
Reply to Reviewer 1 (Prof. Ute Mueller) 1 

The paper describes a new algorithm for multiple point simulation of continuous and 2 
discrete spatial variables. To start with a short review of the various types of MPS algorithms 3 
is provided, which distinguishes patching from pixel based approaches. The algorithm 4 
described here falls into the second category. Shortcomings of the method are discussed 5 
briefly, including the need for a threshold and sensitivity of the simulation quality to this 6 
threshold, but which can also lead to very long simulation times. In this paper the authors 7 
exploit a decomposition of the distance measures to apply FFT to speed up computation of 8 
mismatch maps with the aim to more quickly identify candidate patterns in the training 9 
image, which may be complete of incomplete. The use of the FFT to compute the mismatch 10 
map is attractive in that it is fast to compute irrespective of dimension. 11 

We thank Prof. Ute Mueller for her feedback and interest in our work 12 

The mismatch map is calculated by computing for each pair (s, t) a dissimilarity measure 13 
where t belongs to the training image and s to the conditioning set. It is this dissimilarity 14 
measure which is then identified in terms of cross correlation. The authors provide a 15 
description of the metrics applied and a rewrite of the metrics in terms of cross correlations, 16 
and while the reader gets a general idea as to what is being calculated the derivation is 17 
patchy and somewhat sloppy in that summation indices are missing and critical steps are 18 
not described satisfactorily, such as the derivation of equation 9, which introduces cross 19 
correlations. 20 

We will complete the notations by adding summation indices in all equations. The derivation 21 
of equation 9 will be described in an appendix. 22 

Also, is it correct to assume that “l” is a grid operator? 23 

𝒍 represents lag vectors. Therefore, here it represents displacement on the grid. We will add 24 
a clarification about it in the manuscript. 25 

Once the mismatch map is computed, the k best matches are identified and a sample is 26 
drawn at random from this pool. The possibility of having non-integer values for k is touched 27 
upon, and allow unequal weighting of the first ceiling(k) candidates, with the first floor(k) 28 
candidates equally likely and the final candidate less likely (probability of being chose): 1-29 
floor(k)/k) . The main advantage appears to lie in being able to choose between 2 instead of 30 
just one candidate (case of k between 1 and 2) 31 

We agree with the reviewer. Another advantage we see is that it provides an equivalence 32 
between QS and the DS approach, allowing for benchmarks. In fact, DS with a threshold of t=0 33 
and a scanning fraction of f=1/k can be seen as equivalent to QS. A discussion on this will be 34 
added to the manuscript. 35 

Simplifications and computational implementation details for speeding up the computation 36 
are discussed reasonably thoroughly and provide other practitioners with useful 37 
suggestions on how to potentially improve the efficiency of their own MPS algorithms. The 38 
proposed algorithm is benchmarked by means of standard sample data sets and a sensitivity 39 
analysis is provided demonstrating that QS performs well subject to the choice of a suitable 40 



kernel and that the quality of QS simulations is similar to that of DS simulations. It would 41 
have been interesting to see an exploration of kernels other than one of Gaussian type. 42 

While we agree that a full exploration of kernel possibilities would be interesting, it will be the 43 
subject of a future paper.  44 
To be more precise about this point, preliminary experimentations on various kernel radial 45 
designs have shown that it is not straightforward to define general guidelines for an optimal 46 
kernel. Figure 1 below shows some of these preliminary results, where exhaustive kernel 47 
parameter exploration is carried out and identifies areas of higher performance in terms of 48 
reproducing variogram and connectivity function. While it is clear that some kernel functions 49 
perform better than others, it seems that the results are highly specific to the type of patterns 50 
to reproduce and should be further investigated. 51 
Furthermore, tests using non-parametric kernels show a potential for future improvements. 52 
However, substantial future research is still needed on this topic, which will be the object of a 53 
future publication. 54 
 55 
 Variogram error Connectivity error 56 

 57 
Figure 1 Errors for different types of radial kernel based on the stone image. 58 

In addition, our formulation may have been unclear, in the sense that the kernel used in this 59 
manuscript has an exponential form and not Gaussian (the notation ‖. ‖$	denotes the 𝐿$ norm 60 
and not its squared form in equation 16) . We will clarify this point to make the paper easier 61 
to read. 62 

Also, the metrics being used to assess the performance would benefit from going beyond 63 
variograms and connectivity (I acknowledge that the Euler characteristic was also used, but 64 
what good is it without a definition? Reference to another paper is all fine and well, but a 65 
definition and an explanation of what it measures would have been nice.) 66 

As advised, we will add some brief explanation in the paper about the Euler characteristic and 67 
connectivity metrics ~lines 385-391. 68 

It would be really nice to see an evaluation in terms of a multipoint statistics. 69 

To address this comment, we will carry out a validation of our realizations in terms of the 70 
reproduction of higher-order statistics, using cumulants as a metric. Another possibility would 71 
be the use of multiple-point histograms, but we refer not to use them because their 72 
interpretation can be very difficult, and moreover are possible only for categorical variables. 73 



Please amend all the formulae to ensure summation indices are clear, eg: Line 149: It is not 74 
clear over what is summed in equation 1. 75 

Unfortunately, in Equation 1, line 149, it is impossible to know in advance the number of 76 
elements or the set for the summation. The description is really generic here and needs to be 77 
adapted for each required metric as shown for the 𝐿$ and Hamming metrics. However, we will 78 
add and define proper ensemble for each summation to help the reader. 79 

You clarify this to some extent below in lines 150 to 183, but I find this a little unsatisfying 80 
Line 174: The description preceding equation 2 talks about vectors, but the formula seems 81 
to be univariate. 82 

We agree this is unclear as the “vector” in line 172, was referring to the origin of the Hamming-83 
distance. We will rephrase this sentence to remove any confusion for the audience as 84 
following. 85 

If you have c categories, is “a” a vector with c entries or simply one of the values from 1 to 86 
c if you label the categories in that manner?, It looks to me that “a” is simply a category ... 87 
so looking at the equation, it would seem that it is equal to c, if “a” and “b” are distinct and 88 
equal to c-1 if they are equal, while the sum on the right is equal to 1 if “a” and “b” are equal 89 
and 0 else. There are also brackets missing in the middle expression (you should have 90 
\sum_{j \in C} (1-\delta_{aj}\delta_{bj}) 91 

The description with categorical cases described by the reviewer is correct (and we don’t need 92 
to number from 1 to c, and it is not the case in the implementation either). However, a mistake 93 
sneaked in, and we thank the reviewer for spotting the error of the equation 3. Indeed. It 94 
should be: 1 − ∑ (𝛿,,.. 𝛿/,.).1𝒞  and not ∑ 1 − (𝛿,,.. 𝛿/,.).1𝒞 . Therefore, now equation 3 is: 95 

𝜖45(𝑎, 𝑏) = 1 −9𝛿,,.. 𝛿/,.
.1𝒞

∝ 9𝛿,,.. 𝛿/,.
.1𝒞

 96 

The linear transformation between both sides of the proportional symbol is y=ax+b, with a=-97 
1, and b=1. 98 

Line 200: N(t) is not just a location but a neighbourhood? 99 

𝑁(𝑡) is indeed a neighborhood. We agree line 203 can be ambiguous, and we will rephrase it 100 
as follows: where 𝑁𝒍(𝑝) represents the neighbor value (or vector) at the position 𝑝 + 𝒍, (𝑝 can 101 
represent either 𝑠 or 𝑡) 102 

Please clarify Line 230: define the cross-correlation operator. Also, T_i has not been defined. 103 
You identify “*” with convolution and then apply the convolution theorem. Provide a 104 
derivation that this is true in an appendix. 105 

⋆ represents the cross-correlation and therefore the “convolution theorem” is applied as 106 
follows: ℱ(𝑥 ⋆ 𝑦) = ℱ(𝑥)DDDDDDD ∘ ℱ(𝑦), contrarily to a convolution ∗ where we get ℱ(𝑥 ∗ 𝑦) =107 
ℱ(𝑥) ∘ ℱ(𝑦). A clarification will be added and 𝑇H  will be properly defined. 108 

There are also some typos in the figure captions 109 

Captions will be checked and corrected in consequence. 110 
  111 



Response to Reviewer 2 (Prof. Thomas Mejer Hansen) 112 

The authors present a novel multiple point statistical simulation algorithm that works for 113 
both discrete and continuous data, that scales well on parallel computing architectures, and 114 
that is available as open-source C++ code (G2S) with interfaces in Matlab, Python and R. 115 
At the core of the method is the use of convolution to very efficiently compute to compute 116 
a mismatch, between a conditional event (consisting of the ‘N’ closest hard/simulated data) 117 
centered at all locations in the TI (except near the boundaries) (2.3) Then the authors 118 
suggest to simulate the current pixel based on a random selection between the ‘k’ centered 119 
pixel values associated with the smallest mismatch (2.4) 120 
This leads to an algorithm with only two main ‘tuning parameters’. The algorithm is in-itself 121 
novel and has obvious potential for used instead of some of the currently widely used MPS 122 
methods. The examples in the manuscript nicely describe the potential uses. In addition, 123 
the way the algorithm has been implemented should be applauded, as it is available as Open 124 
Source code that can be used with ease ranging from a case of “running on a single thread 125 
on a laptop in python/Matlab”, to “running remote on a large cluster”. This makes the code 126 
very versatile. 127 
Therefore I find the manuscript highly appropriate for publication. 128 

Thanks a lot for the positive feedback! 129 

I have one major comment, that relate to the name of the algorithm and the way a pixel 130 
value is chosen based on ‘k’ smallest values of E/mismatch. The authors refer to these ‘k’ 131 
smallest values of E as a “quantile” and call the algorithm, for quantile sampling. This I do 132 
not understand and find a bit misleading. How can this represent a quantile? I think the term 133 
‘threshold’ would be more fitting than ‘quantile’. 134 

The question of the algorithm name is something that has been extensively discussed 135 
between authors. We believe that the use of the term “threshold” would bring confusion with 136 
the Direct Sampling algorithm, which uses a threshold in the error. 137 
One name that was originally discussed for our algorithm is “Quick Sampling”. According to 138 
the justified comment by the reviewer, we propose to use this name as a replacement, as it 139 
allows keeping the acronym “QS” with which users are familiar.  140 

The use of the term “quantile” suggests that the selection of the new pixel value is based of 141 
a probabilistic measure. Also, say ‘k=18’, and for a discrete case only 9 pixel values are 142 
associated with a mismatch of ‘0’. Why would one want to use the same probability 143 
(P=9/18) to select one of these, as opposed to one of the pixel values associated with a non-144 
perfect match (P=9/10)? Or more extreme, say that pixel associated with the 18th best 145 
mismatch has a mismatch of 10 pixels. Why would one want to assign the same probability 146 
(1/18) to this, as to the pixels with a mismatch of 0? The use of the ‘k’-‘threshold’ is 147 
convenient, but to me it makes the method less clear to describe in terms of the implied 148 
statistical assumptions. Some discussion on ‘quantile’ vs ‘threshold’ would be good. 149 

This hypothesis is similar to the use of a distance threshold in DS and should indeed be 150 
discussed. k in QS is statistically similar to DS with a threshold at 0 and a fraction f=1/k (this is 151 
one of the reasons for using decimal values for k) under the hypothesis of stationarity.  152 
This equivalence will be discussed in section 2.4, to allow readers to get a better feeling about 153 
the relation between QS and DS, and the utility of non-integer values of k.  154 
 155 



The question of the reviewer could be turned around “why to not using the best candidate 156 
(k=1)?”. The main answer is to limit verbatim copy, because the random selection between 157 
candidates with similar mismatch (algorithm presented in Appendix A.1) significantly limits 158 
this problem in cases of a training image with replicated patterns. The problem remains for 159 
other images, and especially continuous variable images where there exist often few 160 
replicated patterns. 161 

Some comments to the text: 162 
Line 150: Here ‘a’ and ‘b’ are referred to as “univariate pixel values”. It seems ‘a’ and ‘b’ has 163 
a different meaning in line 174 (eqn 3)? Here they seem to represent vectors? 164 

“a” and “b” represent each time one possible class. This section will be corrected and clarified 165 
to remove this ambiguity, also according to the comments by reviewer 1. 166 

Line 185, Eqn 5: Please elaborate a bit on how this allows mixing discrete and continuous 167 
variables calculating the mismatch? It seems nontrivial to compute the mismatch between 168 
for example a velocity of 2.1 km/s and a “lithology of type A” to a velocity of 2.13 km/s and 169 
“lithology of type C”? 170 

The task of combining continuous and categorical variables is indeed challenging, and has 171 
been so for all MPS approaches. From the literature and practical use of the software, we 172 
know that this problem is general to most MPS methods and that many strategies can be used. 173 
One can use a different distance threshold for each variable (as done in the DEESSE 174 
implementation), or a linear combination of the normalized errors (as done in the DS 175 
implementation). Here we use the second approach, taking advantage of the linearity of the 176 
Fourier transform. If the relative importance can be set in the “𝑓H” or “𝑔H” functions in equation 177 
1, it is computationally advantageous to use the kernel weights such as to have standard 178 
functions for each metric. 179 
If the task of setting such variable-dependent parameters is complex, one can use the results 180 
of recent research to identify the optimal parameterization using stochastic optimization 181 
approaches, as in (Baninajar et al.), which can and has been applied on QS. This discussion will 182 
be added in the revised manuscript. 183 
 184 
Baninajar, E., Sharghi, Y. & Mariethoz, G. MPS-APO: a rapid and automatic parameter 185 
optimizer for multiple-point geostatistics. Stoch Environ Res Risk Assess 33, 1969–1989 186 
(2019). https://doi.org/10.1007/s00477-019-01742-7 187 

Figure 1: What do the red dots in the middle small figure? 188 

We will add to the caption that the pink pixels represent missing data. 189 

Line 287: Please explain clearly what is meant by “verbatim copy”. The term is used several 190 
places without a proper definition. 191 

A short explanation and a reference will be added to clarify the meaning of verbatim copy. 192 

Line 338: Please explain “NUMA-aware” or provide a reference. 193 

NUMA stands for “Non-Uniform Memory Access” and refers to memory communication 194 
between many CPU sockets (such as bi-Xeon). This connection has a limited bandwidth and 195 
therefore minimizing the communication on it can significantly increase the speed of the 196 



algorithm on such architectures. This can have a huge impact when running on workstations 197 
or clusters computers. A reference about this will be added. 198 

Line 392: What is meant by “..enables adaption of the parameterization. . .”? 199 

Here we mean that it allows fine-tuning the parameterization. It will be clarified in the revised 200 
manuscript. 201 

Figure 5: Please help the reader here: is Qs with a kernel better than QS with no kernel? I 202 
am not sure what the figure tells us? 203 

We agree that these figures are currently not very well explained and that the text describing 204 
them can be improved. We will do this by merging figures 5 and 6 and adding comments. 205 
These figures mean to convey the message that the patterns are well reproduced in all 206 
approaches, however QS presents a better reproduction of the metrics 207 

Line 399, Figure 6: Perhaps you could elaborate a little bit on “Euler characteristic” and 208 
whether it is a problem what Figure 6 shows? 209 

It will be added, also according to the comment by reviewer 1, by extending the description 210 
of the metrics. 211 

Figure 8: I need some help appreciating how Figure 8 suggests that the use of alpha is useful? 212 

We agree that this figure does not illustrate very well the use of the alpha parameter. 213 
However, over many tests, and as confirmed by feedback of early users, this parameter does 214 
allow a fine tuning of the simulation and is therefore an interesting tool, especially for 215 
conditional simulations with an exhaustively informed covariable. The goal here is to make 216 
the reader aware of this possibility. We will therefore change figure 8 to better show the 217 
sensitivity to alpha, possibly using a different case study. 218 

Figure 9: Please show the ‘dots’ (the actual CPU time measurements) in the figures. Is it fair 219 
to say that the main limitation of the using QS is the size of the training image? 220 

The “dots” will be added. We agree that the main limitation of QS is the TI size because its 221 
relation to computing time evolves in O(n.ln(n)) due to the FFT computation. If solutions such 222 
as window convolution exist (often used in audio processing), in our tests the improvements 223 
are only noticeable for huge TIs. While such approaches do bring an improvement and tend 224 
to reduce the memory footprint, they also add significant complexity to the algorithm for a 225 
minor gain. Over the last decade, convolution techniques have been substantially improved, 226 
driven by the needs of Convolutional Neural Networks, but are often applied to small matrices 227 
(e.g. 3x3, 5x5, or 7x7). Other solutions are available to increase the speed of the convolution 228 
such as GPUs or FPGAs that we are still investigating. 229 
Note that a dedicated CUDA implementation of QS is available in our repository, but it is still 230 
work in progress and at this stage we prefer not to include a detailed description of it in the 231 
paper. 232 

Lines 466-472. It is nice that one can choose to use many conditional point with not extra 233 
CPU costs. one could though argue that sometimes it is convenient in other MPS methods 234 
(SNESIM/IMPALA/DS) that the simulation becomes MUCH faster if one uses few 235 
conditioning data. If you would want to simulate with fewer conditioning data, QS would 236 



not lead to faster CPU time.. Just to say that the advantage you describe, could in a specific 237 
context, be seen as the opposite. 238 

We completely agree with this point. However, the current trend in the field is to reduce the 239 
simulation quality in order to gain in time or memory space. The point here was to explain 240 
that whatever the parameterization (and quality), the computation time is identical. 241 
Therefore, it is better to choose parameters yielding a good quality simulation. 242 
This is an important discussion point: QS will be fast with a small image, whereas for 243 
(SNESIM/IMPALA) it is only partially true because of the overhead related to the creation of 244 
the list/tree. Similarly, QS in insensitive to the complexity of the training image (number of 245 
patterns available), whereas SNESIM/IMPALA/DS are highly sensitive to it. QS is therefore 246 
more adapted to TIs with complex features and few repetitions. We however agree that 247 
SNESIM/IMPALA/DS will simulate significantly faster a simple and repetitive TI than QS, but in 248 
such cases computation time is generally not a critical issue anyway. 249 
A discussion on these questions will be included in the revised manuscript. 250 

Some of the figures and tables in Appendix A should be excluded unless they are discussed 251 
and references in the text. 252 

We will fix the missing references. 253 
  254 



Response to Short Comment 1 (Executive editor of GMD Astrid Kerkweg) 255 
 256 

Please add a version number for the QS in the title upon your revised submission to GMD.  257 

As suggested we will add the adapted versioning identifier in the title of the manuscript. 258 


