

 1

QuickSampling v1.0: a robust and simplified pixel-based 1

multiple-point simulation approach 2

Mathieu Gravey1, Grégoire Mariethoz1 3
1 University of Lausanne, Faculty of Geosciences and Environment, Institute of Earth Surface Dynamics, 4
Switzerland 5

Correspondence to: Mathieu Gravey (mathieu.gravey@unil.ch) 6

Highlights 7

• A new approach is proposed for pixel-based multiple-point geostatistics simulation. 8
• The method is flexible and straightforward to parametrize. 9
• It natively handles continuous and multivariate simulations. 10
• High computational performance with predictable simulation times. 11
• A free and open-source implementation is provided. 12

Abstract 13

Multiple-point geostatistics enable the realistic simulation of complex spatial structures by 14
inferring statistics from a training image. These methods are typically computationally 15
expensive and require complex algorithmic parametrizations. The approach that is presented in 16
this paper is easier to use than existing algorithms, as it requires few independent algorithmic 17
parameters. It is natively designed for handling continuous variables, and quickly implemented 18
by capitalizing on standard libraries. The algorithm can handle incomplete training images of 19
any dimensionality, with categorical or/and continuous variables, and stationarity is not 20
explicitly required. It is possible to perform unconditional or conditional simulations, even with 21
exhaustively informed covariates. The method provides new degrees of freedom by allowing 22
kernel weighting for pattern matching. Computationally, it is adapted to modern architectures 23
and runs in constant time. The approach is benchmarked against a state-of-the-art method. An 24
efficient open-source implementation of the algorithm is released and can be found here 25
(https://github.com/GAIA-UNIL/G2S), to promote reuse and further evolution. 26

Keywords 27

Multiple-point statistics, stochastic simulation, continuous variable, training image, cross-28
correlation, Fourier transform. 29

1. Introduction 30

Geostatistics is used widely to generate stochastic random fields for modeling and 31
characterizing spatial phenomena such as Earth surface features and geological structures. 32
Commonly used methods, such as the sequential Gaussian simulation (Gómez-Hernández and 33
Journel, 1993) and turning bands algorithms (Matheron, 1973), are based on kriging (e.g., 34
Graeler et al., 2016; Li and Heap, 2014; Tadić et al., 2017; 2015). This family of approaches 35
implies spatial relations using exclusively pairs of points and expresses these relations using 36

 2

covariance functions. In the last two decades, multiple point statistics (MPS) emerged as a 37
method for representing more complex structures using high-order nonparametric statistics 38
(Guardiano and Srivastava, 1993). To do so, MPS algorithms rely on training images, which 39
are images with similar characteristics to the modeled area. Over the last decade, MPS has been 40
used for stochastic simulation of random fields in a variety of domains such as geological 41
modeling (e.g., Barfod et al., 2018; Strebelle et al., 2002), remote sensing data processing (e.g., 42
Gravey et al., 2019; Yin et al., 2017), stochastic weather generation (e.g., Oriani et al., 2017; 43
Wojcik et al., 2009), geomorphological classification (e.g., Vannametee et al., 2014) and 44
climate model downscaling (a domain that has typically been the realm of kriging-based 45
methods (e.g., Bancheri et al., 2018; Jha et al., 2015; Latombe et al., 2018)). 46

In the world of MPS simulations, one can distinguish two types of approaches. The first 47
category is the patch-based methods, where complete patches of the training image are imported 48
into the simulation. This category includes methods such as SIMPAT (Arpat and Caers, 2007) 49
and DISPAT (Honarkhah and Caers, 2010), which are based on building databases of patterns, 50
and image quilting (Mahmud et al., 2014), which uses an overlap area to identify patch 51
candidates, which are subsequently assembled using an optimal cut. CCSIM (Tahmasebi et al., 52
2012) uses cross-correlation to rapidly identify optimal candidates. More recently, Li (2016) 53
proposed a solution that uses graph-cuts to find an optimal cut between patches, which has the 54
advantage of operating easily and efficiently independently of the dimensionality of the 55
problem. Tahmasebi (2017) propose as a solution that is based on “warping” in which the new 56
patch is distorted to match the previously simulated areas. For a multivariate simulation with 57
an informed variable, Hoffimann (2017) presented an approach for selecting a good candidate 58
based on the mismatch of the primary variable, and on the mismatch rank of the candidate 59
patches for auxiliary variables. Although patch-based approaches are recognized to be fast, they 60
are typically difficult to use in the presence of dense conditioning data. Furthermore, patch-61
based approaches often suffer from a lack of variability due to the pasting of large areas of the 62
training image, which is a phenomenon that is called verbatim copy. Verbatim copy (Mariethoz 63
and Caers, 2014) refers to the phenomenon whereby the neighbor of a pixel in the simulation 64
is the neighbor in the training image. This results in large parts of the simulation that are 65
identical to the training image. 66

The second category of MPS simulation algorithms consists of pixel-based algorithms, which 67
import a single pixel at the time instead of full patches. These methods are typically slower than 68
patch-based methods. However, they do not require a procedure for the fusion of patches, such 69
as an optimal cut, and they allow more flexibility in handling conditioning data. Furthermore, 70
in contrast to patch-based methods, pixel-based approaches rarely produce artifacts when 71
dealing with complex structures. The first pixel-based MPS simulation algorithm was 72
ENESIM, which was proposed by Guardiano and Srivastava, 1993, where for a given 73
categorical neighborhood – usually small – all possible matches in the training image are 74
searched. The conditional distribution of the pixel to be simulated is estimated based on all 75
matches, from which a value is sampled. This approach could originally handle only a few 76
neighbors and a relatively small training image; otherwise, the computational cost would 77
become prohibitive and the number of samples insufficient for estimating the conditional 78
distribution. Inspired by research in computer graphics, where similar techniques are developed 79

 3

for texture synthesis (Mariethoz and Lefebvre, 2014), an important advance was the 80
development of SNESIM (Strebelle, 2002), which proposes storing in advance all possible 81
conditional distributions in a tree structure and using a multigrid simulation path to handle large 82
structures. With IMPALA, Straubhaar (2011) proposed reducing the memory cost by storing 83
information in lists rather than in trees. Another approach is direct sampling (DS) (Mariethoz 84
et al., 2010), where the estimation and the sampling of the conditional probability distribution 85
are bypassed by sampling directly in the training image, which incurs a very low memory cost. 86
DS enabled the first use of pixel-based simulations with continuous variables. DS can use any 87
distance formulation between two patterns; hence, it is well suited for handling various types 88
of variables and multivariate simulations. 89

In addition to its advantages, DS has several shortcomings: DS requires a threshold – which is 90
specified by the user – that enables the algorithm to differentiate good candidate pixels in the 91
training image from bad ones based on a predefined distance function. This threshold can be 92
highly sensitive and difficult to determine and often dramatically affects the computation time. 93
This results in unpredictable computation times, as demonstrated by Meerschman (2013). DS 94
is based on the strategy of randomly searching the training image until a good candidate is 95
identified (Shannon, 1948). This strategy is an advantage of DS; however, it can also be seen 96
as a weakness in the context of modern computer architectures. Indeed, random memory access 97
and high conditionality can cause 1) suboptimal use of the instruction pipeline, 2) poor memory 98
prefetch, 3) substantial reduction of the useful memory bandwidth and 4) impossibility of using 99
vectorization (Paul Shen, 2018). While the first two problems can be addressed with modern 100
compilers and pseudorandom sequences, the last two are inherent to the current memory and 101
CPU construction. 102

This paper presents a new and flexible pixel-based simulation approach, namely, 103
QuickSampling (QS), which makes efficient use of modern hardware. Our method takes 104
advantage of the possibility of decomposing the standard distance metrics that are used in MPS 105
(𝐿!, 𝐿") as sums of cross-correlations. As a result, we can use fast Fourier transforms (FFTs) to 106
quickly compute mismatch maps. To rapidly select candidate patterns in the mismatch maps, 107
we use an optimized partial sorting algorithm. A free, open-source and flexible implementation 108
of QS is available, which is interfaced with most common programming languages (C/C++, 109
MATLAB, R, and Python 3). 110

The remainder of this paper is structured as follows: Section 2 presents the proposed algorithm 111
with an introduction to the general method of sequential simulation, the mismatch measurement 112
using FFTs and the sampling approach of using partial sorting followed by methodological and 113
implementation optimizations. Section 3 evaluates the approach in terms of quantitative and 114
qualitative metrics via simulations and conducts benchmark tests against DS, which is the only 115
other available approach that can handle continuous pixel-based simulations. Section 4 116
discusses the strengths and weaknesses of QS and provides guidelines. Finally, guidelines and 117
the conclusions of this work are presented in Section 5. 118

 4

2. Methodology and Implementation 119

2.1. Pixel-based sequential simulation 120

We recall the main structure of pixel-based MPS simulation algorithms (Mariethoz and Caers, 121
2014, p.156), which is summarized and adapted for QS in Pseudocode 1. The key difference 122
between existing approaches is in lines 3 and 4 of Pseudocode 1, when candidate patterns are 123
selected. This task is the most time-consuming in many MPS algorithms and we focus only on 124
computing it in a way that reduces its cost and minimizes the parameterization. 125

 126

Pseudocode 1: QS Algorithm 127

 128

Inputs: 129

𝑇 the training images 130

𝑆 the simulation grid, including the conditioning data 131

𝑃 the simulation path 132

The choice of pattern metric 133

 134

1. For each unsimulated pixel 𝑥 following the path 𝑃: 135
2. Find the neighborhood 𝑁(𝑥) in 𝑆 that contains all previously simulated or conditioning 136

nodes in a specified radius 137
3. Compute the mismatch map between 𝑇 and 𝑁(𝑥): Section 2.3 138
4. Select a good candidate using quantile sorting over the mismatch map: Section 2.4 139
5. Assign the value of the selected candidate to 𝑥 in 𝑆 140
6. End 141

 142

2.2. Decomposition of common mismatch metrics as sums of products 143

Distance-based MPS approaches are based on pattern matching (Mariethoz and Lefebvre, 144
2014). Here, we rely on the observation that many common matching metrics can be expressed 145
as weighted sums of the pixelwise mismatch	𝜀. This section explores the pixelwise errors for a 146
single variable and for multiple variables. For a single variable, the mismatch metric 𝜀 between 147
two pixels is the distance between two scalars or two classes. In the case of many variables, it 148
is a distance between two vectors that are composed by scalars, by classes, or by a combination 149
of the two. Here, we focus on distance metrics that can be expressed in the following form: 150

Equation 1 151

 5

𝜀(𝑎, 𝑏) ∝/𝑓#(𝑎). 𝑔#(𝑏)
#∈𝒥

 152

where 𝑎 and 𝑏 represent the values of two univariate pixels and 𝑓# 	and 𝑔# are functions that 153
depend on the chosen metric. 𝒥 is defined by the user depending on the metric used. Here, we 154
use the proportion symbol because we are interested in relative metrics rather than absolute 155
metrics, namely, the objective is to rank the candidate patterns. We show below that many of 156
the common metrics or distances that are used in MPS can be expressed as Equation 1. 157

For the simulation of continuous variables, the most commonly used mismatch metric is the 𝐿"-158
norm, which can be expressed as follows: 159

Equation 2 160

𝜀&!(𝑎, 𝑏) = (𝑎 − 𝑏)" = 𝑎" − 2𝑎𝑏 + 𝑏" 161

Using Equation 1, this 𝐿"-norm can be decomposed into the following series of functions 𝑓# and 162
𝑔#: 163

𝑓!: 𝑥 → 𝑥" 164

𝑓': 𝑥 → −2𝑥 165

𝑓": 𝑥 → 1 166

𝑔!: 𝑥 → 1 167

𝑔': 𝑥 → 𝑥 168

𝑔": 𝑥 → 𝑥"169

170

171

 6

 172

A similar decomposition is possible for the 𝐿!	-norm (also called Hamming distance), which is 173
commonly used for the simulation of categorical variables. The Hamming distance measures 174
the dissimilarity between two lists by counting the number of elements that have different 175
categories (Hamming, 1950). Example the dissimilarity between a,b,b,c,b,a and a,c,b,a,c,a is 176
0,1,0,1,1,0 and the associated Hamming distance is 3. 177

Equation 3 178

𝜀&"(𝑎, 𝑏) = (𝑎 − 𝑏)! = 1 −/;𝛿(,# . 𝛿*,#=
#∈𝒞

∝/𝛿(,# . 𝛿*,#
#∈𝒞

 179

where 𝛿,,- is the Kronecker delta between 𝑥	and 𝑦, which is 1 if 𝑥 equals 𝑦 and 0 otherwise, 180
and 𝒞 is the set of all possible categories of a specified variable. Here 𝒥 = 𝒞. 181

Using Equation 1, this 𝐿! distance can be decomposed (Arpat and Caers, 2007) into the 182
following series of functions 𝑓# 	and 𝑔# 	: 183

 𝑓#: 𝑥 → −𝛿,# 184

 𝑔#: 𝑥 → 𝛿,# 185

with a new pair of 𝑓# 	and 𝑔# for each class 𝑗 of 𝒞. 186

For multivariate pixels, such as a combination of categorical and continuous values, the 187
mismatch 𝜀 can be expressed as a sum of univariate pixelwise mismatches. 188

Equation 4 189

𝜀(𝒂, 𝒃) ∝// 𝑓#(𝑎.). 𝑔#(𝑏.)
#∈𝒥#.∈ℐ

 190

where 𝒂 and 𝒃 are the compared vectors and 𝑎. and 𝑏. are the individual components of 𝒂 and 191
𝒃. 𝒥. represents the set related to the metric used for the 𝑖01 variable, and ℐ represents the set of 192
variables. 193

 194

2.3. Computation of a mismatch map for an entire pattern 195

The approach that is proposed in this work is based on computing a mismatch map in the TI for 196
each simulated pixel. The mismatch map is a grid that represents the pattern-wise mismatch for 197
each location of the training image and enables the fast identification of a good candidate, as 198
shown by the red circle in Figure 1. 199

 7

 200
Figure 1 Example of a mismatch map for an incomplete pattern. Blue represents good matches, 201
yellow bad matches and purple missing and unusable (border effect) data. The red circle 202
highlights the minimum of the mismatch map, which corresponds to the location of the best 203
candidate. 204

 205

If we consider the neighborhood 𝑁(𝑠) around the simulated position 𝑠, then we can express a 206
weighted dissimilarity between 𝑁(𝑠) and a location in the TI 𝑁(𝑡): 207

Equation 5 208

Ε;𝑁(𝑡), 𝑁(𝑠)= = / 𝜔𝒍𝜀;𝑁𝒍(𝑡), 𝑁𝒍(𝑠)=
𝒍	∈	4(1,0)

 209

where 𝑁(𝑡, 𝑠) = {𝑙	|𝑁𝒍(𝑡)	𝑎𝑛𝑑	𝑁𝒍(𝑠)	𝑒𝑥𝑖𝑠𝑡} 210

and 𝑁𝒍(𝑝) is the neighbors of 𝑝 (𝑝 can represent either 𝑠 or 𝑡) with a relative displacement 𝑙 211
from 𝑝, therefore 𝑁(𝑝) = {𝑙	|	𝑁𝒍(𝑝)}	, 𝒍 is the lag vector that defines the relative position of 212
each value within 𝑁, and 𝜔𝒍 is a weight for each pixelwise error according to the lag vector 𝒍. 213
By extension, 𝜔 is the matrix of all weights, which we call the weighting kernel or, simply, the 214
kernel. Ε represents the mismatch between patterns that are centered on	𝑠 and 𝑡	 ∈ 𝑇, where 𝑇 215
is the training image. 216

Some lags may not correspond to a value, for example, due to edge effects in the considered 217
images or because the patterns are incomplete. Missing patterns are inevitable during the course 218
of a simulation using a sequential path. Furthermore, in many instances, there can be missing 219
areas in the training image. This is addressed by creating an indicator variable to be used as a 220
mask, which equals 1 at informed pixels and 0 everywhere else: 221

Equation 6 222

𝟙𝒍(𝑝) = T1	𝑖𝑓	𝑁𝒍(𝑝)	𝑖𝑠	𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 223

 8

Let us first consider the case in which for a specified position, either all or no variables are 224
informed. Expressing the presence of data as a mask enables the gaps to be ignored because the 225
corresponding errors are multiplied by zero. 226

Then, Equation 5 can be expressed as follows: 227

Equation 7 228

Ε;𝑁(𝑡), 𝑁(𝑠)= =/𝜔𝒍. 𝟙𝒍(𝑡). 𝟙𝒍(𝑠). 𝜀;𝑁𝒍(𝑡), 𝑁𝒍(𝑠)=
𝒍	

 229

. Combining Equation 4 and Equation 7, we get: 230

Equation 8 231

Ε;𝑁(𝑡), 𝑁(𝑠)= ∝/𝜔𝒍. 𝟙𝒍(𝑡). 𝟙𝒍(𝑠)// 𝑓#(𝑁𝒍(𝑡).). 𝑔#(𝑁𝒍(𝑠).)
#∈𝒥#.∈ℐ𝒍	

233

=///𝜔𝒍. 𝟙𝒍(𝑡). 𝟙𝒍(𝑠). 𝑓#(𝑁𝒍(𝑡).). 𝑔#(𝑁𝒍(𝑠).)
#∈𝒥#.∈ℐ𝒍	

234

=///𝜔𝒍. [𝟙𝒍(𝑡). 𝑓#(𝑁𝒍(𝑡).)\ . [𝟙𝒍(𝑠). 𝑔#(𝑁𝒍(𝑠).)\
𝒍#∈𝒥#.∈ℐ

235

=///[𝟙𝒍(𝑡). 𝑓#(𝑁𝒍(𝑡).)\ . [𝜔𝒍. 𝟙𝒍(𝑠). 𝑔#(𝑁𝒍(𝑠).)\
𝒍#∈𝒥#.∈ℐ

	236

. 232

After rewriting, Equation 8 can be expressed as a sum of cross-correlations that encapsulate 237
spatial dependencies, using the cross-correlation definition 𝑓 ⋆ 𝑔 = ∑ 𝑓7 . 𝑔77 , as follows: 238

Equation 9 239

Ε;𝑁(𝑡), 𝑁(𝑠)= ∝// [𝟙(𝑡) ∘ 𝑓#(𝑁(𝑡).)\ ⋆ [𝜔 ∘ 𝟙(𝑠) ∘ 𝑔#(𝑁(𝑠).)\
#∈𝒥#.∈ℐ

 240

where 𝜔 and 𝟙(.)	represent the matrices that are formed by 𝜔𝒍 and 𝟙𝒍(.) for all possible vectors 241
𝒍, ⋆ denotes the cross-correlation operator, and ∘ is the element-wise product (or Hadamard-242
product). 243

Finally, with 𝑇 = {𝑇. , 𝑖 ∈ ℐ}, 𝑇. represents the training image for the i-th variable, and by 244
applying cross-correlations for all positions 𝑡 ∈ 𝑇, we obtain a mismatch map, which is 245
expressed as: 246

Equation 10 247

Ε;𝑇, 𝑁(𝑠)= ∝// [𝟙(𝑇) ∘ 𝑓#(𝑇.)\ ⋆ [𝜔 ∘ 𝟙(𝑠) ∘ 𝑔#(𝑁(𝑠).)\
#∈𝒥#.∈ℐ

 248

. The term 𝟙(𝑇) allows the consideration of the possibility of missing data in the training image 249
𝑇. 250

 9

Let us consider the general case in which only some variables are informed and the weighting 251
can vary for each variable. Equation 10 can be extended for this case by defining separate masks 252
and weights 𝜔. for each variable: 253

Equation 11 254

Ε;𝑇, 𝑁(𝑠)= ∝ // [𝟙(𝑇.) ∘ 𝑓#(𝑇.)\ ⋆ [𝜔. 	 ∘ 𝟙(𝑠.) ∘ 𝑔#(𝑁(𝑠).)\
#∈𝒥#.∈ℐ

 255

. Equation 11 can be expressed using the convolution theorem applied to cross-correlation: 256

Equation 12 257

Ε;𝑇, 𝑁(𝑠)= ∝ //ℱ8' aℱb𝟙(𝑇.) ∘ 𝑓#(𝑇.)c ∘ ℱb𝜔. ∘ 𝟙(𝑠.) ∘ 𝑔#(𝑁(𝑠).)cd
#∈𝒥#.∈ℐ

 258

, where ℱ represents the Fourier transform, ℱ8' the inverse transform, and 𝑥̅ the conjugate of 259
𝑥. 260

By linearity of the Fourier transform, the summation can be performed in Fourier space, thereby 261
reducing the number of transformations: 262

Equation 13 263

Ε;𝑇, 𝑁(𝑠)= ∝ ℱ8' f//ℱb𝟙(𝑇.) ∘ 𝑓#(𝑇.)c ∘ ℱb𝜔. ∘ 𝟙(𝑠.) ∘ 𝑔#(𝑁(𝑠).)c
#∈𝒥#.∈ℐ

g 264

. Equation 13 is appropriate for modern computers, which are well-suited for computing FFTs 265
(Cooley et al., 1965; Gauss, 1799). Currently, FFTs are well implemented in highly optimized 266
libraries (Rodríguez, 2002). Equation 13 is the expression that is used in our QS implementation 267
because it reduces the number of Fourier transforms, which are the most computationally 268
expensive operations of the algorithm. One issue with the use of FFTs is that the image 𝑇 is 269
typically assumed to be periodic. However, in most practical applications, it is not periodic. 270
This can be simply addressed by cropping the edges of 𝐸;𝑇,𝑁(𝑠)= or by adding a padding 271
around 𝑇. 272

The computation of the mismatch map (Equation 13) is deterministic; as a result, it incurs a 273
constant computational cost that is independent of the pixel values. Additionally, Equation 13 274
is expressed without any constraints on the dimensionality. Therefore, it is possible to use the 275
n-dimensional FFTs that are provided in the above libraries to perform n-dimensional 276
simulations without changing the implementation. 277

2.4. Selection of candidates based on a quantile 278

The second contribution of this work is the k-sampling strategy for selecting a simulated value 279
among candidates. The main idea is to use the previously calculated mismatch map to select a 280
set of potential candidates that are defined by the 𝑘 smallest (i.e. a quantile) values of Ε. Once 281
this set has been selected, we randomly draw a sample from this pool of candidates. This differs 282

 10

from strategies that rely on a fixed threshold, which can be cumbersome to determine. This 283
strategy is highly similar to the e-replicate strategy that is used in image quilting (Mahmud et 284
al., 2014) in that we reuse and extend to satisfy the specific requirements of QS. It has the main 285
advantage of rescaling the acceptance criterion according to the difficulty; i.e. the algorithm is 286
more tolerant of rare patterns while requiring very close matches for common patterns. 287

In detail, the candidate selection procedure is as follows: All possible candidates are ranked 288
according to their mismatch and one candidate is randomly sampled among the 𝑘 best. This 289
number 𝑘 can be seen as a quantile over the training dataset. However, parameter 𝑘 has the 290
advantage of being an easy representation for users, who can associate 𝑘 = 1	with the best 291
candidate, 𝑘 = 2 with the two best candidates, etc. For fine-tuning parameter 𝑘, the sampling 292
strategy can be extended to non-integer values of 𝑘 by sampling the candidates with 293
probabilities that are not uniform. For example, if the user sets 𝑘 = 1.5, the best candidate has 294
a probability of 2/3 of being sampled and the second best a probability of 1/3. For 𝑘 = 3.2, 295
(Figure 2) each of the 3 best candidates are sampled with an equal probability of 0.3125 and 296
the 4th best with a probability of 0.0625. This feature is especially useful for tuning 𝑘 between 297
1 and 2 and for avoiding a value of 𝑘 = 1, which can result in the phenomenon of verbatim 298
copy. 299

 300
Figure 2 Illustration of the k-sampling strategy 301

An alternative sampling strategy for reducing the simulation time is presented in Appendix A.3. 302
However, this strategy can result in a reduction in the simulation quality. 303

The value of non-integer k-values is not only in the fine tuning of parameters. It also allows 304
direct comparisons between QS and DS. Indeed, under the hypothesis of a stationary training 305
image, using DS with a given max fraction of scanned training image (𝑓) and a threshold (t) of 306
0 is statistically similar to using QS with k=1/𝑓. In both situations, the best candidate is 307
sampled in a fraction 𝑓 of the training image. 308

 309

2.5. Simplifications in the case of a fully informed training image 310

In many applications, spatially exhaustive TIs are available. In such cases, the equations above 311
can be simplified by dropping constant terms from Equation 1, thereby resulting in a simplified 312
form for Equation 13. Here, we take advantage of the ranking to know that a constant term will 313
not affect the result. 314

As in Tahmasebi (2012), in the 𝐿"-norm, we drop the squared value of the searched pattern, 315
namely, 𝑏", from Equation 2. Hence, we can express Equation 4 as follows: 316

Equation 14 317

31.25%31.25%31.25% 6.25%

k=3.2

1 2 3 4 5 6 Rank
Sampling probability

 11

𝜀(𝒂, 𝒃) =/𝑎."

.∈ℐ

− 2/𝑎. . 𝑏.
.∈ℐ

 318

The term 𝑎", which represents the squared value of the candidate pattern in the TI, differs 319
among training image locations and, therefore, cannot be removed. Indeed, the assumption that 320
∑𝑎" is constant is only valid under a strict stationarity hypothesis on the scale of the search 321
pattern. While this hypothesis might be satisfied in some cases (as in Tahmasebi et al., 2012), 322
we do not believe it is generally valid. Via the same approach, Equation 3 can be simplified by 323
removing the constant terms; then, we obtain the following for the 𝐿!-norm: 324

Equation 15 325

𝜀(𝒂, 𝒃) = −//𝛿(#,# . 𝛿*#,#
#∈𝒞.∈ℐ

 326

. 327

2.6. Efficient Implementation 328

An efficient implementation of QS was achieved by 1) performing precomputations, 2) 329
implementing an optimal partial sorting algorithm for selecting candidates and 3) optimal 330
coding and compilation. These are described below. 331

According to Equation 13, ℱb𝟙(𝑇.) ∘ 𝑓#(𝑇.)c is independent of the searched pattern 𝑁(𝑠). 332
Therefore, it is possible to precompute it at the initialization stage for all 𝑖 and 𝑗. This 333
improvement typically reduces the computation time for an MPS simulation by a factor of at 334
least 2. 335

In the QS algorithm, a substantial part of the computation cost is incurred in identifying the 𝑘 336
best candidates in the mismatch map. In the case of non-integer k, the upper limit ⌈𝑘⌉ is used. 337
Identifying the best candidates requires sorting the values of the mismatch map and retaining 338
the candidates in the top 𝑘 ranks. For this, an efficient sorting algorithm is needed. The 339
operation of finding the k best candidates can be implemented with a partial sort, in which only 340
the elements of interest are sorted, while the other elements remain unordered. This results in 341
two sets: 𝔖0 with the 𝑘 smallest elements and 𝔖7 with the largest elements. The partial sort 342
guarantees that 𝑥 ≤ 𝑦	|	(𝑥, 𝑦) ∈ 𝔖0 × 𝔖7. More information about our implementation of this 343
algorithm is available in Appendix A.1. Here, we use a modified vectorized online heap-based 344
partial sort (Appendix A.1). With a complexity of 𝑂(𝑛. ln(𝑘)), it is especially suitable for small 345
values of 𝑘. Using the cache effect, the current implementation yields results that are close to 346
the search of the best value (the smallest value of the array). The main limitation of standard 347
partial sort implementations is that in the case of equal values, either the first or the last element 348
is sampled. Here, we develop an implementation that can uniformly sample a position among 349
similar values with a single scan of the array. This is important because systematically selecting 350
the same position for the same pattern will reduce the conditional probability density function 351
to a unique sample, thereby biasing the simulation. 352

 12

Due to the intensive memory access by repeatedly scanning large training images, interpreted 353
programming languages, such as MATLAB and Python, are inefficient for a QS 354
implementation and, in particular, for a parallelized implementation. We provide a NUMA-355
aware (Blagodurov et al., 2010) and flexible C/C++/OpenMP implementation of QS that is 356
highly optimized. Following the denomination of Mariethoz (2010), we use a path-level 357
parallelization with a waiting strategy, which offers a good trade-off between performance and 358
memory requirements. In addition, two node-level parallelization strategies are available: if 359
many training images are used, a first parallelization is performed over the exploration of the 360
training images; then, each FFT of the algorithm is parallelized using natively parallel FFT 361
libraries. 362

The FFTw library (Frigo and Johnson, 2018) provides a flexible and performant architecture-363
independent framework for computing n-dimensional Fourier transformations. However, an 364
additional speed gain of approximately 20% was measured by using the Intel MKL library (Intel 365
Corporation, 2019) on compatible architectures. We also have a GPU implementation that uses 366
clFFT for compatibility. Many Fourier transforms are sparse and, therefore, can easily be 367
accelerated in n-dimensional cases with “partial FFT” since Fourier transforms of only zeros 368
result in zeros. 369

3. Results 370

3.1. Simulation examples 371

This section presents illustrative examples for continuous and categorical case studies in 2D 372
and in 3D. Additional tests are reported in Appendix 0. The parameters that are used for the 373
simulations of Figure 3 are reported in Table 1. 374

The results show that simulation results are consistent with what is typically observed with 375
state-of-the-art MPS algorithms. While simulations can accurately reproduce TI properties for 376
relatively standard examples with repetitive structures (e.g., MV, Strebelle, and Folds), training 377
images with long-range features (typically larger than the size of the TI) are more difficult to 378
reproduce, such as in the Berea example. For multivariate simulations, the reproduction of the 379
joint distribution is satisfactory, as observed in the scatterplots (Figure 3). More examples are 380
available in Annex A4, in particular the Figure A2 for 2D examples and the Figure A3 for 3D 381
examples. 382

 383

 384

 13

 385
Figure 3 Examples of unconditional continuous and categorical simulations in 2D and 3D and 386
their variograms. The first column shows the training images that were used, the second column 387
one realization, and the third column quantitative quality metrics. MVs v1, v2 and v3 represent 388
a multivariate training image (and the corresponding simulation) using 3 variables. The first 389
two metrics are scatter plots of MV v1 vs. MV v2 of the training image and the simulation, 390
respectively. The third metric represents the reproduction of the variogram for each of MVs v1, 391
v2 and v3. 392

 14

 393

 MVs v1, v2, v3 Strebelle Berea Folds

Source (Mariethoz and
Caers, 2014)

(Strebelle, 2002) Doi:10.6084/m9.figs
hare.1153794

(Mariethoz and
Caers, 2014)

Size of the training
image (px)

490 × 490 250 × 250 100 × 100 × 100 180 × 150 × 120

Size of the
simulation (px)

490 × 490 250	 × 	250 100 × 100 × 100 180 × 150 × 120

Computation time
(s)

1456 54 1665 76270

𝑘 1.2

𝑁 80 125

Table 1 Parameters that were used for the simulations in Figure 3. Times are specified for 394
simulations without parallelization. 395

3.2. Comparison with direct sampling simulations 396

QS simulations are benchmarked against DS using the “Stone” training image (Figure 4). The 397
settings that are used for DS are based on optimal parameters that were obtained via the 398
approach of Baninajar et al. (2019), which uses stochastic optimization to find optimal 399
parameters. In DS, we use a fraction of scanned TI of 𝑓 = 1 to explore the entire training image 400
via the same approach as in QS and we use the 𝐿"-norm as in QS. To avoid the occurrence of 401
verbatim copy, we include 0.1% conditioning data, which are randomly sampled from a rotated 402
version of the training image. The number of neighbors 𝑁 is set to 20 for both DS and QS and 403
the acceptance threshold of DS is set to 0.001. 404

The comparison is based on qualitative (Figure 5) and quantitative (Figure 6) metrics, which 405
include directional and omnidirectional variograms, along with the connectivity function, the 406
Euler characteristic (Renard and Allard, 2013) and cumulants (Dimitrakopoulos, 2010). The 407
connectivity represents the probability for 2 random pixels to be in the same connected 408
component. This metric is suited to detect broken structures. The Euler characteristic represents 409
the number of objects subtracted by the number of holes of the objects, and is particularly 410
adapted to detect noise in the simulations such as salt and pepper. Cumulants are high order 411
statistics and therefore allow considering the relative positions between elements. The results 412
demonstrate that the simulations are of a quality that is comparable to DS. With extreme settings 413
(highest pattern reproduction regardless of the computation time), both algorithms perform 414
similarly, which is reasonable since both are based on sequential simulation and both directly 415
import data from the training image. The extra noise present in the simulation is shown in the 416
Euler characteristic. Furthermore, it demonstrates that the use of a kernel can reduce this noise 417
to get better simulations. 418

 15

With QS, kernel weighting allows fine tuning of the parametrization to improve the results, as 419
shown in Figure 5. In this paper, we use an exponential kernel: 420

Equation 16 421

𝜔𝒍 = 𝑒89‖𝒍‖! 422

where	𝛼 is a kernel parameter and ‖. ‖" the Euclidean distance. The validation metrics of Figure 423
6 show that both QS and DS tend to slightly underestimate the variance and the connectivity. 424
Figure 6 shows that an optimal kernel improves the results for all metrics, with all training 425
image metrics in the 5-95% realization interval, except for the Euler characteristic. 426

 427
Figure 4 Training image that was used for benchmarking and sensitivity analysis. 428

 16

 429

Figure 5 Examples of conditional simulations and their standard deviation over 100 430
realizations that are used in the benchmark between QS and DS. 431

 432

 17

 433
Figure 6 Benchmark between QS (with and without kernel) and DS over 6 metrics Using each 434
time 100 unconditional simulation. 435

3.3. Parameter sensitivity analysis 436

In this section, we perform a sensitivity analysis on the parameters of QS using the training 437
image in Figure 4. Only essential results are reported in this section (Figure 7 and Figure 8); 438
more exhaustive test results are available in Appendix 0 (Figure A 4 and Figure A 5). The two 439
main parameters of QS are the number of neighbors 𝑁 and the number of used candidates 𝑘. 440

Figure 7 (and Appendix 0 Figure A 4) shows that large 𝑁 values and small 𝑘 values improve 441
the simulation performance; however, tend to induce verbatim copy in the simulation. Small 442
values of 𝑁 result in noise with good reproduction of the histogram. 443

 18

 444
Figure 7 Sensitivity analysis on one simulation for the two main parameters of QS using a 445
uniform kernel. 446

𝜔 can be a very powerful tool, typically using the assumption that the closest pixels are more 447
informative than remote pixels. The sensitivity analysis of the kernel value 𝛼 are explored in 448
Figure 8 and Figure A 5. They show that α provides a unique tool for improving the simulation 449
quality. In particular, using a kernel can reduce the noise in simulations, which is clearly visible 450
by comparing the Euler characteristic curves. However, reducing too much the importance of 451
distant pixels results in ignoring them altogether, therefore damaging long-range structures. 452

 453
Figure 8 Sensitivity analysis on the kernel parameter 𝛼, with fixed parameters k=1.5 and N=40. 454
The values of the kernels are shown in colors that correspond to the Euler characteristic lines 455
(red is the training image). 456

 19

3.4. Computational efficiency and scalability 457

In this section, we investigate the scalability of QS with respect to the size of the simulation 458
grid, the size of the training image grid, the number of variables, incomplete training images, 459
and hardware. According to the test results, the code will continue to scale with new-generation 460
hardware. 461

As explained in Section 2.3 and 2.4, the amounts of time that are consumed by the two main 462
operations of QS (finding candidates and sorting them) are independent of the pixel values. 463
Therefore, the training image that is used is not relevant (here, we use simulations that were 464
performed with the TI of Figure 4 and its classified version for categorical cases). Furthermore, 465
the computation time is independent of the parametrization (𝑘	and 𝑁). However, the 466
performance is affected by the type of mismatch function that is used; here, we consider both 467
continuous (Equation 2 and Equation 14) and categorical cases (Equation 3 and Equation 15). 468

We also test our implementation on different types of hardware, as summarized in Table 2. We 469
expect Machine (2) to be faster than Machine (1) for medium-sized problems due to the high 470
memory bandwidth requirement of QS. Machine (3) should also be faster than Machine (1) 471
because it takes advantage of a longer vector computation (512-bit VS. 256-bit instruction set). 472

Name of the machine Machine (1) Machine (2) Machine (3)

CPU -2x Intel(R) Xeon(R) CPU
E5-2680 v2 @ 2.80 GHz

-Xeon Phi, Intel(R) Xeon
Phi (TM) CPU 7210 @ 1.30
GHz

-2x Intel(R) Xeon(R) Gold
6128 Processor @ 3.40 GHz

Memory type - DDR3 - MCDRAM / DDR4 - DDR4

OS, compiler and
compilation flags

Linux, Intel C/C++ compiler 2018 with -xhost

Table 2 Hardware that was used in the experiments 473

Figure 9 plots the execution times on the 3 tested machines for continuous and categorical cases 474
and with training images of various sizes. Since QS has a predictable execution time, the 475
influence of the parameters on the computation time is predictable: linear with respect to the 476
number of variables (Figure 9a, Figure 9b), linear with respect to the size of the simulation grid 477
and following a power function of the size of the training image (Figure 9c). Therefore, via a 478
few tests on a set of simulations, one can predict the computation time for any other setting. 479

Figure 9d shows the scalability of the algorithm when using the path-level parallelization. The 480
algorithm scales well until all physical cores are being used. Machine (3) has a different scaling 481
factor (slope). This suboptimal scaling is attributed to the limited memory bandwidth. Our 482
implementation of QS scales well with an increasing number of threads (Figure 9d), with an 483
efficiency above 80% using all possible threads. The path-level parallelization strategy that was 484
used involves a bottleneck for large number of threads due to the need to wait for neighborhood 485
conflicts to be resolved (Mariethoz 2010). This effect typically appears for large values of 𝑁 or 486

 20

intense parallelization (>50 threads) on small grids. It is assumed that small grids do not require 487
intense parallelization; hence, this problem is irrelevant in most applications. 488

 489
Figure 9 Efficiency of QS with respect to all key parameters. a) and b) are the evolution of the 490
computation time for complete and incomplete training images, respectively, with continuous 491
and categorical variables. c) shows the evolution of the computation time as the size of the 492
training image is varied; the dashed lines indicate that the training image no longer fits in the 493
CPU cache. d) shows the evolution of the computation time as the number of threads is 494
increased. The dashed lines indicate that all physical cores are used. 495

 496

4. Discussion 497

The parameterization of the algorithm (and therefore simulation quality) has almost no impact 498
on the computational cost, which is an advantage. Indeed, many MPS algorithms impose trade-499

 21

offs between the computation time and the parameters that control the simulation quality, 500
thereby imposing difficult choices for users. QS is comparatively simpler to set up in this 501
regard. In practice, a satisfactory parameterization strategy is often to start with a small 𝑘 value 502
(say 1.2) and a large 𝑁 value (> 50) and then gradually change these values to increase the 503
variability if necessary (Figure 6 and Figure A 4). 504

QS is adapted for simulating continuous variables using the 𝐿"-norm. However, a limitation is 505
that the 𝐿'-norm does not have a decomposition that satisfies Equation 1 and, therefore, cannot 506
be used with QS. Another limitation is that for categorical variables, each class requires a 507
separate FFT, which incurs an additional computational cost. This renders QS less 508
computationally efficient for categorical variables (if there are more than 2 categories) than for 509
continuous variables. For accelerated simulation of categorical variables, a possible alternative 510
to reduce the number of required operations is presented in Appendix A.2. The strategy is to 511
use encoded variables, which are decoded in the mismatch map. While this alternative yields 512
significant computational gains, it does not allow the use of a kernel weighting and is prone to 513
numerical precision issues. 514

Combining multiple continuous and categorical variables can be challenging for MPS 515
approaches. Several strategies have been developed to overcome this limitation, using either a 516
different distance threshold for each variable, or a linear combination of the errors. Here we use 517
the second approach, taking advantage of the linearity of the Fourier transform. The relative 518
importance can be set in 𝑓. and 𝑔. functions in Equation 1. However, it is computationally 519
advantageous to use the kernel weights in order to have standard functions for each metric. 520
Setting such variable-dependent parameters is complex. Therefore in order to find optimal 521
parameters, stochastic optimization approaches (such as Baninajar et al., 2019) are applied to 522
QS. The computational efficiency of QS is generally advantageous compared to other pixel-523
based algorithms: for example, in our tests it performed faster than DS. QS requires more 524
memory than DS, especially for applications with categorical variables with many classes and 525
with a path-level parallelization. However, the memory requirement is much lower compared 526
to MPS algorithms that are based on a pattern database, such as SNESIM. 527

There may be cases where QS slower than DS, in particular when using a large training image 528
that is highly repetitive. In such cases, using DS can be advantageous as it must scan only a 529
very small part of the training image. For scenarios of this type, it is possible to adapt QS such 530
that only a small subset of the training image is used; this approach is described in Appendix 531
A3. In the cases of highly repetitive training images, this observation remains true also for 532
SNESIM and IMPALA. 533

Furthermore, QS is designed to efficiently handle large and complex training images (up to 10 534
million pixels), with high variability of patterns and few repetitions. Larger training images 535
may be computationally burdensome, which could be alleviated by using a GPUs 536
implementation allowing gains up to two orders of magnitude. 537

QS can be extended to handle the rotation and scaling of patterns by applying a constant rotation 538
or affinity transformation to the searched patterns (Strebelle, 2002). However, the use rotation-539
invariant distances and affinity-invariant distances (as in Mariethoz and Kelly, 2011), while 540
possible in theory, would substantially increase the computation time. Mean-invariant distances 541

 22

can be implemented by simply adapting the distance formulation in QS. All these advanced 542
features are outside the scope of this paper. 543

5. Conclusions 544

QS is an alternative approach for performing 𝑛-dimensional pixel-based simulations, which 545
uses an 𝐿"-distance for continuous cases and an 𝐿!-distance for categorical data. The framework 546
is highly flexible and allows other metrics to be used. The simple parameterization of QS 547
renders it easy to use for nonexpert users. Compared to other pixel-based approaches, QS has 548
the advantage of generating realizations in constant and predictable time for a specified training 549
image size. Using the quantile as a quality criterion naturally reduces the small-scale noise 550
compared to DS. In terms of parallelization, the QS code scales well and can adapt to new 551
architectures due to the use of external highly optimized libraries. 552

The QS framework provides a complete and explicit mismatch map, which can be used to 553
formulate problem-specific rules for sampling or even solutions that take the complete 554
conditional probability density function into account, for example, such as a narrowness 555
criterion for the conditional pdf of the simulated value (Gravey et al., 2019; Rasera et al., 2019), 556
or to use the mismatch map to infer the optimal parameters of the algorithm. 557

6. Code availability 558

The source code and documentation of the QS simulation algorithm are available as part of the 559
G2S package at: https://github.com/GAIA-UNIL/G2S under GPLv3 license. Or permanently 560
at https://doi.org/10.5281/zenodo.3546338 561

Platform: Linux / macOS / Windows 10 Language: C/C++ 562

Interfacing functions in MATLAB, Python3, R 563

A package is available with our unbiased partial sort at: 564
https://github.com/mgravey/randomKmin-max 565

7. Author contribution 566

MG proposed the idea, implemented and optimized the QS approach and wrote the manuscript. 567
GM provided supervision, methodological insights and contributed to the writing of the 568
manuscript. 569

 23

8. Appendices 570

A.1. Partial sorting with random sampling 571

Standard partial sorting algorithms resolve tie ranks deterministically, which does not accord 572
with the objective of stochastic simulation with QS, where variability is sought. Here, we 573
propose an online heap-based partial sort. It is realized with a single scan of the array of data 574
using a heap to store previously found values. This approach is especially suitable when we are 575
interested in a small fraction of the entire array. 576

Random positions of the k best values are ensured by swapping similar values. If 𝑘 = 1, the 577
saved value is switched with a smaller value each time it is encountered. If an equal value is 578
scanned, a counter 𝑐 is increased for this specific value and a probability of 1/𝑐	of switching to 579
the new position is applied. If 𝑘 > 1, the same strategy is extended by carrying over the counter 580
𝑐. 581

This partial sort outperforms random exploration of the mismatch map. However, it is difficult 582
to implement efficiently on GPUs. A solution is still possible for shared-memory GPUs by 583
performing the partial sort on the CPU. This is currently available in the proposed 584
implementation. 585

𝑘: the number of values of interest 586
𝐷: the input data array 587
𝑆: the array with the 𝑘 smallest values (sorted) 588
𝑆𝑝: the array with the positions that are associated with the values of 𝑆 589
 590
1. for each value 𝑣 of 𝐷 591
2. if 𝑣 is smaller than the smallest value of 𝑆 592
3. search in 𝑆 for the position 𝑝 at which to insert 𝑣 and insert it 593
4. if 𝑝	 = 	𝑘 // last position of the array 594
5. reinitialize the counter 𝑐 to 0 595
6. insert 𝑣 at the last position 596
7. else 597
8. increment 𝑐 by one 598
9. swap the last position with another of the same value 599
10. insert the value at the expected position 𝑝 600
11. end 601
12. else if 𝑣 is equal to the smallest value of 𝑆 602
13. increment 𝑐 by one 603
14. change the position of 𝑣 to one of the 𝑛 positions of equal value with a probability of 604

𝑛/(𝑛 + 𝑐) 605
15. end 606
16. end 607

 24

A.2. Encoded categorical variables 608

To handle categorical variables, a standard approach is to consider each category as an 609
independent variable. This requires as many FFTs as classes. This solution renders it expensive 610
to use QS in cases with multiple categories. 611

An alternative approach is to encode the categories and to decode the mismatch from the cross-612
correlation. It has the advantage of only requiring only a single cross-correlation for each 613
simulated pattern. 614

Here, we propose encoding the categories as powers of the number of neighbors, such that their 615
product is equal to one if the class matches. In all other cases, the value is smaller than one or 616
larger than the number of neighbors. 617

𝜀&"(𝑎, 𝑏) = 𝜓;(𝑎 − 𝑏)! ∝ −(𝑁 + 1)8;(()	. (𝑁 + 1)8;(*)= 618

where 𝑁 is the largest number of neighbors that can be considered and 𝑝(𝑐)	is an arbitrary 619
function that maps index classes of 𝒞, 𝑐 ∈ 𝒞. 620

In this scenario, in Equation 1 this encoded distance 𝐿<! can be decomposed into the following 621
series of functions 𝑓# 	and 𝑔# 	: 622

 𝑓!: 𝑥 → −(𝑁 + 1);(,) 623

 𝑔!: 𝑥 → (𝑁 + 1)8;(,) 624

and the decoding function is 625

𝜓(𝑥) = ⌊𝑥⌋	mod	𝑁 626

Table A 1 describes this process for 3 classes, namely, 𝑎, 𝑏, and	𝑐, and a maximum of 9 627
neighbors. Then, the error can be easily decoded by removing decimals and dozens. 628

Products 𝑔!(𝑎) = 1 𝑔!(𝑏) = 0.1 𝑔!(𝑐) = 0.01

𝑓!(𝑎) = 1 1 0.1 0.01

𝑓!(𝑏) = 10 10 1 0.1

𝑓!(𝑐) = 100 100 10 1

Table A 1 Example of encoding for 3 classes and 9 neighbors and their associated products 629

Consider the following combination: 630

					𝑓!(𝑎,					𝑏,						𝑎,						𝑐,						𝑐,						𝑏,						𝑎,						𝑎,						𝑏)	631

× 𝑔!(𝑐,					𝑏,						𝑏,						𝑎,						𝑎,						𝑏,						𝑐,						𝑎,						𝑎) 632

−(0.01,						1,			0.1, 100, 100,						1, 0.01,					1,				10) 			= −213.12 633

The decoding ⌊−213.12⌋	mod	10 = −213	mod	10 = −3 yields 3 matches (in green). 634

 25

This encoding strategy provides the possibility of drastically reducing the number of FFT 635
computations. However, the decoding phase is not always implementable if a nonuniform 636
matrix 𝜔 is used. Finally, the test results show that the method suffers quickly from numerical 637
precision issues, especially with many classes. 638

A.3. Sampling strategy using training image splitting 639

The principle of considering a fixed number of candidates can be extended by instead of taking 640
the 𝑘1= best candidate, sampling the best candidate in only a portion '

>
, of the TI. For instance, 641

as an alternative to considering 𝑘 = 4, this strategy searches for the best candidate in one fourth 642
of the image. This is more computationally efficient. However, if all the considered candidates 643
are contiguous (by splitting the TI in 𝑘 chunks), this approximation is only valid if the TI is 644
completely stationary and all 𝑘 equal subdivisions of the TI are statistically identical. In 645
practice, real-world continuous variables are often nonstationary. However, in categorical 646
cases, especially in binary ones, the number of pattern replicates is higher and this sampling 647
strategy could be interesting. 648

The results of applying this strategy are presented in Table A 2 and Figure A 1. The 649
experimental results demonstrate that the partial exploration approach that is provided by 650
splitting substantially accelerates the processing time. However, Figure A 1 shows that the 651
approach has clear limitations when dealing with training images with complex and 652

 26

nonrepetitive patterns. The absence of local verbatim copy can explain the poor-quality 653
simulation results. 654

 655

 656
Figure A 1 Comparison of QS using the entire training image and using training image 657
splitting. In these examples, the training image is split into two images over each dimension. 658
The original training images are presented in Figure 2. 659

 660

 27

Training image Using all chunks Using one random
chunk

Speedup

Berea 11 052 s 1 452 s 7.61x

Folds 35 211 s 4 063 s 8.66x

Strebelle 7.95 s 3.16 s 2.51x

Table A 2 Computation times and speedups for the full and partial exploration approaches. 661
Times are specified for simulations with path level parallelization. 662

A.4. Additional results 663

 664
Figure A 2 Examples of 2D simulations: the first 3 rows represent 3 variables of a single 665
simulation. Parameters available in Table A 3 666

667

 28

 668

 669

 670
Figure A 3 Examples of 3D simulation results. Parameters available in Table A 4 671

 29

 Herten Stone

Source (Mariethoz and
Caers, 2014)

(Mariethoz and
Caers, 2014)

Size of the training
image (px)

716 × 350 200 × 200

Size of the
Simulation (px)

716 × 350 200 × 200

Computation time (s) 1133 21

𝑘 1.2

𝑁 80

Table A 3 Simulation parameters for Figure A 2. Times are specified for simulations without 672
parallelization. 673

 674

 Concrete 1 Concrete 2 F42A Folds continues

Source (Meerschman et al., 2013) (Meerschman et al., 2013) Doi:10.6084/m9.fig
share.1189259

(Mariethoz and
Caers, 2014)

Size of the
training image
(px)

150	 × 150	 × 150 100	 × 90	 × 80 100	 × 100	 × 100 180	 × 150	 × 120

Size of the
simulation (px)

100	 × 100	 × 100 100	 × 100	 × 100 100	 × 100	 × 100 180	 × 150	 × 120

Computation
time (s)

11436 1416 1638 7637

𝑘 1.2

𝑁 50 125

Table A 4 Simulation parameters for Figure A 3. Times are specified for simulations without 675
parallelization. 676

 30

 677
Figure A 4 Complete sensitivity analysis, with one simulation for the two main parameters of 678
QS. 679

 680

Figure A 5 Complete sensitivity analysis, with one simulation for each kernel with k=1.5 and 681
N=40 682

 31

A.5. Mathematical derivation 683

The convolution theorem (Stockham, 1966; Krant, 1999; Li et al., 2019) can be easily extended 684
to cross-correlation(Bracewell, 2000). The flowing derivation shows the validity of the theorem 685
for any function f and g. 686

ℱ{𝑓 ⋆ 𝑔} = �(𝑓 ⋆ 𝑔)(𝑡)𝑒.1.@𝑑𝑡 = ��𝑓(𝑠)������𝑔(𝑠 + 𝑡)𝑑𝑠 𝑒.1.@𝑑𝑡687

= ��𝑓(𝑠)������𝑒.(80).@𝑑𝑠. 𝑔(𝑠 + 𝑡)𝑑𝑠 𝑒.(1A0).@𝑑𝑡688

= ��𝑓(𝑠)𝑒B(0).@�������������𝑑𝑠. 𝑔(𝑠 + 𝑡)𝑑𝑠 𝑒.(1A0).@𝑑𝑡 = ℱ{𝑓}������. ℱ{𝑓} 689

The discretization of this property can be obtained using two piecewise continuous functions 690
associated to each discrete representation. 691

9. Acknowledgments 692

This research was funded by the Swiss National Science Foundation, grant number 693
200021_162882. Thanks to Intel for allowing us to conduct numerical experiments on their 694
latest hardware using the AI DevCloud. Thanks to Luiz Gustavo Rasera for his comments, 695
which greatly improved the manuscript; to Dr. Ehsanollah Baninajar for running his 696
optimization method, which improved the reliability of the benchmarks; and to all the early 697
users of QS for their useful feedback and their patience in waiting for this manuscript. A 698
particular thanks to Prof. Ute Mueller and Prof. Thomas Mejer Hansen that accepted to review 699
the paper and provided constructive comments which significantly improved the quality of the 700
paper. 701

10. References 702

Arpat, G. B. and Caers, J.: Conditional Simulation with Patterns, Mathematical Geology, 703
39(2), 177–203, doi:10.1007/s11004-006-9075-3, 2007. 704

Bancheri, M., Serafin, F., Bottazzi, M., Abera, W., Formetta, G. and Rigon, R.: The design, 705
deployment, and testing of kriging models in GEOframe with SIK-0.9.8, Geosci. Model Dev., 706
11(6), 2189–2207, doi:10.5194/gmd-11-2189-2018, 2018. 707

Baninajar, E., Sharghi, Y. & Mariethoz, G.: MPS-APO: a rapid and automatic parameter 708
optimizer for multiple-point geostatistics, Stoch Environ Res Risk Assess, 33: 1969–1989, 709
doi:10.1007/s00477-019-01742-7, 2019 710

Barfod, A. A. S., Vilhelmsen, T. N., Jørgensen, F., Christiansen, A. V., Høyer, A.-S., 711
Straubhaar, J. and Møller, I.: Contributions to uncertainty related to hydrostratigraphic 712
modeling using multiple-point statistics, Hydrol. Earth Syst. Sci., 22(10), 5485–5508, 713
doi:10.5194/hess-22-5485-2018, 2018. 714

 32

Blagodurov, S., Fedorova, A., Zhuravlev, S., & Kamali, A.: A case for NUMA-aware 715
contention management on multicore systems. In 2010 19th International Conference on 716
Parallel Architectures and Compilation Techniques (PACT) (pp. 557-558), IEEE, 2010. 717

Bracewell, R. N.: The fourier transform and its applications. Boston: McGraw-hill, 2000 718

Cooley, J. W., computation, J. T. M. O.1965: An algorithm for the machine calculation of 719
complex Fourier series, JSTOR, 19(90), 297, doi:10.2307/2003354, 1965. 720

Dimitrakopoulos, R., Mustapha, H. & Gloaguen, E.: High-order Statistics of Spatial Random 721
Fields: Exploring Spatial Cumulants for Modeling Complex Non-Gaussian and Non-linear 722
Phenomena. Math Geosci 42, 65, doi: 10.1007/s11004-009-9258-9, 2010 723

Dong, H. and Blunt, M. J.: Pore-network extraction from micro-computerized-tomography 724
images, Phys. Rev. E, 80(3), 84–11, doi:10.1103/PhysRevE.80.036307, 2009. 725

Frigo, M. and Johnson, S. G.: FFTW, [online] Available from: http://www.fftw.org/fftw3.pdf, 726
2018. 727

Gauss, C. F.: Demonstratio nova theorematis omnem functionem algebraicam. 1799. 728

Gómez-Hernández, J. J. and Journel, A. G.: Joint Sequential Simulation of MultiGaussian 729
Fields, in Geostatistics Tróia ’92, vol. 5, pp. 85–94, Springer, Dordrecht, Dordrecht. 1993. 730

Graeler, B., Pebesma, E. and Heuvelink, G.: Spatio-Temporal Interpolation using gstat, R 731
Journal, 8(1), 204–218, 2016. 732

Gravey, M., Rasera, L. G. and Mariethoz, G.: Analogue-based colorization of remote sensing 733
images using textural information, ISPRS Journal of Photogrammetry and Remote Sensing, 734
147, 242–254, doi:10.1016/j.isprsjprs.2018.11.003, 2019. 735

Guardiano, F. B. and Srivastava, R. M.: Multivariate Geostatistics: Beyond Bivariate 736
Moments, in Geostatistics Tróia ’92, vol. 5, pp. 133–144, Springer, Dordrecht, Dordrecht. 737
1993. 738

Hamming, R. W.: Error detecting and error correcting codes, edited by The Bell system 739
technical, The Bell system technical, 29(2), 147–160, doi:10.1002/j.1538-740
7305.1950.tb00463.x, 1950. 741

Hoffimann, J., Scheidt, C., Barfod, A., Caers, J.2017: Stochastic simulation by image quilting 742
of process-based geological models, Elsevier, doi:10.1016/j.cageo.2017.05.012, 2017. 743

Honarkhah, M. and Caers, J.: Stochastic Simulation of Patterns Using Distance-Based Pattern 744
Modeling, Math Geosci, 42(5), 487–517, doi:10.1007/s11004-010-9276-7, 2010. 745

Intel Corporation: Intel® Math Kernel Library Reference Manual - C, 1–2606, 2019. 746

Jha, S. K., Mariethoz, G., Evans, J., McCabe, M. F. and Sharma, A.: A space and time scale-747
dependent nonlinear geostatistical approach for downscaling daily precipitation and 748
temperature, Water Resources Research, 51(8), 6244–6261, doi:10.1002/2014WR016729, 749
2015. 750

 33

John Paul Shen, M. H. L.: Modern Processor Design: Fundamentals of Superscalar 751
Processors, 1–658, 2018. 752

Krantz, S. G.: A panorama of harmonic analysis. Washington, D.C.: Mathematical 753
Association of America, 1999 754

Latombe, G., Burke, A., Vrac, M., Levavasseur, G., Dumas, C., Kageyama, M. and Ramstein, 755
G.: Comparison of spatial downscaling methods of general circulation model results to study 756
climate variability during the Last Glacial Maximum, Geosci. Model Dev., 11(7), 2563–2579, 757
doi:10.5194/gmd-11-2563-2018, 2018. 758

Li, B., & Babu, G. J.: A graduate course on statistical inference. New York: Springer, 2019 759

Li, J. and Heap, A. D.: Spatial interpolation methods applied in the environmental sciences: A 760
review, Environ Model Softw, 53(C), 173–189, doi:10.1016/j.envsoft.2013.12.008, 2014. 761

Li, X., Mariethoz, G., Lu, D. and Linde, N.: Patch‐based iterative conditional geostatistical 762
simulation using graph cuts, Water Resources Research, 52(8), 6297–6320, 763
doi:10.1002/2015WR018378, 2016. 764

Mahmud, K., Mariethoz, G., Caers, J., Tahmasebi, P. and Baker, A.: Simulation of Earth 765
textures by conditional image quilting, Water Resources Research, 50(4), 3088–3107, 766
doi:10.1002/2013WR015069, 2014. 767

Mariethoz, G.: A general parallelization strategy for random path based geostatistical 768
simulation methods, Computers and Geosciences, 36(7), 953–958, 769
doi:10.1016/j.cageo.2009.11.001, 2010. 770

Mariethoz, G. and Caers, J.: Multiple-point geostatistics: stochastic modeling with training 771
images, Wiley. 2014. 772

Mariethoz, G. and Kelly, B. F. J.: Modeling complex geological structures with elementary 773
training images and transform-invariant distances, Water Resources Research, 47(7), 959–14, 774
doi:10.1029/2011WR010412, 2011. 775

Mariethoz, G. and Lefebvre, S.: Bridges between multiple-point geostatistics and texture 776
synthesis_ Review and guidelines for future research, Computers and Geosciences, 66(C), 777
66–80, doi:10.1016/j.cageo.2014.01.001, 2014. 778

Mariethoz, G., Renard, P. and Straubhaar, J.: The Direct Sampling method to perform 779
multiple-point geostatistical simulations, Water Resources Research, 46(11), 780
doi:10.1029/2008WR007621, 2010. 781

Matheron, G.: The intrinsic random functions and their applications, Advances in Applied 782
Probability, 5(3), 439–468, doi:10.2307/1425829, 1973. 783

Meerschman, E., Pirot, G., Mariethoz, G., Straubhaar, J., Van Meirvenne, M. and Renard, P.: 784
A practical guide to performing multiple-point statistical simulations with the Direct 785
Sampling algorithm, Computers and Geosciences, 52(C), 307–324, 786
doi:10.1016/j.cageo.2012.09.019, 2013. 787

 34

Oriani, F., Ohana-Levi, N., Marra, F., Straubhaar, J., Mariethoz, G., Renard, P., Karnieli, A. 788
and Morin, E.: Simulating Small-Scale Rainfall Fields Conditioned by Weather State and 789
Elevation: A Data-Driven Approach Based on Rainfall Radar Images, Water Resources 790
Research, 15(4), 265, doi:10.1002/2017WR020876, 2017. 791

Rasera L.G., Gravey M., Lane S. N., Mariethoz G. Downscaling images with trends using 792
multiple-point statistics simulation: An application to digital elevation models, Mathematical 793
Geosciences, 1– 43, doi:10.1007/s11004-019-09818-4, 2019 794

Renard, P. and Allard, D.: Connectivity metrics for subsurface flow and transport, Advances 795
in Water Resources, 51(C), 168–196, doi:10.1016/j.advwatres.2011.12.001, 2013. 796

Rodríguez, P.: A radix-2 FFT algorithm for modern single instruction multiple data (SIMD) 797
architectures, doi:10.1109/ICASSP.2002.5745335, 2002. 798

Shannon: A mathematical theory of communication, Wiley Online Library, 1948. 799

Straubhaar, J., Renard, P., Mariethoz, G., Froidevaux, R. and Besson, O.: An Improved 800
Parallel Multiple-point Algorithm Using a List Approach, Math Geosci, 43(3), 305–328, 801
doi:10.1007/s11004-011-9328-7, 2011. 802

Strebelle, S.: Conditional simulation of complex geological structures using multiple-point 803
statistics, Mathematical Geology, 34(1), 1–21, doi:10.1023/A:1014009426274, 2002. 804

Strebelle, S., Payrazyan, K. and Caers, J.: Modeling of a Deepwater Turbidite Reservoir 805
Conditional to Seismic Data Using Multiple-Point Geostatistics, Society of Petroleum 806
Engineers. 2002. 807

Stockham, T. G., Jr.: High-speed convolution and correlation. Proceedings of the April 26-28, 808
1966, Spring Joint Computer Conference on XX - AFIPS ’66 (Spring). Presented at the the 809
April 26-28, 1966, Spring joint computer conference, doi:10.1145/1464182.1464209, 1966 810

Tadić, J. M., Qiu, X., Miller, S. and Michalak, A. M.: Spatio-temporal approach to moving 811
window block kriging of satellite data v1.0, Geosci. Model Dev., 10(2), 709–720, 812
doi:10.5194/gmd-10-709-2017, 2017. 813

Tadić, J. M., Qiu, X., Yadav, V. and Michalak, A. M.: Mapping of satellite Earth observations 814
using moving window block kriging, Geosci. Model Dev., 8(10), 3311–3319, 815
doi:10.5194/gmd-8-3311-2015, 2015. 816

Tahmasebi, P.: Structural Adjustment for Accurate Conditioning in Large-Scale Subsurface 817
Systems, Advances in Water Resources, 1–52, doi:10.1016/j.advwatres.2017.01.009, 2017. 818

Tahmasebi, P., Sahimi, M., Mariethoz, G. and Hezarkhani, A.: Accelerating geostatistical 819
simulations using graphics processing units (GPU), Computers and Geosciences, 46(C), 51–820
59, doi:10.1016/j.cageo.2012.03.028, 2012. 821

Vannametee, E., Babel, L. V., Hendriks, M. R., Schuur J.: Semi-automated mapping of 822
landforms using multiple point geostatistics, Elsevier, doi:10.1016/j.geomorph.2014.05.032, 823
2014. 824

 35

Wojcik, R., McLaughlin, D., on, A. K. I. T.2009: Conditioning stochastic rainfall replicates 825
on remote sensing data, doi:10.1109/TGRS.2009.2016413, 2009. 826

Yin, G., Mariethoz, G. and McCabe, M.: Gap-Filling of Landsat 7 Imagery Using the Direct 827
Sampling Method, Remote Sensing, 9(1), 12, doi:10.3390/rs9010012, 2017. 828

