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Interactive comment on “SICOPOLIS-AD v1: an open-source adjoint modeling framework for ice 
sheet simulation enabled by the algorithmic differentiation tool OpenAD” by Liz C. Logan et al. 
Reviewer 1: Laurent Hascoet (Referee) 
 
We would like to thank the reviewer for his careful read of the manuscript and 
constructive comments. In the following, we respond comment-by-comment (our replies 
are in bold-face). 
 
General comments: 
This article describes a new development in the SICOPOLIS glaciology simulation code, to 
introduce sensitivity/adjoint/gradient computations. The article describes why adjoint capability 
is a significant improvement to a simulation code, allowing for sensitivity studies and solution to 
inverse problems and parameter estimation. The article discusses these new possibilities 
specifically for glaciology. This new adjoint capability was introduced through the use of an 
Algorithmic Differentiation tool: OpenAD. The article describes the amount of work that this AD 
tool required, and the amount of work that it saved. The article also points to a few difficulties 
where AD tools still require the help of the end-user. Global performance of the adjoint-enabled 
code is described shortly. The article gives an in-depth discussion and interpretation of the 
obtained gradients for the glaciology and climate specialist, and points at further exploitation of 
this adjoint capability as further work. The article also provides some discussion about some 
observed deviation in the computed gradients. 
 
Please note that I am not able to comment on the glaciology-specific parts of the text, although 
their general music seems completely reasonable. 
The article is well structured and well written. It is easy to read, although some parts are 
obviously directed at true specialists of glaciology. 
 
Like I write in the specific comments, I am slighty worried by the deviation observed for some 
gradient values, between adjoint and Divided Differences. I am only partly convinced by the 
explanation about numerical noise. The text also evokes the cases of non-smoothness of the 
implemented function. Could this be part of the explanation? I think this part of the discussion 
might be developed a bit, as some readers may really take it as an argument against AD. 
 
I recommend publication of this article. It describes a solid work on an important code, it is 
useful as a clear example of what AD adjoints can do, it promotes AD towards the glaciology 
community, and it seeds for further work. 
 
Specific comments: 



P3, L12 : True, the adjoint propagation runs backward in time. More generally it runs backward 
the original simulation order (which happens here to be forward in time). Maybe it would be 
useful to stress that? 
 
This is an excellent point and we have clarified this in the revision. 
 
P7, L1 : Rather than "can be conceived as ...", I would advocate writing that "as soon as a 
numerical model is implemented as a code, it is in fact translated as ..." 
We agree and rewrote this. 
 
P9, L15 : Are the preprocessor options used (to exclude or include arts) at "compilation time" or 
at "differentiation time" ? I take it that you mean "differentiation time". Does this imply then that 
there will be one particular adjoint model of SICOPOLIS for each model configuration. If so, your 
text presents this as an advantage but you understand some people might consider this as a 
drawback, not having a unique adjoint SICOPOLIS source at hand. (Here I’m playing the devil’s 
advocate, as I think any source-transformation AD tool will face the same drawback) 
 
We appreciate the reviewer’s concern, and the notion that some readers will regard this 
as a drawback. In the revised manuscript we have substantially extended the discussion 
to argue that computational requirements (especially with regard to memory footprint) 
are very different for forward versus adjoint models, and that for this reason (mainly, but 
not exclusively) the preferred option is to disable code at differentiation time. The 
argument is repeated here, and goes as follows: 

Like many complex, time-evolving geophysical models, SICOPOLIS comes with a range 
of choices of model configuration, in particular numerical schemes, which the user may 
choose from. As a matter of convenience, the preferred implementation is to make all of 
these choices (or options) available at runtime, such as to minimize the need for 
recompiling the model. The same convenience is25available, in principle, to the AD-
generated adjoint model. The control flow analysis of the AD tool identifies all possible 
flows of forward model execution and produces corresponding adjoint flow paths. 
However, close to two decades of experience with the application of AD to complex, 
time-evolving geophysical models, all of which have a range of numerical schemes that 
users may choose from (Heimbach et al., 2002, 2005; Forget et al., 2015), has shown 
that for the specific application of adjoint modeling, it is preferable to remove code that 
will not be executed in a given application from adjoint code generation (and subsequent 
compilation). The two main reasons for proceeding in this manner are: 
(i) Exclusion of forward model code that the user knows will not be executed may 

significantly simplify the AD tool’s dependency and flow control analysis, avoid 
spurious dependencies that the AD tool may detect, and lead to more 
streamlined source code for the adjoint; 

(ii) Because of the reverse mode and requirement to store required variables in 
time-reversed order (e.g., those used for evaluating state-dependent conditions  
and  nonlinear  expressions),  adjoint  models  will  have  a  substantially  larger  
memory footprint than their parent forward model (Heimbach et al., 2005). 



Memory requirements may be significantly increased if the adjoint model is 
required to keep track of a large range of conditional branches for execution.  

 
For these practical considerations, removing non-used forward model code at the time of 
adjoint code generation and subsequent compilation has proven to be highly preferable 
(although not strictly required). It is implemented here via C preprocessor (CPP) options 
that are enabled or disabled prior to generating the adjoint code (and prior to compilation 
time. We note that the implementation keeps runtime parameters and flags in place, 
such that the forward model default to keep all code available at runtime is not 
compromised. By pairing SICOPOLIS with source-transformation tool OpenAD, the 
adjoint model of SICOPO-10LIS may be generated automatically, for a large variety of 
forward model configurations (including detailed choices of model domain, numerics, as 
well as control variables and QoI). 

 
 
P10, L3 : Does this raise the question about why, in the adjoint, some time steps are more 
stable than others? In other words, why can’t one take the same time step sizes than in the 
forward simulation. That can be an interesting question for a Numerical Analysis specialist (not 
me...) 
 
This is a well-spotted error on our part: we take that time step because it ensures 
stability in the forward model, not the adjoint model. We re-wrote for clarity. 
 
P10, L31: I’d replace "sufficently approximates" with "is sufficiently consistent with", because I 
tend to think that it is divided differences that is an approximation of the other. 
 
Done. 
 
P11, Table 1: I would swap rows 7 and 8 for consistency with rows 3 and 4.  
 
Done. 
 
Deviations on rows 5 to 8 seem surprisingly high. Are they discussed in the text ? I read in P14 
L20 that the finite difference chosen is around 5%, which can explain the high deviation. And 
yes, the explanation in P15 L1 may be right. But does the deviation decrease when the divided 
difference is smaller e.g. 0.5% instead of 5% ? As it is, a deviation of 57% is still worrying. 
 
We discuss in somewhat more detail the mismatch of these finite volume and adjoint 
calculations on P15 L14. In general, the temperature control variables display a greater 
mismatch between adjoint and finite difference than the other control variables. The two 
main issues are (1) numerical noise when sensitivities are very small compared to the 
QoI, which affects the finite difference; and (2) n SICOPOLIS, the thermal equations 
employ a greater number of non-differentiable terms. We note this in the revised version, 
and point also to the appendix for a discussion on non-differentiable code. As for the 



choice of 5% deviation: this value was not only selected in accordance with a previous 
adjoint model of SICOPOLIS (Heimbach and Bugnon, 2009), but also because deviations 
< 5% did not result in appreciable changes to the cost function at all. 
 
P15 L3: The question that comes immediately is how do these times compare with the primal 
simulation ? It might also be appropriate to describe the checkpointing scheme used in this 
experiment, on time-stepping: is it multi-level, or binomial, how many checkpoints are used, how 
many duplicated forward steps. Are these questions left for future work? Oh, I see it is in the 
appendix, P24 L24. Could you just, in the main text, point out that the appendix mentions that ? 
 
Indeed, it’s described in Appendix B. Reference to it is now added. 
 
P17 L17: The question of best practices makes me think that you may want to cite the Utke-
Hascoet paper on that "Programming language features, usage patterns,..." 
 
Done (thanks!). 
 
(OMS 2016) 
Technical corrections: 
Done: P2, L25 : "construed" 
Done: P4, L13 : "more confident projections" -> "more faithful" ? 
Done: P5, L30 : "substantive ... to" -> "substantial ... over" ? 
Done: P6, L1: "ever" or "even" ? 
Done (deleted): P8, L15: why comma after warmer? 
Done: P9, L25: "appendix" is repeated 
Done: P10, L13: "instantaneously" ? "instantly" 
Done (well-spotted): P13, L3: Is it January? Figure 3 caption writes July. Or did I miss 
something?  
Done: P16, L18: "introduces" or "-introduced" ? 
 
 



Interactive comment on “SICOPOLIS-AD v1: an open-source adjoint modeling framework for ice 
sheet simulation enabled by the algorithmic differentiation tool OpenAD” by Liz C. Logan et al. 
Reviewer 2: Lizz Ultee (Referee) 
 
We would like to thank the reviewer for her careful read of the manuscript and 
constructive comments. In the following, we respond comment-by-comment (our replies 
are in bold-face). 
 
General comments: The manuscript by Logan et al. describes the generation of an adjoint code 
by algorithmic differentiation (AD) for the ice sheet model SICOPOLIS. The authors give a clear 
explanation of the motivation for adjoint modelling and for the use of AD in generating adjoint 
code, and they produce and interpret simple example applications for both Antarctica and 
Greenland.  
 
I thank the authors for producing a well written and easy to follow manuscript. As a C1 non-
expert in adjoint modelling, I found P3 an excellent description of its context and capabilities. I 
found the demonstration sensitivity analysis in Figures 2-3 interesting as well.  
 
I am not the best person to comment on validation of the adjoint vs. finite-difference code, but I 
found the authors’ explanations generally supportive of their conclusions. Perhaps a bit more 
data (e.g. absolute value of the QoI) could be given to support the comment about numerical 
noise producing high misfit in Table 1, Columns 5 and 6.  
 
I agree with the authors that understanding uncertain input variables and models’ sensitivity to 
them is important for contextualizing ice sheet/sea level projections. However, I disagree with 
the framing of the first paragraph of the introduction, namely that (A) effective adaptation 
to/mitigation of sea level rise relies on reducing uncertainty in projections and (B) development 
of more sophisticated ice sheet models will help reduce uncertainty.  
 
Regarding (A): The social-science literature of climate adaptation discusses assorted factors 
that affect adaptive capacity, many of which have little to do with the state of the science. If the 
authors are interested, they could refer to e.g. Lemos and Rood 2010 (WIREs Climate Change) 
for a discussion of the "uncertainty fallacy" in climate science.  
 
Regarding (B): It is intuitive that improved understanding of ice sheet dynamics will help us 
produce models that give more physically-consistent ("predictable") results. But physical 
consistency does not always translate to less uncertainty. For example, models that include 
"tipping point" dynamics (or hysteresis and multiple steady states) are arguably more 
sophisticated than those that do not, yet future projections over a range of climate scenarios 
may show a wider, not narrower, range when tipping point dynamics are included. Initial efforts 
to improve model sophistication by including newly-understood or newly-proposed processes 
can also increase uncertainty in terms of inter-model or inter-scenario spread. A notable 
example is the widening of 21st-22nd C2 century sea level projections shown in DeConto 
Pollard 2016 when the dynamics of marine ice cliff collapse and hydrofracture were included.  



 
In a revised version, I suggest the authors strengthen the framing of the first paragraph to focus 
on the need for context and improved understanding, rather than leaning on the uncertainty 
angle.  
 
These are really interesting points and We are glad you brought them up. 
Regarding (A): Ok. Have removed the first sentence. 
 
Regarding (B): you are correct, this work does not necessarily contribute to reducing 
uncertainties, but instead to provide a more complete characterization of uncertainties 
through calculation of comprehensive model sensitivities (which goes toward 
quantifying parametric and initial condition uncertainties). We have clarified this point in 
the introduction, and now omit the previously stated goal of “reducing uncertainties”. 
 
We note that the purpose of the introduction is to set the stage for the following 
discussion on the need to understand how *a particular* model responds to 
perturbations. Equipped with an adjoint model, their behaviors can be interrogated more 
rigorously, leading to the improved context and understanding needed to appreciate 
their projections. We also note that this work does not actually perform any predictions 
(or projections). 
 
The revisions I suggest to the introduction and in the specific comments below are relatively 
minor and should not impede publication. I imagine that many ice-sheet modellers will be 
interested in what the authors have shown here, and I look forward to reading follow-up studies 
using SICOPOLIS-AD.  
 
Specific comments:  
 
Figures 2 and 3 - both figure captions state that the [B] subplots illustrate sensitivities to July 
temperature. The text on P13,L3, Table 1, and later discussion refers to January or "summer" 
precipitation. Is there a mistake in the figure captions, or do the figures depict something not 
discussed in the text?  
 
Good catch. The captions said “July” in error. We corrected it to “January”. All the tests 
were for summer (January for Antarctica, July for Greenland). 
 
P4,L11 - "A model that can..." i.e. a forward model that can achieve the state deemed optimal 
by the Lagrange multiplier method? Does "reproduce the optimal behavior" refer to a model-vs-
model or a model-vs-observation comparison?  
 
Clarified: we meant model-vs-observation. 
 
P5,L10 - Is the adjoint code acceptable if the finite-difference-derived sensitivities approximate 
the adjoint-derived sensitivities, or is it the other way round? Intuitively I would expect that we 



accept the adjoint code if the sensitivities it produces approximate those derived by finite 
difference; that is, the finite-difference sensitivities are the "standard" against which the adjoint 
code is judged. 
 
In theory, it is the other way round. AD applied to discretized code produces the 
derivative of this implementation to very high precision, unlike finite-differencing, which 
depends on the order of the finite-differencing scheme and the epsilon chosen (the 
monograph by Griewank and Walther, 2008, which we cite, discuss this point in great 
detail). In practice, and for the purpose of this work, we wish to test and ascertain, that 
the AD tool has produced “correct” adjoint code, for which we use finite-differencing as 
a reference, but acknowledge that accuracy may be lower. 
 
P5, Eq 3 - Given the explicit mention of "tolerance" in line 10, I might write the righthand side of 

this equation with = ∂J ∂x + δ, where δ is the accepted tolerance. 
There are two issues with writing it this way: (1) the tolerance so defined is unit-
dependent (and thus may change for different physical variables of the extended control 
vector); (2) for very small sensitivities, the F.D. may pick up numerical noise, leading to 
large relative differences to the adjoint-generated derivative. Since our goal here is not to 
implement high-order F.D. schemes, we prefer to leave the discussion at this elementary 
level. Ultimately, judicious (or cautious) application of adjoint sensitivities in detailed 
studies should re-affirm the adjoint to be accurate (in the oceanographic context, please 
see e.g., Pillar et al. 2016; Smith and Heimbach 2019). 
 
P5,L18 - This is a dense list of references without much discussion. Given that this manuscript 
focuses on an ice-sheet application, the study might be well-served by adding another 
paragraph to discuss specific distinctions among these past efforts in adjoint modelling of ice 
sheets and any notable contrasts with the present study.  
 
Following your suggestion, we separated the reference, based on different applications 
(we still kept it brief, as the purpose of this paper is not to provide a review of the 
subject). 
 
P10,L2-5 - What is the initial geometry? It is a bit unclear whether the experiment is 100 yr near 
equilibrium, a 100-yr spin-up, or something else. I don’t know that it matters for the adjoint 
process, but it would be nice to have some more clarity.  
 
Good questions. The revised version clarified this. We use the Antarctic ice sheet 
geometry of Fretwell et al. (2013), now clarified near the end of the paragraph. 
 
P13, Fig 3 - I understand that the point of showing the logarithm of the absolute value of the 
sensitivities is so that the reader can compare their order of magnitude, both across parameters 
and within-parameter spatial variability. Is there a reason that each subplot uses a slightly 
different colormap? Could one colormap be applied to all subplots to facilitate intercomparison?  



The subplot intercomparison is indeed made more difficult when the color bounds are 
not uniform across the panels. Unfortunately, given the large value differences between 
the different control runs, pattern would simply be lost. As for the blue-red vs blue-yellow 
color maps, these were selected with purpose: blue-red is a natural fit for positive-
negative, where the absence of color (white) matches with zero. Because the other plots 
are meant to display overall pattern, we wished to reserve the white, zero-centered scale 
for the positive-negative patterns. 
 
P17,L4-6 - Is there a use for adjoint modelling in distinguishing between different possible 
parameterizations of these processes?  
 
Yes! Absolutely a use for adjoint models there, and we include this now. 
 
Technical comments:  
 
Done: P2,L23 - For balance, an example of a quantity that "parameterize[s] subgrid-scale 
processes or empirical constitutive laws" would be helpful. Perhaps iceberg calving or the 
routing of surface/basal meltwater would be an appropriate example to include?  
 
Done: P2,L30 - "key quantities of interest that represent integrated quantities of an ice sheet" -> 
"ice-sheet-integrated quantities of interest"?  
 
Done: P9,L22 - "...inherently non-differentiable, sometimes required..." is a comma splice. 
Replace comma by "and"?  
 
Done: P16,L11 - "Thus ... within the main trunk of SICOPOLIS" is a very long sentence and I 
had to read it multiple times to understand. Consider streamlining.  
 
Done: [re-phrased] P16,L18 - The phrase in the parentheses is hard to parse and might be a 
run-on. The authors might consider replacing the remarks in parentheses with another full 
sentence or two to flesh out the thought.  
 
Done: [good observation] P20,L1 - "Precipitation" or the "sensitivity to precipitation" is almost 
entirely positive?  
 
Done: P20, L3 - Typo "qsimulations" 
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Abstract. We present a new capability of the ice sheet model SICOPOLIS that enables flexible adjoint code generation via

source transformation using the open-source algorithmic differentiation (AD) tool OpenAD. The adjoint code enables efficient

calculation of sensitivities of a scalar-valued objective function or quantity of interest (QoI) to a range of important, often

spatially varying
:::
and

::::::::
uncertain model input variables, including initial and boundary conditions, as well as model parameters.

Compared to earlier work on adjoint code generation of SICOPOLIS, our work is based on
:::::
makes

:
several important advances:5

(i) it is embedded within the up-to-date trunk of the SICOPOLIS repository – accounting for one and a half decades of code

development and improvements – and is readily available to the wider community; (ii) the AD tool used, OpenAD, is an open-

source tool; (iii) the adjoint code developed is applicable to both Greenland and Antarctica, including grounded ice as well

as floating ice shelves, and with an extended choice of thermodynamical representations. A number of code refactorization

steps were required. They are discussed in detail in an Appendix as they hold lessons for application of AD to legacy codes at10

large. As an example application, we examine the sensitivity of the total Antarctic Ice Sheet volume to changes in initial ice

thickness,
::::::
austral summer precipitation, and basal and surface temperatures across the ice sheet. Simulations of Antarctica with

floating ice shelves show that over 100 years of simulation the sensitivity of total ice sheet volume to the initial ice thickness

and precipitation is almost uniformly positive, while the sensitivities to surface and basal temperature are almost uniformly

negative. Sensitivity to
:::::
austral

:
summer precipitation is largest on floating ice shelves from Queen Maud to Queen Mary Land.15

The largest sensitivity to initial ice thickness is at outlet glaciers around Antarctica. Comparison between total ice sheet volume

sensitivities to surface and basal temperature shows that surface temperature sensitivities are higher broadly across the floating

ice shelves, while basal temperature sensitivities are highest at the grounding lines of floating ice shelves and outlet glaciers. A

uniformly perturbed region of East Antarctica reveals that, among the four control variables tested here, total ice sheet volume

is most sensitive to variations in
:::::
austral

:
summer precipitation as formulated in SICOPOLIS. Comparison between adjoint- and20

1



finite-difference-derived sensitivities shows good agreement, lending confidence that the AD tool is producing correct adjoint

code. The new modeling infrastructure is freely available at www.sicopolis.net under the development trunk.
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1 Introduction

Our ability to react to and mitigate the consequences of global sea level rise depends on the skill with which we may project10

change in the Earth’s climate system. Central to
:::
An

::::::::
important

:::::::::
ingredient

::
to characterizing and quantifying our uncertainty in

expected
::::::
climate

::::::
change

:
outcomes is our understanding of ice sheet dynamics, their variability, their response to various climate

forcing scenarios, and their simulated sensitivity to uncertain, empirical model parameters. A key component in the push to

reduce this uncertainty has been the
::::::::
approach

:::
for

:::::::::
increasing

::::
such

::::::::::::
understanding

::
is
:::
the

:
development of more sophisticated

ice sheet models. Scientists have made significant strides
::
in

:::::::::
improving

:::::
model

::::::::::::
sophistication, with the latest class of ice sheet15

models resolving all three dimensions of the ice sheet’s internal stress balance (as opposed to previous classes of models, which

employed various approximations to the stress field to save computational cost). However, while advances in computational

glaciology have enabled us to simulate ice sheet behavior more accurately, remaining uncertainties in the range of independent

input variables required for ice sheet simulations, in particular initial conditions, surface forcings, basal boundary conditions,

and internal parameters, comprise crucial weaknesses in ice sheet – and, ultimately climate system – prediction or projection20

(Goelzer et al., 2018; Seroussi et al., 2019). As such, ice sheet modeling is facing similar issues of robust model initialization

for prediction as those faced by the climate modeling community at large (e.g., Meehl et al., 2014; Balmaseda, 2017).

Ice flow critically depends on quantities that we either cannot easily measure (such as the friction or thermal forcing between

ice and the bedrock below it), that parameterize subgrid-scale processes or empirical constitutive laws
::::
(such

::
as

:::
the

:::::::
routing

::
of

::::
melt

::::
water

:::
or

::::::
fracture

:::::::::::
propagation), or that we may never be able to measure in present day (such as the rate of snowfall in the25

past). These unknown or uncertain variables can be construed as sets of parameters that we must infer
::
or

:::::::
calibrate

:
if we are to

make projections with ice sheet models, and these parameters must both satisfy, by some measure, the assumed model physics

and the sparsely-made observations across such large bodies. In the language of optimal estimation and control theory, these

parameters are referred to as control variables (Gelb, 1974).

If we wish
::
are

:
to integrate ice sheet model projections into societally relevant discussions on sea level rise, we may wish to30

know the sensitivity of key
:::::::::::::::
ice-sheet-integrated

:::
or

::::::
derived

:
quantities of interest that represent integrated quantities of an ice

sheet to the
:
to

::
a range of uncertain model inputs. For example, we wish to know how the total ice volume (above flotation) of

2



an ice sheet is influenced by climatically relevant quantities (such as surface atmospheric forcings) or environmental variables

(such as the melting on the bottom
::
at

:::
the

::::
base of an outlet glacier or floating ice shelf that drains an ice sheet). A computationally

costly method for deriving such sensitivities might use individually-made perturbations to the bottom melting rate at each

location of the ice sheet’s base, in particular at its margins that are in contact with ocean water. This means that the ice sheet

dynamics must be integrated throughout time for each simulation experiment in which a point-wise perturbation has been5

applied in order to assemble a sensitivity map across the entire domain to this control variable (basal melting). While the target

of this approach remains of paramount importance – relating the output of an ice sheet model to poorly known inputs – the

means are computationally expensive: understanding, for instance, the Antarctic Ice Sheet’s sensitivity to changes in melting

or basal friction means simulating the entire ice sheet throughout time for every perturbation made at each point in the domain.

In this case the computational cost of such a method scales with the dimension of the domain grid, and as such is prohibitive.10

Fortunately, adjoint models provide us with a means to this end where the computational cost of deriving sensitivity maps

does not depend on the dimension of the control variable space. The adjoint model is in effect the transpose of the linearized

operator of the ice sheet model. It propagates the
::::::::
Compared

:::
to

:::
the

::::::
parent

::::::
model,

:::::
which

::::::::::
propagates

::::::
model

:::::
inputs

::::
via

:::
the

::::::::
prognostic

::::::
model

:::::
state

::
to

::::::
model

:::::::
outputs,

:::
the

::::::
adjoint

::::::::::
propagates

:::
the dual of the ice sheet model state backward in time to

simultaneously calculate
:
in

:::::::
reverse

:::::
order,

::::
from

:::::::::
sensitivity

:::
of

:::::
model

:::::::
outputs

::
to

::::::::::
sensitivities

:::
in

:::
the

:::::
model

::::::
inputs

:::::::
(which,

:::
for15

::::::::::::
time-dependent

:::::::
models

:::::::
amounts

::
to

::
a
:::::::::::::::
backward-in-time

::::::::::
propagation

::
of

:::::::::::
sensitivities).

::
It

:::::::
thereby

::::::::::::
simultaneously

:::::::::
calculates the

sensitivity of some
:
a
::::::
chosen

:
quantity of interest (e.g., the volume of an ice sheet) with respect to some

:::
the

:::::::::
prescribed set of

control variables (e.g., the basal melting beneath the ice, surface accumulation, or initial conditions). Thus, unlike the tangent

linear model, which computes the impact of one input perturbation on all model outputs at the cost of one execution (directional

derivative), the adjoint model delivers
::::::::
computes the sensitivity of one output quantity of interest (QoI) with respect to all model20

inputs
::::::::
(gradient). This is useful not only for understanding the sensitivity of some scientifically or societally interesting quantity

to model inputs, but further (and perhaps more interesting) enables the recovery of other forcing or initial conditions (e.g., initial

ice sheet geometry or rate of snow accumulation throughout time and space) through formal inversion.

1.1 Algorithmic Differentiation (AD) and its uses

Generally, adjoint models arise in at least two classes of geophysical investigations:25

PDE-constrained, gradient-based optimization:

1.1.1
:::::::::::::::
PDE-constrained,

:::::::::::::
gradient-based

::::::::::::
optimization:

Adjoint-enabled optimization problems may be posed in the following manner, beginning by formulating a scalar-valued cost

function based on a least-squares model-data misfit and subject to prior information on the uncertainty of the control variables:

30

J = [x0−xb]TC−1
pr [x0−xb] +

N∑
i=0

[y(ti)−Ei(x(ti))]
T C−1

err [yi−Ei(x(ti))] , (1)
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where x0, xb and x(ti) are the initial, background and time-varying model state at time ti, respectively. yi is the set of

observations at time ti and Ei(x(ti)) is a projection of the model state at time ti to space of observations yi (or the data-model

misfit). Cpr is a prior error covariance matrix (usually diagonal as its structure is not fully known), and Cerr is an observational

error covariance matrix(.
::::
This

:::::
form

::
is

::::::
typical

:::
for

::
a

:::::::
problem

::
in

::::::
which

::::::::
uncertain

:::::
initial

:::::::::
conditions

:::
are

:::::::
subject

::
to

::::::::
variation

::
to

:::::
reduce

:::
the

::::::::::
model-data

:::::
misfit,

::::
and

::::
with

::::
prior

::::::::::
information

::::::::
available

:::
(xb::::

and
:::::
Cpr). :::

The
::::::::::
formulation

::::
may

:::
be

::::::
readily

::::::::
extended

::
to5

::::::
include

::::::::
variation

::
of

::::::::
boundary

:::::::::
conditions

::
or

:::::
model

::::::::::
parameters,

::::
and

:::
the

::::::::
collective

:::
set

::
of

:::
all

::::
such

::::
input

::::::::
variables

::::
that

:::
are

:::::
being

::::::
subject

::
to

:::::::
variation

:::
are

:::::
called

:::::::
control

:::::::
variables

::
(see Wunsch and Heimbach (2007) for a more comprehensive treatment).

PDE-constrained optimization seeks to find the gradient of J with respect to the control variables (here x0), subject to the

requirement that the (in general nonlinear) model L is fulfilled, rendered by a set of partial differential equations that step the

state x from time ti to ti+1, i.e.,10

x(ti+1) = L(x(ti)) (2)

This problem is efficiently solved by means of the Lagrange multiplier method (Wunsch and Heimbach, 2007). The Lagrange

multipliers have a direct interpretation as
:::
dual

:::::
state,

:
adjoint sensitivities or gradients of the cost function, equation (1), with

respect to the control variables, ∂J
∂x0

; they
:
.
:::::
They are used to seek a state of the system, x∗, that is tolerably close to the

minimum of J As such, reliable adjoint values are
::::::
gradient

::::::::::
information

::
is
:

essential in recovering the optimal x∗, which15

minimizes model-data misfit as presented by equation (1). This procedure is done in an iterative fashion, with an initial guess

of the state xb that is successively updated to achieve optimal boundary and initial conditions
:::::
control

::::::::
variables

:::
that

:::::::
produce

:::
an

::::::
optimal

:::::::::
prognostic

::::::
model

::::
state throughout the model’s simulation. These optimal boundary and initial conditions are a part of

the state space of x∗, in addition to more straightforward controls that describe the optimal state of the model (e.g., its velocity,

pressure, temperature, etc.).20

A model that can reproduce the optimal
::::::::
optimally

::::::::
reproduce

:::
the

:
behavior of, e.g., an ice sheet throughout time

::::
with

::::::
respect

::
to

::::::::::
observations

:
possesses the advantage that model-derived predictions might be made with greater confidence, having been

initialized by dynamics that are informed by spatio-temporal observations. In other words, the commonly-termed ‘spin-up’

of an ice sheet may produce more confident
::::::
faithful

:
projections when forced by optimally recovered initial and boundary

conditions, and an optimal state estimate, which may be recovered by a time-dependent adjoint model. A model initialized25

and projected under such circumstances might better reproduce what can be inferred about its past state by observations,

subject to the additional constraint of the assumed and (perhaps more subtle, but equally important) conserved model physics

throughout time. Thus the constrained optimization problem of recovering boundary and initial conditions, and the model’s

optimal internal state dynamics throughout space and time, might be approached firstly by the task of obtaining reliable adjoint

sensitivities; further, adjoint sensitivity analysis alone can be an elucidating and worthwhile pursuit (the subject of the work30

presented here), by helping reveal how QoIs or costs, J , are dependent on uncertainly known parameters in non-linear models,

F .
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Sensitivity analysis:

1.1.2
:::::::::
Sensitivity

::::::::
analysis:

Beyond applications in optimization, the adjoint may also be widely applied to comprehensive analysis of linear sensitivities

:::
(the

::::::
subject

::
of

:::
the

:::::
work

::::::::
presented

::::
here)

::
of

:::::
QoIs

::
to

:::::::::
uncertainly

::::::
known

:::::
inputs

:::
(in

::::::::
particular

:::::::
forcings

::
or

::::::::::
parameters)

::
in

:::::::::
non-linear

::::::
models. Errico and Vukicevic (1992) and Marotzke et al. (1999) provide example applications in the context of atmosphere5

and ocean modeling, respectively. For a general, scalar-valued function J , now termed quantity of interest (QoI), the tangent

linear model (TLM) L of a given (in general nonlinear) model L.
:
, eqn. (2)

:
, acts as directional derivative, as it propagates small

perturbations in the control variable, δx to corresponding perturbations in the QoI, δJ . In turn, the adjoint model (ADM),

formally the transpose LT of the tangent linear model, propagates the sensitivities of the QoI to each component
::
of the control

space, i.e. the partial derivatives of the augmented space of all control variables
::
in

::::::
reverse

:::::
order

::
of

:::
the

::::::::
execution

::
of

:::
the

:::::::
forward10

:::::
model

::
L

:::::::
(which,

:::
for

:::::::::::::
time-dependent

::::::
models

:::::::
amounts

::
to
::::::::::
integration backward in time

:
of
::::

the
::::::
adjoint

:::::
model

:::::::::
equations). Thus,

whereas the TLM produces directional derivatives of J , the adjoint produces the gradient of J . A detailed treatment in the

context of ice sheet modeling is provided by Heimbach and Bugnion (2009) and Goldberg and Heimbach (2013). For the

present purpose we summarize the way by which these sensitivities are formally obtained by way of algorithmic differentiation

in the following.15

1.2 Formal reverse mode of AD

The concept of the adjoint of a numerical model may be best understood in terms of the forward, original code construction

and execution. If one wishes to know the sensitivity of some QoI (e.g., the volume of the Antarctic Ice Sheet) with respect to

some model
:::::
inputs

:::
or control variable (e.g., the average surface

::
air

:
temperature in July), one method of pursuing knowledge

about such a sensitivity might be by perturbing the control variable, in sequence, at each single point within the discretized20

domain and propagating the perturbation forward in time. The perturbation to the control variable results in a change in the

QoI, and one can proceed to calculate the sensitivity of the QoI with respect to the control variable everywhere in the domain.

Herein these are termed the finite-differences
:::

∆J
∆x :

of the QoI (or cost function) J , with respect to the control variable x:
∆J
∆x , where J is calculated as in equation (1). An adjoint model code may be demonstrated as acceptable or reliable if the

finite-difference-derived sensitivities approximate the adjoint-derived sensitivities (within some tolerance); that is
::
for

::::::::
example,25

::
for

::
a
:::::::
centered

:::::::::::::
finite-difference

:::
we

::::::
obtain:

∆J
∆xε

=
J (x+ ε)−J (x− ε)

2ε
≈ ∂J

∂x
∀ε�‖ x ‖ (3)

where ε is the magnitude of the perturbation to the control and in this work varies depending on the examined control. Other

finite-difference schemes may of course be employed, but for the purposes of this work we have selected the central difference

for simplicity.30

Adjoint models have been common in oceanic and atmospheric contexts (Talagrand and Courtier, 1987; Thacker and Long,

1988; Errico and Vukicevic, 1992) for decades. The method’s popularity has been increasing steadily. MacAyeal et al. (1991)
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provides us with the earliest use of adjoint model-derived sensitivities of a simplified ice stream model. Observed velocities

were used to invert for optimal basal friction parameters. While that study employed a simplified version of the Stokes equations

and lacked time-dependence, other researchers have since undertaken the task of using adjoint sensitivities in a variety of ice-

related applications with more complexity(Vieli and Payne, 2003; Larour et al., 2005; Khazendar et al., 2007; Waddington et al., 2007; Joughin et al., 2009; Pattyn et al., 2008; Heimbach and Bugnion, 2009; Morlighem et al., 2010; Brinkerhoff et al., 2011; Goldberg and Sergienko, 2011; Gillet-Chaulet et al., 2012; Petra et al., 2012; Brinkerhoff and Johnson, 2013; Gagliardini et al., 2013; Goldberg and Heimbach, 2013; Morlighem et al., 2013; Larour et al., 2014; Perego et al., 2014; Isaac et al., 2015; Goldberg et al., 2015, 2016; Mosbeux et al., 2016).

:
.
::::::::
Inversions

::
of

:::::
basal

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Gillet-Chaulet et al., 2012; Goldberg and Sergienko, 2011; Joughin et al., 2009; Morlighem et al., 2010, 2013; Vieli and Payne, 2003) and5

:::::::::
rheological

:::::::::::::::::::::::::::::::::::::::::::::
(Larour et al., 2005; Khazendar et al., 2007) parameters

::::
were

:::::::::
produced,

::::
based

:::
on

:::::::
regional

:::::::::::::
implementations

::
of
::::::
steady

::::
state

::::::
models

::
of

:::
the

::::::::
Antarctic

::
ice

:::::
sheet,

::::
with

:::::::
varying

::::::
degrees

::
of

:::::::::::::
approximations

::
to

:::
the

::::::
internal

:::::
stress

:::::::
balance.

:::::::::::::::::::::::::::::::::::::::::::::::
Brinkerhoff and Johnson (2013); Perego et al. (2014) used

::
the

:::::::
method

::::
with

::
an

::::::::
emphasis

:::
on

:::::::::
producing

::::::
optimal

:::::
initial

:::::::::
conditions

:::
for

:::::::::
prediction.

::::::::::::::::::::::::::::
Waddington et al. (2007) provides

::::
one

::
of

::
the

::::
few

::::::::
examples

::
to

::::
date

::
for

::::::::
inferring

::::::
surface

::::::::
boundary

:::::::::
conditions

::::::::::::
(accumulation

:::::
rates)

::::
from

:::::::
internal

::::
radar

:::::
layer

:::::::::::
observations.

:::
The

::::::::
extended

:::::::
problem

::
of

:::::::
inversion

::
in
:::
the

::::::
context

:::
of

:::::::
transient

:::
ice

::::
sheet

::::::
models

::::
was

:::::::::
considered

::
by

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Goldberg and Heimbach (2013); Goldberg et al. (2015, 2016); Larour et al. (2014).10

:::
Use

::
of

:::::::::::
higher-order

:::::::::
derivatives

::
(in

::::::::
particular

::::::::
Hessian)

::
to

:::::
extend

:::
the

::::::
inverse

:::::::
problem

::
to
:::
the

:::::::
problem

::
of

::::::::::
quantifying

:::::::::::
uncertainties

::
in

::
the

:::::::
inferred

:::::::::
parameters

::::
was

::::::
treated

::
by

:::::::::::::::::::::::::::::::
Petra et al. (2012); Isaac et al. (2015).

:::::::::::::::::::::::::
Mosbeux et al. (2016) provided

::
an

::::::::::::::
intercomparison

::
of

:::
two

::::::::::
assimilation

::::::::
methods

::
for

::::::::
inferring

:::::
basal

:::::::::
parameters,

:::::::::
comparing

::
a
::::::::
sequential

::::
and

::
an

::::::
adjoint

:::::::::
approach.

An inherent problem in the numerical simulation of ice dynamics is the nonlinearity of the forward model. This arises due

to the nonlinear dependence of viscosity on a stress or strain-rate formulation in ice. Because of this complication, hand-15

coded adjoints can be as labour-intensive (and error-prone) to develop as are their nonlinear parent model. As an alternative to

hand-coding the adjoint model, algorithmic differentiation (AD) provides a method for obtaining adjoint codes via rigorous ex-

ploitation of the chain (and product) rule (Griewank and Walther, 2008; Forth et al., 2012; Naumann, 2012) (www.autodiff.org).

AD has been used in an array of applications in the geosciences and computational fluid dynamics, and has one substantive

advantage to
:::
over

:
hand-written adjoint codes: it is flexible. Changes in the QoI defined

::::::::
prescribed

::::
QoI, the control variables,20

or the underlying assumed and discretized model physics may lead to adjoint models of different structure. As models become

more complicated due to time dependence and the inclusion of improved representation of ice physics, accurate, hand-coded

adjoint solutions may be ever
:::
even

:
more difficult to derive. In such contexts, AD methods provide a powerful alternative means

for producing adjoint solutions to time-dependent problems that are up-to-date with respect to their parent forward model code.

Adjoint models developed by AD exploit the chain and product rules for the computation of derivatives of a function (J )25

with respect to a set of input variables (x). To demonstrate how a scalar QoI, J , is related to a control vector x, consider

the following time-dependent statement of the problem, where t ∈ (t0, tf) represents marching the model forward through

discretized time steps:

u(tf) =ML
:

(x) = LNt−1(· · ·(L1(L0(x)))) (4)

where u(tf) is the model’s state at the end of the simulation,M represents a
:
L
:::::::::
represents

:::
the

::::::
overall mapping of control vector30

to the final state of the model, and L is the nonlinear system of equations (or forward model), applied successively to the initial

state of the model. The subscripting of L refers to the time marching of the model, where tf = ∆tNt, and Ln maps the model

state at time n to n+ 1. As our interest here is to show how gradients are generated by this method, consider then how linear
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perturbations to the control space result in changes to the cost function, J through a Taylor series expansion

J (x0 + δx) = J (x0) + δJ +O(δJ 2) (5)

Assuming O(δJ )
:::::::
O(δJ 2) is negligible, δJ is shown (in the forward sense) to be

δJ =
〈 ∂J
∂x

, δx
〉

=
〈 ∂J
∂u(t1)

,
∂u(t1)

∂x
δx

〉
=

〈 ∂J
∂u(t2)

, L1
∂u(t1)

∂x
δx

〉
=

〈 ∂J
∂u(t3)

, L2L1
∂u(t1)

∂x
δx

〉
...

=
〈 ∂J
∂u(tf)

, LNt−1 · · ·L2L1
∂u(t1)

∂x
δx

〉
(6)

where 〈· , · 〉
::::
〈· , · 〉

:
is the inner product and Ln = ∂u(tn+1)

∂u(tn) is the tangent linear model of M, a linearization of L at time tn5

about x0. It follows from equation (6) that the adjoint model LT(where LT is the transpose of L) equivalently defines δJ :

δJ =
〈 ∂u(t1)T

∂x
LT

1 L
T
2 · · ·LT

Nt−1

∂J
∂u(tf)

, δx
〉

=
〈 ∂J
∂x

, δx
〉
. (7)

Equation (7) demonstrates that the sought gradient, ∂J∂x , is computed by projecting the cost function to the model’s final

state, ∂J
∂u(tf )

, and mapping it backward in time ultimately to the dependence of the model on its (user-selected)
::::
input

:::
or control

variables. Figure
:::
Fig. 1 presents a small example of the computational flow of the tangent linear (forward) and adjoint (reverse)10

modes of OpenAD
:
, applied to a single model, F : y = sin(a ∗ b) ∗ c, where the gradient of∇F = [ad,bd,cd] is sought.

Any forward numerical model can be conceived of as a
::
As

:::::
soon

::
as

::
a

::::::::
numerical

::::::
model

::
is

:::::::::::
implemented

::
as

::
a
:::::
code,

::
it

::
is

::
in

:::
fact

::::::::
translated

:::
as

:
a
:
sequence or composition of simple

::::::::
elementary

:
operations like those shown in figure

::::
Fig. 1, with a single

line representing one single algorithmic step. Via AD methods, then, the tangent linear and adjoint of a numerical model is

provided by exhaustive application of the chain and product rules, line-by-line, to the model. The forward (section 2.1) or15

reverse (adjoint) mode of the model may be thought of as the composition in forward or reverse order of the Jacobian matrices

and their transpose of the full forward code’s line-by-line algorithmic elements, that is, L in eq. (6) and LT in eq. (7).

2 Model description

2.1 Forward model SICOPOLIS

We begin with the ice sheet model SICOPOLIS (SImulation COde for POLythermal Ice Sheets) and develop
:::::
sketch

::::
the20

::::::::::
development

:::
of its adjoint model from version 5-dev (Greve, 2019; Rückamp et al., 2019) (www.sicopolis.net). SICOPO-
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dt1
 
= p1 * dt2 

b
d
= a * dt1 
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F (output)
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*

Figure 1. Schematic of AD applied to a simple function, F . In SICOPOLIS-AD, the entire forward code is composed of many lines of

simple functions likeF , in sequence. OpenAD provides∇F = [ad,bd,cd] by relating the partials of t1 and t2 to intrinsically differentiable

functions, like sin() (here the red text, p1). The partial derivatives of F are computed via the writing to memory of intermediate partial

quantities, like dy, dt1, and dt2. Thus, the sought sensitivity of a QoI, F , is related to input parameters, a, b, and c in this algorithmic

(albeit much simplified) manner.

LIS is open source and written in Fortran; it has a relatively long and stable history (Greve, 1997). SICOPOLIS has remained

a relevant and powerful tool for the cryosphere community and continues to participate in model intercomparison exercises

(e.g., Goelzer et al., 2018; Seroussi et al., 2019). The model couples ice sheet dynamics and thermodynamics (solving for

the ice thickness, extent, velocity, temperature, water content, and age) over three-dimensional domains including, among

others, Greenland, Antarctica,
:::::::
paleo-ice

::::::
sheets

:::
on

:::::
Earth.

:
and the polar caps of Mars. It employs simplified versions of the5

three-dimensional Stokes equation (internal stress balance), including:
:
.
:::::
These

:::::::
include the shallow-ice approximation for ice

resting on land (Hutter, 1983; Morland, 1984); the shallow-shelf approximation for ice floating in the ocean (Morland, 1987;

MacAyeal, 1989; Weis et al., 1999), and the shelfy-stream approximation for fast-flowing ice streams with limited coupling to

8



the bed (Bernales et al., 2017). For a detailed treatment of the numerical methods employed in the model, readers are referred

to Greve and Calov (2002); Greve and Blatter (2009, 2016); Bernales et al. (2017).

SICOPOLIS employs four different thermodynamics representations: (1) a two-layer, polythermal scheme, which allows for

the computation and effects of liquid water within a warmer , temperate layer; (2) a purely cold-ice scheme (in which no liquid

water is present); (3,4) two flavours of the one-layer enthalpy scheme which combine the physical adequateness of (1) with the5

greater numerical simplicity of (2) (Aschwanden et al., 2012; Greve and Blatter, 2016). In all cases, horizontal diffusion of the

thermodynamic fields (temperature, water content or enthalpy) is neglected. The solvers employed use an implicit discretization

scheme for the vertical derivatives and an explicit scheme for the horizontal derivatives.

SICOPOLIS simulates ice as a nonlinear viscous fluid, employing Glen’s flow law (Glen, 1955) amended as in Greve and

Blatter (2009):10

η =
1

2A(T ′)[σn−1
e +σn−1

0 ]
, (8)

where η is the ice viscosity, T ′ is the temperature difference relative to the pressure-melting point, σe is the effective shear

stress, and σ0 is a small constant use to prevent singularities when σe is very small. n is the flow law exponent (taken as 3),

and A is a temperature- and pressure-dependent rate factor (Cuffey and Paterson, 2010) that is modified in temperate regions

containing liquid water following Lliboutry and Duval (1985).15

Basal sliding under grounded ice links the sliding velocity, vb, to the basal shear traction, τb, and the basal normal stress,

Nb (counted positive for compression), in the form of a Weertman-type sliding law (e.g., Weertman, 1964; Budd et al., 1984):

vb =−Cb
τpb
Nq

b

, (9)

where Cb is the sliding coefficient, and p and q are the sliding law exponents.

2.2 Adjoint model of SICOPOLIS : algorithmic differentiation and
::::::::
generated

:::::
with OpenAD20

As described in section 1.1, the construction of an adjoint model of a nonlinear, time-dependent forward model often presents

a formidable task when solved analytically or hand-coded (e.g., Goldberg and Sergienko, 2011; Gillet-Chaulet et al., 2012;

Morlighem et al., 2013; Isaac et al., 2015). In those works, the variational forward and adjoint equations are derived first

and then discretized. As an alternative, AD produces adjoint code through differentiation of source code, using source-

transformation tools. As the standard of numerical models (in various contexts) has risen to more complicated physical repre-25

sentations, the use of AD has become increasingly popular (e.g., Heimbach and Bugnion, 2009; Larour et al., 2014; Goldberg

et al., 2016; Hascoet and Morlighem, 2018).

The adjoint of ice sheet model SICOPOLIS is largely generated automatically by the application of the freely available

source-transformation tool OpenAD (Utke et al., 2008), developed at Argonne National Laboratory, University of Chicago,

and Rice University; www.mcs.anl.gov/OpenAD. It is a flexible and modular tool that parses a given model written in For-30

tran to generate a Fortran version of the model’s adjoint code.
:::
As

:::::::
opposed

::
to

:::::::
adjoint

::::::
models

::::
that

:::
are

::::::::::
analytically

:::::::
derived

:::
and

::::::::::
discretized,

:::
the

::::::
adjoint

::::::
model

::
of

:::::::::::
SICOPOLIS

::::::::
furnished

:::
by

::::
AD

:::::
yields

::::
not

:::
one

::::::
unique

:::::::
adjoint

::::
code

:::
but

:::::
many

::::::::
possible

9



:::::::::::
configurations

:::
of

:::
the

::::::
adjoint

::::::
model,

::::::
whose

:::::::::
constituent

::::
parts

:::
are

:::::::
selected

::
at
::::::::

compile
::::
time

::
by

:::::::
options

::
in

:::
the

::::::
header

::::
files.

:::::
Thus

::::
there

::
is

:::
not

:
a
::::::

single,
::::
core

::::::
adjoint

:::::
code;

:::::
there

::
is

::::::
instead

:
a
:::::::

flexible
::::::
adjoint

::::
code

::::
that

:::::::
evolves

::
in

::::::
tandem

::::
with

:::
the

:::::::
forward

::::::
model

::
of

:::::::::::
SICOPOLIS,

:::
and

:::
can

::::::::::::
accommodate

:::::::
updated

::::::::
empirical

:::::::::::
relationships,

::::::::
boundary

::::::::::
conditions,

:::
etc.

The adjoint model of SICOPOLIS produced by OpenAD thus results in approximately 50k executable lines(
:
, represented in

a much simplified schematic in Figure
:::
Fig.

:
1 by the composition of the blue, red, and black algorithmic steps), depending5

on C preprocessor (CPP) options enabled or disabled at compilation time (which include or exclude source code to be

differentiated). An advantage of code exclusion at compile time
:
.
::::
Like

:::::
many

:::::::::
complex,

:::::::::::
time-evolving

:::::::::::
geophysical

:::::::
models,

::::::::::
SICOPOLIS

::::::
comes

::::
with

::
a
:::::
range

::
of

:::::::
choices

:::
of

:::::
model

::::::::::::
configuration,

:::
in

::::::::
particular

:::::::::
numerical

::::::::
schemes,

:::::
which

:::
the

:::::
user

::::
may

::::::
choose

:::::
from.

::
As

::
a
::::::
matter

::
of

:::::::::::
convenience,

:::
the

::::::::
preferred

:::::::::::::
implementation

::
is

::
to

:::::
make

::
all

:::
of

::::
these

:::::::
choices

:::
(or

:::::::
options)

::::::::
available

:
at
::::::::

runtime,
::::
such

:::
as

::
to

:::::::::
minimize

:::
the

::::
need

::::
for

::::::::::
recompiling

:::
the

:::::::
model.

:::
The

:::::
same

:::::::::::
convenience

::
is
:::::::::
available,

::
in

::::::::
principle,

:::
to10

::
the

:::::::::::::
AD-generated

::::::
adjoint

::::::
model.

::::
The

::::::
control

:::::
flow

:::::::
analysis

::
of

::::
the

:::
AD

::::
tool

::::::::
identifies

:::
all

:::::::
possible

:::::
flows

:::
of

:::::::
forward

::::::
model

::::::::
execution

:::
and

::::::::
produces

::::::::::::
corresponding

::::::
adjoint

::::
flow

::::::
paths.

::::::::
However,

:::::
close

::
to

:::
two

:::::::
decades

:::
of

:::::::::
experience

::::
with

:::
the

::::::::::
application

::
of

:::
AD

::
to

::::::::
complex,

::::::::::::
time-evolving

::::::::::
geophysical

:::::::
models,

::
all

::
of

::::::
which

::::
have

:
a
:::::
range

:::
of

::::::::
numerical

:::::::
schemes

::::
that

:::::
users

::::
may

::::::
choose

::::
from

:::::::::::::::::::::::::::::::::::::::::
(Heimbach et al., 2002, 2005; Forget et al., 2015),

:::
has

::::::
shown

:::
that

:::
for

:::
the

:::::::
specific

::::::::::
application

::
of

::::::
adjoint

:::::::::
modeling,

::
it

::
is

::::::::
preferable

::
to
:::::::

remove
:::::
code

:::
that

::::
will

::::
not

::
be

::::::::
executed

:::
in

:
a
:::::
given

::::::::::
application

:::::
from

::::::
adjoint

:::::
code

:::::::::
generation

::::
(and

::::::::::
subsequent15

:::::::::::
compilation).

:::
The

::::
two

::::
main

:::::::
reasons

:::
for

:::::::::
proceeding

::
in

:::
this

:::::::
manner

:::
are:

:

::::
(i)

:::::::::
Exclusion

::
of

:::::::
forward

::::::
model

:::::
code

:::
that

:::
the

::::
user

::::::
knows

::::
will

:::
not

:::
be

::::::::
executed

::::
may

::::::::::
significantly

::::::::
simplify

:::
the

::::
AD

:::::
tool’s

::::::::::
dependency

:::
and

::::
flow

::::::
control

::::::::
analysis,

::::
avoid

::::::::
spurious

:::::::::::
dependencies

:::
that

:::
the

::::
AD

:::
tool

::::
may

::::::
detect,

:::
and

::::
lead

::
to

:::::
more

::::::::::
streamlined

:::::
source

::::
code

:::
for

:::
the

:::::::
adjoint;

:::::
(ii)

:::::::
Because

:::
of

:::
the

::::::
reverse

:::::
mode

::::
and

::::::::::
requirement

::
to

:::::
store

:::::::
required

::::::::
variables

::
in

::::::::::::
time-reversed

:::::
order

::::
(e.g.,

:::::
those

:::::
used

:::
for20

::::::::
evaluating

::::::::::::::
state-dependent

:::::::::
conditions

:::
and

:::::::::
nonlinear

:::::::::::
expressions),

::::::
adjoint

:::::::
models

::::
will

::::
have

::
a
:::::::::::
substantially

:::::
larger

::::::::
memory

:::::::
footprint

::::
than

::::
their

::::::
parent

::::::
forward

::::::
model

::::::::::::::::::::
(Heimbach et al., 2005).

:::::::
Memory

:::::::::::
requirements

::::
may

:::
be

::::::::::
significantly

::::::::
increased

::
if

:::
the

::::::
adjoint

:::::
model

::
is

:::::::
required

::
to

::::
keep

:::::
track

::
of

:
a
:::::
large

:::::
range

::
of

:::::::::
conditional

::::::::
branches

:::
for

:::::::::
execution.

:::
For

:::::
these

:::::::
practical

:::::::::::::
considerations,

:::::::::
removing

::::::::
non-used

:::::::
forward

::::::
model

::::
code

:::
at

:::
the

::::
time

:::
of

::::::
adjoint

:::::
code

:::::::::
generation

::::
and

:::::::::
subsequent

::::::::::
compilation

::::
has

::::::
proven

::
to
:::

be
::::::
highly

:::::::::
preferable

::::::::
(although

::::
not

::::::
strictly

:::::::::
required).

::
It

::
is

:::::::::::
implemented

::::
here

::::
via

::
C25

::::::::::
preprocessor

::::::
(CPP)

::::::
options

::::
that

:::
are

::::::
enabled

:::
or

:::::::
disabled

::::
prior

::
to

:::::::::
generating

:::
the

::::::
adjoint

:::::
code (as opposed run-time selection)is

that real or artificial code flow dependencies can be reduced (or avoided) in the code’s analysis.
:::
and

::::
prior

::
to

::::::::::
compilation

:::::
time.

:::
We

::::
note

:::
that

:::
the

:::::::::::::
implementation

::::::
keeps

::::::
runtime

:::::::::
paramters

:::
and

:::::
flags

::
in

:::::
place,

::::
such

::::
that

:::
the

:::::::
forward

::::::
model

::::::
default

::
to

::::
keep

:::
all

::::
code

:::::::
available

:::
at

::::::
runtime

::
is
:::
not

::::::::::::
compromised.

:
By pairing SICOPOLIS with source-transformation tool OpenAD, the adjoint

model of SICOPOLIS may be generated automatically, for a large variety of forward model configurations (including detailed30

choices of model domain, numerics, as well as control variables and QoI).

A number of algorithmic aspects of the code needed one-time editing or refactoring for OpenAD to be able to success-

fully parse the source code and provide correct adjoint code. For example, non-smooth functions – such as piecewise linear

functions represented by IF-statements or absolute values – are inherently non-differentiable,
:::
and

:
sometimes required special

treatment before the adjoint could be obtained by AD. Because of its importance in the development of a forward model that35

10



works properly within the framework of the AD tool, we have devoted a detailed description in Appendix B of the aspects of

SICOPOLIS that required code refactoringin Appendix. Further technical details on how to set up, compile and run reference

configurations are documented in a Quick-Start Manual (Logan et al., 2019).

3 Example application: Antarctic ice sheet volume sensitivities

Because SICOPOLIS is capable of simulating many different aspects of ice flow at the continental scale, we have designed5

a set of configurations focusing in each on particular aspects of the model, so that the resulting adjoint values and patterns

may be more readily interpreted. Where we could have applied more complicated relationships in, for example, initialization

in temperature, geothermal heat flux, or calving laws, we have opted instead for simplicity, as the exhaustive examination of

such choices in simulation are left to future studies. The adjoint values are calculated for specific configurations of the original

, unmodified forward code of SICOPOLIS.10

3.1 Antarctic model configuration

We simulate Antarctica for 100 yr
::::
years

:
of model time with a 20 km horizontal resolution and 81 terrain-following vertical

layers. The dynamic and thermodynamic time steps (which can be chosen to differ) were both set to 0.2 yr, as this was found to

be the most stable value for the adjoint run
:::::::
forward

:::::
model

:::::::::
simulation. Land ice, floating ice, and ice streams are approximated

by the SIA/ SSA/ SStA formulations
:
,
:::::
SSA,

:::
and

:::::
SStA

:::::::::::
formulations,

::::::::::
respectively,

:
described in Bernales et al. (2017). Ice thick-15

ness evolves freely and without adjustment. Solutions to the SSA portion of SICOPOLIS are aided by invoking the external

Library of Iterative Solvers (LIS, https://www.ssisc.org/lis/). Thermodynamics are formulated by the conventional enthalpy

scheme (Section 2.1). We use Glen’s flow law
:
,
::::
eqn. (8),

:
with a stress exponent n= 3, a residual stress σ0 = 104 Pa, uniform

flow enhancement factors E = 5 for grounded ice and E = 1 for floating ice, and a rate factor A(T ′) as in Cuffey and Paterson

(2010). Horizontal and vertical advection in the temperature and age equations are discretized via a first-order upstream stencil20

of interpolated velocities and advection terms on the main grid, and topography gradients are evaluated with a fourth-order

discretization. The ice temperature is initialized as a uniform value of −10◦C, as the goal of this exercise is proof-of-concept

and not exhaustive examination of all aspects of the Antarctic Ice Sheet. For the same reason, a constant
::::::
uniform

:
geother-

mal flux of 55mWm−2 is applieduniformly. Parameterization of the mean-annual and mean-January surface temperatures is

according to Fortuin and Oerlemans (1990), and the applied surface temperature is held constant throughout the simulation.25

Accumulation is applied at present-day levels throughout the simulation (Le Brocq et al., 2010; Arthern et al., 2006). The

fraction of solid precipitation is a linear function of the monthly mean surface temperature according to Marsiat (1994). Sur-

face ablation is parameterized by the positive degree day method, and rainfall is assumed to run off instantaneously
:::::::
instantly.

Floating ice is removed at calving fronts for thicknesses less than 30 m. The parameters for the basal sliding law (9) are cho-

sen as Cb = 11.2myr−1 Pa−1, p= 3 and q = 2. Basal melting under floating ice is set to 30mwaterequiv.yr−1 around the30

grounding zone (adjacent grounded and floating grid points) and zero elsewhere, for simplicity. Sea level is constant, and there

is no special treatment of subglacial hydrology. The initial geometry is taken from the present day (Fretwell et al., 2013). There

11
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is no
:::
No isostatic bedrock adjustment during the

:
is
:::::::::
simulated

::
in

:::
our

::::::::::::
configuration.

::
No

:::::::
special

:::::::::::
pre-treatment

::
or

::::::::
’spin-up’

::
of

:::
the

:::::
model

::
is

::::::
applied

:::::
prior

::
to

:::
the 100 yr simulation

:::
year

::::::::::
simulation;

:::::
rather

:::
the

::::::
above

::::::::
conditions

:::
are

:::
set

::::
and

:::
the

:::::
model

:::::::
evolves

:::
for

:::
100

:::::
years.

3.2 Results

The motivation for developing an adjoint of a numerical model stretches far beyond providing comprehensive sensitivity5

experiments; often, an adjoint model is developed so that the sensitivities may be used in a constrained
::::::::::::
gradient-based

::::::::::::::
PDE-constrained optimization problem to invert for interesting initial and boundary conditions , as well as

:::::::
uncertain

::::::
initial

:::::::::
conditions,

::::::::
boundary

:::::::::
conditions

::
or

::::::
model

::::::::::
parameters,

::::::
thereby

:::::::::
producing

:
a
::::::::::::::
data-constrained

:::::::
estimate

:::
for

:
the evolution of the

state of the system. Here, however, we
:::
are

:::::::::
interesting

::
in

::::::::::::
understanding

:::::
model

:::::::::::
sensitivities.

:::
We

:
present the sensitivity of the

volume of the Antarctic Ice Sheet with respect to several control variables as a proof of concept, rather than extending the10

work in the direction of optimization, which will be the subject of future studies. The purpose is to gain physical insight into

the model’s linear response characteristics,
:
and to ascertain correctness and interpretability of the adjoint. The adjoint-derived

sensitivities are compared to finite difference perturbations, either at single points, or over a patch of the domain that has been

uniformly perturbed, to demonstrate that the adjoint model sufficiently approximates
:
is

:::::::::
sufficiently

:::::::::
consistent

::::
with sensitivities

derived via finite-differences. Those comparisons are shown in Table 1. Lastly,
::::::::
compared

::
to

::::::::::::::::::::::::::
Heimbach and Bugnion (2009),15

we present this work for the novelty
::::
novel

::::::::::
application of examining Antarctic-wide adjoint-generated sensitivity mapsas, to

:
.

::
To

:
the authors’ knowledge, such a presentation has not been formally examined heretofore.

Figures 2 and 3 show, respectively, the raw and logarithm of the absolute value (log 10|•|) of the adjoint sensitivities. We have

chosen to present the adjoint values in both ways so that the general pattern and sign of the adjoint values are readily apparent

(Figure 2) as well as the order of magnitude of the adjoint values (Figure 3), which can vary widely across the Antarctic20

Ice Sheet depending on the control variable. Further, we have chosen the locations shown in Figure 2A so that the included

dynamics and solvers invoked in the code can be tested in three different and important regions
:::
and

:::::::
regimes: location 1, the

fast-moving Thwaites Glacier, which directly discharges into the Amundsen Sea Embayment; location 2, the middle of the Ross

Ice Shelf; and location 3, Slessor Ice Stream, which feeds the Ronne-Filchner Ice Shelf. Testing the agreement between adjoint

and finite-difference values at these locations offers a broad sense of the performance of the adjoint model in very different25

and important environments and dynamical regimes across the Antarctic Ice Sheet. The control variables we have selected to

test involve either initial (ice thickness) or boundary conditions (summer precipitation, surface and basal temperature), and are

independent inputs to either the conservation of mass (ice thickness and summer precipitation) or conservation of enthalpy

(surface and basal temperature) equations.

The sensitivity of total Antarctic ice volume to the initial ice thickness compares well with the calculated finite-difference30

based value (Table 1, col. 7), differing only by about 1% at the fast-moving Slessor Ice Stream (
:::::
Figure

:
2A, location 3).

Thickness sensitivities are relatively uniform and positive across the ice sheet over the 100 yr simulation, except for a few

outlet glaciers. A positive adjoint value in ice thickness indicates that a positive perturbation in ice thickness leads to a positive

change in total volume, and vice versa. The Antarctic Ice Sheet is shown to have almost entirely positive adjoint values, as
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Variable Region (from Fig. 2A) δJ
δVariable

∆J
∆Variable

∆Vadj ∆Vfd % Deviation

(1) (2) (3) (4) (5) (6) (7)

surface temperature 1 −4.87× 107 −4.67× 107 – – 4.43

basal temperature 1 −1.25× 108 −1.15× 108 – – 8.74

January precipitation 2 7.50× 1016 8.53× 1016 – – 12.09

ice thickness 3 3.62× 108 3.68× 108 – – 1.40

surface temperature 4 – – −7.26× 103 −1.45× 104 49.85

basal temperature 4 – – −1.22× 107 −2.88× 107 57.52

ice thickness
:::::
January

::::::::::
precipitation 4 – – 1.12× 1011

:::::::::
5.89× 1018

:
1.32× 1011

:::::::::
5.54× 1018

:
15.01

::::
6.25

January precipitation
::
ice

:::::::
thickness 4 – – 5.89× 1018

:::::::::
1.12× 1011

:
5.54× 1018

:::::::::
1.32× 1011

:
6.25

::::
15.01

:

Table 1. A sample of comparisons between adjoint-derived sensitivities and finite-difference-based sensitivities. All regions in column (2)

refer to either selected points or the box from Fig. 1A. Columns (3) and (5) are adjoint-derived quantities, while columns (4) and (6)

are derived via finite-difference perturbations, either to a single point in the domain or a patch, as shown in Fig. 2A. Validation of the

adjoint model is attempted by comparing finite-differences (4) and adjoint values (3), in a % deviation metric (7). Column (7) is calculated as
|col.(4)−col.(3)|

col.(4)
×100. Ice thickness, surface, and basal temperatures compare well, with a % deviation of less than 10%. Summer precipitation

has a higher disagreement, at 12 %. We also performed a test for the Greenland Ice Sheet, shown in more detail in Appendix A.

shown in Figure 2A, except for a few marginal outlet glaciers. These few outlet glaciers that display negative ice thickness

adjoint sensitivities contrast with other areas of ice discharge, notably, the large floating ice shelves, which do not show any

negative adjoint values. Figure 3A shows that the order of magnitude of this field of adjoint values is between 108 and 109 m2,

except for several very sensitive outlet glaciers, including Thwaites and Pine Island Glaciers, glaciers in Marie Byrd, Oates,

and Wilkes Lands, and Byrd Glacier.5

The pattern of the January (austral summer) precipitation adjoint values largely mirrors that of the ice thickness, with several

distinctions. The order of magnitude is much larger, ranging instead between 1015 and 1017 m2 (figure 3B). Outlet glaciers

in Marie Byrd, Oates, Wilkes, and Queen Mary Lands exhibit weaker sensitivities compared to the average Antarctic-wide

summer precipitation sensitivities. Portions of floating ice shelves from Queen Maud eastward all the way to Queen Mary Land

show the highest sensitivities overall to summer precipitation, while the larger ice shelves exhibit some of the lowest sensitivity10

to summer precipitation across the entire continent, almost an order of magnitude lower than the floating ice fringing the coast

between Queen Maud and Queen Mary Lands, from 1017 to 1016 m2. Similar to the sensitivities to ice thickness, precipitation

sensitivities are almost entirely positive, and the very lowest sensitivities are largely at the ice fronts (figure 3B). Table 1

shows less agreement in the January precipitation field calculated in the middle of the Ross Ice Shelf at point 2 (Figure 2A),

approximately a 12% difference.15
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Figure 2. Adjoint sensitivities, δJ
δXi

, for the Antarctic Ice Sheet, where Xi is the control variable shown. Control variables are the [A]

initial ice thickness (units m2), [B] mean July
::::::
January precipitation (units m2 yr), [C] surface temperature (units m3 ◦C−1), and [D] basal

temperature (units m3 ◦C−1). Locations in [A] numbered 1-4 are compared to finite-difference values in Table 1.

Sensitivities to surface and basal temperature (figure
:::::
Figure

:
2C and D) differ in pattern and sign from

::::
show

:::::
much

:::::
more

:::::::
structure

::::
than

:
those of ice thickness and precipitation,

::::
with

::::::::
extended

:::::::
regions

::
of

:::::::
positive

:::
and

:::::::
negative

:::::::::::
sensitivities. The sen-

sitivities of total ice sheet volume to surface and basal temperature are largely negative, with the most negative values at the

margins of the ice sheet and approaching zero toward the interior. The order of magnitudes of the surface and basal temperature

sensitivities (figure
:::::
Figure 3C and D) are comparable to each other, with maximum values of approximately 1010 m3 ◦C−1.5

Over the 100 yr simulation, high sensitivities to surface and basal temperature at the margins extend inward toward the

middle of the ice sheet following glacier drainage basins (figure
:::::
Figure 3C and D). There are two distinct differences between

14



Figure 3. Logarithms of absolute value of adjoint sensitivities, log | δJ
δXi
|, for the Antarctic Ice Sheet, where Xi is the control variable shown.

Control variables are the [A] initial ice thickness (units m2), [B] mean July
:::::
January

:
precipitation (units m2 yr), [C] surface temperature (units

m3 ◦C−1), and [D] basal temperature (units m3 ◦C−1).

the sensitivities to surface and basal temperature seen in the adjoint fields. First, the highest sensitivities to basal temperature

are higher than the highest sensitivities to surface temperature, indicating that the total ice sheet volume is in general more

sensitive to changes in the applied basal temperature of the ice rather than at the surface in SICOPOLIS. Second, Figure 3D

shows that the location of those most sensitive areas to changes in basal temperature are at the grounding lines of ice shelves

and glaciers, while the most sensitive areas to changes in surface temperature are all across the surface of the floating portions5

of ice, with the sensitivity increasing (becoming more negative) toward the ice fronts. The adjoint values of surface and basal

temperature compare well with finite difference based sensitivities, differing by about 4 and 8 %, respectively.
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Table 1 also shows the results of a finite volume change calculation performed for the tile shown in Figure 2A, region 4.

Each control variable shown in column 1 is perturbed, as in the single point location finite differences, by ±5% of the initial

value of that field.

Columns 5 and 6 in Table 1 are computed in the following ways. ∆Vadj =
∫

Ω4

δJ
δX δX is the adjoint-derived volume change,

where Ω4 is the domain of the tile in
:::
Fig.

:
2A andX is the control variable. ∆Vfd = V (X+δX)−V (X−δX)

2δX is the finite difference-5

derived volume change, where X + δX is taken over the entire tile in region 4. In creating a sub-domain of Antarctica over

which to calculate these finite volume changes, we selected an area of uniform sign. Areas with a great deal of sign variation

might be more difficult to interpret since the adjoint values would tend to cancel each other.

The utility of this comparison is to convert the sensitivities into meaningful quantities that can be compared against each

other, to assess for example, which control variable impacts the cost function the most, given a perturbation of expected mag-10

nitude, in addition to providing another metric by which we may measure the adequacy of the adjoint model of SICOPOLIS.

The % difference between the ∆Vadj and ∆Vfd over the 100 yr time integration over tile 4 is largely higher than the point-wise

measurements, ranging as high as 57% for volume changes due to basal temperature perturbations uniformly in tile 4. Summer

precipitation compares well, however, with a 6% difference. Perhaps more interesting, the calculations in columns 5 and 6 sug-

gest that overall, summer precipitation has the largest impact on total ice sheet volume, with an approximate volume change of15

1018 m3, compared against initial ice sheet thickness, surface, and basal temperature perturbations, which at the lowest resulted

in a volume loss of 103 or 104 m3 over 100 yr. This result helps to explain the largest relative differences between adjoint and

finite-difference sensitivities. These are large where the sensitivities are very small compared to the QoI, strongly suggesting

that numerical noise plays an important role in either of these sensitivity calculations.

Lastly, the adjoint model of SICOPOLIS runs serially, and completed 100 yr of model run time in 20, 75, and 600 minutes20

of wall clock time on a Linux box (Intel Xeon CPU E5-2650 at 2.00 GHz) for resolutions of 64, 40, and 20 km. The results

shown in Figures 2 and 3 are for 20 km resolutions.
:::::::::
resolution.

:::
To

:::::::
facilitate

:::
the

:::::::
adjoint

::::::::::
computation

:::::::::::::::
SICOPOLIS-AD

::::
uses

::::::::::::
checkpointing,

:::::
which

::
is

::::::::
discussed

::
in

:::::::::
Appendix

::
B.

4 Discussion

The results presented here are not meant to be exhaustive, but rather
:
.
::::::
Rather,

::::
they present initial adjoint sensitivity applications25

of the newly AD-enabled SICOPOLIS model . They
:::
and underscore the interpretable nature of adjoint-derived sensitivity fields

and are presented as a proof of concept for further investigation.
::::
They

:::::
invite

:::::
users

::
to

:::
take

:::::::::
advantage

::
of

::::
this

:::
new

::::::::::::
infrastructure

::
for

::::
their

:::::::
science

::::::::::
applications We leave an exhaustive study of sensitivities to different control variables in SICOPOLIS to future

work, as here we only wish to examine a few important dynamic and thermodynamic controls and assess the validity of the

adjoint model.30

As a measure of the adjoint model’s correctness, we compared gradients obtained from the adjoint model and computed

via finite differences perturbations. Adjoint values compared acceptably against finite differences for ice thickness, surface,

and basal temperatures, with less than 10% deviation. Austral summer precipitation adjoint values saw a larger disagreement

16



with finite differences, of up to 12%. Part of the higher discord may be due to the fact that the cost values (total Antarctic Ice

Sheet volume) are very large, emphasizing numerical noise for sensitivity fields that are very small. Ice sheet volume changes

calculated by the adjoint model and finite differences disagree more, although the largest discrepancy occurred with the smallest

overall volumes calculated (both surface and basal temperature) and are thus likely, again, to be affected by numerical noise

arising in the calculation. Control variables related to the conservation of mass equation provided the best agreement across5

measured metrics (ice thickness for point-wise sensitivities and precipitation for finite volume calculations). This is readily

explained by the primarily linear nature of precipitation changes (seen as a volume flux) in changing total ice volume.

The general similarity between ice thickness and precipitation adjoint sensitivities (Figure 2A and B) is reassuring, as ice

thickness and precipitation are both terms in the conservation of mass equation, and as such are algorithmically linked
::::::
closely

:::::
linked

:::::::::::::
algorithmically. In particular, we might expect adjoint sensitivities to be linearly related. Similarly, we might expect the10

sensitivity to summer precipitation to be much larger than the sensitivity to initial ice thickness, as a perturbation in an initial

condition is applied only once at model initialization, while a (constant in time) perturbation in the surface boundary condition

is iterated for every time step throughout the 100 yr of model run time. One of the largest obvious
:::::::
apparent

:
differences between

Figures 2A and B is the appearance of high sensitivity on the floating portions of ice off the coasts between Queen Maud Land

eastward to Queen Mary Land. Assuming that the “direct” linear effect of an increased precipitation (volume flux) has the same15

effect everywhere on increasing the ice sheet volume, the difference between thin floating ice shelves and ice sheet interior may

be explained by the dynamical effect of increased ice shelf buttressing (i.e., reduced mass flux through the grounding line) as

a consequence of ice shelf mass accumulation.
:::
This

:::::::::::
underscores

:::
the

::::::
adjoint

::::::
model’s

::::::
ability

::
to

::::::::::
accumulate

::::
local

::::::
effects

::::::
(direct

:::::
effect

::
on

::::::
volume

:::
by

::::::::::
thickening)

:::
and

::::::::
non-local

::::::
effects

::::::::
mediated

::
by

:::
ice

:::::
sheet

::::::::
dynamics

:::::::::
(thickening

::::::::
increases

:::::::::::
buttressing).

In a related way
::::::
manner, the overall similarity of the surface and basal temperature sensitivities is reassuring as both of20

these are components in the same conservation of energy equation. Both fields of sensitivities delineate the drainage basins of

glaciers and ice shelves, with very small sensitivity in the center of the ice sheet that increases by orders of magnitude toward

the coasts. The surface temperature sensitivities more uniformly affect total ice volume over the ice shelves, while the basal

temperature sensitivities indicate that positive perturbations in basal temperature at the grounding lines of glaciers and ice

shelves have a larger effect on total ice volume, and that when compared with each other, variations in basal temperature are25

more powerfully felt across the Antarctic Ice Sheet. This seems to indicate that changes in ocean temperature at the grounding

lines around Antarctica have much more potential to do lasting damage to
::::
have

:
a
::::::

lasting
:::::::

impact
::
on

:
the volume of the ice

sheet than temperature changes in the atmosphere. However, this conclusion must be tempered by the fact that our current

simulation of the surface of ice does not account for
::::::
complex

:::::::
surface,

::::::::
englacial

:::
or

:::::::::
subglacial

:::::::::
hydrology,

::::
e.g.,

:
melt water

ponding and induced catastrophic failure, as has been observed in the past at the Larsen B Ice Shelf, for example (Glasser and30

Scambos, 2008). Thus in the context of our finite volume calculations performed in Table 1, columns 5 and 6, while the effect

of summer precipitation applied uniformly every 0.2 yr during the 100 yr simulation to the tile in sub-domain 4 from Figure

2A results in volume change that dwarfs the effects of the thermal controls applied in the same region, the same result may

not hold in different regions with more complicated formulations for surface or basal melting, or using the more sophisticated

calving relations available within the main trunk of SICOPOLIS
::
In

::::
other

::::::
words,

:::
the

::::::::
enormous

:::::::::
difference

::
in

:::::::::
magnitude

:::::::
between35
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::::::::
sensitivity

::
to

:::::::
summer

:::::::::::
precipitation

:::
and

:::::::::
sensitivity

:
to
:::::::
surface

::
or

::::
basal

::::::::::
temperature

::::
may

::::::
change

::
in

:::::
other

:::::::
locations

:::
of

::
the

:::
ice

:::::
sheet

:::::
where

:::::::
different

:::::::
physics

:::
are

:::::::
included

::::
(and

::::
must

:::
be

:::::::::::
differentiated

::
in

:::
the

:::::::::
sensitivity

::::::::::
calculation).

Algorithmic differentiation relies on algorithms being differentiable, line by line, in a code. Numerical disagreement can

accumulate for even simple reasons, such as the use of piece-wise linear functions represented algorithmically by IF-statements

(see Appendix B for a larger discussion on unstructured code and non-smoothness
::::::::
Appendix

::
B

:::::::
presents

:
a
:::::::::
discussion

:::
on

::::
how5

::::::::::
unstructured

::
or

::::::::::
non-smooth

::::
code

:
introduces error in adjoint codes developed by AD).

:::::::::::
Differentiable

::::::::::::
programming

:::
has

:::::::
recently

:::::::
emerged

::
as

:
a
::::
new

::::::::::::
programming

::::::::
paradigm

::
in

:::::::
physical

::::::
system

:::::::::::::::
(Liao et al., 2019),

::::
and

::
is

:::::::
certainly

:::::::::
recognized

:::
to

::
be

::
of

:::::
value

:::
for

::::::::::
applications

::::
such

::
as

:::
this

:::::
work,

::::::
where

:::::::::
parametric

::::::::::
sensitivities

:::
are

:::::
being

::::::::
explored.

5 Conclusions

This work presents a new capability of the ice sheet model SICOPOLIS to enable flexible adjoint code generation using the10

open-source AD tool OpenAD. The flexibility is afforded by allowing a wide range of choices of model domains, numerical

algorithms chosen for specific configurations, as well as control variables
::::::::::
(independent

:::::::::
variables) and quantities of interest

(
::::::::
dependent

::::::::
variables;

:
cost functions) defined, when generating the adjoint code. We demonstrate the utility, correctness and

interpretability of adjoint-derived sensitivity maps for Antarctic-wide simulations, with the total volume of the Antarctic Ice

Sheet chosen as quantity of interest, and subject to sensitivities in
:::::::::
computing

::
its

:::::::::
sensitivity

::
to

:
initial and boundary conditions15

over a 100 yr simulation from present day. Examining and assessing
:::::::::
ascertaining

::::
and

::::::::::::
understanding the information contained

in such sensitivity maps, which are formally gradients of scalar-valued functions with respect to model inputs, is a useful and

natural first step in the use of these sensitivities in gradient-based optimization problems, which will be the subject of future

work.
::::
Such

:::::
work,

:::::::
enabled

:::
by

::
the

:::::::
adjoint

:::::
model

::
of

:::::::::::
SICOPOLIS,

:::::
could

:::::::
include

::::::::::::
understanding

::::
how

:::::::
different

:::::::::::::::
parameterizations

::
of

:::::::::::
precipitation,

:::::::
melting,

:::
and

:::::
other

:::::::::
interesting

::::::::::
higher-order

::::::::
processes

:::
of

::
ice

::::
flow

:::::
affect

:::::::::
quantities

::
of

:::::::
interest.20

One suggested outcome of the sensitivity analysis is that, as a controlling variable, mean monthly applied summer precipi-

tation influences the total integrated Antarctic Ice Sheet volume more than the initial ice geometry, surface, or basal tempera-

tures do
::
for

::::::::::::
representative

::::::
values

::
of

::::::::::
perturbation

::
in

::::
each

:::
of

::::
these

::::::::
variables. Another hypothesized (and perhaps unsurprising)

relationship derives from a comparison between the surface and basal ice temperatures: that changes in basal temperature,

particularly at grounding lines affect total ice volume much more than those in surface temperature.25

Much remains to be learned and further examined in the context of this model, as well as the degree to which results may

be applicable to other models. Our results are specific for a given configuration of SICOPOLIS, with emphasis placed on the

initial use of simple parameterizations for (often) the most interesting aspects of ice flow, including how basal melting or firn

compaction are represented (both processes would be affected by the control variables chosen here). Our metrics of model

validity evaluated point-wise show that the adjoint model is mostly accurate to within 10% compared to sensitivities obtained30

via the finite difference method. One likely reason the for larger disagreements in some of the calculated metrics may be due

to the regimes of very weak sensitivities, in which case numerical noise becomes a leading factor in the inferred differences.
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Another cost function may be formulated as a model-data misfit based on, for example, the modeled versus observed spatio-

temporal ice elevation change. Additionally, over-reliance on inherently non-differentiable piece-wise linear functions for im-

portant aspects of surface mass balance terms may introduce discrepancies that could be minimized with the use of smoother

functions
:
,
::
or

:::::::
smooth

:::::::::::::
implementation

::
of

::::::::::::::
parameterization

:::::::
schemes. These are valid and important aspects of code that are not

easily addressed
::::::::::::::::::::
(Hascoët and Utke, 2016). We have described in some detail code-refactorization steps that was required for5

SICOPOLIS to comply with code parsing and analysis steps undertaken by OpenAD in Appendix B. Many of the issues de-

scribed in the Appendix are frequently encountered when subjecting legacy code to AD, or when considering the development

of new code that should be subjected to AD. The Appendix thus provides insights for coding best-practices in the context of

AD beyond the application to SICOPOLIS.

As glaciologists strive to make ever-more confident projections in the future behavior of ice sheets, tools that rigorously10

determine the relationship between often poorly known input parameters and important model outputs are increasingly needed.

SICOPOLIS-AD is one such tool that is freely available to the cryosphere community (Logan et al., 2019) and, as demonstrated

here, can help elucidate relationships between model inputs and outputs that were previously unknown or untested.

Code availability. SICOPOLIS is free and open-source software, available through a persistent Subversion repository that is hosted by

the FusionForge system AWIForge of the Alfred Wegener Institute for Polar and Marine Research (AWI) in Bremerhaven, Germany15

(https://swrepo1.awi.de/). Detailed instructions for obtaining and compiling the code are at http://www.sicopolis.net. The adjoint gener-

ation capability of SICOPOLIS is a part of the main trunk of the current developmental version (5-dev). The development and tests

were performed using SICOPOLIS v5-dev (revision 1414), tagged as SICOPOLIS-AD v1. It can be specifically downloaded at https:

//swrepo1.awi.de/svn/sicopolis/tags/ad-v1 (using ‘svn checkout‘ with ’anonsvn’ as username and password). The AD tool used to gener-

ate adjoint source code is OpenAD. OpenAD can be downloaded at https://doi.org/10.5281/zenodo.3361744. Detailed instructions on how20

to download and build the tool are at https://www.mcs.anl.gov/OpenAD/. Technical details on how to set up, compile and run reference

configurations of SICOPOLIS-AD are documented in a Quick-Start Manual (Logan et al., 2019).

Appendix A: Greenland ice volume sensitivities

Here we present the results of a 100 yr sensitivity study of Greenland ice sheet volume to basal ice temperature. This is added

as an Appendix as Greenland sensitivities have been produced previously by Heimbach and Bugnion (2009), albeit with a25

different AD tool, Transformation of Algorithms in Fortran (TAF; Giering et al., 2005), for a version of the SICOPOLIS model

that is more than a decade old, and which was not maintained as part of SICOPOLIS’ main development trunk. Since then,

SICOPOLIS has been updated to include a more state-of-the-art representation of thermodynamics via the enthalpy method,

and work here represents an advance on what was presented before.

The forward simulation of Greenland is configured in much the same way as for Antarctica, with an emphasis on sim-30

plicity for proof-of-concept. Unless otherwise stated below, choices of numerical schemes, physical parameterizations, and

forcings approaches are the same. We simulate Greenland for 100 yr from present day at a 10 km horizontal resolution with 81

19
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terrain-following vertical layers. The dynamic and thermodynamic time steps again take the same
:::
take

:::
the value of 0.5 yr. The

dynamics now are only SIA, as we have restricted our simulation to grounded ice. The thermodynamic formulation is again

via the conventional enthalpy method, with ice initialized at a constant temperature of −10◦C. The constitutive law and phys-

ical parameters are exactly the same as in the Antarctic case, including the flow enhancement factor, geothermal flux, and all

parameters for the sliding law. The ice initial geometry is from Bamber et al. (2013). Surface temperature is from Ritz (1997)5

and is held constant throughout. The monthly precipitation fields are created with the regional energy and moisture balance

model REMBO using the setup described in Robinson et al. (2010) taken on the grid provided by Bamber et al. (2001). The

temperature and humidity boundary conditions are from Uppala et al. (2005). These monthly climatological fields are averaged

over 1958-2001 and applied as lateral boundary conditions to the REMBO.

Figure A1 shows the total Greenland Ice Sheet volume sensitivity to initial condition of ice thickness, and boundary con-10

ditions July (boreal summer) precipitation, surface, and basal temperatures. Table A1 shows that, in general, the Greenland

simulation performs much better than the Antarctic simulation, with all of the % deviations between adjoint values and finite

difference based gradients less than 1%. We attribute this to the lack of SSA dynamics involved and the accompanying use of

an external solver library.

Interestingly, whereas in Antarctica the ice thickness sensitivities were almost entirely positive, substantial portions of the15

Greenland Ice Sheet loses volume when perturbed positively in ice thickness, a phenomenon previously inferred by Heimbach

and Bugnion (2009),
::::
and

::::
thus

:
a
::::::

robust
:::::::
feature

::
of

::::
SIA

::::::
models. This could be due to dynamic draw down of glaciers that

experience a sudden increase in driving stress due to the increase in ice thickness. The increase in driving stress leads to

increases in velocity which, when subjected to the land-ice-only mask for the SIA dynamics used in this setup of Greenland,

results in the immediate cutoff of ice.20

Precipitation
:::::::::
Sensitivity

::
to

::::::::::
precipitation, as in the case of Antarctica, is almost entirely positive, and again, dwarfs the other

control variables tested here by many orders of magnitude. The overall larger magnitude of basal temperature sensitivities

compared to surface temperatures is consistent with the Antarctic simulation. Completion of Greenland serial qsimulations

Table A1. Comparison between adjoint-derived (column 3) and finite difference derived (column 4) sensitivities for Greenland ice volume as

QoI. All regions in column (2) refer to points from figure A1A. Column (5) is a % deviation metric, which is calculated as |col.(4)−col.(3)|
col.(4)

×

100.

Variable Region (from Fig. A1A) δJ
δVariable

∆J
∆Variable

% Deviation

(1) (2) (3) (4) (5)

July precipitation 1 2.72× 1016 2.72× 1016 3.37× 10−3

surface temperature 2 −5.61× 104 −5.57× 104 7.18× 10−1

basal temperature 2 −3.80× 106 −3.80× 106 8.20× 10−3

ice thickness 3 4.86× 102 4.89× 102 5.04× 10−1
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Figure A1. Adjoint sensitivities, δJ
δXi

, for the Greenland Ice Sheet, where i is the control variable shown. Control variables are the [A] initial

ice thickness (units m2), [B] mean July precipitation (units m2 yr), [C] surface temperature (units m3 ◦C−1), and [D] basal temperature

(units m3 ◦C−1). Locations in [A] numbered 1-3 are compared to finite-difference values in table A1

:::::::::
simulations

:
on a Linux box (Intel Xeon CPU E5-2650 at 2.00 GHz) took 5, 10, and 140 minutes for horizontal resolutions of

40, 20, and 10 km, respectively. The results shown here are for 10 km resolution.

Appendix B: Modifying SICOPOLIS

We made several modifications to SICOPOLIS to enable source transformation and differentiation via OpenAD. The changes

that were made enabled efficient AD in some cases and overcome some limitations of the AD tool used in others. The modifi-5
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cations are guarded by C preprocessor (CPP) directive ALLOW_OPENAD and do not affect the original behavior of SICOPOLIS

in any way. Below, we discuss the noteworthy changes.

– Data Types: SICOPOLIS determines the number of bits for its data types at runtime through the call selected_int_kind

() and kind(). Because OpenAD requires full knowledge of the types for static analysis, it does not support this be-

havior. We determine, therefore, the number of bits-per-type separately for the machine being used and specify the value5

directly in the code.

#ifndef ALLOW_OPENAD

integer, parameter :: i1b = selected_int_kind(2) !< 1−byte integers

integer, parameter :: i2b = selected_int_kind(4) !< 2−byte integers10

integer, parameter :: i4b = selected_int_kind(9) !< 4−byte integers

integer, parameter :: sp = kind(1.0) !< Single−precision reals

integer, parameter :: dp = kind(1.0d0) !< Double−precision reals

#else

integer, parameter :: i1b = 415

integer, parameter :: i2b = 4

integer, parameter :: i4b = 4

integer, parameter :: sp = 4

integer, parameter :: dp = 8

#endif20

– Unstructured code The adjoint model of OpenAD reverses the control flow of the original code, including those of

loops. It uses the following criteria to evaluate whether the loops are simple.

1. loop variables are not updated within the loop,

2. the loop condition does not use .ne.,25

3. the loop condition’s left-hand side consists only of the loop variable,

4. the stride in the update expression is fixed,

5. the stride is the right-hand side of the top level .+ or .- operator,

6. the loop body contains no index expression with variables that are modified within the loop body

SICOPOLIS contained several cases of statements injected to break out of loops which cause them not to be simple.30

To differentiate non-simple loops correctly, OpenAD stores which array indices are actually used per loop iteration.

This approach causes significant memory usage and performance loss. Therefore, we removed the exit statements by

rewriting the loop body to include a conditional statement that executes the loop only when the original loop would not

exit. Restricting code to comply with “simple loops” is common in models subject to AD, and is good coding practice

in general, as it supports compiler optimization of loops.35
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#ifndef ALLOW_OPENAD /* Normal */

do kc=1, KCMAX-1

if (omega_c_neu(kc,j,i) > eps_omega) then5

kc_cts_neu(j,i) = kc

else

exit

end if

end do10

#else /* OpenAD */

kcdone = .false.

15

do kc=1, KCMAX-1

if (kcdone.eqv..false.) then

if (omega_c_neu(kc,j,i) > eps_omega) then

kc_cts_neu(j,i) = kc

else20

kcdone = .true.

end if

end if

end do

25

#endif /* Normal vs. OpenAD */

– Nonsmoothness Non-smoothness in the underlying mathematics of a model can be caused by the use of the absolute

value, ceiling, and floor functions. Non-smooth models can be non-differentiable at a few or many points of the input

space. Techniques such as piecewise linear differentiation and the absnormal form have been studied to differentiate30

non-smooth applications (Streubel et al., 2014). While SICOPOLIS employs all three functions, they are either used to

index into lookup tables or used in portions not differentiated by OpenAD. Because OpenAD does not, however, include

abs, ceiling, and floor as functions within its intrinsic library, we created custom subroutines of these functions to

be differentiated.
35

#ifndef ALLOW_OPENAD /* Normal */

n_filter = ceiling(2.0_dp*sigma_filter)

#else /* OpenAD */

call myceiling(2.0_dp*sigma_filter, n_filter)

#endif /* Normal vs. OpenAD */40
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– sqrt function The derivative of
√
x is 1√

x
. When x= 0.0, the result is a kink in the adjoint model and the appearance of

NaN in the adjoint computation. The intended behavior of the adjoint model is to treat the derivatives as 0.0. Therefore,

wherever the function sqrt() appears in SICOPOLIS, we use a conditional to check if the input to sqrt() is 0.0 and

in those cases we use 0.0 instead of calling sqrt().
5

do i=0, IMAX

do j=0, JMAX

#ifndef ALLOW_OPENAD /* Normal */

10

tau_b(j,i) = p_b(j,i)*sqrt(dzs_dxi_g(j,i)**2+dzs_deta_g(j,i)**2)

#else /* OpenAD: guarding against non-differentiable sqrt(0) */

if ((dzs_dxi_g(j,i)**2+dzs_deta_g(j,i)**2) > 0) then15

tau_b(j,i) = p_b(j,i)*sqrt(dzs_dxi_g(j,i)**2+dzs_deta_g(j,i)**2)

else

tau_b(j,i) = 0.0_dp

end if

20

#endif /* Normal vs. OpenAD */

end do

end do

– Array Declaration and Array Assignments SICOPOLIS uses dynamic memory allocation for some arrays in the code.25

Because the handling of dynamic memory and pointers by source transformation AD tools such as OpenAD remains a

topic of active research we replaced the dynamic allocation with static allocation.

#ifndef ALLOW_OPENAD /* Normal */

30

real(dp), allocatable, dimension(:,:) :: f_0

#else /* OpenAD */

real(dp), dimension(-JMAX:2*JMAX,-IMAX:2*IMAX) :: f_035

#endif /* Normal vs. OpenAD */

SICOPOLIS uses constructs such as where and elsewhere to elegantly assign values to array elements. Because

OpenAD does not support these constructs, we rewrote them using loops and if statements.40

#ifndef ALLOW_OPENAD /* Normal */
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where ( (maske == 0_i2b).and.(H < rhosw_rho_ratio*H_sea) )

calv_uw_ice = calv_uw_coeff * H**r1_calv_uw * H_sea**r2_calv_uw

elsewhere

calv_uw_ice = 0.0_dp

end where5

#else /* OpenAD */

do i=0, IMAX

do j=0, JMAX10

if ( (maske(j,i) == 0_i2b) .and. (H(j,i) < rhosw_rho_ratio*H_sea(j,i)) ) then

calv_uw_ice(j,i) = calv_uw_coeff * H(j,i)**r1_calv_uw * H_sea(j,i)**r2_calv_uw

else

calv_uw_ice(j,i) = 0.0_dp

end if15

end do

end do

#endif /* Normal vs. OpenAD */20

– Intent of variables SICOPOLIS passes the indices of two and three dimensional arrays as arguments with intent(in)

to subroutines that act upon particular portions of the array. When these variables are not the type of active variable

(usually real(dp)), their declarations must be changed to intent(inout). For variables that are active OpenAD

changes the intent automatically.
25

#ifndef ALLOW_OPENAD /* Normal */

integer(i4b), intent(in) :: ii

#else /* OpenAD */

integer(i4b), intent(inout) :: ii

#endif /* Normal vs. OpenAD */30

– Solvers SICOPOLIS employs an array of solvers depending on the domain (e.g., Greenland versus Antarctica) or physics

chosen by the user: a successive over relaxation (SOR) solver, a tridiagonal solver, and (for Antarctic domains) the library

of iterative solvers (LIS) for computing a system of linear equations:

A ·x= b→ x := solve(A,b)35

To differentiate the above formulation efficiently, an AD tool must not naively differentiate through the solver code.

OpenAD uses its template mechanism instead to encode the formulation below (Giles, 2008) to compute the adjoints

Ā and b̄ from x̄ using the original solver call.
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AT · b̄= x̄→ b̄ := solve(AT , x̄)

Ā :=−xT · b̄

When SICOPOLIS uses the SOR solver for a system of linear equations where the matrix storage is in compressed sparse

row (CSR) format, arrays are represented by lgs_a_value (values), lgs_a_index (indices), and lgs_a_ptr (point-

ers). While the symbolic differentiation of the solver can be handled as above, the formation of the CSR representation5

requires us to change the type of the indices into real(dp) so that the indices are stored in the forward sweep for use

in the reverse sweep.

#ifndef ALLOW_OPENAD /* Normal */

! ...10

integer(i4b), allocatable, dimension(:) :: lgs_a_index

! ...

#else /* OpenAD */

! ...

real(dp), dimension(n_sprs) :: lgs_a_index15

! ...

#endif /* Normal vs. OpenAD */

– Checkpointing For adjoint models, the memory requirement to compute the adjoint information is proportional to the

operation count of the model being differentiated. We found that the memory requirements of the adjoint model of20

SICOPOLIS for even small number of timesteps will quickly exceed the available memory of most machines. Therefore,

we implemented a binomial checkpointing scheme using the library revolve (Griewank and Walther, 2000). This

approach uses recomputation of timesteps in the original model to reduce the memory requirements of the adjoint model.

Author contributions. LCL, SHKN, and PH developed the adjoint code of SICOPOLIS; RG originally developed SICOPOLIS, provided

insight to model results, and helped host the freely available version of the code.25
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