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Highlights 7 

• A new approach is proposed for pixel-based multiple-point geostatistics simulation. 8 
• The method is flexible and straightforward to parametrize. 9 
• It natively handles continuous and multivariate simulations. 10 
• High computational performance with predictable simulation times. 11 
• A free and open-source implementation is provided. 12 

Abstract 13 

Multiple-point geostatistics enable the realistic simulation of complex spatial structures by 14 
inferring statistics from a training image. These methods are typically computationally 15 
expensive and require complex algorithmic parametrizations. The approach that is presented in 16 
this paper is easier to use than existing algorithms, as it requires few independent algorithmic 17 
parameters. It is natively designed for handling continuous variables, and quickly implemented 18 
by capitalizing on standard libraries. The algorithm can handle incomplete training images of 19 
any dimensionality, with categorical or/and continuous variables, and stationarity is not 20 
explicitly required. It is possible to perform unconditional or conditional simulations, even with 21 
exhaustively informed covariates. The method provides new degrees of freedom by allowing 22 
kernel weighting for pattern matching. Computationally, it is adapted to modern architectures 23 
and runs in constant time. The approach is benchmarked against a state-of-the-art method. An 24 
efficient open-source implementation of the algorithm is released and can be found here 25 
(https://github.com/GAIA-UNIL/G2S), to promote reuse and further evolution.  26 

Keywords 27 

Multiple-point statistics, stochastic simulation, continuous variable, training image, cross-28 
correlation, Fourier transform. 29 

1. Introduction 30 

Geostatistics is used widely to generate stochastic random fields for modeling and 31 
characterizing spatial phenomena such as Earth surface features and geological structures. 32 
Commonly used methods, such as the sequential Gaussian simulation (Gómez-Hernández and 33 
Journel, 1993) and turning bands algorithms (Matheron, 1973), are based on kriging ( e.g., 34 
Graeler et al., 2016; Li and Heap, 2014; Tadić et al., 2017; 2015). This family of approaches 35 
implies spatial relations using exclusively pairs of points and expresses these relations using 36 
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covariance functions. In the last two decades, multiple point statistics (MPS) emerged as a 37 
method for representing more complex structures using high-order nonparametric statistics 38 
(Guardiano and Srivastava, 1993). To do so, MPS algorithms rely on training images, which 39 
are images with similar characteristics to the modeled area. Over the last decade, MPS has been 40 
used for stochastic simulation of random fields in a variety of domains such as geological 41 
modeling (e.g., Barfod et al., 2018; Strebelle et al., 2002), remote sensing data processing (e.g., 42 
Gravey et al., 2019; Yin et al., 2017), stochastic weather generation (e.g., Oriani et al., 2017; 43 
Wojcik et al., 2009), geomorphological classification (e.g., Vannametee et al., 2014) and 44 
climate model downscaling (a domain that has typically been the realm of kriging-based 45 
methods ( e.g., Bancheri et al., 2018; Jha et al., 2015; Latombe et al., 2018)). 46 

In the world of MPS simulations, one can distinguish two types of approaches. The first 47 
category is the patch-based methods, where complete patches of the training image are imported 48 
into the simulation. This category includes methods such as SIMPAT (Arpat and Caers, 2007) 49 
and DISPAT (Honarkhah and Caers, 2010), which are based on building databases of patterns, 50 
and image quilting (Mahmud et al., 2014), which uses an overlap area to identify patch 51 
candidates, which are subsequently assembled using an optimal cut. CCSIM (Tahmasebi et al., 52 
2012) uses cross-correlation to rapidly identify optimal candidates. More recently, Li (2016) 53 
proposed a solution that uses graph-cuts to find an optimal cut between patches, which has the 54 
advantage of operating easily and efficiently independently of the dimensionality of the 55 
problem. Tahmasebi (2017) propose as a solution that is based on “warping” in which the new 56 
patch is distorted to match the previously simulated areas. For a multivariate simulation with 57 
an informed variable, Hoffimann (2017) presented an approach for selecting a good candidate 58 
based on the mismatch of the primary variable, and on the mismatch rank of the candidate 59 
patches for auxiliary variables. Although patch-based approaches are recognized to be fast, they 60 
are typically difficult to use in the presence of dense conditioning data. Furthermore, patch-61 
based approaches often suffer from a lack of variability due to the pasting of large areas of the 62 
training image, which is a phenomenon that is called verbatim copy. Verbatim copy (Mariethoz 63 
and Caers, 2014) refers to the phenomenon whereby the neighbor of a pixel in the simulation 64 
is the neighbor in the training image. This results in large parts of the simulation that are 65 
identical to the training image. 66 

The second category of MPS simulation algorithms consists of pixel-based algorithms, which 67 
import a single pixel at the time instead of full patches. These methods are typically slower than 68 
patch-based methods. However, they do not require a procedure for the fusion of patches, such 69 
as an optimal cut, and they allow more flexibility in handling conditioning data. Furthermore, 70 
in contrast to patch-based methods, pixel-based approaches rarely produce artifacts when 71 
dealing with complex structures. The first pixel-based MPS simulation algorithm was 72 
ENESIM, which was proposed by Guardiano and Srivastava, 1993, where for a given 73 
categorical neighborhood – usually small – all possible matches in the training image are 74 
searched. The conditional distribution of the pixel to be simulated is estimated based on all 75 
matches, from which a value is sampled. This approach could originally handle only a few 76 
neighbors and a relatively small training image; otherwise, the computational cost would 77 
become prohibitive and the number of samples insufficient for estimating the conditional 78 
distribution. Inspired by research in computer graphics, where similar techniques are developed 79 
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for texture synthesis (Mariethoz and Lefebvre, 2014), an important advance was the 80 
development of SNESIM (Strebelle, 2002), which proposes storing in advance all possible 81 
conditional distributions in a tree structure and using a multigrid simulation path to handle large 82 
structures. With IMPALA, Straubhaar (2011) proposed reducing the memory cost by storing 83 
information in lists rather than in trees. Another approach is direct sampling (DS) (Mariethoz 84 
et al., 2010), where the estimation and the sampling of the conditional probability distribution 85 
are bypassed by sampling directly in the training image, which incurs a very low memory cost. 86 
DS enabled the first use of pixel-based simulations with continuous variables. DS can use any 87 
distance formulation between two patterns; hence, it is well suited for handling various types 88 
of variables and multivariate simulations. 89 

In addition to its advantages, DS has several shortcomings: DS requires a threshold – which is 90 
specified by the user – that enables the algorithm to differentiate good candidate pixels in the 91 
training image from bad ones based on a predefined distance function. This threshold can be 92 
highly sensitive and difficult to determine and often dramatically affects the computation time. 93 
This results in unpredictable computation times, as demonstrated by Meerschman (2013). DS 94 
is based on the strategy of randomly searching the training image until a good candidate is 95 
identified (Shannon, 1948). This strategy is an advantage of DS; however, it can also be seen 96 
as a weakness in the context of modern computer architectures. Indeed, random memory access 97 
and high conditionality can cause 1) suboptimal use of the instruction pipeline, 2) poor memory 98 
prefetch, 3) substantial reduction of the useful memory bandwidth and 4) impossibility of using 99 
vectorization ( Paul Shen, 2018). While the first two problems can be addressed with modern 100 
compilers and pseudorandom sequences, the last two are inherent to the current memory and 101 
CPU construction. 102 

This paper presents a new and flexible pixel-based simulation approach, namely, 103 
QuickSampling (QS), which makes efficient use of modern hardware. Our method takes 104 
advantage of the possibility of decomposing the standard distance metrics that are used in MPS 105 
(𝐿!, 𝐿") as sums of cross-correlations. As a result, we can use fast Fourier transforms (FFTs) to 106 
quickly compute mismatch maps. To rapidly select candidate patterns in the mismatch maps, 107 
we use an optimized partial sorting algorithm. A free, open-source and flexible implementation 108 
of QS is available, which is interfaced with most common programming languages (C/C++, 109 
MATLAB, R, and Python 3). 110 

The remainder of this paper is structured as follows: Section 2 presents the proposed algorithm 111 
with an introduction to the general method of sequential simulation, the mismatch measurement 112 
using FFTs and the sampling approach of using partial sorting followed by methodological and 113 
implementation optimizations. Section 3 evaluates the approach in terms of quantitative and 114 
qualitative metrics via simulations and conducts benchmark tests against DS, which is the only 115 
other available approach that can handle continuous pixel-based simulations. Section 4 116 
discusses the strengths and weaknesses of QS and provides guidelines. Finally, guidelines and 117 
the conclusions of this work are presented in Section 5. 118 
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2. Methodology and Implementation 119 

2.1. Pixel-based sequential simulation 120 

We recall the main structure of pixel-based MPS simulation algorithms (Mariethoz and Caers, 121 
2014, p.156), which is summarized and adapted for QS in Pseudocode 1. The key difference 122 
between existing approaches is in lines 3 and 4 of Pseudocode 1, when candidate patterns are 123 
selected. This task is the most time-consuming in many MPS algorithms and we focus only on 124 
computing it in a way that reduces its cost and minimizes the parameterization. 125 

 126 

Pseudocode 1: QS Algorithm 127 

 128 

Inputs: 129 

𝑇 the training images 130 

𝑆 the simulation grid, including the conditioning data 131 

𝑃 the simulation path 132 

The choice of pattern metric 133 

 134 

1. For each unsimulated pixel 𝑥 following the path 𝑃: 135 
2. Find the neighborhood 𝑁(𝑥) in 𝑆 that contains all previously simulated or conditioning 136 

nodes in a specified radius 137 
3. Compute the mismatch map between 𝑇 and 𝑁(𝑥): Section 2.3 138 
4. Select a good candidate using quantile sorting over the mismatch map: Section 2.4  139 
5. Assign the value of the selected candidate to 𝑥 in 𝑆 140 
6. End 141 

 142 

2.2.  Decomposition of common mismatch metrics as sums of products 143 

Distance-based MPS approaches are based on pattern matching (Mariethoz and Lefebvre, 144 
2014). Here, we rely on the observation that many common matching metrics can be expressed 145 
as weighted sums of the pixelwise mismatch	𝜀. This section explores the pixelwise errors for a 146 
single variable and for multiple variables. For a single variable, the mismatch metric 𝜀 between 147 
two pixels is the distance between two scalars or two classes. In the case of many variables, it 148 
is a distance between two vectors that are composed by scalars, by classes, or by a combination 149 
of the two. Here, we focus on distance metrics that can be expressed in the following form:  150 

Equation 1 151 
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𝜀(𝑎, 𝑏) ∝/𝑓#(𝑎). 𝑔#(𝑏)
#∈𝒥

 152 

where 𝑎 and 𝑏 represent the values of two univariate pixels and 𝑓# 	and 𝑔# are functions that 153 
depend on the chosen metric. 𝒥 is defined by the user depending on the metric used. Here, we 154 
use the proportion symbol because we are interested in relative metrics rather than absolute 155 
metrics, namely, the objective is to rank the candidate patterns. We show below that many of 156 
the common metrics or distances that are used in MPS can be expressed as Equation 1.  157 

For the simulation of continuous variables, the most commonly used mismatch metric is the 𝐿"-158 
norm, which can be expressed as follows: 159 

Equation 2 160 

𝜀&!(𝑎, 𝑏) = (𝑎 − 𝑏)" = 𝑎" − 2𝑎𝑏 + 𝑏" 161 

Using Equation 1, this 𝐿"-norm can be decomposed into the following series of functions 𝑓# and 162 
𝑔#: 163 

𝑓!: 𝑥 → 𝑥" 164 

𝑓': 𝑥 → −2𝑥 165 

𝑓": 𝑥 → 1 166 

𝑔!: 𝑥 → 1 167 

𝑔': 𝑥 → 𝑥 168 

𝑔": 𝑥 → 𝑥"169 

170 

171 
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 172 

A similar decomposition is possible for the 𝐿!	-norm (also called Hamming distance), which is 173 
commonly used for the simulation of categorical variables. The Hamming distance measures 174 
the dissimilarity between two lists by counting the number of elements that have different 175 
categories (Hamming, 1950). Example the dissimilarity between a,b,b,c,b,a and a,c,b,a,c,a is 176 
0,1,0,1,1,0 and the associated Hamming distance is 3. 177 

Equation 3 178 

𝜀&"(𝑎, 𝑏) = (𝑎 − 𝑏)! = 1 −/;𝛿(,# . 𝛿*,#=
#∈𝒞

∝/𝛿(,# . 𝛿*,#
#∈𝒞

 179 

where 𝛿,,- is the Kronecker delta between 𝑥	and 𝑦, which is 1 if 𝑥 equals 𝑦 and 0 otherwise, 180 
and 𝒞 is the set of all possible categories of a specified variable. Here 𝒥 = 𝒞. 181 

Using Equation 1, this 𝐿! distance can be decomposed (Arpat and Caers, 2007) into the 182 
following series of functions 𝑓# 	and 𝑔# 	: 183 

 𝑓#: 𝑥 → −𝛿,#  184 

 𝑔#: 𝑥 → 𝛿,# 185 

with a new pair of 𝑓# 	and 𝑔# for each class 𝑗 of 𝒞. 186 

For multivariate pixels, such as a combination of categorical and continuous values, the 187 
mismatch 𝜀 can be expressed as a sum of univariate pixelwise mismatches. 188 

Equation 4 189 

𝜀(𝒂, 𝒃) ∝// 𝑓#(𝑎.). 𝑔#(𝑏.)
#∈𝒥#.∈ℐ

 190 

where 𝒂 and 𝒃 are the compared vectors and 𝑎. and 𝑏. are the individual components of 𝒂 and 191 
𝒃. 𝒥. represents the set related to the metric used for the 𝑖01 variable, and ℐ represents the set of 192 
variables. 193 

 194 

2.3.  Computation of a mismatch map for an entire pattern 195 

The approach that is proposed in this work is based on computing a mismatch map in the TI for 196 
each simulated pixel. The mismatch map is a grid that represents the pattern-wise mismatch for 197 
each location of the training image and enables the fast identification of a good candidate, as 198 
shown by the red circle in Figure 1. 199 
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 200 
Figure 1 Example of a mismatch map for an incomplete pattern. Blue represents good matches, 201 
yellow bad matches and purple missing and unusable (border effect) data. The red circle 202 
highlights the minimum of the mismatch map, which corresponds to the location of the best 203 
candidate. 204 

 205 

If we consider the neighborhood 𝑁(𝑠) around the simulated position 𝑠, then we can express a 206 
weighted dissimilarity between 𝑁(𝑠) and a location in the TI 𝑁(𝑡): 207 

Equation 5 208 

Ε;𝑁(𝑡), 𝑁(𝑠)= = / 𝜔𝒍𝜀;𝑁𝒍(𝑡), 𝑁𝒍(𝑠)=
𝒍	∈	4(1,0)

 209 

where 𝑁(𝑡, 𝑠) = {𝑙	|𝑁𝒍(𝑡)	𝑎𝑛𝑑	𝑁𝒍(𝑠)	𝑒𝑥𝑖𝑠𝑡} 210 

and 𝑁𝒍(𝑝) is the neighbors of 𝑝 (𝑝 can represent either 𝑠 or 𝑡) with a relative displacement 𝑙 211 
from 𝑝, therefore 𝑁(𝑝) = {𝑙	|	𝑁𝒍(𝑝)}	, 𝒍 is the lag vector that defines the relative position of 212 
each value within 𝑁, and 𝜔𝒍 is a weight for each pixelwise error according to the lag vector 𝒍. 213 
By extension, 𝜔 is the matrix of all weights, which we call the weighting kernel or, simply, the 214 
kernel. Ε represents the mismatch between patterns that are centered on	𝑠 and 𝑡	 ∈ 𝑇, where 𝑇 215 
is the training image. 216 

Some lags may not correspond to a value, for example, due to edge effects in the considered 217 
images or because the patterns are incomplete. Missing patterns are inevitable during the course 218 
of a simulation using a sequential path. Furthermore, in many instances, there can be missing 219 
areas in the training image. This is addressed by creating an indicator variable to be used as a 220 
mask, which equals 1 at informed pixels and 0 everywhere else:  221 

Equation 6 222 

𝟙𝒍(𝑝) = T1	𝑖𝑓	𝑁𝒍(𝑝)	𝑖𝑠	𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 223 
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Let us first consider the case in which for a specified position, either all or no variables are 224 
informed. Expressing the presence of data as a mask enables the gaps to be ignored because the 225 
corresponding errors are multiplied by zero.  226 

Then, Equation 5 can be expressed as follows: 227 

Equation 7 228 

Ε;𝑁(𝑡), 𝑁(𝑠)= =/𝜔𝒍. 𝟙𝒍(𝑡). 𝟙𝒍(𝑠). 𝜀;𝑁𝒍(𝑡), 𝑁𝒍(𝑠)=
𝒍	

 229 

. Combining Equation 4 and Equation 7, we get: 230 

Equation 8 231 

Ε;𝑁(𝑡), 𝑁(𝑠)= ∝/𝜔𝒍. 𝟙𝒍(𝑡). 𝟙𝒍(𝑠)// 𝑓#(𝑁𝒍(𝑡).). 𝑔#(𝑁𝒍(𝑠).)
#∈𝒥#.∈ℐ𝒍	

233 

=///𝜔𝒍. 𝟙𝒍(𝑡). 𝟙𝒍(𝑠). 𝑓#(𝑁𝒍(𝑡).). 𝑔#(𝑁𝒍(𝑠).)
#∈𝒥#.∈ℐ𝒍	

234 

=///𝜔𝒍. [𝟙𝒍(𝑡). 𝑓#(𝑁𝒍(𝑡).)\ . [𝟙𝒍(𝑠). 𝑔#(𝑁𝒍(𝑠).)\
𝒍#∈𝒥#.∈ℐ

235 

=///[𝟙𝒍(𝑡). 𝑓#(𝑁𝒍(𝑡).)\ . [𝜔𝒍. 𝟙𝒍(𝑠). 𝑔#(𝑁𝒍(𝑠).)\
𝒍#∈𝒥#.∈ℐ

	236 

. 232 

After rewriting, Equation 8 can be expressed as a sum of cross-correlations that encapsulate 237 
spatial dependencies, using the cross-correlation definition 𝑓 ⋆ 𝑔 = ∑ 𝑓7 . 𝑔77 , as follows: 238 

Equation 9 239 

Ε;𝑁(𝑡), 𝑁(𝑠)= ∝// [𝟙(𝑡) ∘ 𝑓#(𝑁(𝑡).)\ ⋆ [𝜔 ∘ 𝟙(𝑠) ∘ 𝑔#(𝑁(𝑠).)\
#∈𝒥#.∈ℐ

 240 

where 𝜔 and 𝟙(. )	represent the matrices that are formed by 𝜔𝒍 and 𝟙𝒍(. ) for all possible vectors 241 
𝒍, ⋆ denotes the cross-correlation operator, and ∘ is the element-wise product (or Hadamard-242 
product). 243 

Finally, with 𝑇 = {𝑇. , 𝑖 ∈ ℐ}, 𝑇. represents the training image for the i-th variable, and by 244 
applying cross-correlations for all positions 𝑡 ∈ 𝑇, we obtain a mismatch map, which is 245 
expressed as: 246 

Equation 10 247 

Ε;𝑇, 𝑁(𝑠)= ∝// [𝟙(𝑇) ∘ 𝑓#(𝑇.)\ ⋆ [𝜔 ∘ 𝟙(𝑠) ∘ 𝑔#(𝑁(𝑠).)\
#∈𝒥#.∈ℐ

 248 

. The term 𝟙(𝑇) allows the consideration of the possibility of missing data in the training image 249 
𝑇. 250 
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Let us consider the general case in which only some variables are informed and the weighting 251 
can vary for each variable. Equation 10 can be extended for this case by defining separate masks 252 
and weights 𝜔. for each variable: 253 

Equation 11 254 

Ε;𝑇, 𝑁(𝑠)= ∝ // [𝟙(𝑇.) ∘ 𝑓#(𝑇.)\ ⋆ [𝜔. 	 ∘ 𝟙(𝑠.) ∘ 𝑔#(𝑁(𝑠).)\
#∈𝒥#.∈ℐ

 255 

. Equation 11 can be expressed using the convolution theorem applied to cross-correlation: 256 

Equation 12 257 

Ε;𝑇, 𝑁(𝑠)= ∝ //ℱ8' aℱb𝟙(𝑇.) ∘ 𝑓#(𝑇.)c ∘ ℱb𝜔. ∘ 𝟙(𝑠.) ∘ 𝑔#(𝑁(𝑠).)cd
#∈𝒥#.∈ℐ

 258 

, where ℱ represents the Fourier transform, ℱ8' the inverse transform, and 𝑥̅ the conjugate of 259 
𝑥. 260 

By linearity of the Fourier transform, the summation can be performed in Fourier space, thereby 261 
reducing the number of transformations: 262 

Equation 13 263 

Ε;𝑇, 𝑁(𝑠)= ∝ ℱ8' f//ℱb𝟙(𝑇.) ∘ 𝑓#(𝑇.)c ∘ ℱb𝜔. ∘ 𝟙(𝑠.) ∘ 𝑔#(𝑁(𝑠).)c
#∈𝒥#.∈ℐ

g 264 

. Equation 13 is appropriate for modern computers, which are well-suited for computing FFTs 265 
(Cooley et al., 1965; Gauss, 1799). Currently, FFTs are well implemented in highly optimized 266 
libraries (Rodríguez, 2002). Equation 13 is the expression that is used in our QS implementation 267 
because it reduces the number of Fourier transforms, which are the most computationally 268 
expensive operations of the algorithm. One issue with the use of FFTs is that the image 𝑇 is 269 
typically assumed to be periodic. However, in most practical applications, it is not periodic. 270 
This can be simply addressed by cropping the edges of 𝐸;𝑇,𝑁(𝑠)= or by adding a padding 271 
around 𝑇. 272 

The computation of the mismatch map (Equation 13) is deterministic; as a result, it incurs a 273 
constant computational cost that is independent of the pixel values. Additionally, Equation 13 274 
is expressed without any constraints on the dimensionality. Therefore, it is possible to use the 275 
n-dimensional FFTs that are provided in the above libraries to perform n-dimensional 276 
simulations without changing the implementation. 277 

2.4.  Selection of candidates based on a quantile 278 

The second contribution of this work is the k-sampling strategy for selecting a simulated value 279 
among candidates. The main idea is to use the previously calculated mismatch map to select a 280 
set of potential candidates that are defined by the 𝑘 smallest (i.e. a quantile) values of Ε. Once 281 
this set has been selected, we randomly draw a sample from this pool of candidates. This differs 282 
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from strategies that rely on a fixed threshold, which can be cumbersome to determine. This 283 
strategy is highly similar to the e-replicate strategy that is used in image quilting (Mahmud et 284 
al., 2014) in that we reuse and extend to satisfy the specific requirements of QS. It has the main 285 
advantage of rescaling the acceptance criterion according to the difficulty; i.e. the algorithm is 286 
more tolerant of rare patterns while requiring very close matches for common patterns.  287 

In detail, the candidate selection procedure is as follows: All possible candidates are ranked 288 
according to their mismatch and one candidate is randomly sampled among the 𝑘 best. This 289 
number 𝑘 can be seen as a quantile over the training dataset. However, parameter 𝑘 has the 290 
advantage of being an easy representation for users, who can associate 𝑘 = 1	with the best 291 
candidate, 𝑘 = 2 with the two best candidates, etc. For fine-tuning parameter 𝑘, the sampling 292 
strategy can be extended to non-integer values of 𝑘 by sampling the candidates with 293 
probabilities that are not uniform. For example, if the user sets 𝑘 = 1.5, the best candidate has 294 
a probability of 2/3 of being sampled and the second best a probability of 1/3. For 𝑘 = 3.2, 295 
(Figure 2) each of the 3 best candidates are sampled with an equal probability of 0.3125 and 296 
the 4th best with a probability of 0.0625. This feature is especially useful for tuning 𝑘 between 297 
1 and 2 and for avoiding a value of 𝑘 = 1, which can result in the phenomenon of verbatim 298 
copy. 299 

 300 
Figure 2 Illustration of the k-sampling strategy 301 

An alternative sampling strategy for reducing the simulation time is presented in Appendix A.3. 302 
However, this strategy can result in a reduction in the simulation quality. 303 

The value of non-integer k-values is not only in the fine tuning of parameters. It also allows 304 
direct comparisons between QS and DS. Indeed, under the hypothesis of a stationary training 305 
image, using DS with a given max fraction of scanned training image (𝑓) and a threshold (t) of 306 
0 is statistically similar to using QS with k=1/𝑓. In both situations, the best candidate is 307 
sampled in a fraction 𝑓 of the training image. 308 

 309 

2.5.  Simplifications in the case of a fully informed training image 310 

In many applications, spatially exhaustive TIs are available. In such cases, the equations above 311 
can be simplified by dropping constant terms from Equation 1, thereby resulting in a simplified 312 
form for Equation 13. Here, we take advantage of the ranking to know that a constant term will 313 
not affect the result. 314 

As in Tahmasebi (2012), in the 𝐿"-norm, we drop the squared value of the searched pattern, 315 
namely, 𝑏", from Equation 2. Hence, we can express Equation 4 as follows: 316 

Equation 14 317 

31.25%31.25%31.25% 6.25%

k=3.2

1 2 3 4 5 6   ....Rank
Sampling probability
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𝜀(𝒂, 𝒃) =/𝑎."

.∈ℐ

− 2/𝑎. . 𝑏.
.∈ℐ

 318 

The term 𝑎", which represents the squared value of the candidate pattern in the TI, differs 319 
among training image locations and, therefore, cannot be removed. Indeed, the assumption that 320 
∑𝑎" is constant is only valid under a strict stationarity hypothesis on the scale of the search 321 
pattern. While this hypothesis might be satisfied in some cases (as in Tahmasebi et al., 2012), 322 
we do not believe it is generally valid. Via the same approach, Equation 3 can be simplified by 323 
removing the constant terms; then, we obtain the following for the 𝐿!-norm:  324 

Equation 15 325 

𝜀(𝒂, 𝒃) = −//𝛿(#,# . 𝛿*#,#
#∈𝒞.∈ℐ

 326 

. 327 

2.6.  Efficient Implementation 328 

An efficient implementation of QS was achieved by 1) performing precomputations, 2) 329 
implementing an optimal partial sorting algorithm for selecting candidates and 3) optimal 330 
coding and compilation. These are described below. 331 

According to Equation 13, ℱb𝟙(𝑇.) ∘ 𝑓#(𝑇.)c is independent of the searched pattern 𝑁(𝑠). 332 
Therefore, it is possible to precompute it at the initialization stage for all 𝑖 and 𝑗. This 333 
improvement typically reduces the computation time for an MPS simulation by a factor of at 334 
least 2.  335 

In the QS algorithm, a substantial part of the computation cost is incurred in identifying the 𝑘 336 
best candidates in the mismatch map. In the case of non-integer k, the upper limit ⌈𝑘⌉ is used. 337 
Identifying the best candidates requires sorting the values of the mismatch map and retaining 338 
the candidates in the top 𝑘 ranks. For this, an efficient sorting algorithm is needed. The 339 
operation of finding the k best candidates can be implemented with a partial sort, in which only 340 
the elements of interest are sorted, while the other elements remain unordered. This results in 341 
two sets: 𝔖0 with the 𝑘 smallest elements and 𝔖7 with the largest elements. The partial sort 342 
guarantees that 𝑥 ≤ 𝑦	|	(𝑥, 𝑦) ∈ 𝔖0 × 𝔖7. More information about our implementation of this 343 
algorithm is available in Appendix A.1. Here, we use a modified vectorized online heap-based 344 
partial sort (Appendix A.1). With a complexity of 𝑂(𝑛. ln(𝑘)), it is especially suitable for small 345 
values of 𝑘. Using the cache effect, the current implementation yields results that are close to 346 
the search of the best value (the smallest value of the array). The main limitation of standard 347 
partial sort implementations is that in the case of equal values, either the first or the last element 348 
is sampled. Here, we develop an implementation that can uniformly sample a position among 349 
similar values with a single scan of the array. This is important because systematically selecting 350 
the same position for the same pattern will reduce the conditional probability density function 351 
to a unique sample, thereby biasing the simulation.  352 
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Due to the intensive memory access by repeatedly scanning large training images, interpreted 353 
programming languages, such as MATLAB and Python, are inefficient for a QS 354 
implementation and, in particular, for a parallelized implementation. We provide a NUMA-355 
aware (Blagodurov et al., 2010) and flexible C/C++/OpenMP implementation of QS that is 356 
highly optimized. Following the denomination of Mariethoz (2010), we use a path-level 357 
parallelization with a waiting strategy, which offers a good trade-off between performance and 358 
memory requirements. In addition, two node-level parallelization strategies are available: if 359 
many training images are used, a first parallelization is performed over the exploration of the 360 
training images; then, each FFT of the algorithm is parallelized using natively parallel FFT 361 
libraries. 362 

The FFTw library (Frigo and Johnson, 2018) provides a flexible and performant architecture-363 
independent framework for computing n-dimensional Fourier transformations. However, an 364 
additional speed gain of approximately 20% was measured by using the Intel MKL library (Intel 365 
Corporation, 2019) on compatible architectures. We also have a GPU implementation that uses 366 
clFFT for compatibility. Many Fourier transforms are sparse and, therefore, can easily be 367 
accelerated in n-dimensional cases with “partial FFT” since Fourier transforms of only zeros 368 
result in zeros. 369 

3. Results 370 

3.1.  Simulation examples  371 

This section presents illustrative examples for continuous and categorical case studies in 2D 372 
and in 3D. Additional tests are reported in Appendix 0. The parameters that are used for the 373 
simulations of Figure 3 are reported in Table 1. 374 

The results show that simulation results are consistent with what is typically observed with 375 
state-of-the-art MPS algorithms. While simulations can accurately reproduce TI properties for 376 
relatively standard examples with repetitive structures (e.g., MV, Strebelle, and Folds), training 377 
images with long-range features (typically larger than the size of the TI) are more difficult to 378 
reproduce, such as in the Berea example. For multivariate simulations, the reproduction of the 379 
joint distribution is satisfactory, as observed in the scatterplots (Figure 3). More examples are 380 
available in Annex A4, in particular the Figure A2 for 2D examples and the Figure A3 for 3D 381 
examples. 382 

 383 

  384 
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 385 
Figure 3 Examples of unconditional continuous and categorical simulations in 2D and 3D and 386 
their variograms. The first column shows the training images that were used, the second column 387 
one realization, and the third column quantitative quality metrics. MVs v1, v2 and v3 represent 388 
a multivariate training image (and the corresponding simulation) using 3 variables. The first 389 
two metrics are scatter plots of MV v1 vs. MV v2 of the training image and the simulation, 390 
respectively. The third metric represents the reproduction of the variogram for each of MVs v1, 391 
v2 and v3.  392 
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 393 

 MVs v1, v2, v3 Strebelle Berea Folds  

Source (Mariethoz and 
Caers, 2014) 

(Strebelle, 2002) Doi:10.6084/m9.figs
hare.1153794 

(Mariethoz and 
Caers, 2014) 

Size of the training 
image (px) 

490 × 490 250 × 250 100 × 100 × 100 180 × 150 × 120 

Size of the 
simulation (px) 

490 × 490 250	 × 	250 100 × 100 × 100 180 × 150 × 120 

Computation time 
(s) 

1456 54 1665 76270 

𝑘 1.2 

𝑁 80 125 

Table 1 Parameters that were used for the simulations in Figure 3. Times are specified for 394 
simulations without parallelization. 395 

3.2.  Comparison with direct sampling simulations 396 

QS simulations are benchmarked against DS using the “Stone” training image (Figure 4). The 397 
settings that are used for DS are based on optimal parameters that were obtained via the 398 
approach of Baninajar et al. (2019), which uses stochastic optimization to find optimal 399 
parameters. In DS, we use a fraction of scanned TI of 𝑓 = 1 to explore the entire training image 400 
via the same approach as in QS and we use the 𝐿"-norm as in QS. To avoid the occurrence of 401 
verbatim copy, we include 0.1% conditioning data, which are randomly sampled from a rotated 402 
version of the training image. The number of neighbors 𝑁 is set to 20 for both DS and QS and 403 
the acceptance threshold of DS is set to 0.001.  404 

The comparison is based on qualitative (Figure 5) and quantitative (Figure 6) metrics, which 405 
include directional and omnidirectional variograms, along with the connectivity function, the 406 
Euler characteristic (Renard and Allard, 2013) and cumulants (Dimitrakopoulos, 2010). The 407 
connectivity represents the probability for 2 random pixels to be in the same connected 408 
component. This metric is suited to detect broken structures. The Euler characteristic represents 409 
the number of objects subtracted by the number of holes of the objects, and is particularly 410 
adapted to detect noise in the simulations such as salt and pepper. Cumulants are high order 411 
statistics and therefore allow considering the relative positions between elements. The results 412 
demonstrate that the simulations are of a quality that is comparable to DS. With extreme settings 413 
(highest pattern reproduction regardless of the computation time), both algorithms perform 414 
similarly, which is reasonable since both are based on sequential simulation and both directly 415 
import data from the training image. The extra noise present in the simulation is shown in the 416 
Euler characteristic. Furthermore, it demonstrates that the use of a kernel can reduce this noise 417 
to get better simulations. 418 
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With QS, kernel weighting allows fine tuning of the parametrization to improve the results, as 419 
shown in Figure 5. In this paper, we use an exponential kernel: 420 

Equation 16 421 

𝜔𝒍 = 𝑒89‖𝒍‖! 422 

where	𝛼 is a kernel parameter and ‖. ‖" the Euclidean distance. The validation metrics of Figure 423 
6 show that both QS and DS tend to slightly underestimate the variance and the connectivity. 424 
Figure 6 shows that an optimal kernel improves the results for all metrics, with all training 425 
image metrics in the 5-95% realization interval, except for the Euler characteristic. 426 

 427 
Figure 4 Training image that was used for benchmarking and sensitivity analysis. 428 
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 429 

Figure 5 Examples of conditional simulations and their standard deviation over 100 430 
realizations that are used in the benchmark between QS and DS. 431 

 432 
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 433 
Figure 6 Benchmark between QS (with and without kernel) and DS over 6 metrics Using each 434 
time 100 unconditional simulation. 435 

3.3.  Parameter sensitivity analysis 436 

In this section, we perform a sensitivity analysis on the parameters of QS using the training 437 
image in Figure 4. Only essential results are reported in this section (Figure 7 and Figure 8); 438 
more exhaustive test results are available in Appendix 0 (Figure A 4 and Figure A 5). The two 439 
main parameters of QS are the number of neighbors 𝑁 and the number of used candidates 𝑘.  440 

Figure 7 (and Appendix 0 Figure A 4) shows that large 𝑁 values and small 𝑘 values improve 441 
the simulation performance; however, tend to induce verbatim copy in the simulation. Small 442 
values of 𝑁 result in noise with good reproduction of the histogram.  443 
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 444 
Figure 7 Sensitivity analysis on one simulation for the two main parameters of QS using a 445 
uniform kernel. 446 

𝜔 can be a very powerful tool, typically using the assumption that the closest pixels are more 447 
informative than remote pixels. The sensitivity analysis of the kernel value 𝛼 are explored in 448 
Figure 8 and Figure A 5. They show that α provides a unique tool for improving the simulation 449 
quality. In particular, using a kernel can reduce the noise in simulations, which is clearly visible 450 
by comparing the Euler characteristic curves. However, reducing too much the importance of 451 
distant pixels results in ignoring them altogether, therefore damaging long-range structures. 452 

 453 
Figure 8 Sensitivity analysis on the kernel parameter 𝛼, with fixed parameters k=1.5 and N=40. 454 
The values of the kernels are shown in colors that correspond to the Euler characteristic lines 455 
(red is the training image).  456 
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3.4.  Computational efficiency and scalability 457 

In this section, we investigate the scalability of QS with respect to the size of the simulation 458 
grid, the size of the training image grid, the number of variables, incomplete training images, 459 
and hardware. According to the test results, the code will continue to scale with new-generation 460 
hardware.  461 

As explained in Section 2.3 and 2.4, the amounts of time that are consumed by the two main 462 
operations of QS (finding candidates and sorting them) are independent of the pixel values. 463 
Therefore, the training image that is used is not relevant (here, we use simulations that were 464 
performed with the TI of Figure 4 and its classified version for categorical cases). Furthermore, 465 
the computation time is independent of the parametrization (𝑘	and 𝑁). However, the 466 
performance is affected by the type of mismatch function that is used; here, we consider both 467 
continuous (Equation 2 and Equation 14) and categorical cases (Equation 3 and Equation 15).  468 

We also test our implementation on different types of hardware, as summarized in Table 2. We 469 
expect Machine (2) to be faster than Machine (1) for medium-sized problems due to the high 470 
memory bandwidth requirement of QS. Machine (3) should also be faster than Machine (1) 471 
because it takes advantage of a longer vector computation (512-bit VS. 256-bit instruction set). 472 

Name of the machine Machine (1) Machine (2) Machine (3) 

CPU -2x Intel(R) Xeon(R) CPU 
E5-2680 v2 @ 2.80 GHz 

-Xeon Phi, Intel(R) Xeon 
Phi (TM) CPU 7210 @ 1.30 
GHz 

-2x Intel(R) Xeon(R) Gold 
6128 Processor @ 3.40 GHz 

Memory type - DDR3 - MCDRAM / DDR4 - DDR4 

OS, compiler and 
compilation flags 

Linux, Intel C/C++ compiler 2018 with -xhost 

Table 2 Hardware that was used in the experiments 473 

Figure 9 plots the execution times on the 3 tested machines for continuous and categorical cases 474 
and with training images of various sizes. Since QS has a predictable execution time, the 475 
influence of the parameters on the computation time is predictable: linear with respect to the 476 
number of variables (Figure 9a, Figure 9b), linear with respect to the size of the simulation grid 477 
and following a power function of the size of the training image (Figure 9c). Therefore, via a 478 
few tests on a set of simulations, one can predict the computation time for any other setting. 479 

Figure 9d shows the scalability of the algorithm when using the path-level parallelization. The 480 
algorithm scales well until all physical cores are being used. Machine (3) has a different scaling 481 
factor (slope). This suboptimal scaling is attributed to the limited memory bandwidth. Our 482 
implementation of QS scales well with an increasing number of threads (Figure 9d), with an 483 
efficiency above 80% using all possible threads. The path-level parallelization strategy that was 484 
used involves a bottleneck for large number of threads due to the need to wait for neighborhood 485 
conflicts to be resolved (Mariethoz 2010). This effect typically appears for large values of 𝑁 or 486 
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intense parallelization (>50 threads) on small grids. It is assumed that small grids do not require 487 
intense parallelization; hence, this problem is irrelevant in most applications. 488 

 489 
Figure 9 Efficiency of QS with respect to all key parameters. a) and b) are the evolution of the 490 
computation time for complete and incomplete training images, respectively, with continuous 491 
and categorical variables. c) shows the evolution of the computation time as the size of the 492 
training image is varied; the dashed lines indicate that the training image no longer fits in the 493 
CPU cache. d) shows the evolution of the computation time as the number of threads is 494 
increased. The dashed lines indicate that all physical cores are used. 495 

 496 

4. Discussion  497 

The parameterization of the algorithm (and therefore simulation quality) has almost no impact 498 
on the computational cost, which is an advantage. Indeed, many MPS algorithms impose trade-499 
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offs between the computation time and the parameters that control the simulation quality, 500 
thereby imposing difficult choices for users. QS is comparatively simpler to set up in this 501 
regard. In practice, a satisfactory parameterization strategy is often to start with a small 𝑘 value 502 
(say 1.2) and a large 𝑁 value (> 50) and then gradually change these values to increase the 503 
variability if necessary (Figure 6 and Figure A 4). 504 

QS is adapted for simulating continuous variables using the 𝐿"-norm. However, a limitation is 505 
that the 𝐿'-norm does not have a decomposition that satisfies Equation 1 and, therefore, cannot 506 
be used with QS. Another limitation is that for categorical variables, each class requires a 507 
separate FFT, which incurs an additional computational cost. This renders QS less 508 
computationally efficient for categorical variables (if there are more than 2 categories) than for 509 
continuous variables. For accelerated simulation of categorical variables, a possible alternative 510 
to reduce the number of required operations is presented in Appendix A.2. The strategy is to 511 
use encoded variables, which are decoded in the mismatch map. While this alternative yields 512 
significant computational gains, it does not allow the use of a kernel weighting and is prone to 513 
numerical precision issues. 514 

Combining multiple continuous and categorical variables can be challenging for MPS 515 
approaches. Several strategies have been developed to overcome this limitation, using either a 516 
different distance threshold for each variable, or a linear combination of the errors. Here we use 517 
the second approach, taking advantage of the linearity of the Fourier transform. The relative 518 
importance can be set in 𝑓. and 𝑔. functions in Equation 1. However, it is computationally 519 
advantageous to use the kernel weights in order to have standard functions for each metric. 520 
Setting such variable-dependent parameters is complex. Therefore in order to find optimal 521 
parameters, stochastic optimization approaches (such as Baninajar et al., 2019) are applied to 522 
QS. The computational efficiency of QS is generally advantageous compared to other pixel-523 
based algorithms: for example, in our tests it performed faster than DS. QS requires more 524 
memory than DS, especially for applications with categorical variables with many classes and 525 
with a path-level parallelization. However, the memory requirement is much lower compared 526 
to MPS algorithms that are based on a pattern database, such as SNESIM. 527 

There may be cases where QS slower than DS, in particular when using a large training image 528 
that is highly repetitive. In such cases, using DS can be advantageous as it must scan only a 529 
very small part of the training image. For scenarios of this type, it is possible to adapt QS such 530 
that only a small subset of the training image is used; this approach is described in Appendix 531 
A3. In the cases of highly repetitive training images, this observation remains true also for 532 
SNESIM and IMPALA. 533 

Furthermore, QS is designed to efficiently handle large and complex training images (up to 10 534 
million pixels), with high variability of patterns and few repetitions. Larger training images 535 
may be computationally burdensome, which could be alleviated by using a GPUs 536 
implementation allowing gains up to two orders of magnitude.  537 

QS can be extended to handle the rotation and scaling of patterns by applying a constant rotation 538 
or affinity transformation to the searched patterns (Strebelle, 2002). However, the use rotation-539 
invariant distances and affinity-invariant distances (as in Mariethoz and Kelly, 2011), while 540 
possible in theory, would substantially increase the computation time. Mean-invariant distances 541 
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can be implemented by simply adapting the distance formulation in QS. All these advanced 542 
features are outside the scope of this paper. 543 

5. Conclusions 544 

QS is an alternative approach for performing 𝑛-dimensional pixel-based simulations, which 545 
uses an 𝐿"-distance for continuous cases and an 𝐿!-distance for categorical data. The framework 546 
is highly flexible and allows other metrics to be used. The simple parameterization of QS 547 
renders it easy to use for nonexpert users. Compared to other pixel-based approaches, QS has 548 
the advantage of generating realizations in constant and predictable time for a specified training 549 
image size. Using the quantile as a quality criterion naturally reduces the small-scale noise 550 
compared to DS. In terms of parallelization, the QS code scales well and can adapt to new 551 
architectures due to the use of external highly optimized libraries.  552 

The QS framework provides a complete and explicit mismatch map, which can be used to 553 
formulate problem-specific rules for sampling or even solutions that take the complete 554 
conditional probability density function into account, for example, such as a narrowness 555 
criterion for the conditional pdf of the simulated value (Gravey et al., 2019; Rasera et al., 2019), 556 
or to use the mismatch map to infer the optimal parameters of the algorithm. 557 

6. Code availability 558 

The source code and documentation of the QS simulation algorithm are available as part of the 559 
G2S package at: https://github.com/GAIA-UNIL/G2S under GPLv3 license. Or permanently 560 
at https://doi.org/10.5281/zenodo.3546338 561 

Platform: Linux / macOS / Windows 10 Language: C/C++ 562 

Interfacing functions in MATLAB, Python3, R 563 

A package is available with our unbiased partial sort at: 564 
https://github.com/mgravey/randomKmin-max 565 

7. Author contribution 566 

MG proposed the idea, implemented and optimized the QS approach and wrote the manuscript. 567 
GM provided supervision, methodological insights and contributed to the writing of the 568 
manuscript. 569 
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8. Appendices 570 

A.1. Partial sorting with random sampling 571 

Standard partial sorting algorithms resolve tie ranks deterministically, which does not accord 572 
with the objective of stochastic simulation with QS, where variability is sought. Here, we 573 
propose an online heap-based partial sort. It is realized with a single scan of the array of data 574 
using a heap to store previously found values. This approach is especially suitable when we are 575 
interested in a small fraction of the entire array. 576 

Random positions of the k best values are ensured by swapping similar values. If 𝑘 = 1, the 577 
saved value is switched with a smaller value each time it is encountered. If an equal value is 578 
scanned, a counter 𝑐 is increased for this specific value and a probability of 1/𝑐	of switching to 579 
the new position is applied. If 𝑘 > 1, the same strategy is extended by carrying over the counter 580 
𝑐. 581 

This partial sort outperforms random exploration of the mismatch map. However, it is difficult 582 
to implement efficiently on GPUs. A solution is still possible for shared-memory GPUs by 583 
performing the partial sort on the CPU. This is currently available in the proposed 584 
implementation. 585 

𝑘: the number of values of interest 586 
𝐷: the input data array 587 
𝑆: the array with the 𝑘 smallest values (sorted) 588 
𝑆𝑝: the array with the positions that are associated with the values of 𝑆 589 
 590 
1. for each value 𝑣 of 𝐷 591 
2.  if 𝑣 is smaller than the smallest value of 𝑆 592 
3.   search in 𝑆 for the position 𝑝 at which to insert 𝑣 and insert it 593 
4.   if 𝑝	 = 	𝑘    // last position of the array 594 
5.    reinitialize the counter 𝑐 to 0 595 
6.    insert 𝑣 at the last position  596 
7.   else 597 
8.    increment 𝑐 by one 598 
9.    swap the last position with another of the same value 599 
10.    insert the value at the expected position 𝑝 600 
11.   end 601 
12.  else if 𝑣 is equal to the smallest value of 𝑆 602 
13.   increment 𝑐 by one 603 
14.   change the position of 𝑣 to one of the 𝑛 positions of equal value with a probability of 604 

𝑛/(𝑛 + 𝑐) 605 
15.  end 606 
16. end 607 
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A.2. Encoded categorical variables 608 

To handle categorical variables, a standard approach is to consider each category as an 609 
independent variable. This requires as many FFTs as classes. This solution renders it expensive 610 
to use QS in cases with multiple categories. 611 

An alternative approach is to encode the categories and to decode the mismatch from the cross-612 
correlation. It has the advantage of only requiring only a single cross-correlation for each 613 
simulated pattern. 614 

Here, we propose encoding the categories as powers of the number of neighbors, such that their 615 
product is equal to one if the class matches. In all other cases, the value is smaller than one or 616 
larger than the number of neighbors. 617 

𝜀&"(𝑎, 𝑏) = 𝜓;(𝑎 − 𝑏)! ∝ −(𝑁 + 1)8;(()	. (𝑁 + 1)8;(*)= 618 

where 𝑁 is the largest number of neighbors that can be considered and 𝑝(𝑐)	is an arbitrary 619 
function that maps index classes of 𝒞, 𝑐 ∈ 𝒞. 620 

In this scenario, in Equation 1 this encoded distance 𝐿<!  can be decomposed into the following 621 
series of functions 𝑓# 	and 𝑔# 	: 622 

 𝑓!: 𝑥 → −(𝑁 + 1);(,)  623 

 𝑔!: 𝑥 → (𝑁 + 1)8;(,) 624 

and the decoding function is 625 

𝜓(𝑥) = ⌊𝑥⌋	mod	𝑁 626 

Table A 1 describes this process for 3 classes, namely, 𝑎, 𝑏, and	𝑐, and a maximum of 9 627 
neighbors. Then, the error can be easily decoded by removing decimals and dozens. 628 

Products 𝑔!(𝑎) = 1 𝑔!(𝑏) = 0.1 𝑔!(𝑐) = 0.01 

𝑓!(𝑎) = 1 1 0.1 0.01 

𝑓!(𝑏) = 10 10 1 0.1 

𝑓!(𝑐) = 100 100 10 1 

Table A 1 Example of encoding for 3 classes and 9 neighbors and their associated products 629 

Consider the following combination: 630 

					𝑓!(𝑎,					𝑏,						𝑎,						𝑐,						𝑐,						𝑏,						𝑎,						𝑎,						𝑏)	631 

× 𝑔!(𝑐,					𝑏,						𝑏,						𝑎,						𝑎,						𝑏,						𝑐,						𝑎,						𝑎) 632 

−(0.01,						1,			0.1, 100, 100,						1, 0.01,					1,				10) 			= −213.12  633 

The decoding ⌊−213.12⌋	mod	10 = −213	mod	10 = −3 yields 3 matches (in green). 634 
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This encoding strategy provides the possibility of drastically reducing the number of FFT 635 
computations. However, the decoding phase is not always implementable if a nonuniform 636 
matrix 𝜔 is used. Finally, the test results show that the method suffers quickly from numerical 637 
precision issues, especially with many classes. 638 

A.3. Sampling strategy using training image splitting 639 

The principle of considering a fixed number of candidates can be extended by instead of taking 640 
the 𝑘1= best candidate, sampling the best candidate in only a portion '

>
, of the TI. For instance, 641 

as an alternative to considering 𝑘 = 4, this strategy searches for the best candidate in one fourth 642 
of the image. This is more computationally efficient. However, if all the considered candidates 643 
are contiguous (by splitting the TI in 𝑘 chunks), this approximation is only valid if the TI is 644 
completely stationary and all 𝑘 equal subdivisions of the TI are statistically identical. In 645 
practice, real-world continuous variables are often nonstationary. However, in categorical 646 
cases, especially in binary ones, the number of pattern replicates is higher and this sampling 647 
strategy could be interesting. 648 

The results of applying this strategy are presented in Table A 2 and Figure A 1. The 649 
experimental results demonstrate that the partial exploration approach that is provided by 650 
splitting substantially accelerates the processing time. However, Figure A 1 shows that the 651 
approach has clear limitations when dealing with training images with complex and 652 
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nonrepetitive patterns. The absence of local verbatim copy can explain the poor-quality 653 
simulation results.  654 

 655 

 656 
Figure A 1 Comparison of QS using the entire training image and using training image 657 
splitting. In these examples, the training image is split into two images over each dimension. 658 
The original training images are presented in Figure 2. 659 

 660 
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Training image Using all chunks Using one random 
chunk 

Speedup 

Berea 11 052 s 1 452 s 7.61x 

Folds 35 211 s 4 063 s 8.66x 

Strebelle 7.95 s 3.16 s 2.51x 

Table A 2 Computation times and speedups for the full and partial exploration approaches. 661 
Times are specified for simulations with path level parallelization. 662 

A.4. Additional results 663 

 664 
Figure A 2 Examples of 2D simulations: the first 3 rows represent 3 variables of a single 665 
simulation. Parameters available in Table A 3 666 

667 
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 668 

 669 

 670 
Figure A 3 Examples of 3D simulation results. Parameters available in Table A 4 671 
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 Herten Stone 

Source (Mariethoz and 
Caers, 2014) 

(Mariethoz and 
Caers, 2014) 

Size of the training 
image (px) 

716 × 350 200 × 200 

Size of the 
Simulation (px) 

716 × 350 200 × 200 

Computation time (s) 1133 21 

𝑘 1.2 

𝑁 80 

Table A 3 Simulation parameters for Figure A 2. Times are specified for simulations without 672 
parallelization. 673 

 674 

 Concrete 1 Concrete 2 F42A Folds continues 

Source (Meerschman et al., 2013) (Meerschman et al., 2013) Doi:10.6084/m9.fig
share.1189259 

(Mariethoz and 
Caers, 2014) 

Size of the 
training image 
(px) 

150	 × 150	 × 150 100	 × 90	 × 80 100	 × 100	 × 100 180	 × 150	 × 120 

Size of the 
simulation (px) 

100	 × 100	 × 100 100	 × 100	 × 100 100	 × 100	 × 100 180	 × 150	 × 120 

Computation 
time (s) 

11436 1416 1638 7637 

𝑘 1.2 

𝑁 50 125 

Table A 4 Simulation parameters for Figure A 3. Times are specified for simulations without 675 
parallelization. 676 
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 677 
Figure A 4 Complete sensitivity analysis, with one simulation for the two main parameters of 678 
QS. 679 

 680 

Figure A 5 Complete sensitivity analysis, with one simulation for each kernel with k=1.5 and 681 
N=40 682 
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A.5. Mathematical derivation 683 

The convolution theorem (Stockham, 1966; Krant, 1999; Li et al., 2019) can be easily extended 684 
to cross-correlation(Bracewell, 2000). The flowing derivation shows the validity of the theorem 685 
for any function f and g. 686 

ℱ{𝑓 ⋆ 𝑔} = �(𝑓 ⋆ 𝑔)(𝑡)𝑒.1.@𝑑𝑡 = ��𝑓(𝑠)������𝑔(𝑠 + 𝑡)𝑑𝑠 𝑒.1.@𝑑𝑡687 

= ��𝑓(𝑠)������𝑒.(80).@𝑑𝑠. 𝑔(𝑠 + 𝑡)𝑑𝑠 𝑒.(1A0).@𝑑𝑡688 

= ��𝑓(𝑠)𝑒B(0).@�������������𝑑𝑠. 𝑔(𝑠 + 𝑡)𝑑𝑠 𝑒.(1A0).@𝑑𝑡 = ℱ{𝑓}������. ℱ{𝑓} 689 

The discretization of this property can be obtained using two piecewise continuous functions 690 
associated to each discrete representation. 691 
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