applications (e.g., Brandsma and Buishand, 1997; Chandler235

and Wheater, 2002; Abaurrea and Asín, 2005; Fealy and Sweeney, 2007; Hertig et al., 2013), and more recently, also used

for seasonal forecasts (Manzanas et al., 2017). For the case of precipitation, a two-stage implementation (see, e.g., Chandler

and Wheater, 2002) must be used given its dual (occurrence/amount) character. In this implementation, a GLM with Bernoulli

error distribution and logit canonical link function (also known as logistic regression) is used to downscale precipitation occur-

rence (0 = no rain, 1 = rain) and a GLM with gamma error distribution and log canonical link-function is used to downscale240

precipitation amount, considering wet days only. After model calibration, new daily predictions are given by simulating from

a gamma distribution, whose shape parameter is fitted using the observed wet days in the calibration period.

Beyond the classical GLM configurations, downscaleR allows for using both deterministic and stochastic versions of

GLMs. In the former, the predictions are obtained from the expected values estimated by both the GLM for occurrence (GLMo)

and the GLM for amount (GLMa). In the GLMo, the continuous expected values ∈ [0,1] are transformed into binary ones as 1245

(0) either by fixing a cutoff probability value (e.g., 0.5) or by choosing a threshold based on the observed predictand climatology

for the calibration period (the latter is the default behaviour in downscaleR). On the contrary, for GLMa, the expected values

are directly interpreted as rain amounts. Moreover, downscaleR gives the option of generating stochastic predictions for

both the GLMo the and GLMa, which could be seen as a dynamic predictor-driven version of the inflation of variance used in

some regression-based methods (Huth, 1999).250

2.3 SD model validation

When assessing the performance of any SD technique it is crucial to properly cross-validate the results in order to avoid

misleading conclusions about model performance due to artificial skill. This is typically achieved considering a historical

period for which observations exist to validate against. k-fold and leave-one-out cross-validation are among the most widely

applied validation procedures in SD experiments. In a k-fold cross-validation framework (Stone, 1974; Markatou et al., 2005),255

the original sample (historical period) is partitioned into k equal-sized and mutually exclusive subsamples (folds). In each of

the k iterations, one of these folds is retained for test (prediction phase) and the remaining k− 1 folds are used for training

(calibration phase). The resulting k independent samples are then merged to produce a single time-series covering the whole

calibration period, which is subsequently validated against observations. When k = n (being n the number of observations),
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the k-fold cross-validation is exactly the leave-one-out cross-validation (Lachenbruch and Mickey, 1968). Another common260

approach is the simpler “holdout” method, that partitions the data into just two mutually exclusive subsets (k = 2), called the

training and test (or holdout) sets. In this case, it is common to designate 2/3 of the data as the training set and the remaining

1/3 as the test set (see e.g. Kohavi, 1995).

Therefore, PP models are first cross-validated under ‘perfect conditions’ (i.e.: using reanalysis predictors) in order to evaluate

their performance against real historical climate records, before being applied to ‘non-perfect’ GCM predictors. Therefore, the265

aim of cross-validation in the PP approach is to properly estimate, given a known predictor dataset (large-scale variables from

reanalysis), the performance of the particular technique considered, having an “upper-bound” for its generalization capability

when applied to new predictor data (large-scale variables from GCM). The workhorse for cross-validation in downscaleR

is the function downscaleCV, that adequately handles data partition to create the training and test data subsets according

to the parameters specified by the user, being tailored to the special needs of statistical downscaling experiments (i.e. random270

temporal/spatial folds, leave-one-year-out, arbitrary selection of years as folds, etc.).

During the cross-validation process, one or several user-defined measures are used in order to assess model performance

(i.e.
:
,
::
to

:::::::
evaluate how “well” do model predictions match the observations), such as accuracy measures, distributional similar-

ity scores, inter-annual variability, trend matching scores etc. In this sense, model quality evaluation is a multi-faceted task

with many possible and often unrelated aspects to look into. Thus, validation ultimately consists of deriving specific climate275

indices from model output, comparing these indices to reference indices calculated from observational data and quantifying

the mismatch with the help of suitable performance measures (Maraun et al., 2015). In VALUE, the term “index” is used

in a general way, including not only single numbers (e.g. the 90th percentile of precipitation, lag-1 autocorrelation etc.) but

also vectors such as time series (for instance, a binary time series of rain/no rain). Specific “measures” are then computed

upon the predicted and observed indices, for instance the difference (bias, predicted - observed) of numeric indices, or the280

correlation of time series (Sec. 3.3.9). A comprehensive list of indices and measures has been elaborated by the VALUE cross-

cutting group in order to undertake a systematic evaluation of downscaling methods. The complete list is presented in the

VALUE Validation Portal1. Furthermore, all the VALUE indices and measures have been implemented in R and collected in

the package VALUE (https://github.com/SantanderMetGroup/VALUE), allowing for further collaboration and extension with

other initiatives, as well as for research reproducibility. The validation tools available in VALUE have been adapted to the285

specific data structures of the climate4R framework (see Sec. 1) through the wrapping package climate4R.value

(https://github.com/SantanderMetGroup/climate4R.value), enabling a direct application of the comprehensive VALUE valida-

tion framework in
::
to

:
downscaling exercises with downscaleR (Fig. 1). A summary of the subset of VALUE indices

:::
and

:::::::
measures

:
used in this study is presented in Table. 1.

1http://www.value-cost.eu/validationportal/app/#!indices
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Code Description Type

R01 Relative frequency of wet days (precip ≥ 1mm) index

Mean Mean index

SDII Simple Daily Intensity Index index

Skewness Skewness index

WWProb Wet-wet transition probability (wet ≥1mm) index

DWProb Dry-wet transition probability (wet ≥1mm) index

WetAnnualMaxSpell Median of the annual wet (≥1mm) spell maxima index

DryAnnualMaxSpell Median of the annual dry (<1mm) spell maxima index

AnnualCycleAmp Amplitude of the daily annual cycle index

Var Quasi-variance index

ratio Ratio predicted/observed measure1

ts.rs Spearman correlation measure2

ts.RMSE Root Mean Square Error measure2

ts.ks Two-sample Kolmogorov-Smirnov (KS) test statistic measure2,3

ts.ks.pval (corrected) P-value of the two sample KS test statistic measure2,3

Table 1. Summary of the subset of VALUE validation indices and measures used in this study. Their codes are consistent with the

VALUE reference list (http://www.value-cost.eu/validationportal/app/#!indices)
:
,
:::::
except

::
for

:::::::::
‘ts.ks.pval’,

::::
that

:::
has

:::
been

:::::::
included

::::
later

::
in

:::
the

::::::
VALUE

:::
set

::
of

:::::::
measures. The superindices in the measures indicate the input used to compute them: 1: a sin-

gle scalar value, corresponding to the predicted and observed indices; 2: The original predicted and observed precipitation time series
:
;
::
3:

:::::::::
Transformed

::::
time

::::
series

::::::::
(centered

:::::::
anomalies

::
or

::::::::::
standardized

::::::::
anomalies).

3 Illustrative Case Study: The VALUE experiment290

The VALUE project
:::::::
initiative

:
(Maraun et al., 2015) produced the largest-to-date intercomparison of statistical downscaling

methods with over 50 contributing techniques. The contribution of MeteoLab (and downscaleR) to this experiment in-

cluded a number of methods which are fully reproducible with downscaleR, as we show in this example. This pan-European

contribution was based on previous experience over the Iberian domain (Gutiérrez et al., 2013; San-Martín et al., 2016), testing

a number of predictor combinations and method’s configurations. In order to illustrate the application of downscaleR, in this295

example we will first revisit the experiment over Iberian domain (but considering the VALUE framework and data), showing

the code undertaking the different steps (Sec. 3.3). Afterwards, the subset of methods contributing to VALUE will be
:
is
:
applied

at a pan-European scale, including also results of future climate scenarios (Sec. 4).

In order to reproduce the results of the VALUE intercomparison, the VALUE datasets are used in this study
::::
(Sec.

::::
3.1).

In addition, future projections from a CMIP5 GCM are also used to illustrate the application of the downscaling methods to300

climate change studies. For transparency and full reproducibility, the datasets are public and freely available for download

using the climate4R tools, as indicated in Sec. 3.2. Next, the datasets are briefly presented. Further information on the

VALUE data characteristics is given in Maraun et al. (2015) and Gutiérrez et al. (2019), and also at their official download

URL (http://www.value-cost.eu/data). The reference period considered in all cases
::
for

::::::
model

:::::::::
evaluation

::
in

::::::
perfect

:::::::::
conditions
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BI

IP

FR

ME
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MD
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Figure 2. Location of the 86 stations of the ECA-VALUE-86 dataset (red squares). The coloured boxes show the eight PRU-

DENCE subregions considered in the VALUE downscaling experiment for model training (Sec. 3.1). The regular grid of the

predictor dataset, a 2× 2 degrees resolution version of the ERA-Interim reanalysis, is also shown. The subregions considered

are: IP (Iberian Peninsula), FR (France), BI (British Isles), MD (Mediterranean), AL (Alps), ME (Central Europe), SC (Scandi-

navia) and EA (Eastern Europe). Station metadata can be interactively queried through the VALUE Validation Portal application

(http://www.value-cost.eu/validationportal/app/#!datasets).

is 1979–2008, and the .
::
In

:::
the

:::::::
analysis

:::
of

:::
the

:::::
GCM

:::::::::
predictors

::::
(Sec.

::::::
4.2.1),

::::
this

:::::
period

::
is
:::::::
adjusted

:::
to

:::::::::
1979-2005

::::::::::
constrained305

::
by

::::::
period

::
of

:::
the

::::::::
historical

:::::::::
experiment

:::
of

:::
the

::::::
CMIP5

::::::
models

:::::
(Sec.

::::::
3.1.3).

:::
The

:
future period for presenting the climate change

signal analysis is 2071-2100.

3.1 Datasets

3.1.1 Predictand data (weather station records)

The European station dataset used in VALUE has been carefully prepared in order to be representative of the different European310

climates and regions and with a reasonably homogeneous spatial density (Fig. 2). To keep the exercise as open as possible,
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the downloadable (blended) ECA&D stations (Klein Tank et al., 2002) was used. From this, a final subset of 86 stations

was selected with the help of local experts in the different countries, restricted to high-quality stations with no more than

5% of missing values in the analysis period (1979-2008). Further details on predictand data preprocessing are provided in

http://www.value-cost.eu/WG2_dailystations. The full list of stations is provided in Table 1 in Gutiérrez et al. (2019).315

3.1.2 Predictor data (reanalysis)

In line with the experimental protocol of the Coordinated Regional Climate Downscaling Experiment

(CORDEX Giorgi et al., 2009)
:::::::::::::::::::::::::
(CORDEX, Giorgi et al., 2009), VALUE has used ERA-Interim (Dee et al., 2011) as the

reference reanalysis to drive the experiment with ‘perfect’ predictors. For full comparability, the list of predictors used

in VALUE is replicated in this study —see Table 2 in Gutiérrez et al. (2019)—, namely: sea-level pressure, 2 meter air320

temperature, air temperature and relative humidity at 500,700 and 850 hPa surface pressure levels, and the geopotential height

at 500 hPa.

The set of raw predictors corresponds to the full European domain shown in Fig. 2. The eight reference regions defined in the

PRUDENCE Project of model evaluation (Christensen et al., 2007) were used in VALUE as appropriate regional domains for

training the models of the corresponding stations (Sec. 2.1). The stations falling within each domain are colored accordingly325

in Fig. 2.

3.1.3 Predictor data (GCM future projections)

In order to illustrate the application of SD methods to downscale future global projections from GCM predictors, here we

consider the outputs from the EC-EARTH model (in particular the r12i1p1 ensemble member) (EC-Earth Consortium, 2014)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(in particular the r12i1p1 ensemble member; EC-Earth Consortium, 2014), for the 2071-2100 period under the RCP8.5 sce-330

nario (Moss et al., 2010). This simulation is part of the CMIP5 intercomparison project (Taylor et al., 2011) and is offi-

cially served by the Earth System Grid Federation infrastructure (ESGF, Cinquini et al., 2014). In this study, data is retrieved

from the Santander User Data Gateway (Sec. 4.2), which is the data access layer for
:
of

::::
the climate4R , providing web

services to easily obtain this data directly in R. This showcases the advantages of using downscaleR for end-to-end SD

applications.
:::::::::
framework

:::::::::
(described

::
in

::::
Sec.

::::
3.2).335

3.2 Data retrieval with climate4R

All the data required are (remotely) available under the climate4R framework. Reanalysis (Sec. 3.1.2) and GCM data

(Sec. 3.1.3) are retrieved in this example from the User Data Gateway (UDG), the remote data access layer of climate4R.

The UDG is a climate service providing harmonized remote access to a variety of popular climate databases exposed via a

THREDDS OPeNDAP service (Unidata, 2006) and a fine-grained authorization layer (the THREDDS Administration Panel,340

TAP) developed and managed by the Santander Meteorology Group (http://www.meteo.unican.es/udg-tap). The package

loadeR allows easy access to the UDG datasets directly from R. For brevity, the details regarding data retrieval are omit-
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Method ID Predictor configuration description

GLM

M1* Spatial: n combined PCs explaining 95% of variance

M1-L Spatial+local: n combined PCs explaining 95% of variance + first nearest gridbox

M2 Spatial: n independent PCs explaining 95% of the variance

M3 Local: first nearest gridbox

M4 Local: 4 nearest gridboxes

Analogs

M5 Spatial: original standardized† predictor fields

M6* Spatial: n combined PCs explaining 95% of variance

M6-L Local: 25 nearest gridboxes

M7 Spatial: n independent PCs explaining 95% of the variance

Table 2. Summary of predictor configurations tested. Local predictors always correspond to the original predictor fields previously stan-

dardized. Independent PCs are calculated separately for each predictor field, while combined PCs are computed upon the previously joined

predictor fields (see Sec. 2.1 for more details). †The standardization in M5 is performed by subtracting to each grid cell the overall field mean,

so the spatial structure of the predictor is preserved. Methods marked with an asterisk (*) are included in the VALUE intercomparison, with

the slight difference that in VALUE, a fixed number of 15 PCs is used, and here the number varies slightly until achieving the percentage of

explained variance indicated (in any case, the differences are negligible in terms of model performance). Methods followed by the -L suffix

(standing for ‘Local’) are used only in the pan-European experiment described in Sec. 4.

ted here, being already described in the previous works by Cofiño et al. (2018) and Iturbide et al. (2019). Suffice it here to show

how the login into the UDG (via TAP) is done at the beginning of the R session and how the different collocation parameters

for data retrieval (including the dataset Id and the names of the variables and their vertical surface pressure level
:::::
levels) are345

passed to the function loadGridData. It is also useful to remind that the user has access to a full list of public datasets

available through the UDG and their Id’s using the helper function UDG.datasets, and that an inventory of all available

variables for each dataset can be obtained using the function dataInventory.

First of all, the required climate4R packages are loaded, including package transformeR, that undertakes multiple

generic operations of data manipulation and visualizeR (Frías et al., 2018), used for plotting. Specific instructions for350

package installation are provided in the Supplementary Notebook of this paper, and in the principal page of the climate4R

repo at GitHub (https://github.com/SantanderMetGroup/climate4R). The code used in each section is interwoven with the text

in verbatim fonts. Lengthy lines of code are continued in the following line after indentation.

library(loadeR)

library(transformeR)355

library(visualizeR)

library(downscaleR)

library(climate4R.value)
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3.2.1 Loading Predictor Data

360

loginUDG(username = "****", password = "****")

# Register at http://www.meteo.unican.es/udg-tap

vars <- c("psl","tas","ta@500","ta@700", "ta@850",

"hus@500","hus@850","z@500")365

# The bounding box of the Iberia region (IP) is extracted:

data("PRUDENCEregions", package = "visualizeR")

bb <- PRUDENCEregions["IP"]@bbox370

lon <- bb[1,]; lat <- bb[2,]

grid.list <- lapply(variables, function(x) {

loadGridData(dataset = "ECMWF_ERA-Interim-ESD",

var = x,375

lonLim = lon,

latLim = lat,

years = 1979:2008)

}

)380

In climate4R, climate variables are stored in the so called data grids, following the Grid Feature Type nomenclature of

the Unidata Common Data Model2, on which the climate4R data access layer and its data structures are based on. In order

to efficiently handle multiple variables used as predictors in downscaling experiments, ‘stacks’ of grids encompassing the same

spatial (and by default also temporal) domain are used. These are known as multiGrids in downscaleR, and can be obtained

using the constructor makeMultiGrid from a set of -dimensionally consistent- grids. Next, a multigrid is constructed with385

the full set of predictors:

x <- makeMultiGrid(grid.list)

3.2.2 Loading Predictand Data

The VALUE package, already presented in Sec. 2.3, gathers all the validation routines used in the VALUEProject
:::::::
VALUE. For

convenience, the station dataset ECA-VALUE-86 (described in Sec. 3.1.1) is a built-in. As package VALUE is a dependency of390

the wrapper package climate4R.VALUE (see Sec. 2.3), its availability as installed package is assumed here:

v86 <- file.path(find.package("VALUE"), "example_datasets",

"VALUE_ECA_86_v2.zip")

2https://www.unidata.ucar.edu/software/thredds/current/netcdf-java/tutorial/GridDatatype.html
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Stations are loaded with the function loadStationData from package loadeR, tailored to the standard ASCII format

defined in climate4R, also adopted by the VALUE project
:::::::::
framework.395

y <- loadStationData(dataset = v86, var = "precip",

lonLim = lon, latLim = lat,

years = 1979:2008)

Since the variable precipitation requires two-stage modelling using GLMs (occurrence —binary— and amount —

continuous—, see Sec. 2.2), the original precipitation records loaded require transformation. The function binaryGrid400

undertakes this frequent operation. Also, all the values below 1 mm converted to zero (note the use of argument partial that

sets to zero only the values not fulfilling the condition "GE", that is, ‘Greater or Equal’ than the threshold value given).

y <- binaryGrid(y, condition = "GE", threshold = 1,

partial = TRUE)

y_bin <- binaryGrid(y, condition = "GE", threshold = 1)405

Both raw predictors and predictand set are now ready for SD model development.

3.3 Worked-out Example for the Iberian Domain

Building on the previous work by San-Martín et al. (2016) regarding predictor selection for precipitation downscaling, a number

of predictor configuration alternatives is tested here. For brevity, the experiment is restricted to one of the VALUE subregions

(Iberia, Fig. 2), avoiding a recursive repetition of the code for the 8 domains (the full code is provided in the companion410

paper notebook, see the Code and Data availability Section at the end of the manuscript). From the range of methods tested

in San-Martín et al. (2016), the methods labeled as M1 and M6 in Table 2 were also used in the VALUE intercomparison (for

every subregion) in order to use spatial predictors for GLM and Analog methods (these are designated
::::::
labelled

:
as GLM-DET

and ANALOG in Table 3 of Gutiérrez et al. (2019) respectively). In the particular case of method M6, this is implemented

in order to minimize the number of predictors by compressing the information with PCs, hence improving the computational415

performance of the method by accelerating the analog search. The full list of predictor variables and the same reference period

(1979–2008) used in VALUE (enumerated in Sec. 3.1.2) is here applied for all the configurations tested, that are summarized

in Table 2 following the indications given in Sec. 2.1.

3.3.1 Method configuration experiment over Iberia

In this section, the different configurations of the above described techniques (Table 2) are used to produce local predictions420

of precipitation. The experimental workflow is presented following the schematic representation of Fig. 1, so the different

subsections roughly correspond to the main blocks therein depicted (Future
:::
the

:::::
future

:
downscaled projections from a GCM

will be later illustrated in Sec. 4.2). We partially replicate here the results obtained by Gutiérrez et al. (2019), which are the

methods labelled as M1 and M6.
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As indicated in Sec. 2.1, prepareData is the workhorse for predictor configuration. The function handles all the com-425

plexities of the predictor configuration under the hood, receiving a large number of arguments affecting the different aspects

of predictor configuration, that are internally passed to other climate4R functions performing the different tasks required

(i.e. data standardization, principal component analysis, data subsetting etc.). Furthermore, downscaleR allows for a flexible

definition of local predictors of arbitrary window width (including just the closest grid-point). As the optimal predictor config-

uration is chosen after cross-validation, typically the function downscaleCV is used in first place. The latter function makes430

internal calls to prepareData recursively for the different training subsets defined.

As a result, downscaleCV receives as input all the arguments of prepareData for predictor configuration as a

list, plus other specific arguments controlling the cross-validation setup. For instance, the argument folds allows for

specifying the number of training/test subsets to split the dataset in. In order to perform the classical leave-one-year-

out cross-validation schema, folds should equal the total number of years encompassing the full training period (e.g.435

folds=list(1979:2008)). The way the different subsamples are split is controlled by the argument type, providing

fine control on how the random sampling is performed.

Here, in order to replicate the VALUE experimental Framework, a 5-fold cross-validation scheme is considered, each fold

containing consecutive years for the total period 1979–2008 (Gutiérrez et al., 2019). The function downscaleCV thus per-

forms the downscaling for each of the independent folds and reconstructs the entire time-series for the full period analyzed.440

folds <- list(1979:1984, 1985:1990, 1991:1996,

1997:2002, 2003:2008)

The details for configuring the cross-validation of the methods in Table 2 are given throughout the following subsections:

3.3.2 Configuration of Method M1

Method M1 uses spatial predictors only. In particular, the (non rotated, combined) PCs explaining the 95% of total variance445

are retained. As in the rest of methods, all the predictor variables are included to compute the PCs. The following argument list

controls how the principal component analysis is carried-out, being internally passed to the function prinComp of package

transformeR:

spatial.pars.M1 <- list(which.combine = vars,

v.exp = .95,450

rot = FALSE)

As no other type of predictors (global and/or local) are used in the M1 configuration, the default values (NULL) assumed

by downscaleCV are applied. However, for clarity, here we explicitly indicate these defaults in the command calls. As the

internal object containing the PCA information bears all the data inside (inclusing PCs independently calculated for each

variable), the argument combined.only serves to discard all the unnecessary information. Therefore, with this simple455

specifications the cross-validation for method M1 is ready to be launched:

M1cv.bin <- downscaleCV(x = x, y = y_bin, method = "GLM",
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family = binomial(link = "logit"),

folds = folds,

prepareData.args = list(global.vars = NULL,460

local.predictors = NULL,

spatial.predictors = spatial.pars.M1,

combined.only = TRUE))

In the logistic regression model, downscaleCV returns a multigrid with two output prediction grids, storing the variables

prob and bin. The first contains the grid probability of rain for every day and the second is a binary prediction indicating465

whether it rained or not. Thus, in this case the binary output is retained, using subsetGrid along the ‘var’ dimension:

M1cv.bin <- subsetGrid(M1cv.bin, var = "bin")

Next, the precipitation amount model is tested. Note that the log link function used in this case can’t deal with zeroes in

the data for fitting the model. Following the VALUE criterion, here a minimum threshold of 1 mm (threshold = 1,

condition = "GE", i.e., Greater or Equal) is considered:470

M1cv.cont <- downscaleCV(x = x, y = y, method = "GLM",

family = Gamma(link = "log"),

condition = "GE", threshold = 1,

folds = folds,

prepareData.args = list(global.vars = NULL,475

local.predictors = NULL,

spatial.predictors = spatial.pars.M1,

combined.only = TRUE))

The continuous and binary predictions are now multiplied using the gridArithmetics function from transformeR,

so the precipitation frequency is adjusted and the final precipitation predictions are obtained:480

M1cv <- gridArithmetics(M1cv.bin, M1cv.cont, operator = "*")

The final results stored in the M1cv grid can be easily handled for further analysis, as it will be later shown in Sec. 3.3.9

during method validation. As an example of a common check operation, here the (monthly accumulated and spatially averaged)

predicted and observed time series are displayed using temporalPlot from package visualizeR (Fig. 3):

aggr.pars <- list(FUN = "sum", na.rm = TRUE)485

pred.M1 <- aggregateGrid(M1cv, aggr.m = aggr.pars)

obs <- aggregateGrid(y, aggr.m = aggr.pars)

temporalPlot(pred.M1, obs) ## Generates Fig. 3

3.3.3 Configuration of method M2

Unlike M1, in M2 the PCs are independently calculated for each variable, instead of considering one single matrix formed by490

all joined (combined) variables. To specify this PCA configuration, the spatial predictor parameter list is modified accordingly,

by setting which.combine = NULL.
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Figure 3. Cross-validated predictions of monthly accumulated precipitation by the method M1 (black), plotted against the corresponding

observations (red). Both time series have been spatially aggregated considering the 11 stations within the Iberian subdomain.

spatial.pars.M2 <- list(which.combine = NULL, v.exp = .95)

Note that the rotation argument is here omitted, as it is unused by default. This list of PCA arguments is passed to the

spatial.predictor argument. The rest of the code to launch the cross-validation for M2 is identical to M1.495

3.3.4 Configuration of method M3

Method M3 uses local predictors only. In this case, the first closest neighbour to the predictand location (n=1) is used consid-

ering all the predictor variables (as returned by the helper getVarNames(x)). The local parameters is list is next defined:

local.pars.M3 <- list(n = 1, vars = getVarNames(x))

In addition, the scaling parameters control the raw predictor standardization. Within the cross-validation setup, standardiza-500

tion is undertaken after data splitting. In this particular case (5 folds), the 4 folds forming the training set are jointly standard-

ized. Then, its mean and variance is used for the standardization of the remaining fold (i.e., the test set). Therefore, the stan-
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dardization parameters are passed to function downscaleCV as a list of arguments controlling the scaling (scaling.pars

object; these parameters are passed internally to the function scaleGrid):

scaling.pars <- list(type = "standardize",505

spatial.frame = "gridbox")

The next steps are similar to those already shown for M1. For clarity, the precipitation amount M3 model is next shown (the

binary logistic model of occurrence would use a similar configuration, but changing the model family, as previously shown).

M3cv.cont <- downscaleCV(x = x, y = y, method = "GLM",

family = Gamma(link = "log"),510

condition = "GE", threshold = 1,

folds = folds,

scaleGrid.args = scaling.pars,

prepareData.args = list(global.vars = NULL,

local.predictors = local.pars.M3,515

spatial.predictors = NULL))

3.3.5 Configuration of method M4

Method M4 is similar to M3, but using the 4 closest predictor gridboxes, instead of just one. Thus, the local predictor parameters

are slightly modified, by setting n = 4:

local.pars.M4 <- list(n = 4, vars = vars)520

3.3.6 Configuration of method M5

Method M5 uses raw (standardized) spatial predictor fields, instead of PCA-transformed ones. The standardization is per-

formed by centering every gridbox with respect to the overall spatial mean, in order to preserve the spatial consistency of

the standardized field. To account for this particularity, the scaling parameters are modified accordingly, via the argument

spatial.frame = "field", which is internally passed to scaleGrid.525

scaling.pars.M5 <- list(type = "standardize",

spatial.frame = "field")

In this case, the method for model training is set to analogs. Other specific arguments for analog method tuning are used, for

instance, the number of analogs considered (1 in this case):

M5cv <- downscaleCV(x = x, y = y,530

method = "analogs", n.analogs = 1,

folds = folds,

scaleGrid.args = scaling.pars.M5,

prepareData.args = list(global.vars = vars,

local.predictors = NULL,535

spatial.predictors = NULL))
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3.3.7 Configuration of method M6

The parameters used for predictor configuration in method M6 (combined PCs explaining 95% of total variance) are similar to

method M1. Thus, the previously defined parameter list spatial.pars.M1 is reused here:

M6cv <- downscaleCV(x = x, y = y,540

method = "analogs", n.analogs = 1,

folds = folds,

prepareData.args = list(global.vars = NULL,

local.predictors = NULL,

spatial.predictors = spatial.pars.M1,545

combined.only = TRUE))

3.3.8 Configuration of method M7

Similarly, method M7 uses identical spatial parameters as previously used for method M2 (parameter list

spatial.pars.M2), being the rest of the code similar to M6, but setting combined.only = FALSE, as independent

PCs are used instead of the combined one.550

3.3.9 Validation

Once the cross-validated predictions for the methods M1 to M7 are generated, their evaluation is undertaken following the

systematic approach of the VALUE framework. For brevity, in this example the code of only two example indices is shown:

Relative wet-day frequency (R01) and Simple Day Intensity Index (SDII). The evaluation considering a more complete set

of 9 validation indices is included in the supplementary notebook to this paper (see the Code and Data availability Section),555

following the subset of measures used in the VALUE synthesis paper by Gutiérrez et al. (2019). Alternatively, a complete list

of indices and measures and their definitions is available in a dedicated section in the VALUE Validation Portal (http://www.

value-cost.eu/validationportal/app/#!indices). It is also possible to have a quick overview of the available indices and measures

within the R session by using the helper functions VALUE::show.indices() and VALUE::show.measures().

To apply them, the package climate4R.value, already introduced in Sec. 2.3, is used. The function valueMeasure560

is the workhorse for computing all the measures defined by the VALUE Framework. For example, to compute the ratio of

the frequency of wet days (VALUE code R01) for a given cross-validated method (M6 in this example), the parameters

measure.code="ratio" and index.code="R01" are given:.

R01.ratio <- valueMeasure(y, x = M6cv,

measure.code = "ratio",565

index.code = "R01")$Measure

A spatial plot helps to identify at a glance at which locations the frequency of wet days is under/over (red/blue) estimated

by method M6 (Fig. 4):
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## Generates Fig. 4:

spatialPlot(R01.ratio, backdrop.theme = "countries")570

M6 (Analogs with 95% combined PCs) − R01 ratio

0.94

0.96

0.98

1.00

1.02

Figure 4. Cross-validation results obtained by method M6, considering the ratio (predicted/observed) of the frequency of wet days (VALUE

index code R01, Table 1).

Following with this example and using the 9 indices used in the synthesis of the VALUE Project (Gutiérrez et al., 2019)

:::::::::
experiment

::::::
results

::::::::::::::::::
(Maraun et al., 2019b), and considering the battery of all methods, M1 to M7, a summary of the validation is

presented in Fig. 5. The figure has been generated with the function violinPlot from package visualizeR, as illustrated

step by step in the companion paper notebook (see the Code and Data availability Section).
::::::
Violins

:::
are

::
in

::::::
essence

:
a
:::::::::::
combination

::
of

:
a
:::
box

::::
plot

:::
and

::
a

:::::
kernel

::::::
density

::::
plot.

::::::::
Boxplots

:::
are

:
a
:::::::
standard

::::
tool

::
for

:::::::::
inspecting

:::
the

:::::::::
distribution

:::
of

:::
data

:::::
most

::::
users

:::
are

:::::::
familiar575

::::
with,

:::
but

::::
that

::::
lack

::::
basic

::::::::::
information

:::::
when

::::
data

:::
are

:::
not

::::::::
normally

::::::::::
distributed.

:::::::
Density

::::
plots

:::
are

:::::
more

:::::
useful

:::::
when

::
it

::::::
comes

::
to

:::::::
compare

::::
how

::::::::
different

:::::::
datasets

:::
are

::::::::::
distributed.

:::
For

::::
this

:::::::
reason,

:::::
violin

:::::
plots

::::::::::
incorporate

:::
the

::::::::::
information

::
of

::::::
kernel

:::::::
density

::::
plots

::
in

:
a
:::::::::::
boxplot-like

::::::::::::
representation,

:::
and

:::
are

::::::::::
particularly

::::::
useful

::
to

:::::
detect

::::::::::
bimodalities

:::
or

::::::::
departures

:::::
from

::::::
normal

::::::::::
distribution

::
of

:::
the

::::
data,

:::::::::
intuitively

::::::::
depicted

::
by

::::
the

:::::
shape

::
of

:::
the

:::::::
violins.

::::
The

::::::
violins

:::
are

::::::::
internally

:::::::::
produced

::
by

:::
the

::::::::
package

:::::::::
lattice

::::::::::::
(Sarkar, 2008)

::
via

::::
the

::::
panel

::::::::
function

:::::::::::::::
panel.violin

::
to

:::::
which

:::
the

:::::::::
interested

:::::
reader

::
is
:::::::
referred

:::
for

::::::
further

::::::
details

::
on

::::::
violin580

:::
plot

::::::
design

:::
and

:::::::
options.

:::
All

:::
the

::::::::
optional

::::::::
graphical

:::::::::
parameters

::
of

:::
the

:::::::
original

:::::::::::::::
panel.violin

:::::::
function

:::
can

:::
be

:::::::::::
conveniently

:::::
passed

:::
to

:::
the

:::::::
wrapper

:::::::::::::
violinPlot

::
of

:::::::
package

:::::::::::::
visualizeR

:
.
::
In

:::
the

:::::::::
following,

:::
the

::::::
violin

::::
plots

::::::
shown

::::::
display

:::::
how

:::
the

:::::::
different

::::::::
validation

::::::::
measures

:::
are

:::::::::
distributed

::::::
across

::::::::
locations.
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Figure 5. Cross-validation results obtained by the 7 methods tested (M1 to M7, Table 2) according to the core set of validation indices

defined in the VALUE intercomparison experiment, considering the subset of the Iberian Peninsula stations (n=11). The colour bar indicates

the mean ratio (predicted/observed) measure calculated for each validation index (Table 1).

4 Contribution to VALUE: Further results

The methods M1* and M6* (see Table 2) contributed to the VALUE intercom-585

parison experiment (see methods GLM-DET and ANALOGS in Gutiérrez et al., 2019, , Table 3)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see methods GLM-DET and ANALOGS in Gutiérrez et al., 2019, Table 3) over the whole European domain, exhibting

::::::::
exhibiting

:
a good overall performance. In this section we investigate the potential added value of including local information

to these methods. To this aim, the VALUE M1* and M6* configurations are modified by including local information from

neighbouring predictor gridboxes (these configurations are labelled as M1-L and M6-L respectively, Table 2). The M1-L590

and M6-L models are trained considering the whole pan-European domain, instead of each subregion independently, taking

advantage of the incorporation of the local information at each predictand location, thus disregarding the intermediate step

of subsetting across subregions prior to model calibration. The experiment seeks to explore if the more straightforward local
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predictor approach (M1-L and M6-L) is competitive against the corresponding M1 and M6 VALUE methods when trained

with one single, pan-European domain, instead of using the VALUE subregional division, which poses a clear advantage595

from the user point of view as it does not require testing different spatial domains and the definition of subregions in large

downscaling experiments.

Throughout this section, the pan-European experiment is launched and its results presented. Note that now the predictor

multigrid corresponds to the whole European domain and the predictand contains the full set of VALUE stations (Fig. 2).

The procedure for loading these data is identical to the one already presented in Sections 3.2.1 and 3.2.2, but considering600

the European domain. This is achieved by introducing the bounding box defined by the arguments lonLim = c(-10,32)

and latLim = c(36,72) in the call to the loadGridData function. These arguments can be omitted in the case of the

station data load, since all the available stations are requested in this case. The full code used in this step is detailed in the

companion paper notebook (see the Code and Data Availability section).

4.1 Method Intercomparison experiment605

The configuration of predictors is indicated through the parameter lists, as shown throughout Sections 3.3.2 to 3.3.8. In the

case of method M1-L, local predictors considering the first nearest gridbox are included in the M1 configuration (Table 2).:

M1.L <- list(local.predictors = list(n = 1, vars = vars),

spatial.predictors = list(v.exp = .95,

which.combine = vars))610

Unlike M6, the M6-L configuration considers local predictors only instead of PCs. In this case, the local domain window is

wider than for M1-L, including the 25 closest gridboxes instead of just one:

M6.L <- list(local.predictors = list(n = 25, vars = vars))

Next, the cross validation is launched using downscaleCV. M1-L corresponds to the GLM method (thus requiring the

two models for occurrence and amount), while M6-L is an analog method. After this, the validation is undertaken using615

valueMeasure. PP methods in general build on a synchronous daily link established between predictor(s) and predictand

in the training phase (Sec. 2). The strength of this link indicates the local variability explained by the method as a function

of the large-scale predictors. In order to provide a quick diagnostic of this strength for the different methods, and at the same

time to illustrate a diversity of validation methods, in this case correlation, root mean square error and variance ratio are

chosen as validation measures in the validation (Table 1). The validation results are displayed in Fig. 6. For brevity, the code620

performing the validation of the pan-European experiment is not repeated here (this is similar to what it has been already

shown in Sections 3.3.2 to 3.3.8). The validation results indicate that the local predictor counterparts of the original VALUE

methods M1 and M6 are competitive (the reach very similar or slightly better performance in all cases). Hence, the M1-L

and M6-L method configurations will be used in Sec. 4.2 to produce the future precipitation projections for Europe, provided

their more straightforward application as they do not need to be applied independently for each subregion. While the GLM625
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method improves the correlation between predicted and observed series, the Analog approach does a better job in preserving

the observed variability.
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Figure 6. Cross-validation results obtained by the 4 methods tested (M1, M1-L, M6, and M6-L, Table 2) in the pan-European experiment

(n=86 stations), according to three selected validation measures (Spearman correlation, RMSE and Variance ratio, see Table 1). The colour

bar indicates the mean value of each measure. A factor of 0.1 has been applied to RMSE for better comparability
:
in
:::::
order

:
to
:::::

attain
:::
the

::::
same

::::
order of results

:::::::
magnitude

::
in
:::
the

:::::
Y-axis

:::
for

::
all

::
the

::::::::
validation

:::::::
measures.

4.2 Future downscaled projections

In this section, the calibrated SD models are used to downscale GCM future climate projections from the CMIP5 EC-EARTH

model (Sec. 3.1.3).
:::::
Before

:::::::::
generating

:::
the

::::::
model

::::::::::
predictions

:::::
(Sec.

::::::
4.2.2),

:::
the

::::::::::
perfect-prog

::::::::::
assumption

:::::::::
regarding

:::
the

:::::
good630

:::::::::::
representation

:::
by

:::
the

:::::
GCM

::
of

:::
the

::::::::
reanalysis

:::::::::
predictors

::
is

:::::::
assessed

::
in

::::
Sec.

:::::
4.2.1,.

:

4.2.1
::::::::
Assessing

:::
the

::::::
GCM

:::::::::::::
representation

::
of

:::
the

:::::::::
predictors
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::::
Min.

::
1st

::::
Qu.

::::::
Median

:::::
Mean

:::
3rd

:::
Qu.

::::
Max.

::
sd

RMSE(×0.1)

::::
M1cv

: :::
0.27

: :::
0.39

: :::
0.45

:::
0.52

: :::
0.60

:::
1.41

:::
0.20

:

:::::
M1Lcv

: :::
0.25

: :::
0.37

: :::
0.43

:::
0.49

: :::
0.58

:::
1.33

:::
0.19

:

::::
M6cv

: :::
0.33

: :::
0.49

: :::
0.57

:::
0.67

: :::
0.78

:::
1.96

:::
0.28

:

:::::
M6Lcv

: :::
0.32

: :::
0.47

: :::
0.55

:::
0.64

: :::
0.74

:::
1.74

:::
0.26

:

Correlation

::::
M1cv

: :::
0.32

: :::
0.45

: :::
0.50

:::
0.50

: :::
0.55

:::
0.76

:::
0.09

:

:::::
M1Lcv

: :::
0.40

: :::
0.52

: :::
0.56

:::
0.57

: :::
0.62

:::
0.76

:::
0.07

:

::::
M6cv

: :::
0.16

: :::
0.28

: :::
0.34

:::
0.34

: :::
0.39

:::
0.56

:::
0.08

:

:::::
M6Lcv

: :::
0.25

: :::
0.33

: :::
0.39

:::
0.39

: :::
0.44

:::
0.63

:::
0.08

:

Variance Ratio

::::
M1cv

: :::
0.32

: :::
0.52

: :::
0.55

:::
0.55

: :::
0.59

:::
0.74

:::
0.07

:

:::::
M1Lcv

: :::
0.41

: :::
0.57

: :::
0.60

:::
0.60

: :::
0.63

:::
0.79

:::
0.06

:

::::
M6cv

: :::
0.72

: :::
0.88

: :::
0.93

:::
0.93

: :::
0.99

:::
1.08

:::
0.08

:

:::::
M6Lcv

: :::
0.64

: :::
0.86

: :::
0.94

:::
0.92

: :::
0.98

:::
1.10

:::
0.10

:

Table 3.
:::::::

Validation
:::::
results

::
of

:::
the

:
4
:::::::
methods

::::
tested

::
in

:::
the

::::::::::
pan-European

:::::::::
experiment.

::::
The

:::::
values

:::::::
presented

::::
(from

:::
left

::
to

:::::
right:

:::::::
minimum,

::::
first

::::::
quartile,

::::::
median,

::::
third

::::::
quartile,

::::::::
maximum

:::
and

:::::::
standard

::::::::
deviation)

::::::::
correspond

::
to

:::
the

::::
violin

::::
plots

::::::::
displayed

::
in

:::
Fig.

:
6
:::::::
(n= 86

:::::::
stations).

::::
Note

:::
that,

:::
for

:::::::::
consistency

:::
with

::::
Fig.

::
6,

::
the

::::::
RMSE

:::::
results

:::
are

::::::::
multiplied

::
by

::
a

::::
factor

::
of

:::
0.1

::
in

::::
order

::
to
:::::

attain
:
a
::::::
similar

::::
order

::
of

::::::::
magnitude

:::
for

:::
the

::::
three

:::::::
validation

:::::::
measures

:::::::::
considered.

::::
This

:
is
::::
also

:::::::
indicated

::
in

::
the

::::::
caption

::
of

:::
Fig.

::
6.

::
As

::::::::
indicated

::
in

::::
Sec.

::::
2.1,

:::
PP

:::::
model

::::::::::
predictions

:::
are

::::
built

:::::
under

:::
the

::::::::::
assumption

::::
that

:::
the

:::::
GCM

::
is

::::
able

::
to

:::::::::
adequately

:::::::::
reproduce

::
the

:::::::::
predictors

:::::
taken

::::
from

:::
the

:::::::::
reanalysis.

:::::
Here,

:::
this

::::::::
question

::
is

::::::::
addressed

:::::::
through

:::
the

::::::::
evaluation

::
of
:::
the

::::::::::::
distributional

::::::::
similarity

:::::::
between

:::
the

::::::::
predictor

::::::::
variables,

::
as

::::::::::
represented

:::
by

:::
the

::::::::::
EC-EARTH

::::::
model

::
in

:::
the

::::::::
historical

::::::::::
simulation,

:::
and

::::
the

:::::::::::
ERA-Interim635

::::::::
reanalysis.

:::
To

::::
this

::::
aim,

:::
the

::::::::::
two-sample

::::::::::::::::::
Kolmogorov-Smirnov

::::
test

::
is

:::::
used,

:::::::
included

::
in

:::
the

:::
set

:::
of

::::::::
validation

::::::::
measures

:::
of

:::
the

:::::::
VALUE

:::::::::
framework

:::
and

::::
thus

:::::::::::
implemented

::
in

:::
the

:::::::
VALUE

::::::::
package.

::::
The

:::
KS

:::
test

::
is

:
a
:::::::::::::
non-parametric

::::::::
statistical

:::::::::
hypothesis

::::
test

::
for

::::::::
checking

:::
the

::::
null

:::::::::
hypothesis

::::
(H0)

::::
that

:::
two

::::::::
candidate

:::::::
datasets

:::::
come

::::
from

:::
the

:::::
same

:::::::::
underlying

:::::::::
theoretical

::::::::::
distribution.

::::
The

::::::
statistic

::
is

:::::::
bounded

:::::::
between

::
0

:::
and

::
1,

::::::::
indicating

:::
the

:::::
lower

::::::
values

:
a
::::::
greater

:::::::::::
distributional

::::::::
similarity.

::::
The

:::
KS

:::
test

::
is

:::
first

:::::::
applied

::
to

::
the

:::::::::::
EC-EARTH

:::
and

:::::::::::
ERA-Interim

::::::::
reanalysis

::::
time

:::::
series

::
at

:
a
::::
grid

:::
box

:::::
basis,

::::::::::
considering

:::
the

::::::
original

:::::::::
continuous

:::::
daily

::::
time

:::::
series640

::
for

::::
their

::::::::
common

::::::
period

:::::::::
1979-2005.

::
In

:::::
order

::
to

::::::
isolate

:::::::::::
distributional

::::::::::::
dissimilarities

:::
due

::
to

:::::
errors

::
in

:::
the

::::
first-

::::
and

:::::::::::
second-order

::::::::
moments,

:::
we

:::
also

::::::::
consider

::::::::
anomalies

:::
and

:::::::::::
standardized

:::::::::
anomalies

:::
(the

:::::
latter

:::::
being

::::
used

::
as

:::::
actual

::::::::
predictors

::
in
:::
the

:::
SD

::::::::
models).

:::
The

:::::::::
anomalies

:::
are

:::::::::
calculated

::
by

::::::::
removing

:::
the

::::::
overall

::::::::
grid-box

:::::
mean

::
to

::::
each

:::::
daily

:::::
value,

::::
and

::
in

:::
the

::::
case

::
of

:::
the

:::::::::::
standardized

:::::::::
anomalies,

:::
we

::::::::::
additionally

:::::
divide

:::
by

:::
the

:::::::
seasonal

:::::::
standard

:::::::::
deviation.

::::
Due

::
to

:::
the

::::::
strong

::::
serial

::::::::::
correlation

::::::
present

::
in

:::
the

:::::
daily

::::
time

:::::
series,

:::
the

::::
test

::
is

:::::
prone

::
to
::::::::

inflation
::
of

::::::
type-1

:::::
error,

::::
that

::
is,

::::::::
rejecting

:::
the

::::
null

:::::::::
hypothesis

::
of

:::::
equal

:::::::::::
distributions

:::::
when

::
it645

:
is
:::::::
actually

:::::
true.

::
To

::::
this

::::
aim,

::
an

::::::::
effective

::::::
sample

::::
size

:::::::::
correction

:::
has

::::
been

:::::::
applied

::
to

:::
the

::::
data

:::::
series

:::
to

:::::::
calculate

:::
the

::::::::
p-values
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:::::::::::
(Wilks, 2006)

:
.
:::
The

:::::::::::
methodology

:::::::
follows

:::
the

:::::::::
procedure

::::::::
described

::
in

:::::::::::::::::::::
Brands et al. (2012, 2013)

:
,
:::::::::::
implemented

:::
by

:::
the

:::::::
VALUE

:::::::
measure

:::::::::
‘ts.ks.pval’

::::::
(Table

::
1).

:

:::
The

:::::::::::
distributions

::
of

:::::
GCM

::::
and

::::::::
reanalysis

:::::
(Fig.

::
7)

:::::
differ

:::::::::::
significantly

:::::
when

::::::::::
considering

:::
the

:::
raw

::::
time

::::::
series,

::::
thus

::::::::
violating

::
the

:::::::::::
assumptions

:::
of

:::
the

:::
PP

::::::::::
hypothesis.

:::::::::
Centering

:::
the

::::
data

::::
(i.e,

::::
zero

:::::
mean

:::::
time

::::::
series)

::::::
greatly

::::::::
alleviates

::::
this

::::::::
problem

:::
for650

::::
most

::::::::
variables,

:::::::::
excepting

:::::::
specific

::::::::
humidity

::
at

::::
500

:::
mb

::::::::::::
(‘hus@500’),

:::
and

:::::::::::
near-surface

::::::::::
temperature

::::::
(‘tas’,

:::
not

::::::
shown

:::::
here,

:::
but

::::::::
displayed

::
in

:::
the

:::::
paper

:::::::::
notebook).

:::::::
Finally,

::::
data

::::::::::::
standardization

::::::::
improves

:::
the

:::::::::::
distributional

:::::::::
similarity,

::::::::
attaining

::
an

:::::::
optimal

:::::::::::
representation

::
of
:::
all

:::
the

:::::
GCM

::::::::
predictors

::::
but

:::::::::
‘hus@500’

::::
over

:
a
::::
few

::::
grid

:::::
points

::
in

:::
the

:::::::::::::
Mediterranean.

:::
The

:::::::::::
distributional

::::::::
similarity

:::::::
analysis

::
is
:::::::::::::
straightforward

:::::
using

:::
the

::::::::
functions

::::::::
available

::
in

:::::::::::
climate4R

:
,
::::::
already

::::::
shown

::
in

:::
the

:::::::
previous

::::::::
examples.

::::
For

::::::
brevity,

:::
the

:::::
code

:::::::::
generating

:::
Fig.

::
7
::
is

:::::::
omitted

::::
here,

::::
and

:::::::
included

::::
with

::::::::
extended

::::::
details

:::
and

:::
for

:::
all

:::
the655

:::::::
predictor

::::::::
variables

::
in

:::
the

:::::::::
companion

:::::
paper

::::::::
notebook

::::
(see

:::
the

:::::
Code

:::
and

::::
Data

::::::::::
Availability

::::::::
Section).

–
::::
Data

:::::::::::::::::::::
centering/standardization

::
is

:::::::::
performed

::::::
directly

:::::
using

:::
the

::::::::
function

:::::::::::
scaleGrid

:
,
:::::
using

:::
the

::::::::::
appropriate

::::::::
argument

:::::
values

::::::::::::::::
type="center"

:
/
:::::::::::::::
"standardize"

::::::::::
respectively.

–
:::
The

:::::::
KS-test

::
is
::::::::

directly
::::::::
launched

:::::
using

::::
the

:::::::
function

::::::::::::::::
valueMeasure

::::
from

:::::::
package

:::::::::::::::::::
climate4R.VALUE

:
,
::::
and

::::::::
including

::
the

::::::::
argument

:::::
value

::::::::::::::::::::::::
measure.code="ts.ks"

:
or

:::::::::::::::
"ts.ks.pval"

::
for

::::::::
KS-score

:::
and

::
its

:::::::::
(corrected)

:::::::
p-value660

::::::::::
respectively.

–
:::
The

:::
KS

:::::
score

:::::
maps

::::
and

:::
the

::::::::
stippling

:::::
based

:::
on

::::
their

::::::::
p-values

:::
are

::::::::
produced

:::::
with

:::
the

:::::::
function

::::::::::::::
spatialPlot

::::
from

:::::::
package

::::::::::::
visualizeR

:
.

::
In

:::::::::
conclusion,

::::::::
although

:::
not

:::
all

::::::::
predictors

:::
are

::::::
equally

::::
well

::::::::::
represented

:::
by

:::
the

:::::
GCM,

::::
data

:::::::::::::
standardization

::
is

::::
able

::
to

::::
cure

:::
the

:::::::
problem

::
of

:::::::::::
distributional

::::::::::::
dissimilarities,

::::
even

::
in

:::
the

::::
case

::
of

:::
the

:::::
worst

::::::::::
represented

:::::::
variable,

::::
that

::
is,

:::::::
specific

:::::::
humidity

::
at

::::
500

:::
mb665

::::
level.

:

4.2.2
::::::
Future

:::
SD

::::::
model

::::::::::
predictions

The final configuration of predictors for M1-L (stored in the M1.L list) and M6-L methods (M6.L) is directly passed

to the function prepareData, whose output contains all the information required to undertake model training via the

downscaleTrain function. In the following, the code for the analog method is presented. Note that for GLMs the code670

is similar, but taking into account occurrence and amount in separated models, as previously shown.

Unlike downscaleCV, than handles predictor standardization on a fold-by-fold basis (see Sec. 3.3.1 in the configuration

of method M3), predictor standardization need to be undertaken prior to passing the predictors to the function prepareData

# Standardization

x_scale <- scaleGrid(x, type = "standardize")675

# Predictor config (M6-L method)

M6L <- prepareData(x_scale, y, local.predictors = M6.L)

# SD model training

model.M6L <- downscaleTrain(M6L, method = "analogs",
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Figure 7.
::
KS

:::::
score

:::::
maps,

:::::::
depicting

:::
the

:::::
results

:::
of

:::
the

:::::::::
two-sample

:::
KS

:::
test

::::::
applied

::
to

:::
the

::::
time

:::::
series

::::
from

:::
the

::::::::::
EC-EARTH

::::
GCM

::::
and

::::::::::
ERA-Interim,

:::::::::
considering

:::
the

:::::::
complete

::::
time

::::
series

:::
for

:::
the

:::::
period

:::::::::
1979-2005.

:::
The

::::::
results

::
are

::::::::
displayed

::
for

::::
two

::
of

:::
the

:::::::
predictor

:::::::
variables

::
(by

:::::
rows),

::::::
namely

:::::::
Specific

:::::::
humidity

::
at

:::
500

:::
mb

::::::
surface

::::::
pressure

:::::
height

::::::::::
(“hus@500”,

:::::
badly

:::::::::
represented

::
by

:::
the

:::::
GCM)

:::
and

:::::
mean

:::::::
sea-level

::::::
pressure

:::::
(“psl”,

::::
well

::::::::
represented

:::
by

::
the

::::::
GCM).

:::
The

:::
KS

::
test

::::::
results

::
are

:::::::
displayed

:::
by

:::::::
columns,

::::
using,

::::
from

:::
left

::
to

::::
right:

:::
the

:::
raw,

:::
the

::::::::
zero-mean

:::::::
(centered)

:::
and

:::
the

::::::::
zero-mean

:::
and

::::
unit

::::::
variance

:::::::::::
(standardized)

::::
time

:::::
series

::::
from

:::
both

:::
the

::::::::
reanalysis

:::
and

:::
the

:::::
GCM.

:::
The

:::
grid

:::::
boxes

:::::::
showing

:::
low

::::::
p-values

::::::::
(p < 0.05)

::::
have

::::
been

::::::
marked

:::
with

::
a

::
red

:::::
cross,

:::::::
indicating

::::::::
significant

:::::::::
differences

::
in

::
the

:::::::::
distribution

::
of

::::
both

::::
GCM

:::
and

::::::::
reanalysis

:::
time

:::::
series.

n.analogs = 1)680

After SD model calibration downscalePredict is the workhorse for downscaling. First of all, the GCM datasets required

are obtained. As previously done with ERA-Interim, the EC-EARTH simulations are obtained from the climate4R UDG,
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considering the same set of variables already used for training the models (Sec. 3.1.2). Again, the individual predictor fields

are recursively loaded and stored in a climate4R multigrid.

historical.dataset <- "CMIP5_EC-EARTH_r12i1p1_historical"685

grid.list <- lapply(variables, function(x) {

loadGridData(dataset = historical.dataset,

var = x,

lonLim = c(-10,32),

latLim = c(36,72),690

years = 1979:2005)

}

)

As done with the predictor set, the prediction dataset is also stored in as a multigrid object:

xh <- makeMultiGrid(grid.list)695

An additional step entails regridding the GCM data onto the predictor grid prior to downscaling, in order to attain spa-

tial consistency between the predictors and the new prediction data. This is done using the interpGrid function from

transformeR:

xh <- interpGrid(xh, new.coordinates = getGrid(x))

Identical steps are followed in order to load the future data from RCP8.5. Note that in this case, it suffices with replacing700

the URL pointing to the historical simulation dataset by the one of the future scenario chosen, in this case dataset =

"CMIP5_EC-EARTH_r12i1p1_rcp85". The multigrid object storing the future GCM data for prediction will be named

xf.

Prior to model prediction, data harmonization is required. This step consists of rescaling the GCM data to conform to

the mean and variance of the predictor set that was used to calibrate the model. Note that this step is achieved through two705

consecutive calls to scaleGrid:

xh <- scaleGrid(xh, base = xh, ref = x,

type = "center",

spatial.frame = "gridbox",

time.frame = "monthly")710

xh <- scaleGrid(xh, base = x, type = "standardize")

Again, an identical operation is undertaken with the future dataset, by just replacing xh by xf in the previous code chunk.

Then, the function prepareNewData will undertake all the necessary data collocation operations, including spatial and tem-

poral checks for consistency, leaving the data structure ready for prediction via downscalePredict. This step is performed

equally for the historical and the future scenarios:715

h_analog <- prepareNewData(newdata = xh, data.struc = M6L)

f_analog <- prepareNewData(newdata = xf, data.struc = M6L)
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Finally, the predictions for both the historical and the future scenarios are done with downscalePredict. The function

receives two arguments: i) newdata, where the pre-processed GCM predictors after prepareNewData are stored, and ii)

model, which contains the model previously calibrated with downscaleTrain:720

hist_ocu_glm <- downscalePredict(newdata = h_analog,

model = model.M6L)

Once the downscaled future projections for historical and RCP 8.5 scenarios are produced using the methods M1-L (GLMs)

and M6-L (Analogs), their respective predicted climate change signals (or “deltas”) are next displayed in Fig. 8 . The map is

easily generated with visualizeR, as
:::
(the

:::::
code

::
to

:::::::
generate

:::
the

:::::
figure

:
is
:
illustrated in the companion paper notebook(

:
, see the725

Code and Data availability Section).
::
We

::::
also

:::::
depict

:::
the

::::::::::
downscaled

:::::::
climate

::::::
change

::::::
signals

:::
for

:::
the

:::
M1

:::
and

::::
M6

::::::::::::
configurations

::
in

::::
order

::
to

:::::::
evaluate

:::::::
whether

:::
the

::::::::::::
local-window

::::::::
approach

::::
alters

:::
the

:::::::
climate

::::::
change

::::::
signals.

:::
As

:::::::::
illustrated

::
in

:::::
Fig.8,

:::
the

::::::::
projected

::::::
relative

:::::::
changes

::
in

:::
the

:::::::
climate

:::::
signal

:::
of

:::
the

::::
R01

::::
(first

:::::
row)

:::
and

:::::
SDII

:::::::
(second

::::
row)

:::::::
indices

:::::
show

:::::
minor

::::::::::
differences

::::::
among

::
the

:::::::::::::
configurations

::::::::
presented

::::::
herein

::::
(i.e.,

::::::
M1-L

:::
and

::::::
M6-L)

::::
and

:::
the

:::::::
VALUE

::::::::
methods

::::
(i.e.,

::::
M1

::::
and

::::
M6),

::::::::
showing

::::
that

:::
the

:::::::::
uncertainty

::::
due

::
to

:::
the

:::
SD

:::::::
method

::
in

:::
the

::::::
climate

:::::::
change

:::::
signal

::::
(M1

::::::::
–GLMs–

::
vs

:
.
:::
M6

::::::::::
–analogs–)

:
is
::::::

larger
::::
than

:::
that

::::::::
between730

:::::
global

:::::::::::::
predictors/local

:::::::
window

:::::::
(M1/M6

:::
vs.

::::::::::
M1-L/M6-L

:::::::::::
respectively),

::
in
:::::::::
agreement

::::
with

::::::::::::::::::::
San-Martín et al. (2016)

:
.
::::
This

:::::
result

:::::
further

::::::::
supports

:::
the

::::
idea

::
of

::::::::
replacing

:::
the

:::::::
VALUE

::::::::::
subdomain

::::::::
approach

::
by

:::
the

:::::::
adaptive

:::::::
window

::::::::
centered

::
on

:::::
each

:::::::::
predictand

:::::::
location,

::::::::
allowing

::
for

::
a
:::::
much

:::::
more

:::::::::::::
straightforward

:::::::::::
performance

::
of

::::
large

:::
PP

:::::::::::
experiments

::::::::::::
encompassing

::::
large

:::::
areas

:::::::
without

::
the

:::::
need

::
of

::::::
testing

:::::::
different

:::::::::
subdomain

:::::::::::::
configurations.

5 Conclusions735

The experiments carried out throughout Sections 3.3 and 4 have served to the purpose of showcasing the most

prominent features of the R package downscaleR and its integration in the climate4R framework, demonstrating its

application for end-to-end downscaling experiments using state-of-the-art methods and techniques for model building and

validation.Furthermore, the
::::
The results obtained in the pan-European method intercomparison experiment (Sec. 4.1), indicate

that the example SD methods contributing to the VALUE Experiment (GLMs and Analogs, first reproduced in Sec. 3.3.1),740

can be improved through the incorporation of local predictors, a novel feature brought by downscaleR that can help to

avoid the burden of spatial domain screening, as it
:
.
::
It has been shown

:::
that

:::
this

:::::::
method

::::
does

::::
not

::::::::::
significantly

::::
alter

::::
the

:::
SD

:::::
model

::::::
results,

::::::
neither

::
in
:::::::

current
::::::
climate

:::::::::
validation,

:::
nor

::
in
::::::
regard

::::
with

:::
the

::::::::
projected

:::::::::
anomalies. These results are of relevance

for the development of the forthcoming EURO-CORDEX SD statistical downscaling scenarios, in which the VALUE activ-

ities have merged and will follow on,
:::::::

greatly
:::::::::
facilitating

:::
the

:::::::::::
development

::
of

:::::::::::
downscaling

::::::::::
experiments

::::
over

:::::
large

:::::
areas,

::::
like745

::
the

::::::::::
continental

:::::
scale

:::::::::
considered

::
in

::::
this

:::::
study.

:::
As

::
in

::::
any

::::
other

::::::::::
experiment,

:::::::
caution

::::
must

:::
be

:::::
taken

::
in

:::::
order

::
to

::::::
ensure

::::
that

:::
the

::::::::::
assumptions

:::
for

::::::::::
perfect-prog

::::::::::
applications

:::
are

::::::::
fulfilled,

::
as

:::::
shown

:::::
here.

:::
The

::::::::::
experiments

:::::::
carried

:::
out

:::::::::
throughout

::::::::
Sections

:::
3.3

:::
and

::
4
::::
have

::::::
served

::
to

:::
the

:::::::
purpose

::
of

::::::::::
showcasing

:::
the

:::::
most

:::::::::
prominent

::::::
features

:::
of

:::
the

:::
R

:::::::
package

:::::::::::::
downscaleR

:::
and

:::
its

:::::::::
integration

:::
in

:::
the

::::::::::::
climate4R

:::::::::
framework,

:::::::::::::
demonstrating

:::
its

:::
use

:::
in

:::::::::
end-to-end

::::::::::
applications.

:::::
With

:::
this

::::::
regard,

:::::::::::::
downscaleR

::
is

:
a
::::
new

:::
tool

::::::::::::
implementing

::::::::::::
state-of-the-art

:::
SD

:::::::::
techniques

:::::::::
providing750
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Relative delta change signals of the R01 and SDII precipitation indices (see Table 1) for the future period 2071–2100 (w.r.t. the baseline

1979–2005), obtained by the downscaled projections of the CMIP5 GCM EC-EARTH-r12i1p1, considering the RCP8.5 experiment. The

SD methods used are M1-L and M6-L (see Table 2).

Figure 8.
::::::
Relative

::::
delta

::::::
change

::::::
signals

::
of

::
the

::::
R01

:::
and

::::
SDII

::::::::::
precipitation

:::::
indices

::::
(see

::::
Table

::
1)
:::
for

:::
the

:::::
future

:::::
period

::::::::
2071–2100

:::::
(w.r.t.

:::
the

::::::
baseline

:::::::::
1979–2005),

:::::::
obtained

::
by

:::
the

:::::::::
downscaled

::::::::
projections

::
of

::
the

::::::
CMIP5

:::::
GCM

:::::::::::::::
EC-EARTH-r12i1p1,

:::::::::
considering

:::
the

::::::
RCP8.5

:::::::::
experiment.

:::
The

:::
SD

::::::
methods

::::
used

::
are

::::::
M1-L,

:::
M1,

:::
M6

:::
and

:::::
M6-L

:::
(see

::::
Table

:::
2).

::
an

:::::::::
extremely

::::::
flexible

::::::::
interface

:::
to

:::::::::
accomplish

::::::::
complex

:::::::::::
downscaling

:::::::::::
experiments.

:::::::
Critical

::::::
aspects

:::
to

::
be

::::::::::
considered

::
in

::::
any

::::::::::
downscaling

::::::::
exercise,

::::::::
including

::::::
domain

:::::::::
definition,

::::::::
predictor

::::::::::::
configuration,

::::::::::
perfect-prog

:::::::::
hypothesis

:::::::
testing,

:::::
model

:::::::::
validation

:::
and

::::::::::::::
intercomparison,

:::
can

:::
be

:::::::
achieved

:::::::
through

:::
the

:::
use

:::
of

:
a
::::
few

:::::::
intuitive

::::::::::
commands.

:::::
Users

::
of

:::::::::::::
downscaleR

:::
can

::::
also

::::::
benefit

::::
from

::
its

:::::
direct

:::::::::
integration

::::::
within

:::
the

:::::::::::::
comprehensive,

::::::::::::::
well-consolidated

:::::::
VALUE

:::::::::
framework

:::
for

::::::
model

:::::::::
evaluation.

:::::::::::
Furthermore,

::
its

:::
full

:::::::::
integration

::::
with

:::::::::::
climate4R

:::::
brings

::
to

::::::
climate

::::::::
scientists

:::
and

:::::::::::
practitioners

:
a
::::::
unique

:::::::::::::
comprehensive

:::::::
R-based

:::::::::
framework755

::
for

::::
SD

:::::
model

::::::::::::
development,

::::::::
including

::
a

::::::::::::::
cloud-computing

:::::::
facility,

:::::::::::
user-friendly

::::
data

:::::
access

:::
to

:
a
:::::

large
:::::::
climate

:::::::
database

::::
and

:::::::
efficient

:::::::
solutions

:::
for

::::
data

:::::::::::
manipulation,

:::::::::::
visualization

::::
and

:::::::
analysis

:::::
within

::::
one

:::::
single

:::::::::
computing

::::::::::
environment.

Code and data availability. In order to promote transparency and research reproducibility, all the steps followed to generate the analyses

shown in this paper (with extended details and additional information), are available in the companion Paper Notebook (repo version 0.1.4,

https://doi.org/10.5281/zenodo.3567736):760

– source file (R markdown): https://github.com/SantanderMetGroup/notebooks/blob/v0.1.4/2019_downscaleR_GMD.Rmd

– html file: https://github.com/SantanderMetGroup/notebooks/blob/v0.1.4/2019_downscaleR_GMD.html

31

https://doi.org/10.5281/zenodo.3567736
https://github.com/SantanderMetGroup/notebooks/blob/v0.1.4/2019_downscaleR_GMD.Rmd
https://github.com/SantanderMetGroup/notebooks/blob/v0.1.4/2019_downscaleR_GMD.html


– pdf file: https://github.com/SantanderMetGroup/notebooks/blob/v0.1.4/2019_downscaleR_GMD.pdf

The R software and all the packages required to reproduce the results are freely available as indicated in the paper notebook, where more

specific details for installation and required versions are given.765

– Name of the software: downscaleR (paper version: 3.1.0, https://www.doi.org/10.5281/zenodo.3277316)

– Developers: Authors of this paper

– Website: https://github.com/SantanderMetGroup/downscaleR

– Hardware Requirements: General-purpose computer

– Programming Languages: R770

– Software Requirements: R version 3.1.0 or later.
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Appendix A:
::::::::::
Computing

:::::
times

:::::::
Method

:

:::
The

:::::::::
computing

:::::::::::
performance

::
of

:::
the

::::::::
different

::::::::::
downscaling

::::::::::
experiments

::
is
::::::::
analysed

::
in

::::
this

::::::::
Appendix

:::::::
through

:::
the

:::
use

::
of

::::
one775

::::::::
indicator,

:::
the

:::::::::
computing

:::::
time,

:::::
which

::::::::
measures

:::
the

::::::
(user)

::::
time

:::::::
required

::
to
::::::::::

accomplish
::
a
::::::
certain

::::
task.

:::::::::
Therefore,

:::
all

:::::::
timings

::::::::
presented

::
in

:::
the

::::::::
following

:::::
plots

:::::::::
correspond

::
to

::::
user

:::::
(wall)

::::::
times.

:::
The

::::::
values

::::::
shown

:::
are

:::::
mean

:::::
values

:::::
after

::::::::::
considering

::::::
n= 10

:::::::::
experiment

::::::::
replicates

::
in

:::
all

:::::
cases.

::::::::
However,

::::::
spread

::::::::
measures

:::
are

:::
not

::::::::
displayed

:::::
given

:::
that

:::::
their

:::::
values

:::
are

:::::::::
negligible,

::::::::
attaining

::
all

::::::::::
realizations

::::
very

::::::
similar

:::::::
timings.

:::
All

::::::
timings

:::::::::
presented

::::
have

:::::
been

::::::::
measured

:::::
using

:::
the

::
R
:::::::
package

::::::::::::::::::
microbenchmark

:::::::::::::::
(Mersmann, 2019),

:::
on

:
a
:::::::::

dedicated780

::::::
Ubuntu

:::::
16.04

::::
LTS

:::
(64

:::::
bits),

::::
with

:::::
15.6

::::
GiB

:::::::
memory

:::
and

::
a
:::::::::
multi-core

:::::
CPU

::::::::
composed

:::
on

::
8

:::::::::
processing

::::
units

::::::
Intel®

:::::::
Core™

::::::
i7-6700

::
of

:::::::::
3.40GHz.

::::::
Further

::::::
details

::
on

:::
the

::
R
::::::::::::
configuration

::
are

::::::::
provided

::
in

:::
the

:::::::
Session

::::::::::
Information

::::::
section

::
of

:::
the

::::::::::
companion

::::
paper

:::::::::
notebook.

::::::
Results

:
785

:::
The

::::::::::
computing

:::::
times

:::
for

:::
the

::::::
Iberia

::::
and

::::::::::::
Pan-European

:::::::::::
downscaling

:::::::::::
experiments

:::
are

::::::::
depicted

::
in

:::::::
Fig.A1

::::
and

:::::::
Fig.A2,

::::::::::
respectively.

::
A
::::::

more
:::::::
detailed

::::::::::
description

::
of
::::

the
:::::::
process

:::::::
naming

::
is
:::::::::

indicated
::
in

::::::
Table

::::
A1.

::::
The

::::::::
different

:::::::::::
downscaling

:::::::::::
configurations

::::
are

::::::
named

::::::::
according

:::
to

:::::
Table

::
2,

:::
and

::::::
match

:::
the

::::::::::::
nomenclature

::::
used

::
in
::::

the
:::::::::
companion

:::::
paper

:::::::::
notebook.

:::
As

::
it

:::
can

::
be

:::::
seen,

::
all

:::
the

:::::::
method

:::::::
families

:::::::
perform

::::::::
similarly,

:::::
being

:::
the

::::::
analogs

::::::::
approach

::
in

:::::::
general

::::::::::
significantly

::::::
slower

:::
that

:::::::
GLMs,

::::::::::
highlighting

:::
the

:::::::::::::
computationally

::::::::::
demanding

::::
task

::
of

::::::
analog

::::::
search

::::::::
(methods

::::::::
M5-M7),

:::
that

::
is
:::::::::::
significantly

:::::::
reduced

:::::
when

:::
the790

::::::::::::
dimensionality

::
of

:::
the

::::::::
predictor

::
set

::
is
:::::::
reduced

:::::
using

:::
PCs

::::
(M6

::::
and

::::
M7).

:::
On

:::
the

:::::
other

::::
hand,

:::
the

::::
use

::
of

::::
local

::::::::
neighbors

:::::::
instead

::
of

:::
PCs

::::
does

::::
not

::::
make

::
a
:::::::::
significant

::::::::
difference

:::
in

:::::::::
computing

:::::
times,

::
as

::
it
:::
can

:::
be

::::
seen

:::::
from

:::
the

:::::::::::::
intercomparison

::
of

:::::
GLM

::::::::
methods

:::
(M1

::
to
::::
M4,

::::
Fig.

::::
A1).

:::
As

::::::::
expected,

::::::::::
downscaling

:::
the

::::::::::::
Pan-European

::::::
domain

:::::
(i.e.,

::::::::::::
configurations

::::
M1L

:::
and

::::::
M6L)

::::
leads

::
to

::::::
higher

:::::::::::
computational

:::::
times

::
in
::::::::::

comparison
:::::
with

:::
the

::::::
Iberian

::::::::::
downscaling

::::::::::
experiment

::::
(see

:::
Fig.

:::::
A2),

::::::::
especially

::
in
:::
the

:::::::
analogs

:::::
case,

::
in

:::::
which

:::
the

::::::
analog

:::::
search

::
is

:::::::::::::
computationally

::::::::::
demanding

:::
due

::
to

:::
the

:::::
larger

::::
size

::
of

:::
the

::::::::::
Europe-wide

::::::::
predictor

:::
set.

::::
The

::::::::::
comparison795

:::::::
between

:::::::
training

:::
and

::::::
testing

:::::
times

:::::
show

::::
that

:::
the

::::
most

::::::::::::::
time-consuming

::::::::
sub-task

::
is

:::
the

:::::::::
preparation

:::
of

:::
the

::::::::
predictor

:::
and

::::
SD

:::::
model

::::::::
training,

::
in

::::
this

::::
order

:::::
(Fig.

::::
A3),

:::::
while

::::::::
prediction

::
is
:::::
much

:::::
faster

::
in

:::::::
general

::
for

:::
all

:::
the

::::::::
methods.
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Figure A1.
::::::::::::
Cross-validation

::::
times

:::::::
required

::
for

:::
the

::::::::::
downscaling

::::::
models

:::::::
developed

::
in
:::

the
::::::
Iberian

:::::::::
experiment.

:::
The

:::::::::::
computational

:::::
times

::
of

::
the

:::::::::
generalized

:::::
linear

:::::
models

:::::::::::
configurations

::::
(see

::::
Table

::::
A1)

::::::
includes

::::
both

:::
the

:::::::::
downscaling

::
of

:::
the

::::::::
occurrence

::::
and

::::::
amount

::
of

::::::::::
precipitation,

::::::
whereas

::
for

:::
the

::::::
analogs

::::
both

::::::
aspects

::
are

:::::::::
downscaled

::::::::::::
simultaneously.

::::
More

:::::::::
information

:::::
about

::
the

:::::::::::
configurations

:::
can

::
be

:::::
found

::
in

:::::
Tables

:::
A1

:::
and

:
2,
::
or
::
in

:::
the

::::::::
companion

:::::
paper

:::::::
notebook.
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Figure A2.
::::::::::::
Cross-validation

:::::
times

::::::
required

::
for

:::
the

:::::::::
downscaling

::::::
models

::::::::
developed

::
in

::
the

:::::::::::
Pan-European

:::::::::
experiment.

:::
The

::::::::::
computational

:::::
times

:
of
:::

the
:::::::::
generalized

::::
linear

::::::
models

:::::::::::
configurations

:::
(see

:::::
Table

:::
A1)

::::::
includes

::::
both

::
the

::::::::::
downscaling

::
of

:::
the

::::::::
occurrence

:::
and

::::::
amount

::
of

::::::::::
precipitation,

::::::
whereas

::
for

:::
the

::::::
analogs

::::
both

::::::
aspects

::
are

:::::::::
downscaled

::::::::::::
simultaneously.

::::
More

:::::::::
information

:::::
about

::
the

:::::::::::
configurations

:::
can

::
be

:::::
found

::
in

:::::
Tables

:::
A1

:::
and

:
2,
::
or
::
in

:::
the

::::::::
companion

:::::
paper

:::::::
notebook.
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Figure A3.
::::::::
Computing

::::
times

::
of

:
a
::::::::
particular

::::::
method

:::::
(M1-L

::
for

::::::
precip.

:::::::::
occurrence,

::::
Table

:::
A1)

:::::::::
considering

:::
the

:::::::
European

::::::
domain

:::::::::
experiment

::::::
(n= 86

::::::
stations,

::::::::::
1979-2008).

:::
The

::::
bulk

::
of

::::::::
computing

::::
time

:
is
:::
for

:::::::
predictor

:::::::::
preparation,

:::
and

:::::
model

::::::
fitting,

::::
while

:::
the

:::::::::
preparation

::
of

::
the

::::
new

:::
data

:::
and

:::
the

::::::::
predictions

:::
are

:::::::
relatively

::::
much

:::::
faster.

:
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:::::::::::
Configuration

::::::
Region

::::::::
Operation

::::::
Method

::::::
Spatial

::::::
features

:::::
(PCs)

:::::
Local

::::::
features

:::
M1

::::
Iberia

: ::::::::::::
Cross-validation

: ::::
GLM

: :::
yes

::
no

:::
M2

::::
Iberia

: ::::::::::::
Cross-validation

: ::::
GLM

: :::
yes

::
no

:::
M3

::::
Iberia

: ::::::::::::
Cross-validation

: ::::
GLM

: ::
no

:::
yes

:::
M4

::::
Iberia

: ::::::::::::
Cross-validation

: ::::
GLM

: ::
no

:::
yes

:::
M5

::::
Iberia

: ::::::::::::
Cross-validation

: ::::::
Analogs

: ::
no

::
no

:::
M6

::::
Iberia

: ::::::::::::
Cross-validation

: ::::::
Analogs

: :::
yes

::
no

:::
M7

::::
Iberia

: ::::::::::::
Cross-validation

: ::::::
Analogs

: :::
yes

::
no

::::
M1L

:::::
Europe

: ::::::::::::
Cross-validation

: ::::
GLM

: :::
yes

:::
yes

::::
M6L

:::::
Europe

: ::::::::::::
Cross-validation

: ::::::
Analogs

: :::
yes

:::
yes

::::
M1L

:::::::::::::
(downscaleTrain)

:::::
Europe

: ::::::
Training

: ::::
GLM

: :::
yes

:::
yes

::::
M1L

::::::::::::::
(downscalePredict)

: :::::
Europe

: :::::
Testing

: ::::::
Analogs

: :::
yes

:::
yes

Table A1.
:
A
::::

brief
:::::::::

description
::
of

:::
the

::::::::::
nomenclature

::::
used

::
in

::::
Figs.

::::::
A1,A2

:::
and

:::
A3,

:::::::
involving

:::
the

:::::::
predictor

::::::::::
configuration

::::
(i.e.,

::::::
spatial

:::::
and/or

:::
local

::::::::
features),

::
the

::::::
region,

:::
and

:::
the

:::::
method

::::
(i.e.,

:::::
GLM

:
or
:::::::

analogs).
::::

Also
::::::
detailed

:::::::::
description

::
of

::::
these

:::::::::::
configurations

:::
can

::
be

:::::
found

:
in
:::::
Table

::
2.
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