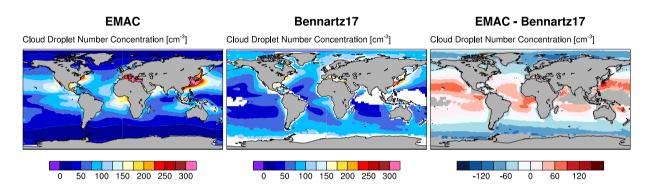

Supplement to: A new approach to simulate aerosol effects on cirrus clouds in EMAC v2.54

Mattia Righi¹, Johannes Hendricks¹, Ulrike Lohmann², Christof Gerhard Beer¹, Valerian Hahn¹, Bernd Heinold³, Romy Heller¹, Martina Krämer⁴, Christian Rolf⁴, Ina Tegen³, and Christiane Voigt¹

Correspondence to: Mattia Righi (mattia.righi@dlr.de)

In this Supplement additional figures are shown, which complement the evaluation of EMAC-MADE3 presented in Sect. 4 of the paper. For details about each figure, see the corresponding sections in the paper as mentioned in the figure captions.


Figure S1. As in Fig. 3 in the paper, but using a different method for calculating supersaturation in liquid clouds. See Sect. 4.3 in the paper for details.

¹Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

²Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland

³Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

⁴Research Centre Jülich, Institute for Energy and Climate Research 7: Stratosphere (IEK-7), Jülich, Germany

Figure S2. As in Fig. 4 in the paper, but using a different method for calculating supersaturation in liquid clouds. See Sect. 4.3 in the paper for details.