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Abstract. TS1Terrestrial photosynthesis is the basis for veg-
etation growth and drives the land carbon cycle. Accurately
simulating gross primary production (GPP, ecosystem-level
apparent photosynthesis) is key for satellite monitoring and
Earth system model predictions under climate change. While5

robust models exist for describing leaf-level photosynthe-
sis, predictions diverge due to uncertain photosynthetic traits
and parameters which vary on multiple spatial and temporal
scales. Here, we describe and evaluate a GPP (photosynthesis
per unit ground area) model, the P-model, that combines the10

Farquhar–von Caemmerer–Berry model for C3 photosynthe-
sis with an optimality principle for the carbon assimilation–
transpiration trade-off, and predicts a multi-day average light
use efficiency (LUE) for any climate and C3 vegetation type.
The model builds on the theory developed in Prentice et al.15

(2014) and Wang et al. (2017a) and is extended to include
low temperature effects on the intrinsic quantum yield and
an empirical soil moisture stress factor. The model is forced
with site-level data of the fraction of absorbed photosyn-
thetically active radiation (fAPAR) and meteorological data20

and is evaluated against GPP estimates from a globally dis-
tributed network of ecosystem flux measurements. Although
the P-model requires relatively few inputs, the R2 for pre-
dicted versus observed GPP based on the full model setup is
0.75 (8 d mean, 126 sites) – similar to comparable satellite- 25

data-driven GPP models but without predefined vegetation-
type-specific parameters. The R2 is reduced to 0.70 when
not accounting for the reduction in quantum yield at low
temperatures and effects of low soil moisture on LUE. The
R2 for the P-model-predicted LUE is 0.32 (means by site) 30

and 0.48 (means by vegetation type). Applying this model
for global-scale simulations yields a total global GPP of
106–122 GtC yr−1 TS2 (mean of 2001–2011), depending on
the fAPAR forcing data. The P-model provides a simple but
powerful method for predicting – rather than prescribing – 35

light use efficiency and simulating terrestrial photosynthesis
across a wide range of conditions. The model is available as
an R package (rpmodel).
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2 B. D. Stocker et al.: P-model v1.0

1 Introduction

Realistic, reliable, and robust estimates of terrestrial photo-
synthesis are required to understand variations in the car-
bon cycle, monitor forest and cropland productivity, and pre-
dict impacts of global environmental change on ecosystem5

function (Prentice et al., 2015). Understanding how photo-
synthetic rates depend on temperature, humidity, solar ra-
diation, CO2, and soil moisture is at the core of this chal-
lenge. Process-based dynamic vegetation models (DVMs)
and Earth system models (ESMs) in use today almost al-10

ways use some form of the Farquhar–von Caemmerer–Berry
(FvCB) model for C3 photosynthesis (Farquhar et al., 1980;
von Caemmerer and Farquhar, 1981), in combination with
stomatal conductance (gs) models (Ball et al., 1987; Leun-
ing, 1995; Medlyn et al., 2011) that couple water and carbon15

fluxes at the leaf surface.
The FvCB model describes the instantaneous saturating

relationship between leaf-internal CO2 concentrations (ci)
and assimilation (A), and how this relationship depends on
absorbed photosynthetically active radiation (APAR). It sim-20

ulates A as the minimum of a light-limited and a RuBisCO-
limited assimilation rate, AJ and AC, respectively:

A=min(AJ,AC). (1)

Although the FvCB model is standard for leaf-scale photo-
synthesis and its environmental response is on timescales of25

minutes to hours, DVMs and ESMs using FvCB produce di-
vergent results for ecosystem-level fluxes and their response
to environment at longer timescales (Rogers et al., 2017).
This is due to assumptions that have to be made about pho-
tosynthetic parameters that are not predicted by the FvCB30

model: stomatal conductance (gs) and the maximum rates
of RuBisCO carboxylation (Vcmax) and electron transport
(Jmax) for ribulose-1,5-bisphosphate (RuBP) regeneration,
which together determine the relationship between ci and A.
Common approaches for determining the values of Vcmax and35

Jmax in DVMs and ESMs are to prescribe fixed values per
plant functional type (PFT) and attempt to simulate the dis-
tribution of PFTs in space, or to use empirical relationships
between leaf N and Vcmax and simulate leaf N internally or
prescribe it per PFT (Smith and Dukes, 2013; Rogers, 2014).40

While the FvCB model describes a non-linear relation-
ship between instantaneous assimilation and absorbed light,
ecosystem production, integrated over weeks to months,
scales proportionally with APAR (Monteith, 1972; Medlyn,
1998). This observation underlies the general light use effi-45

ciency (LUE) model which describes ecosystem-level photo-
synthesis (gross primary production; GPP) as the product of
APAR and LUE:

GPP= PAR · fAPAR ·LUE , (2)

where PAR is the incident photosynthetically active radiation50

and fAPAR is the fraction of PAR that is absorbed by green

tissue. The LUE model is the basis for observation-driven
GPP models that use fAPAR and PAR based on remote sens-
ing data and combine this with different approaches for sim-
ulating LUE (Running et al., 2004; Zhang et al., 2017; Field 55

et al., 1995) and for some forest growth models (Landsberg
and Waring, 1997). Other remote-sensing-data-based models
(Jiang and Ryu, 2016) apply the FvCB model in combination
with vegetation cover and type data and prescribed Vcmax for
a set of PFTs. 60

Here, we describe a model, referred to as the P-model, that
unifies the FvCB and LUE models following the theory de-
veloped by Prentice et al. (2014) and Wang et al. (2017a).
The model assumes an optimality principle that balances the
C cost (per unit of assimilation) of maintaining transpiration 65

and carboxylation (Vcmax) capacities. It thus predicts how the
ratio of leaf-internal to ambient CO2 (ci : ca = χ ) acclimates
to the environment, given temperature (T ), water vapour
pressure deficit (D), atmospheric pressure (p), and ambient
CO2 concentration (ca) (Prentice et al., 2014). The P-model 70

also assumes that the photosynthetic machinery tends to co-
ordinate Vcmax and Jmax in order to operate close to the inter-
section of the light-limited and RuBisCO-limited assimila-
tion rates (coordination hypothesis; Chen et al., 1993; Haxel-
tine and Prentice, 1996; Maire et al., 2012) under mean day- 75

time environmental conditions. By further assuming equality
in the marginal cost and benefit of Jmax, daily-to-monthly
average assimilation rates can then be described as fractions
of absorbed PAR, i.e. as a LUE model (Eq. 2) (Wang et al.,
2017a). 80

Thus, the P-model embodies an optimality-based theory
for predicting the acclimation of leaf-level photosynthesis
to its environment and for simulating LUE. In combination
with prescribed PAR and remotely sensed fAPAR, it esti-
mates GPP across diverse environmental conditions (Wang 85

et al., 2017a). Its prediction for acclimating photosynthetic
parameters reduces the number of prescribed (and temporally
fixed) values and avoids the distinction of model parameter-
isation by vegetation types or biomes (apart from a distinc-
tion between the C3 and C4 photosynthetic pathways). The 90

P-model has a further advantage over other data-driven GPP
models (Running et al., 2004; Zhang et al., 2017) and em-
pirically upscaled GPP estimates (Jung et al., 2011) in that it
accounts for the influence of changing CO2, and that it uses
first principles (rather than imposed functions) to represent 95

effects of T , D, and p (Sect. 2). The theory underlying the
P-model regarding the water–carbon trade-off has been de-
scribed by Prentice et al. (2014) and applied by Keenan et al.
(2016) to simulate how changes in primary production have
driven the terrestrial C sink over past decades, and by Smith 100

et al. (2019) to explain variations in observed Vcmax. Wang
et al. (2017a) complemented the theory by including effects
of limited electron transport capacity (Jmax) and predicted
variations in observed χ across environmental gradients. To
resolve model biases under conditions of low soil moisture, 105
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B. D. Stocker et al.: P-model v1.0 3

Stocker et al. (2019) further applied an empirical stress func-
tion to reduce LUE under dry soil conditions.

The purpose of this paper is (i) to provide a full documen-
tation of the model implementation and reference for open-
source software (rpmodel R package, available on CRAN);5

(ii) to provide an evaluation of model-predicted LUE and
GPP against GPP derived from eddy covariance flux mea-
surements (FLUXNET 2015 Tier 1 dataset); (iii) to apply
this model for global-scale simulations and compare spatial
patterns and global totals of simulated GPP with other esti-10

mates with global coverage; and (iv) to introduce a robust
and pragmatic solution to resolving model bias under dry
and cold conditions. With (iv), we do not aim at extending
the theoretical basis for the P-model (Prentice et al., 2014;
Wang et al., 2017a) but to include environmental controls in15

the LUE model that serve to make the model applicable as a
remote-sensing-data-driven GPP model for a wide range of
conditions and vegetation types. The evaluation focuses on
different components of variability (spatial, annual, seasonal,
daily anomalies) (Sects. 4.6–4.2). We further address uncer-20

tainties associated with the fAPAR forcing (Sect. 4.4) and the
uncertainties in the evaluation data by using GPP data de-
rived from different flux decomposition methods (Sect. 4.5).
The use of continuous GPP measurements, rather than ex-
perimentally disturbed measurements, makes it challenging25

to assess modelled GPP under extreme environmental con-
ditions. We therefore make a further evaluation of simulated
GPP during the course of soil moisture drought events (fLUE
droughts; Sect. 4.3).

2 Theory30

The theory underlying the P-model has been described by
Wang et al. (2017a) and the derivation of equations is given
therein. It is presented here again for completeness.

2.1 Balancing carbon and water costs

The P-model centres around a prediction for the optimal ratio35

of leaf-internal to ambient CO2 concentration ci : ca (termed
χ ) that balances the costs associated with maintaining the
transpiration stream and the cost of maintaining a given car-
boxylation capacity. The optimal balance is achieved when
the two marginal costs are equal:40

a
∂(E/A)

∂χ
=−b

∂(Vcmax/A)

∂χ
. (3)

Here, a and b are the respective unit costs. b is assumed to
be constant, and a to scale linearly with the temperature-
dependent viscosity of water η(T ), calculated following Hu-
ber et al. (2009). Below, we introduce β = b/a′, with a =45

η∗a′ and η∗ = η(T )/η(25 ◦C). The optimal χ solves the
above equation. We use Fick’s law (Fick, 1855) to express
transpiration and assimilation as a function of stomatal con-

ductance gs:

E = 1.6gsD, (4) 50

and

A= gsca(1−χ) , (5)

and use the RuBisCO-limited assimilation rate from the
FvCB model:

A= AC = Vcmax mC , (6) 55

with

mC =
ci−0

∗

ci+K
, (7)

where ci is given by caχ . K is the effective Michaelis–
Menten coefficient for RuBisCO-limited assimilation
(Sect. B3), and 0∗ is the photorespiratory compensation 60

point in the absence of dark respiration (Sect. B1). The
optimal χ can be derived as

χ =
0∗

ca
+

(
1−

0∗

ca

)
ξ

ξ +
√
D
, (8)

with

ξ =

√
β(K +0∗)

1.6η∗
. (9) 65

(See Appendix F1 for intermediate steps.) Because both
terms in Eq. (3) are divided by A, the solution is indepen-
dent of whether the RuBisCO-limited rate AC or the light-
limited rate AJ (see below) is followed. With this prediction
for χ , we can use the coordination hypothesis (Chen et al., 70

1993; Haxeltine and Prentice, 1996; Maire et al., 2012) and
the light-limited assimilation rate from the FvCB model to
write

AJ = ϕ0 Iabs m , (10)

with 75

m=
ci−0

∗

ci+ 20∗
. (11)

Iabs is the amount of absorbed light and ϕ0 is the intrinsic
quantum yield efficiency. This equation has the form of a
LUE model (Eq. 2) in that AJ scales linearly with Iabs. Using
Eqs. (9) and (8), m can be expressed directly as 80

m=
ca−0

∗

ca+ 20∗+ 30∗
√

1.6η∗D
β (K+0∗)

. (12)

The unit cost ratio β has been estimated by Wang et al.
(2017a) to 240 based on global leaf δ13C data and a simpli-
fied version of the P-model (assuming 0∗ = 0 and neglecting
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4 B. D. Stocker et al.: P-model v1.0

the Jmax limitation). Here, we re-estimated β to 146 based
on the full version of the model using the same global leaf
δ13C dataset. This is more strictly consistent with the model
formulation implemented here. The value for β used here
is 146.0 (unitless). Equation (12) provides the basis for pre-5

dicting CO2 assimilation rates in the form of a LUE model
(Eq. 2) where LUE is a function of T and p (both affecting
0∗, K , and η∗; see Sects. B1 and B3), D, and ca.

The prediction of optimal χ has a number of corollaries
(see Appendix C). An estimate for stomatal conductance (gs)10

and the intrinsic water use efficiency (iWUE =A/gs) directly
follow from the optimal water–carbon balance (Eq. 3). By as-
sumingAJ = AC, we can further derive Vcmax, as well as dark
respiration (Rd), which is a function of Vcmax (see Sects. C3
and C4).15

2.2 Introducing Jmax limitation

Equation (10) assumes that the light response of A is lin-
ear up to the coordination point. In reality, rates saturate to-
wards high light levels because the electron transport rate J ,
necessary for the regeneration of ribulose 1,5-bisphosphate20

(RuBP), tends towards a maximum Jmax. To account for this
effect, Eq. (10) can be modified, following the formulation
by Smith (1937), using a non-rectangular hyperbola relation-
ship betweenAJ and Iabs to allow for the effect of finite Jmax:

AJ = ϕ0 Iabs m
1√

1+
(

4 ϕ0 Iabs
Jmax

)2

︸ ︷︷ ︸
L

. (13)25

In this equation, AJ is no longer linear with respect to Iabs
and thus does not have the form of a LUE model. How-
ever, Jmax is assumed here to acclimate on longer timescales
to Iabs, so that the marginal gain in assimilation A per unit
change in Jmax is equal to the unit cost (c) of maintaining30

Jmax.

∂A

∂Jmax
= c (14)

The unit cost c is assumed to include the maintenance of
light-harvesting complexes and various proteins involved in
the electron transport chain. The cost of maintaining a given35

Jmax is thus assumed to scale linearly with Jmax and that
this proportionality is constant (c is constant). By taking the
derivative of Eq. (13) with respect to Jmax and rearranging
terms (see Appendix F2 for intermediate steps), we obtain
the Jmax limitation factor L in Eq. (13) as40

L=

√
1−

(
c∗

m

)2/3

, (15)

with c∗ = 4c. Note that L is independent of Iabs. Hence, AJ
is again a linear function of absorbed light. The cost factor c∗

is estimated from published values of Jmax : Vcmax = 1.88 at
25 ◦C. (Kattge and Knorr, 2007) and χ = 0.8 (Lloyd and Far- 45

quhar, 1994) at c∗ = 0.41 (Wang et al., 2017a). The revised
LUE model thus becomes

A= ϕ0 Iabs m
′ , (16)

with

m′ =m

√
1−

(
c∗

m

)2/3

. (17) 50

Wang et al. (2017a) showed that this formulation of Jmax
costs leads to a realistic dependence of the Jmax : Vcmax ratio
on growth temperature.

As shown by Smith et al. (2019), an alternative approach
can be used to introduce the effects of Jmax limitation, re- 55

placing Eq. (13) by the more widely used one-parameter
family of saturation curves following Farquhar and Wong
(1984). This alternative is described in Appendix F3 and im-
plemented as an optional method in the R package rpmodel.

3 Methods 60

3.1 The light use efficiency model

A is commonly expressed in mol m−2 s−1. For further model
description and evaluation, we refer to ecosystem-scale
quantities in mass units of assimilated C and model GPP
(g C m−2 d−1) following Eq. (2) with 65

fAPAR ·PPFD=̂Iabs (18)
LUE=̂ϕ0(T ) β(θ) m

′ MC. (19)

Here, MC is the molar mass of carbon (12.0107 g mol−1) to
convert from molar units to mass units, and PPFD is the pho-
tosynthetic photon flux density per square metre, integrated 70

over a day (mol m−2 d−1). fAPAR is unitless and integrates
across the canopy, i.e. from fluxes per unit leaf area to fluxes
per unit ground area. LUE is in units of g C mol−1. The in-
trinsic quantum yield parameter ϕ0 is modelled as temper-
ature dependent, and an additional (unitless) empirical soil 75

moisture stress factor (β(θ)) is included for modelling LUE.

3.1.1 Temperature dependence of the intrinsic
quantum yield of photosynthesis

The temperature dependence of the intrinsic quantum yield
(ϕ0(T ), mol mol−1) is modelled following the temperature 80

dependence of the maximum quantum yield of photosystem
II in light-adapted leaves, determined by Bernacchi et al.
(2003) as

ϕ0(T )=
aLbL

4
(0.352+ 0.022 T − 0.00034 T 2), (20)

where aL is the leaf absorptance, and bL is the fraction of 85

absorbed light that reaches photosystem II. The factor 1/4

Geosci. Model Dev., 13, 1–37, 2020 www.geosci-model-dev.net/13/1/2020/
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is introduced here as the equation given by Bernacchi et al.
(2003) applies to electron transport rather than C assim-
ilation. Here, (aLbL/4) is treated as a single calibratable
parameter (see Sect. 3.3) and is henceforth referred to as
ĉL ≡ aLbL/4. (All calibratable parameters are thereafter in-5

dicated by a hat over the symbol.) This temperature depen-
dence was not accounted for in earlier P-model publications
(Keenan et al., 2016; Wang et al., 2017a). To test the ef-
fect of this temperature dependence on simulated GPP, we
conducted alternative simulations, where a constant ϕ̂0 was10

calibrated instead (Sect. 3.2). Note that ϕ0 includes the fac-
tor aL for incomplete leaf absorptance, which is commonly
quantified separately from the quantum yield efficiency. In
other vegetation models, aL is commonly ascribed a value
of 0.72–0.88 (Rogers et al., 2017). Values of ϕ0 used here15

are accordingly lower than values for the intrinsic quantum
yield reported from experimental studies (Long et al., 1993;
Singsaas et al., 2001). Furthermore, within-canopy reflection
and reabsorption indicate that leaf-level absorptance is not
equivalent to canopy-level absorptance; thus, ϕ0 should be20

regarded as canopy-scale effective value of intrinsic quan-
tum yield. It is treated here as a calibratable parameter, which
may vary according to the fAPAR forcing dataset used.

3.1.2 Soil moisture stress

β(θ) is an empirical soil moisture stress function. We use25

results by Stocker et al. (2018) to fit this function based on
two general patterns. First, the functional form of β(θ) is ap-
proximated by a quadratic expression that approaches 1 for
soil moisture at a certain threshold θ∗ and held constant at 1
for soil moisture values above this threshold. Here, θ is the30

plant-available soil water, expressed as a fraction of available
water holding capacity, and θ∗ is set to 0.6. The general form
is

β =

{
q(θ − θ∗)2+ 1, θ ≤ θ∗

1, θ > θ∗.
(21)

Second, the sensitivity of β(θ) to extreme soil dryness (θ→35

0) is related to the mean aridity, quantified as the mean annual
ratio of actual over potential evapotranspiration (AET / PET)
(Stocker et al., 2018). The decline in β(θ) with drying soils
is steep in dry climates and less steep in less dry climates. In
Eq. (21), the sensitivity parameter q is defined by the maxi-40

mum β reduction at low soil moisture β0 ≡ β(θ = θ0), lead-
ing to q = (β0− 1)/(θ∗− θ0)

2. Note that q has a negative
value. β0 is modelled as a linear function of the mean arid-
ity:

β0 = âθ + b̂θ (AET/PET). (22)45

âθ and b̂θ are treated as calibratable parameters.
Soil moisture (θ ), AET, and PET are simulated using the

SPLASH model (Davis et al., 2017), which treats soil wa-
ter storage as a single bucket and calculates potential evapo-
transpiration based on Priestley and Taylor (1972). The only50

difference with the model version described by Davis et al.
(2017) is that we account here for a variable water holding
capacity calculated based on soil texture and depth data from
SoilGrids (Hengl et al., 2014). A detailed description of the
applied empirical functions for calculating plant-available 55

water holding capacity from texture data is given in Ap-
pendix D.

3.2 Simulation protocol

3.2.1 Site-scale simulations

We conducted multiple sets of site-scale simulations (Ta- 60

ble 1) to investigate the dependence of model performance
on alternative model setups (variable/fixed soil moisture and
temperature effects), alternative choices of forcing data (fA-
PAR), and alternative observational target data for calibra-
tion (GPP based on different flux decompositions). Param- 65

eters (ĉL, âθ , and b̂θ ) were calibrated and evaluated against
the appropriate observational data for each set of simulations
separately.

The ORG setup is the P-model in its original form, as de-
scribed in Wang et al. (2017a). It uses a fixed quantum effi- 70

ciency of photosynthesis (ϕ̂0 is calibrated instead of ĉL) and
does not account for soil moisture stress (β(θ)= 1). Here,
the model is forced with fAPAR data based on MODIS FPAR
(MCD15A3H), linearly interpolated 4 d values to daily val-
ues (see Sect. 3.4.1), and is calibrated against GPP data from 75

FLUXNET 2015 based on the nighttime partitioning method
(NT) (see Sect. 3.5.1). The simulation set BRC (“Bernacchi”)
is identical to ORG except that ϕ̂0 is allowed to vary with
temperature following Bernacchi et al. (2003) and Eq. (20),
and ĉL is calibrated. The full P-model setup (FULL) includes 80

the soil moisture stress function described above, and ĉL, âθ ,
and b̂θ are calibrated simultaneously.

All additional simulations account for both temperature
and soil moisture effects. The simulation set FULL_FPARitp
also uses MODIS FPAR data for fAPAR but applies a spline 85

to get daily values. This is to evaluate alternative interpola-
tion methods. The simulation set FULL_EVI uses MODIS
EVI (MOD13Q1), interpolated to daily from 8 d data, to as-
sess to which the degree the model performance depends on
the fAPAR forcing data source. See Sect. 3.4.1 for more in- 90

formation.
All site-scale simulations were calibrated against GPP data

(Sect. 3.3), calculated using the nighttime flux decompo-
sition method (Reichstein et al., 2005). Additional simula-
tion sets FULL_DT, FULL_NTsub, and FULL_Ty were used 95

to investigate the dependence of model performance on the
choice of observational data used for calibration. We used
GPP data based on the nighttime decomposition method (Re-
ichstein et al., 2005) for FULL_NTsub, the daytime decom-
position method (Lasslop et al., 2010) for FULL_DT, and an 100

alternative decomposition method, previously used in Wang
et al. (2017a), for FULL_Ty. The Ty method estimates a con-
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6 B. D. Stocker et al.: P-model v1.0

stant monthly background respiration rate fitted to match net
ecosystem exchange fluxes of CO2 from measurements as-
suming a linear or saturating dependence of GPP on PPFD.
Calibration and evaluation of FULL_DT, FULL_NTsub, and
FULL_Ty are done only for sites and dates where observa-5

tional data are available for all three datasets (DT, NT, and
Ty); hence, there is the distinction between FULL_NTsub
and FULL.

3.2.2 Global simulations

Global simulations were conducted for the FULL setup, us-10

ing the respectively calibrated parameters from the site-scale
simulations. All vegetation is assumed to follow the C3 pho-
tosynthetic pathway and we do not distinguish between crop-
lands and other vegetation. We conducted two simulations
with alternative fAPAR forcing data. These are described15

in Sect. 3.4.

3.3 Model calibration

Calibration was performed only for the model parameters de-
termining the quantum efficiency of photosynthesis (ϕ̂0 or
ĉL, respectively) and the dependence of the sensitivity of the20

soil moisture stress function on average aridity (parameters
âθ and b̂θ ). Simulated GPP was calibrated to minimise the
root mean square error (RMSE) compared to observed daily
GPP (Sect. 3.5). We used generalised simulated annealing
from the GenSA R package (Xiang et al., 2013) to calibrate25

model parameters. This algorithm is particularly suited to
find global minima of non-linear objective functions in situa-
tions where there can be a large number of local minima. To
test the robustness of the calibration and evaluation metrics,
we additionally performed out-of-sample calibrations for the30

FULL setup where the training set included data from all but
one site. The test dataset, used to calculate R2 and RMSE,
contained only data from the single left-out site.

3.4 Forcing data

Unstressed light use efficiency, m′ in Eq. (19), is simulated35

using monthly mean values for daytime T and D; tempo-
rally constant site-specific elevation (used to calculate at-
mospheric pressure, scaled from sea-level standard pressure
of 101 325 Pa); and annually varying observed atmospheric
CO2 (MacFarling Meure et al., 2006), identical across sites.40

The choice of aggregating to monthly mean values is mo-
tivated by the timescale of RuBisCO turnover, which limits
the rate at which photosynthetic parameters can acclimate to
changing environmental conditions (McNevin et al., 2006).

Predicted monthly LUE (m′) is multiplied by daily vary-45

ing Iabs, and response functions ϕ0(T ) and β(θ), driven by
daily varying temperature and soil moisture. This choice is
motivated by the known rapid response in stomatal conduc-
tance to drying soils (represented by β(θ)) and the instanta-
neous temperature response of the quantum yield efficiency50

(ϕ0(T )). Simulating GPP as the product of LUE and daily
varying PPFD would not be consistent with the non-linear in-
stantaneous response ofA to light (Eq. 10) given the acclima-
tion timescale of photosynthesis (Suzuki et al., 2001; Maire
et al., 2012). We therefore evaluate simulated GPP averaged 55

over 8 d periods. The choice of appropriate model prediction
and evaluation timescales is further discussed in Sect. 5.

3.4.1 fAPAR

For site-scale simulations, we used three alternative datasets
as model forcing for fAPAR (MODIS FPAR splined, MODIS 60

FPAR linearly interpolated, and MODIS EVI, splined; see
Table 1). MODIS FPAR data are from the MCD15A3H Col-
lection 6 dataset (Myneni et al., 2015), given at a resolution
of 500 m and 4 d. The data were filtered to remove data points
where clouds were present, values equal to 1.00, and out- 65

liers (more than 3 times the interquartile range). Filtered val-
ues were replaced by the mean value for the respective day
of year. To obtain daily varying Iabs (Eq. 18), two alterna-
tives were explored. For the first (used in all setups except
FULL_FPARitp), values were derived using a cubic smooth- 70

ing spline (function smooth.spline() with parameter
spar=0.01 in R; R Core Team, 2016). For the FULL_
FPARitp setup, daily fAPAR values were linearly interpo-
lated to each day. MODIS EVI data are from the MOD13Q1
Collection 6 dataset (Didan, 2015), given at a resolution of 75

250 m and 8 d. These data were filtered based on the sum-
mary quality control flag, removing “cloudy” pixels. Gaps
were filled and data were splined to daily values. All fAPAR
data were downloaded from the Google Earth Engine using
the google_earth_engine_subsets library (Hufkens, 2017). 80

For global-scale simulations, we used two alternative
fAPAR datasets. “MODIS FPAR” is from globally grid-
ded MODIS FPAR data at 0.5◦ resolution derived at the
Integrated Climate Data Center (ICDC; https://icdc.cen.
uni-hamburg.de/1/daten/land/modis-lai-fpar.html, last ac- 85

cess: 5 March 2020), based on the MOD15A2H MODIS
Terra leaf area index/FPAR 8 d L4 global 500 m SIN grid
V006 dataset (Myneni et al., 2020). For the present applica-
tion, 8 d data are aggregated (mean) to monthly data. “fA-
PAR3g” is based on Advanced Very High Resolution Ra- 90

diometer (AVHRR) Global Inventory Modeling and Map-
ping Studies (GIMMS) FPAR3g v2 data (Zhu et al., 2013),
15 d, 1/12◦ resolution and aggregated for the present ap-
plication to 0.5◦ and monthly data. For all global P-model
simulations, fAPAR is held constant for each day in respec- 95

tive months. Simulations cover the years 2000–2016. Due to
limited temporal coverage, January 2000 data are taken as
February 2000 for simulations driven by MODIS FPAR.

3.4.2 Meteorological data

For site-scale simulations, the meteorological forcing data 100

are derived from the FLUXNET 2015 Tier 1 dataset (daily),
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Table 1. Model setups. The standard fAPAR data are MODIS FPAR MCD15A3H, where the original data, given at 4 d intervals, are splined
to daily values (“spl.”). Alternative greenness forcing data are based on MODIS EVI MOD13Q1, splined from 8 d intervals to daily, and
MODIS FPAR MCD15A3H, linearly interpolated (“itpl.”) from 4 d intervals to daily. Standard observational GPP data, used for model
calibration and evaluation, are from FLUXNET 2015, based on the nighttime flux decomposition method (“NT” in the table, variable
GPP_NT_VUT_REF in FLUXNET 2015). Alternative GPP data used based on the daytime flux decomposition method (“DT” in the table,
variable GPP_DT_VUT_REF) and based on an alternative method (Wang et al., 2017a) (“Ty” in the table). For the ORG, BRC, FULL,
FULL_FPARitp, and FULL_EVI setups, data used for the model calibration are from all dates where NT data are available. For FULL_DT,
FULL_ Ty, and FULL_NTsub setups, calibration data are from all dates where data are available for all three methods (DT, NT, and Ty).
Column ϕ0(T ) specifies whether the temperature dependence of intrinsic quantum yield is included. Column β(θ) specifies whether soil
moisture stress is included. Columns ϕ̂0, ĉL, âθ , and b̂θ provide the calibrated parameter values in each simulation set.

Setup name fAPAR data GPP Calibration set ϕ0(T ) β(θ) ϕ̂0 ĉL âθ b̂θ

ORG FPAR MCD15A3H, spl. NT NT data no no 0.04998 – – –
BRC FPAR MCD15A3H, spl. NT NT data yes no – 0.08179 – –
FULL FPAR MCD15A3H, spl. NT NT data yes yes – 0.08718 0 0.73300

NULL FPAR MCD15A3H, spl. NT NT data no no 0.2475∗ – – –

FULL_FPARitp FPAR MCD15A3H, itpl. NT NT data yes yes – 0.08486 0.0 0.74704
FULL_EVI EVI MOD13Q1, spl. NT NT data yes yes – 0.13136 0.01000 0.78419

FULL_DT FPAR MCD15A3H, spl. DT NT, DT, Ty yes yes – 0.08604 0.0 0.72735
FULL_Ty FPAR MCD15A3H, spl. Ty NT, DT, Ty yes yes – 0.08701 0.10671 0.68802
FULL_NTsub FPAR MCD15A3H, spl. NT NT, DT, Ty yes yes – 0.08719 0.0 0.73334

∗ The value represents the fitted LUE, corresponding to (ϕ0m
′MC) in Eq. (19).

which provides data from measurements taken and pro-
cessed along with the CO2 flux measurements. The PPFD
(mol m−2 d−1) is derived from shortwave downwelling radi-
ation as PPFD= 60×60×24×10−6 kECRSW, where kEC =

2.04 µmol J−1 (Meek et al., 1984), and RSW is incoming5

shortwave radiation from daily FLUXNET 2015 data (vari-
able name SW_IN_F, given in W m−2). The factor kEC ac-
counts for the energy content of RSW and the fraction of
photosynthetically active radiation in total shortwave radia-
tion. Daytime vapour pressure deficit (VPD, or D in Sect. 2)10

is calculated from half-hourly FLUXNET 2015 data (vari-
able name VPD_F) by averaging over time steps with posi-
tive insolation (SW_IN_F). Daytime air temperature is taken
directly from the FLUXNET 2015 dataset (variable name
T_F_DAY). This is a simplification, as we are not calculating15

leaf temperature or VPD at the leaf surface, which are more
directly relevant for photosynthesis.

For global-scale simulations, we use daily, 0.5◦ mete-
orological forcing from WATCH-WFDEI (Weedon et al.,
2014). We use mean daily 2 m air temperature; daily snow20

and rainfall; shortwave downwelling radiation converted to
mol photons m−2 d−1 by multiplication with kEC; and daily
2 m specific humidity (qair), converted to VPD (D) as de-
scribed in Appendix E. We used daily minimum and maxi-
mum air temperatures for each month from Climate Research25

Unit (CRU) time series (TS) 4.01 data (Harris et al., 2014) to
calculate a respective VPD and use their mean as input to P-
model simulations in order to reduce effects of the non-linear
dependence of D on T (D = (D(Tmin)+D(Tmax)/2). All
processes that depend on atmospheric pressure use Eq. (B10)30

and the 0.5◦ resolution elevation map from WATCH-WFDEI
(Weedon et al., 2014) to calculate a temporally constant at-
mospheric pressure for each grid cell.

3.5 Calibration and evaluation data

3.5.1 Data for site-scale simulations 35

We used data from 59 sites for model calibration and 126
sites for evaluation (Fig. 1 and Table A1). The number of
valid daily GPP data points used for the calibration set was
162 158 and 241 084 for the evaluation set. The calibra-
tion sites were selected based on the apparent reliability 40

of relationships between CO2 fluxes, co-located greenness
data, measured soil moisture, and meteorological variables,
emerging from a previous analysis (Stocker et al., 2018).
For the evaluation, we used all sites except those classified
as croplands or wetlands, and seven sites where C4 vegeta- 45

tion is mentioned in the site description available through the
FLUXNET2015 dataset (AU-How, DE-Kli, FR-Gri, IT-BCi,
US-Ne1, US-Ne2, and US-Ne3).

GPP predictions by the P-model are compared to GPP
estimates from the FLUXNET 2015 Tier 1 dataset (down- 50

loaded on 13 November 2016). We used GPP based on
the nighttime partitioning method (Reichstein et al., 2005)
(GPP_NT_VUT_REF) and removed data for which more
than 50 % of the half-hourly data are gap filled and for
which the daytime and nighttime partitioning methods 55

(GPP_DT_VUT_REF and GPP_ NT_ VUT_ REF, respec-
tively) are inconsistent, i.e. the upper and lower 2.5 % quan-

www.geosci-model-dev.net/13/1/2020/ Geosci. Model Dev., 13, 1–37, 2020
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tiles of the difference between GPP values quantified by each
method. For additional simulation sets, model calibration and
evaluation was performed using GPP data based on the day-
time partitioning method (GPP_ DT_VUT_REF) (Lasslop
et al., 2010) with analogous filtering steps, and GPP data5

based on an alternative method that fits a constant ecosystem
respiration rate as the net ecosystem exchange under con-
ditions where PPFD tends to zero (FULL_Ty; Wang et al.,
2017a). For all calibration and evaluation, we removed data
points before the “MODIS era” (before 18 February 2000).10

3.5.2 Data for global-scale simulations

We compare the simulated spatial distribution of GPP from
global-scale simulations against seven different remote-
sensing-data-driven GPP estimates with global coverage
and two Sun-induced fluorescence (SiF) data products. The15

global GPP estimates are from the following models: MTE
(Jung et al., 2011), FLUXCOM (“RS+METEO” setup) (Tra-
montana et al., 2016), MODIS GPP (MOD17A2H Collec-
tions 55 and 6) (Running et al., 2004; Zhao et al., 2005;
Running et al., 2015), BESS (Jiang and Ryu, 2016), BEPS20

(He et al., 2018; Chen et al., 2016), and VPM (Zhang et al.,
2017). A more detailed description of these models and ag-
gregation to a common grid of 0.5◦ and monthly resolution
can be found in Luo et al. (2018). For SiF, we use data from
Global Ozone Monitoring Experiment-2A (GOME-2A) and25

GOME-2B, based on v.2 (V27) 740 nm terrestrial chloro-
phyll fluorescence data from the MetOp-A and MetOp-B
satellites (Joiner et al., 2013, 2016). Data were aggregated
to monthly and 0.5◦ resolution by mean, as further described
in Luo et al. (2018).30

3.6 Evaluation methods

We evaluated both simulated LUE and GPP. The P-model
(Sect. 2) predicts variations in LUE across sites (space) and
months (monthly LUE=m′), while simulated GPP is af-
fected by the PPFD and fAPAR data used as model forcing35

(Eq. 19 and Sect. 3.4). Conversely, “observed” LUE is cal-
culated as LUEobs = GPPobs/(fAPAR ·PPFD), and the eval-
uation is thus also affected by the PPFD and fAPAR data.
The evaluation of LUE tests the added explanatory power
of the P-model compared to models that rely on fixed pre-40

scribed LUE values. Evaluating GPP facilitates the compari-
son of the model performance to similar models of terrestrial
GPP. Model performance for GPP is benchmarked against a
null model (NULL), which assumes a temporally constant
and spatially uniform LUE. The LUE for the NULL model45

is fitted to observed GPP using linearly interpolated MODIS
FPAR and GPP data from the NT method; see Table 1. Thus,
while LUE is constant, the NULL model preserves the spatial
and temporal patterns in APAR (= fAPAR ·PPFD).

Figure 1. Overview of sites selected for model calibration (green
dots) and evaluation (black dots). All sites and additional informa-
tion are listed in Table A1. The colour key of the map represents
aridity, quantified as the ratio of precipitation over potential evapo-
transpiration from Greve et al. (2014).

3.6.1 Components of variability 50

For LUE, we separately analysed spatial (mean annual val-
ues by site) and monthly means only for the FULL setup.
For GPP, we analysed spatial, annual, seasonal (mean by day
of year), 8 d, and the variability in daily anomalies from the
mean seasonal cycle for all setups. The seasonal variability 55

was determined for different Köppen–Geiger climatic zones
(see Table 2). Information about the association of sites with
climatic zones was extracted from Falge et al. (2017). Eval-
uations were made only for climatic zones with at least three
sites. For each component of variability, we calculated the 60

adjusted coefficient of determination (R2
adj; hereafter referred

to as R2) and the RMSE. Figures showing correlations be-
tween simulated and observed values additionally present the
mean bias, the slope of the linear regression model, and the
number of data points (N ). 65

3.6.2 Drought response

The bias in GPP (modelled minus observed) was calculated
for 20 d before and 80 d after the onset of a drought event as
identified by Stocker et al. (2018) for 36 sites. Drought events
(fLUE droughts) are periods of consecutive days where soil 70

moisture, separated from other drivers using neural networks,
reduces LUE below a given threshold. The data specifying
the timing and duration of drought events were downloaded
from Zenodo (Stocker, 2018). We then rearranged the data to
align all drought events at all sites, normalised data to their 75

median value during the 10 d before the onset of droughts
(normalisation by subtracting median), and computed quan-
tiles per day, where “day” is defined with respect to the onset
of each drought event.

Geosci. Model Dev., 13, 1–37, 2020 www.geosci-model-dev.net/13/1/2020/
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4 Results

4.1 Calibration results

The calibration of model parameters, done with data from all
calibration sites simultaneously, yielded values that closely
matched the means across parameter values derived from the5

out-of-sample calibrations (Fig. 2). This confirms the robust-
ness of the calibration and that the model is not overfitted.
Similarly for the evaluation metrics, the R2 and RMSE val-
ues reported from evaluations against data from all evalua-
tion sites pooled yielded values that closely match the means10

across the out-of-sample evaluations (each calculated with
data from the single left-out site). This analysis also shows
that the distribution of the evaluation metrics is skewed, with
evaluations against a few sites indicating relatively poor per-
formance (R2 below 0.5 for ZM-Mon, AR-Vir, and FR-Pue),15

while the most frequent values indicate very good model per-
formance (evaluations at 21 sites giving R2 values of above
0.8). Because the out-of-sample calibrations are computa-
tionally very expensive, we performed this analysis only for
one setup (FULL) and report evaluation metrics done with20

pooled data from all evaluation sites for the remainder of the
analysis.

4.2 GPP variability across scales

Tables 3 and 4 provide an overview of model performance
(R2 and RMSE) in simulating GPP at different scales. The25

ORG setup captures 70 % of the variance in observed GPP
with data aggregated to 8 d means (33 604 data points).
Model performance both with respect to explained vari-
ance (R2) and the RMSE is improved by including the ef-
fects of temperature on quantum yield efficiency in the BRC30

model setup (R2
= 72 %), and by including the effects of

soil moisture stress in the FULL model setup (R2
= 75 %;

Fig. 3). Both the BRC and FULL model setups outperform
the NULL model.

4.2.1 Seasonal variations35

Seasonal variations are generally reliably simulated (R2:
0.69–0.73 for P-model setups, and R2: 0.71 for the NULL
model; Fig. 4). Also the NULL model captures most of the
seasonal variability, especially in climate zones Dfb and Dfc,
and Cfb and Cfa. This indicates that seasonal GPP variations40

are largely driven by seasonal changes in insolation (PPFD)
and vegetation greenness (fAPAR). Accounting for tempera-
ture effects on the quantum yield efficiency reduces the over-
estimation of GPP in spring, except in the case of climate
zone Dfb. Observed GPP increases are lagged compared to45

vegetation greenness, with a delay of up to 2 months at some
sites. This lag is clearly visible at almost all sites in Dfb.
The early-season high bias is largely absent for sites in cli-
mate zone Cfb, where observed GPP starts increasing early
and the simulations match the observations except at sites50

CZ-wet, DE-Hai, and FR-Fon, where the start of season is
simulated too early.

GPP is overestimated during the dry season in climate
zones with a marked dry season (Aw, BSk, Csa, and Csb)
in model setups that do not account for soil moisture stress 55

(ORG, BRC, NULL). The NULL model has the largest bias.
High VPD during dry periods reduces simulated LUE and
leads to lower GPP values and a smaller bias in all the P-
model setups (ORG, BRC, FULL). The empirical soil mois-
ture stress function applied in the FULL setup eliminates the 60

dryness-related bias in zones Aw, Csa, and Csb and substan-
tially reduces this bias for sites in zone BSk. Observations
suggest that GPP declines to values around zero during dry
periods at sites in zone BSk (mostly savannah vegetation and
grasslands; see Table A1). The remaining bias in the FULL 65

model, which includes the soil moisture stress function, is
related to the fact that prescribed fAPAR remains relatively
high and that the soil moisture stress function does not de-
cline to zero.

The ORG and BRC models tend to underestimate peak- 70

season GPP more strongly compared to the FULL model.
This is a direct consequence of the calibration which bal-
ances errors across all data points. Across-site average peak-
season maximum GPP is accurately captured by the FULL
model in most zones (Fig. 4), except for an underestimation 75

of GPP in zones Aw, Cfa, and Cfb, and an overestimation in
zone Csa. Site-level evaluations suggests no clear relation-
ship between peak-season underestimation and vegetation
type in zone Cfb. The overestimation of peak-season GPP
in zone Csa is caused by a high bias at sites with evergreen 80

broadleaf vegetation (FR-Pue, IT-Cp2, IT-Cpz); sites with
other vegetation types show no consistent peak-season bias.

4.2.2 Spatial and annual variations

The R2 for simulated GPP, aggregated to annual totals,
ranges from 0.60 (ORG) to 0.69 (FULL). The NULL model 85

achieves an R2 of 0.58. Most of the explanatory power of the
different models for annual total GPP stems from their power
in predicting between-site (“spatial”) variations (Fig. 5). The
R2 for spatial variations ranges from 0.63 (ORG) to 0.69
(FULL), and 0.65 for the NULL model. In contrast, interan- 90

nual variations at a site are poorly simulated (R2: 0.05–0.09
for P-model setups, and 0.03 for the NULL model). Inter-
annual variations are generally much smaller than between-
site (spatial) variations or seasonal variations. Thus, captur-
ing them is challenging. Interannual GPP variations are gen- 95

erally better simulated at sites where the variability is high
and in particular at dry sites.

4.3 Drought response

The P-model setups that do not include the soil mois-
ture stress function (ORG and BRC) systematically over- 100

estimate GPP during droughts (Fig. 6). This bias increases

www.geosci-model-dev.net/13/1/2020/ Geosci. Model Dev., 13, 1–37, 2020
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Table 2. Description of Köppen–Geiger climate zones and number of sites for which data are available per climate zone and hemisphere.
Sites are classified based on Falge et al. (2017) and Beck et al. (2018). Only zones with data from more than three sites are shown.

Code N north N south Description

Aw – 5 Tropical savannah
BSk 5 – Arid steppe cold
Cfa 11 – Warm temperate fully humid with hot summer
Cfb 20 5 Warm temperate fully humid with warm summer
Csa 12 – Warm temperate with dry and hot summer
Csb 4 – Warm temperate with dry and warm summer
Dfb 17 – Cold fully humid with warm summer
Dfc 21 – Cold fully humid with cold summer

Figure 2. Out-of-sample calibration and evaluation results. (a–c) Distribution of parameter values (FULL setup) from calibrations where
data from one site were left out for each individual calibration. Parameters âθ and b̂θ are unitless. (d, e) Distribution of evaluation metrics
calculated on data from the left-out site based on simulations with model parameters calibrated on all other sites’ data. Solid vertical red lines
represent the parameter values calibrated with data from all sites pooled. These are the values reported in Tables 3 and 4 for FULL setup.
Dashed red lines represent the mean across values from out-of-bag calibrations and evaluations.

sharply at the onset of drought events and continues to in-
crease throughout the drought period. The bias is strongly
reduced by applying the empirical soil moisture stress func-
tion (Eq. 21) in the FULL model. A small bias remains also
in the FULL model. This stems from overestimated values at5

a few sites (in particular AU-DaP, US-Cop, US-SRG, US-
SRM, US-Var, US-Whs, US-Wkg), mostly grasslands and
sites in seasonally dry climate zones (Aw, BSk, and Csa; see
Fig. 4), where flux measurements indicate an almost com-
plete shutdown of photosynthetic activity during the dry sea-10

son. In contrast, the fAPAR data (MODIS FPAR) suggest
values substantially greater than zero at these sites during
these periods. This suggests either contributions to PAR ab-
sorption by photosynthetically inactive tissue, underestima-
tion of LUE sensitivity to dry soils at these sites, or an over-15

estimation of the rooting zone moisture availability by the
SPLASH model.

4.4 Uncertainty from fAPAR input data

Tests of the sensitivity of model performance to alternative
fAPAR forcing datasets show that the difference between 20

splined and linearly interpolated MODIS FPAR is small, with
slightly better performance using splined fAPAR data. Model
performance is generally better using MODIS FPAR com-
pared to simulations using MODIS EVI. Spatial variations,
in particular, are better captured using MODIS FPAR (Fig. 5, 25

R2: 0.69 for the FULL setup) compared to MODIS EVI (R2:
0.58). However, the R2 of interannual variations is 0.15 for
MODIS EVI and 0.09 for MODIS FPAR. In terms of biases
in climate zones, the overestimation of GPP during the dry
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Table 3. R2 of simulated and observed GPP based on different model setups and for different components of variability.

Setup 8 d Spatial Annual Seasonal Var (daily) Var (annual)

FULL 0.75 0.69 0.69 0.73 0.27 0.09
BRC 0.72 0.65 0.63 0.72 0.25 0.06
ORG 0.70 0.63 0.60 0.69 0.24 0.05
NULL 0.68 0.65 0.58 0.71 0.21 0.03

FULL_FPARitp 0.73 0.71 0.69 0.74 0.24 0.10
FULL_EVI 0.70 0.58 0.47 0.71 0.27 0.15

FULL_DT 0.64 0.67 0.69 0.64 0.30 0.10
FULL_NTsub 0.66 0.69 0.69 0.66 0.30 0.09
FULL_Ty 0.68 0.68 0.49

Table 4. RMSE of simulated and observed GPP based on different model setups and for different components of variability.

Setup 8 d Spatial Annual Seasonal Var (daily) Var (annual)

FULL 1.96 426.66 398.63 1.84 1.55 166.97
BRC 2.05 454.78 438.14 1.89 1.54 170.54
ORG 2.15 466.19 447.80 1.99 1.54 172.54
NULL 2.19 465.21 465.99 1.94 1.58 173.71

FULL_FPARitp 2.01 427.47 404.98 1.82 1.64 165.51
FULL_EVI 2.13 513.68 526.98 1.91 1.49 159.82

FULL_DT 2.16 411.30 392.34 2.00 1.69 180.75
FULL_NTsub 2.15 426.64 398.60 1.98 1.70 166.97
FULL_Ty 1.92 1.79 1.38

period in zone BSk is larger when using MODIS EVI than
when using MODIS FPAR (Fig. 7, right). The positive spring
bias in simulated GPP in zone Dfb is present irrespective of
the source of the fAPAR forcing (Fig. 7, left), as is the peak-
season bias of GPP in zones BSk, Cfb, and Csb (not shown).5

Differences between the EVI- and FPAR-forced simulations
depend on vegetation type. The EVI-forced simulation tends
to be biased low in evergreen needleleaf vegetation and has
generally lower values in all evergreen vegetation types com-
pared to the FPAR-forced simulation. However, there is no10

general difference in model bias between simulations made
with the two forcings in other vegetation types.

4.5 GPP target data

The different flux decomposition methods make funda-
mentally different assumptions regarding the sensitivity of15

ecosystem respiration to diurnal changes in temperature.
This should lead to systematic differences in derived obser-
vational GPP values and should affect model–data disagree-
ment.

Model predictions compare better to GPP data based on20

the flux decomposition method Ty (Wang et al., 2017a) than
for GPP data based on the DT and NT methods. For GPP
8 d means, the model achieves an R2 of 0.68 when com-

pared to GPP Ty (FULL_Ty model setup), as opposed to 0.64
and 0.66 compared to the DT and NT methods, respectively 25

(FULL_DT and FULL_NTsub; Table 3, Fig. 8). Spatial and
annual correlations are not evaluated for GPP Ty due to miss-
ing data. Evaluations presented here rely on dates for which
neither the NT, DT, nor Ty methods have missing values and
thus contain an equal number of data points. Metrics from 30

the NT evaluation, repeated here, are not identical to the ones
above and are referred to as “NTsub” in Tables 3 and 4.

We found a systematic low bias of simulated GPP in the
peak-season in the climatic zone Cfb (warm temperate, fully
humid, warm summer). However, as shown in Fig. 8, this 35

bias does not seem to be affected by the choice of GPP eval-
uation data.

4.6 LUE

The FULL version of the P-model captures 32 % of the vari-
ability in mean annual LUE across all sites and across the full 40

range of observed mean annual LUE values and vegetation
types (Fig. 9). Overall, 48 % of the observed LUE variation
within vegetation types is captured by the model through the
relationships with climate, without the need to specify pa-
rameters for specific vegetation types. 45
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Figure 3. Correlation of observed and modelled GPP values of all sites pooled, mean over 8 d periods, for the model setups FULL (a) and
NULL (b).

Figure 4. Mean seasonal cycle. Observations are given by the black line and grey band, representing the median and 33 %/66 % quantiles of
all data (multiple sites and years) pooled by climate zone. Coloured lines represent different model setups. The annotation above each plot
specifies the climate zone (see Table 2). Only climate zones are shown here for which data from at least five sites were available.
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Figure 5. Correlation of modelled and observed annual GPP in simulations FULL (a), NULL (b), and FULL_EVI (c). The red line and text
are based on means across years by site and represent spatial (across-site) variations. Black lines and text are based on annual values, with
one line for each site. Lines represent linear regressions. R2 and RMSE statistics for annual values (black text) are based on pooled data
from all sites. For a perfect fit between modelled and observed annual GPP values, all black lines (representing the linear regression model of
annual values for a single site) would lie on the 1 : 1 line and have a slope of 1. Slopes that deviate substantially from 1, or are even negative,
for some sites show poor model performance in capturing interannual variability.

Overall, 31 % of the variability in monthly mean LUE is
captured by the model, with data from all sites and years
pooled (Fig. 9). The model overestimates monthly LUE val-
ues and underestimates LUE at the lowest and highest ends
of the LUE range, respectively. The low-end overestima-5

tion is reflected by the overestimation of GPP in the spring
at winter-cold sites (Sect. 4.2.1) and during soil moisture
droughts (Sect. 4.3). The underestimation of high monthly
values is not clearly linked to any particular vegetation type.

4.7 Global GPP10

Simulated global total GPP is 106 GtC yr−1 when using
MODIS FPAR and 122 GtC yr−1 when using fAPAR3g forc-
ing data (mean over the years 2001–2011, FULL setup).
The spatial pattern of simulated GPP differs substantially be-
tween simulations forced by MODIS FPAR and fAPAR3g15

(Fig. 10). This is most evident in their latitudinal distribution

(Fig. 11). The global spatial pattern of fAPAR3g-based GPP
simulated by the P-model generally matches the global dis-
tribution of the mean across other remote-sensing-based GPP
models and lies within the range of their estimates for the 20

latitudinal distribution. The MODIS FPAR-forced P-model
simulation suggests lower values in the tropics that differ
from the fAPAR3g-based estimates by a factor of∼ 2 around
the Equator. The moderate tropical GPP of the MODIS
FPAR-based P-model simulation agrees well with the lati- 25

tudinal distribution of SiF from GOME-2A and GOME-2B.

5 Discussion

The performance of the P-model can be compared to re-
sults obtained from other remote-sensing-driven GPP mod-
els (RS models). In its FULL setup, the P-model achieves an 30

R2 of 0.75 and a RMSE of 1.96 g C m−2 d−1, in simulating
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Figure 6. Bias in simulated GPP during the course of drought
events. Simulated GPP is from a simulation with (FULL) and
without (BRC) accounting for soil moisture stress. The timing of
drought events is taken from Stocker et al. (2018) and is identified
by an apparent soil-moisture-related reduction of observed light use
efficiency at 36 FLUXNET sites. The bias is calculated as simulated
minus observed GPP. Data from multiple drought events and sites
are aligned by the date of drought onset and aggregated across all
sites and events (lines for medians; shaded ranges from the 33 %
and 66 % quantiles).

8 d mean GPP and evaluated against GPP data (NT method)
from 126 sites. This can be compared to predictions from
the VPM model (R2: 0.74, RMSE: 2.08 g C m−2 d−1, 113
sites, 8 d; Zhang et al., 2017) or BESS (R2: 0.67, RMSE:
2.58 g C m−2 d−1, 113 sites, 8 d; Jiang and Ryu, 2016).5

The performance of the P-model in simulating annual GPP
across all 126 sites (R2: 0.69) can be compared to results
from MODIS GPP (MOD17A2, R2

= 0.73, 12 sites; Hein-
sch et al., 2006; and for the updated version MOD17A2H:
R2
= 0.62, 18 sites; Wang et al., 2017b) or BEPS (R2: 0.81,10

RMSE: 347 g C m−2 d−1, 124 sites; He et al., 2018). Unfortu-
nately, we cannot present a direct comparison between these
models based on data from identical dates and sites. A tar-
geted model intercomparison may address this. While sea-
sonal and spatial variations in GPP are reliably simulated by15

the P-model, the model’s performance in simulating inter-
annual GPP variations is weaker. Similar results regarding
relatively poor model performance in explaining interannual
variations have been found from previous studies in both em-
pirical (Richardson et al., 2007; Urbanski et al., 2007b) and20

process model-based (Keenan et al., 2012; Biederman et al.,
2016) analyses. This is likely due to lagged effects of climate
anomalies expressed through biotic responses (Richardson
et al., 2007; Keenan et al., 2012).

The P-model-based estimates of global GPP25

(106 GtC yr−1 when using MODIS FPAR and 122 GtC yr−1

when using fAPAR3g forcing data, mean over 2001–2011,
FULL setup) are within the range of other estimates of
global GPP (also means over 2001–2011): 133 GtC yr−1

for MTE (Jung et al., 2011), 130 GtC yr−1 for FLUXCOM 30

(Tramontana et al., 2016), 112 GtC yr−1 for MODIS-55
GPP and 105 GtC yr−1 for MODIS-6 GPP (Running et al.,
2004; Zhao et al., 2005), 133 GtC yr−1 for BESS (Jiang
and Ryu, 2016; Ryu et al., 2011), 121 GtC yr−1 for BEPS
(He et al., 2018; Chen et al., 2016), and 135 GtC yr−1 for 35

VPM (Zhang et al., 2017). The P-model results presented
here are based on simulations that embody relatively strong
simplifying assumptions. In particular, we assumed all
vegetation to follow the C3 photosynthetic pathway and we
made no distinction between croplands and other vegetation, 40

although crops are often more productive (Guanter et al.,
2014). Due to the short period for which forcing data and
outputs from comparable models are available, we did not
analyse temporal trends in global GPP here. Analyses not
shown here indicate that the introduction of the Jmax cost 45

factor (not included, e.g. in Keenan et al., 2016) increases
the sensitivity of modelled GPP to CO2. Further evaluation
of model behaviour against data from CO2 manipulation
experiments will be necessary before applying the model to
simulate CO2-related trends. 50

The large spread of tropical GPP estimates is striking. The
highest estimate among the other GPP models we used for
evaluation here – coming from BESS – is more than 50 %
higher than MODIS GPP from Collection 6. The fAPAR3g-
based P-model tropical GPP estimate falls within the range 55

of other GPP models, while the MODIS FPAR-based esti-
mate is lower than all other models. However, the latter’s
comparably low tropical GPP agrees well with the latitudi-
nal distribution of SiF (Fig. 11). However, large changes in
leaf area index across latitudes, combined with a dependency 60

of the SiF signal on vegetation structure (Zeng et al., 2019)
may undermine the validity of SiF as a benchmark for the
latitudinal GPP distribution. A lack of evaluation data from
eddy covariance measurements in dense tropical forests pre-
cludes us from drawing conclusions on the accurateness of 65

these diverging tropical GPP estimates.
With a particular focus on soil moisture effects, Stocker

et al. (2019) presented global GPP based on the P-model,
corresponding to a setup with the soil moisture stress func-
tion but without the temperature dependence of the quantum 70

yield efficiency. They also used a different parameterisation
with ϕ0 = 0.0579, aθ = 0.107, and bθ = 0.478 for their in-
termediate model version. Their estimate for global GPP was
around 130 Pg C yr−1 for recent years.

The coefficients of determination (R2) of simulated versus 75

observed values are lower for LUE (0.32 for the spatial cor-
relation in the FULL setup, Fig. 9b) than for GPP (0.69 for
the spatial correlation in the FULL setup). This is because
GPP variations are strongly driven by variations in absorbed
light (PPFD · fAPAR), which are observed and used for mod- 80

elling. In contrast, variations in LUE cannot be observed
directly. Using remotely sensed information for estimating
LUE variations, e.g. based on Sun-induced fluorescenceCE2

(Frankenberg et al., 2018; Li et al., 2018; Ryu et al., 2019)
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Figure 7. Mean seasonal cycle for model setups with different greenness forcing data for two climate zones (BSk and Dfb, both in the
Northern Hemisphere). Observations are given by the black line and grey band, representing the median and 33 %/66 % quantiles by day
of year (DOY) of all data (multiple sites and years) pooled by climate zone. Coloured lines represent model setups forced with different
greenness data. The annotation above each plot specifies the climate zone (see Table 2). Climate zones shown here are illustrative examples.

Figure 8. CE1 Model performance subject to comparison with different flux decomposition methods for GPP. (a–c) Mean seasonal cycle of
simulated (red) and observed GPP (black) based on different flux decomposition methods for sites in climate zone Cfb north. The grey band
represents the 33 %/66 % quantiles of observed GPP by DOY. (d–f) Correlation of observed and simulated GPP values of all sites pooled,
mean over 8 d periods, all sites pooled. “Observed GPP” refers to the different flux decomposition methods: DT for the daytime method
(FULL_DT setup), NT for the nighttime method (FULL_NTsub setup), and Ty (FULL_Ty setup) for the method applied for data used in
Wang et al. (2017b). Dotted lines in panels (d–f) represent the 1 : 1 relationship; red lines represent the fitted linear regressions.

www.geosci-model-dev.net/13/1/2020/ Geosci. Model Dev., 13, 1–37, 2020
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Figure 9. Modelled (FULL) versus observed LUE. (a) Mean monthly LUE with data pooled from all sites and available years. (b) Mean
annual LUE by site (small dots and colour) and vegetation type (large dots and colour). Model performance metrics are given at the top with
numbers in brackets referring to the regression of data aggregated by vegetation types and non-bracketed numbers for data aggregated by
sites. Dotted lines represent the 1 : 1 relationship, red lines represent the fitted linear regression to all data in panel (a) and the fitted linear
regression to mean annual LUE by site in panel (b). The grey band in panel (b) represents the 95 % confidence interval of the linear regression.
Vegetation types are closed shrubland (CSH); deciduous broadleaf forest (DBF); evergreen broadleaf forest (EBF); evergreen needleleaf
forest (ENF); grassland (GRA); mixed deciduous and evergreen needleleaf forest (MF); open shrubland (OSH); savanna ecosystem (SAV);
woody savanna (WSA).

or alternative reflectance indices (Gamon et al., 1992, 2016;
Badgley et al., 2017), is an active field of research and the
separation of remotely sensed signals into contributions by
LUE and absorbed light remains challenging (Porcar-Castell
et al., 2014; Ryu et al., 2019). Other remote-sensing-based5

GPP models rely on vegetation-type-specific model param-
eters for LUE (Zhang et al., 2017; Running et al., 2004;
Jiang and Ryu, 2016). The P-model in its FULL setup ex-
plains 48 % of the variations in LUE across sites aggregated
to vegetation types without relying on vegetation or biome-10

type specific parameterisations. In its ORG setup, it explains
12 % of the variations (not shown) and 51 % of the varia-
tions when excluding sites classified as “open shrublands”,
which tend have a substantially lower LUE than simulated
by the P-model (not shown). In spite of this substantial por-15

tion of explained variability, the NULL model with its tem-
porally constant and spatially uniform LUE achieves higher
R2 values for GPP than the ORG P-model setup at the spa-
tial, annual, and seasonal scales (Table 3). This indicates that
the spatial and temporal variations in absorbed light are the20

main drivers of GPP in LUE-type models and underlines the
importance of evaluation against a NULL model benchmark.
Taken together, these findings demonstrate that the P-model
offers a simple but powerful method for simulating terres-
trial GPP using readily available input datasets and a very25

small number of free (calibratable) parameters. Here, three
parameters are calibrated (for the FULL setup). Other model
parameters are derived from independent field and laboratory
measurements.

Accounting for the temperature dependence of the quan- 30

tum yield efficiency (ϕ0) clearly improves model predictions.
The parameter ϕ0 is commonly treated as a constant in global
vegetation models (Rogers et al., 2017). Our results indicate
potential for improving such models’ photosynthesis routines
by accounting for the temperature dependence of ϕ0. 35

ϕ0 appears as a linear scalar in the LUE model. How-
ever, the magnitude of this scalar is uncertain and depends
on whether incomplete light absorption by the leaf is in-
cluded in the definition of ϕ0 or in fAPAR data. We have used
MODIS FPAR and MODIS EVI data to define fAPAR in dif- 40

ferent model setups. While the two are well correlated, their
absolute values differ. Hence, we have calibrated an appar-
ent quantum yield efficiency (ϕ̂0) to GPP data separately for
different fAPAR datasets, thereby implicitly distinguishing
what components of light absorption factors are contained in 45

the fAPAR data. The leaf absorptance, aL, which is typically
taken to be around 0.8 in global vegetation models (Rogers
et al., 2017), is similar to the ratio of fitted ϕ̂0 values for sim-
ulation FULL and FULL_EVI, here calculated as 0.67 (Ta-
ble 1). 50

An improvement in model performance is obtained by ac-
counting for soil moisture stress using an empirical function.
However, the use of an empirical function masks underly-
ing processes. Furthermore, the use of an empirical function
is not consistent with the optimality approach that underlies 55

the P-model. The bias reduction associated with using an em-
pirical soil moisture stress function hints at missing factors
in the theoretical approach which rests on an assumed con-
stancy of the unit costs of transpiration (a in Eq. 3). Prentice
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Figure 10. Global distribution of GPP. Shown are the mean annual values, averaged over the years 2000 to 2016. The GPP shown as “mean
of other models” is the average of MTE (Jung et al., 2011), FLUXCOM (‘RS+METEO’ setup) (Tramontana et al., 2016), MODIS GPP
(Collections 55 and 6) (Running et al., 2004; Zhao et al., 2005), BESS (Jiang and Ryu, 2016), BEPS (He et al., 2018; Chen et al., 2016), and
VPM (Zhang et al., 2017). P-model results are from simulations with the FULL setup and calibrated parameters as given in Table 1.

Figure 11. Latitudinal distribution of GPP and SiF. Values shown
(GPP on the left y axis; SiF on the right y axis) are grid cell area-
weighted sums along 0.5◦ latitudinal bands.

et al. (2014) provide a definition of a that is explicit in terms
of plant hydraulic traits and physical properties that deter-
mine water transport along the plant–soil–atmosphere con-
tinuum. In particular, a ∝ (19ks)

−1, where 19 is the max-
imum daytime difference in leaf-to-soil water potential and5

ks is the sapwood area-specific permeability. However, large
variations in stomatal conductance are known to occur in re-
sponse to relatively fast soil dry-downs (timescale of days)
(Keenan et al., 2010; Egea et al., 2011; Stocker et al., 2018).
This suggests a potential to improve the P-model by allowing10

the unit cost of transpiration to be a function of rooting-zone
moisture availability and by coupling stomatal conductance
with the soil water balance.

Observational uncertainty could affect both parameter cal-
ibration and model evaluation. Keenan et al. (2019) found 15

a systematic bias in GPP estimates based on the nighttime
partitioning method due to inhibition of leaf respiration in
the light (Kok, 1949; Wehr et al., 2016), which affects fluxes
unevenly throughout the season and across vegetation types.
However, we found no clear difference in model–data agree- 20

ment, nor in fitted parameters, in comparisons of three alter-
native GPP datasets that use different approaches to decom-
pose net CO2 exchange fluxes from eddy covariance mea-
surements into ecosystem respiration and GPP terms.

We have found a consistent early-season high bias in 25

simulated GPP for numerous sites in regions with decidu-
ous broadleaved vegetation in temperate and cold climates
(in particular US-MMS, IT-Col, US-WCr, US-UMd, US-
UMB, and US-Ha1), and also in mixed and needleleaf stands
(in particular US-Syv, US-NR1, FI-Hyy, CA-Qfo, and CA- 30

Man). The temperature dependence of the intrinsic quan-
tum yield, as introduced in the BRC and FULL setups, did
not resolve this bias. Additional analyses (not shown) sug-
gested that this bias is not related to soil temperatures. The
P-model, as applied here, uses daily air temperature for sim- 35

ulating temperature stress on the intrinsic quantum yield
in the BRC and FULL setups. A reduction in the quan-
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Figure 12. Distribution of anomalies from the mean seasonal cycle, evaluated for daily values (a) and 8 d means (b).

tum yield efficiency arises from several mechanisms, includ-
ing increased non-photochemical quenching, a reduction in
chlorophyll, and absorption by screening pigments (Huner
et al., 1993; Oquist and Huner, 2003; Ensminger et al.,
2004; Adams et al., 2004; Verhoeven, 2014). These adapta-5

tions serve to limit oxidative damage under high light and
low temperature conditions, where an imbalance between
electron supply and demand exists, arising from an imbal-
ance between temperature-insensitive photochemical rates
and temperature-sensitive biochemical rates. The reversion10

of these adaptations and resumption of the intrinsic quan-
tum yield efficiency and photosynthesis requires sustained
temperatures above a certain critical threshold (Tanja et al.,
2003) and exhibits a delay with respect to instantaneous air
temperatures (Pelkonen and Hari, 1980; Mäkelä et al., 2004).15

Approaches accounting for a delayed resumption of photo-
synthesis after cold periods offer scope for further improve-
ment of the P-model and may be included in global vegeta-
tion and Earth system models where this effect is currently
not accounted for (Tanja et al., 2003; Rogers et al., 2017).20

There is a positive bias in simulated GPP during the dry
season at a number of sites where the vegetation phenology
is influenced by drought. The positive bias is related to the
combination of using prescribed fAPAR data, which shows
substantial absorption by non-green vegetation, and insuffi-25

cient sensitivity of simulated LUE to soil drying. However,
GPP is accurately simulated at other sites affected by season-
ally recurring water stress. The modelled sensitivity to dry
soils is determined by the soil moisture stress function, which
depends on the mean aridity of the site as estimated using a30

fixed depth soil moisture “bucket”. Accounting for variabil-
ity in rooting zone depth, which may also be influenced by
local topographical factors and access to groundwater (Fan
et al., 2013, 2017) may help to minimise model biases in
drought-prone areas.35

The current implementation of the P-model involves some
simplifications in terms of climate drivers by using average
daily meteorological conditions, measured above the canopy,
as input. Optimality in balancing carbon and water costs for
average daily conditions is not necessarily equivalent to op- 40

timality in balancing integrated water and carbon costs over
the diurnal cycle. Large variations in ambient conditions over
a diurnal cycle, combined with a non-linear dependence of
costs on these conditions suggest that the approach of tak-
ing average daily conditions may be an oversimplification. 45

Nevertheless, prior evaluations have shown robust and ac-
curate predictions of optimal χ across a range conditions
(Wang et al., 2017a). Using above-canopy VPD values in-
stead of VPD at the leaf surface for scaling water losses
implicitly assumes a perfectly coupled atmospheric bound- 50

ary layer. Using above-canopy air temperature instead of leaf
temperatures introduces a bias when the two become decou-
pled (Michaletz et al., 2015). The impact of these simplifica-
tions may be minor but should be evaluated.

A further simplification is that investment in electron 55

transport capacity (expressed by Jmax) and investments in the
carboxylation capacity (expressed by Vcmax) are coordinated
so that for conditions with which the model is forced (here,
monthly means of daily averages), photosynthesis operates at
the co-limitation point of the light- and RuBisCO-limited as- 60

similation rates, and an effective linear relationship between
absorbed light and mean assimilation emerges. This assump-
tion follows from the coordination hypothesis, which itself
can be understood as an optimality principle (Haxeltine and
Prentice, 1996; Maire et al., 2012) and is well supported by 65

observations (Maire et al., 2012). However, this coordination
is contingent on the timescale at which photosynthetic ac-
climation occurs, which is not known precisely (Smith and
Dukes, 2013; Way and Yamori, 2014). By simulating χ us-
ing monthly mean meteorological variables, we assume a 70
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monthly timescale of acclimation. This is probably a conser-
vative estimate (Smith and Dukes, 2017; Veres and Williams
III, 1984). Considering the concave relationship of assimi-
lation rates and absorbed light that follows from the FvCB
model for a given Jmax, linearly scaling a given monthly LUE5

term with daily varying absorbed light levels should lead to
an overestimation of assimilation rates at high light levels.
This overestimation should disappear as the timescale over
which light levels are averaged is increased. However, our
results do not confirm these expectations (Fig. 12). The fact10

that the model did not exhibit a systematic error in simulating
GPP variations when applied at the daily timescale is prob-
ably due to the fact that day-to-day variability in light levels
is relatively small compared to the within-day variability and
the non-linearity between A and daily varying light levels15

does not play an important role.

6 Conclusions

The P-model provides a simple, parameter-sparse but pow-
erful method to predict photosynthetic capacity and light
use efficiency across a wide range of climatic conditions20

and vegetation types. It provides a basis for a terrestrial
light use efficiency model driven by remotely sensed vege-
tation greenness. Using optimality principles for the formu-
lation of the P-model reduces its dependence on uncertain or
vegetation-type-specific parameters and enables robust pre-25

dictions of GPP and its variations through the seasons, be-
tween years, and across space. Further work is required to
develop a distinct treatment of C4 vegetation for global appli-
cations and additional evaluations are needed to examine the
P-model’s sensitivity to increasing CO2. We have shown that30

accounting for the effects of low soil moisture and the reduc-
tion in the quantum yield efficiency under low temperatures
improves model performance. There is potential to include
below-ground water limitation effects in the mechanistic op-
timality framework of the P-model.35

Code and data availability. The P-model is implemented as an
R package (rpmodel) and available through CRAN and Zenodo
(Stocker, 2019a). Results shown here correspond to rpmodel ver-
sion v1.0.4. A documentation of the R package is available un-
der https://stineb.github.io/rpmodel/ (last access: 5 February 2020).40

Both site-scale and global simulations shown here are done with the
Fortran implementation of the P-model within the SOFUN mod-
elling framework (version v1.2.0), available on Zenodo (Stocker,
2019b). Site-scale forcing data ingest and filtering, model calibra-
tion, and evaluation were done using the R package rsofun (version45

v1.0.wrap_sofun), available on Zenodo (Stocker, 2020b). Scripts
that implement the workflow (repository eval_pmodel version v2)
are available on Zenodo (Stocker, 2020a). Model outputs are avail-
able on Zenodo (Stocker, 2019c).
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Appendix A: Site information

Table A1 provides metadata information and references for
each site from the FLUXNET2015 Tier 1 dataset, used for
model calibration and evaluation in the present study.

Table A1. Sites used for evaluation. Long. is longitude; negative values indicate west longitude. Lat. is latitude; positive values indicate north
latitude. Veg. is vegetation type: deciduous broadleaf forest (DBF); evergreen broadleaf forest (EBF); evergreen needleleaf forest (ENF);
grassland (GRA); mixed deciduous and evergreen needleleaf forest (MF); savanna ecosystem (SAV); shrub ecosystem (SHR); wetland
(WET). References not available in the metadata provided with the FLUXNET2015 dataset are listed as NA (not available).

Site Long. Lat. Period Veg. Clim. N Calib. Reference

AR-SLu −66.46 −33.46 2009–2011 MF Bwk 448 Ulke et al. (2015)
AR-Vir −56.19 −28.24 2009–2012 ENF Csb 747 Y Posse et al. (2016)
AT-Neu 11.32 47.12 2002–2012 GRA Dfc 3709 Wohlfahrt et al. (2008)
AU-Ade 131.12 −13.08 2007–2009 WSA Aw 532 Y Beringer et al. (2011a)
AU-ASM 133.25 −22.28 2010–2013 ENF Bsh 953 Y Cleverly et al. (2013)
AU-Cpr 140.59 −34.00 2010–2014 SAV Bsk 1412 Meyer et al. (2015)
AU-Cum 150.72 −33.61 2012–2014 EBF Cfa 744 Beringer et al. (2016)
AU-DaP 131.32 −14.06 2007–2013 GRA Aw 1820 Y Beringer et al. (2011b)
AU-DaS 131.39 −14.16 2008–2014 SAV Aw 2230 Y Hutley et al. (2011)
AU-Dry 132.37 −15.26 2008–2014 SAV Aw 1600 Y Cernusak et al. (2011)
AU-Emr 148.47 −23.86 2011–2013 GRA Bwk 812 Schroder et al. (2014)
AU-Gin 115.71 −31.38 2011–2014 WSA Csa 942 Y Beringer et al. (2016)
AU-GWW 120.65 −30.19 2013–2014 SAV Bwk 664 Prober et al. (2012)
AU-Lox 140.66 −34.47 2008–2009 DBF Bsh 273 Stevens et al. (2011)
AU-RDF 132.48 −14.56 2011–2013 WSA Bwh 571 Bristow et al. (2016)
AU-Rig 145.58 −36.65 2011–2014 GRA Cfb 1130 Beringer et al. (2016)
AU-Rob 145.63 −17.12 2014–2014 EBF Csb 337 Beringer et al. (2016)
AU-Stp 133.35 −17.15 2008–2014 GRA Bsh 1951 Y Beringer et al. (2011c)
AU-TTE 133.64 −22.29 2012–2013 OSH Bwh 475 Cleverly et al. (2016)
AU-Tum 148.15 −35.66 2001–2014 EBF Cfb 4346 Leuning et al. (2005)
AU-Wac 145.19 −37.43 2005–2008 EBF Cfb 976 Kilinc et al. (2013)
AU-Whr 145.03 −36.67 2011–2014 EBF Cfb 1064 Y McHugh et al. (2017)
AU-Wom 144.09 −37.42 2010–2012 EBF Cfb 935 Y Hinko-Najera et al. (2017)
AU-Ync 146.29 −34.99 2012–2014 GRA Bsk 475 Yee et al. (2015)
BE-Vie 6.00 50.31 1996–2014 MF Cfb 4910 Y Aubinet et al. (2001)
BR-Sa3 −54.97 −3.02 2000–2004 EBF Am 1192 Wick et al. (2005)
CA-Man −98.48 55.88 1994–2008 ENF Dfc 1910 Dunn et al. (2007)
CA-NS1 −98.48 55.88 2001–2005 ENF Dfc 1067 NA
CA-NS2 −98.52 55.91 2001–2005 ENF Dfc 1123 NA
CA-NS3 −98.38 55.91 2001–2005 ENF Dfc 1395 NA
CA-NS4 −98.38 55.91 2002–2005 ENF Dfc 756 NA
CA-NS5 −98.48 55.86 2001–2005 ENF Dfc 1245 NA
CA-NS6 −98.96 55.92 2001–2005 OSH Dfc 1190 NA
CA-NS7 −99.95 56.64 2002–2005 OSH Dfc 929 NA
CA-Qfo −74.34 49.69 2003–2010 ENF Dfc 2416 Bergeron et al. (2007)
CA-SF1 −105.82 54.48 2003–2006 ENF Dfc 526 NA
CA-SF2 −105.88 54.25 2001–2005 ENF Dfc 676 NA
CA-SF3 −106.01 54.09 2001–2006 OSH Dfc 660 NA
CH-Cha 8.41 47.21 2005–2014 GRA Cfb 2944 Merbold et al. (2014)
CH-Dav 9.86 46.82 1997–2014 ENF ET 4973 Zielis et al. (2014)
CH-Fru 8.54 47.12 2005–2014 GRA Cfb 2861 Y Imer et al. (2013)
CH-Lae 8.37 47.48 2004–2014 MF Cfb 3551 Y Etzold et al. (2011)
CH-Oe1 7.73 47.29 2002–2008 GRA Cfb 2184 Y Ammann et al. (2009)
CN-Cha 128.10 42.40 2003–2005 MF Dwb 1019 Guan et al. (2006)
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Table A1. Continued.

Site Long. Lat. Period Veg. Clim. N Calib. Reference

CN-Cng 123.51 44.59 2007–2010 GRA Bsh 1071 Y NA
CN-Dan 91.07 30.50 2004–2005 GRA ET 680 Shi et al. (2006)
CN-Din 112.54 23.17 2003–2005 EBF Cfa 921 Yan et al. (2013)
CN-Du2 116.28 42.05 2006–2008 GRA Dwb 595 Chen et al. (2009)
CN-HaM 101.18 37.37 2002–2004 GRA 949 Kato et al. (2006)
CN-Qia 115.06 26.74 2003–2005 ENF Cfa 995 Y Wen et al. (2010)
CN-Sw2 111.90 41.79 2010–2012 GRA Bsh 382 Shao et al. (2017)
CZ-BK1 18.54 49.50 2004–2008 ENF Dfb 1185 Acosta et al. (2013)
CZ-BK2 18.54 49.49 2004–2006 GRA Dfb 163 NA
DE-Gri 13.51 50.95 2004–2014 GRA Cfb 3642 Y Prescher et al. (2010)
DE-Hai 10.45 51.08 2000–2012 DBF Cfb 4247 Y Knohl et al. (2003)
DE-Lkb 13.30 49.10 2009–2013 ENF Cfb 1214 Lindauer et al. (2014)
DE-Obe 13.72 50.78 2008–2014 ENF Cfb 2260 Y NA
DE-RuR 6.30 50.62 2011–2014 GRA Cfb 1227 Y Post et al. (2015)
DE-Tha 13.57 50.96 1996–2014 ENF Cfb 5141 Y Grünwald and Bernhofer (2007)
DK-Sor 11.64 55.49 1996–2014 DBF Cfb 4936 Y Pilegaard et al. (2011)
ES-LgS −2.97 37.10 2007–2009 OSH Csa 833 Reverter et al. (2010)
ES-Ln2 −3.48 36.97 2009–2009 OSH Csa 182 Serrano-Ortiz et al. (2011)
FI-Hyy 24.30 61.85 1996–2014 ENF Dfc 4857 Y Suni et al. (2003)
FR-Fon 2.78 48.48 2005–2014 DBF Cfb 3262 Y Delpierre et al. (2015)
FR-LBr −0.77 44.72 1996–2008 ENF Cfb 2814 Y Berbigier et al. (2001)
FR-Pue 3.60 43.74 2000–2014 EBF Csa 4722 Y Rambal et al. (2004)
GF-Guy −52.92 5.28 2004–2014 EBF Af 3609 Bonal et al. (2008)
IT-CA1 12.03 42.38 2011–2014 DBF Csa 1036 Sabbatini et al. (2016)
IT-CA3 12.02 42.38 2011–2014 DBF Csa 913 Sabbatini et al. (2016)
IT-Col 13.59 41.85 1996–2014 DBF Cfa 3350 Y Valentini et al. (1996)
IT-Cp2 12.36 41.70 2012–2014 EBF Csa 764 Y Fares et al. (2014)
IT-Isp 8.63 45.81 2013–2014 DBF Cfb 641 Y Ferréa et al. (2012)
IT-La2 11.29 45.95 2000–2002 ENF Cfb 513 Marcolla et al. (2003a)
IT-Lav 11.28 45.96 2003–2014 ENF Cfb 3947 Y Marcolla et al. (2003b)
IT-MBo 11.05 46.01 2003–2013 GRA Dfb 3682 Y Marcolla et al. (2011)
IT-Noe 8.15 40.61 2004–2014 CSH Cwb 3070 Y Papale et al. (2014)
IT-PT1 9.06 45.20 2002–2004 DBF Cfa 891 Y Migliavacca et al. (2009)
IT-Ren 11.43 46.59 1998–2013 ENF Dfc 3405 Y Montagnani et al. (2009)
IT-Ro2 11.92 42.39 2002–2012 DBF Csa 3113 Tedeschi et al. (2006)
IT-SR2 10.29 43.73 2013–2014 ENF Csa 675 Y Hoshika et al. (2017)
IT-SRo 10.28 43.73 1999–2012 ENF Csa 3797 Y Chiesi et al. (2005)
IT-Tor 7.58 45.84 2008–2014 GRA Dfc 2172 Y Galvagno et al. (2013)
JP-MBF 142.32 44.39 2003–2005 DBF Dfb 471 Matsumoto et al. (2008)
JP-SMF 137.08 35.26 2002–2006 MF Cfa 1288 Y Matsumoto et al. (2008)
NL-Hor 5.07 52.24 2004–2011 GRA Cfb 2188 Y Jacobs et al. (2007)
NL-Loo 5.74 52.17 1996–2013 ENF Cfb 4671 Y Moors (2012)
RU-Fyo 32.92 56.46 1998–2014 ENF Dfb 4635 Y Kurbatova et al. (2008)
RU-Ha1 90.00 54.73 2002–2004 GRA Dfc 567 Belelli Marchesini et al. (2007)
SD-Dem 30.48 13.28 2005–2009 SAV Bwh 770 Y Ardo et al. (2008)
SN-Dhr −15.43 15.40 2010–2013 SAV Bwh 688 Y Tagesson et al. (2014)
US-AR1 −99.42 36.43 2009–2012 GRA Cfa 1060 NA
US-AR2 −99.60 36.64 2009–2012 GRA Cfa 981 NA
US-ARb −98.04 35.55 2005–2006 GRA Cfa 542 NA
US-ARc −98.04 35.55 2005–2006 GRA Cfa 582 NA
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Table A1. Continued.

Site Long. Lat. Period Veg. Clim. N Calib. Reference

US-Blo −120.63 38.90 1997–2007 ENF Csb 1859 Goldstein et al. (2000)
US-Cop −109.39 38.09 2001–2007 GRA Bsk 1186 Bowling et al. (2010)
US-GBT −106.24 41.37 1999–2006 ENF Dfc 615 Zeller and Nikolov (2000)
US-GLE −106.24 41.37 2004–2014 ENF Dfb 3134 Y Frank et al. (2014)
US-Ha1 −72.17 42.54 1991–2012 DBF Dfb 3932 Y Urbanski et al. (2007a)
US-KS2 −80.67 28.61 2003–2006 CSH Cfa 1254 Powell et al. (2006)
US-Me1 −121.50 44.58 2004–2005 ENF Csb 284 Irvine et al. (2007)
US-Me2 −121.56 44.45 2002–2014 ENF Csb 3581 Y Irvine et al. (2008)
US-Me6 −121.61 44.32 2010–2014 ENF Csb 1298 Ruehr et al. (2012)
US-MMS −86.41 39.32 1999–2014 DBF Cfa 4865 Y Dragoni et al. (2011)
US-NR1 −105.55 40.03 1998–2014 ENF Dfc 5115 Monson et al. (2002)
US-PFa −90.27 45.95 1995–2014 MF Dfb 4749 Desai et al. (2015)
US-Prr −147.49 65.12 2010–2013 ENF Dfc 811 Nakai et al. (2013)
US-SRG −110.83 31.79 2008–2014 GRA Bsk 2117 Y Scott et al. (2015a)
US-SRM −110.87 31.82 2004–2014 WSA Bsk 3354 Y Scott et al. (2009)
US-Syv −89.35 46.24 2001–2014 MF Dfb 2365 Y Desai et al. (2005)
US-Ton −120.97 38.43 2001–2014 WSA Csa 4336 Y Baldocchi et al. (2010)
US-UMB −84.71 45.56 2000–2014 DBF Dfb 4015 Y Gough et al. (2013)
US-UMd −84.70 45.56 2007–2014 DBF Dfb 2050 Y Gough et al. (2013)
US-Var −120.95 38.41 2000–2014 GRA Csa 4356 Y Ma et al. (2007)
US-WCr −90.08 45.81 1999–2014 DBF Dfb 3425 Y Cook et al. (2004)
US-Whs −110.05 31.74 2007–2014 OSH Bsk 2233 Scott et al. (2015b)
US-Wi0 −91.08 46.62 2002–2002 ENF Dfb 228 Noormets et al. (2007)
US-Wi3 −91.10 46.63 2002–2004 DBF Dfb 415 Noormets et al. (2007)
US-Wi4 −91.17 46.74 2002–2005 ENF Dfb 712 Y Noormets et al. (2007)
US-Wi6 −91.30 46.62 2002–2003 OSH Dfb 351 Noormets et al. (2007)
US-Wi9 −91.08 46.62 2004–2005 ENF Dfb 302 Noormets et al. (2007)
US-Wkg −109.94 31.74 2004–2014 GRA Bsk 3198 Scott et al. (2010)
ZA-Kru 31.50 −25.02 2000–2010 SAV Bsh 2439 Archibald et al. (2009)
ZM-Mon 23.25 −15.44 2000–2009 DBF Aw 645 Y Merbold et al. (2009)

Table A2. Fixed parameters. “SC” stands for “at standard conditions” (25 ◦C, 101 325 Pa). “MM coef.” refers to “Michaelis–Menten coeffi-
cient”.

Symbol Value Units Description Reference

β 146.0 1 Unit cost ratio, Eq. (3) This study
0∗25,p0

4.332 Pa Photorespiratory compensation point, SC Bernacchi et al. (2001)
Kc25 39.97 Pa MM coef. for CO2, SC Bernacchi et al. (2001)
Ko25 27 480 Pa MM coef. for O2, SC Bernacchi et al. (2001)
1H0∗ 37 830 J mol−1 Activation energy for 0∗ Bernacchi et al. (2001)
1HKc 79 430 J mol−1 Activation energy for Kc Bernacchi et al. (2001)
1HKo 36 380 J mol−1 Activation energy for Ko Bernacchi et al. (2001)
HV 71 513 J mol−1 Activation energy for Vcmax Kattge and Knorr (2007)
Hd 200 000 J mol−1 Deactivation energy for Vcmax Kattge and Knorr (2007)
p0 101 325 Pa Standard atmosphere –
g 9.80665 m s−2 Gravitation constant –
L 0.0065 K m−2 Adiabatic lapse rate –
R 8.3145 J mol−1 K−1 Universal gas constant –
Ma 28.963 g mol−1 Molecular mass of dry air –
MC 12.0107 g mol−1 Molecular mass of carbon –
aS 668.39 J mol−1 K−1 Intercept for entropy term in Eq. (C6) Kattge and Knorr (2007)
bS 1.07 J mol−1 K−2 Slope for entropy term in Eq. (C6) Kattge and Knorr (2007)
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Table A3. Variables returned by the function rpmodel(). Variable names correspond to the named elements of the list returned by the
rpmodel() function call. Symbols correspond to their use in this paper.

Variable name Symbol Description Units Reference

ca ca Ambient CO2 partial pressure Pa Sect. 2.1
gammastar 0∗ Photorespiratory compensation point Pa Sect. B1
kmm K Michaelis–Menten coefficient for photosynthesis Pa Sect. B3
ns_star η∗ Change in the viscosity of water, relative to its value at 25 ◦C unitless Huber et al. (2009)
chi χ Ratio of leaf-internal to ambient CO2 unitless Sect. 2.1
ci ci Leaf-internal CO2 partial pressure Pa Eq. (F8)
lue LUE Light use efficiency g C mol−1 Eq. (19)
mj m CO2 limitation factor for light-limited assimilation unitless Eq. (11)
mc mC CO2 limitation factor for RuBisCO-limited assimilation unitless Eq. (7)
gpp GPP Gross primary production g C m−2 d−1 Eqs. (2) and (19)
iwue iWUE Intrinsic water use efficiency Pa Eq. (C2)
gs gs Stomatal conductance mol C m−2 d−1 Pa−1 Sect. C1
vcmax Vcmax Maximum rate of carboxylation mol C m−2 d−1 Eq. (C4)
vcmax25 Vcmax25 Maximum rate of carboxylation, normalised to 25 ◦C mol C m−2 d−1 Eq. (C5)
rd Rd Dark respiration mol C m−2 d−1 Eq. (C11)
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Appendix B: Temperature and pressure dependence of
photosynthesis parameters

B1 Photorespiratory compensation point 0∗

The temperature- and pressure-dependent photorespiratory
compensation point in absence of dark respiration 0∗(T ,p)5

is calculated from its value at standard temperature (T0 =

25 ◦C) and atmospheric pressure (p0 = 101 325 Pa), re-
ferred to as 0∗25,p0

. It is modified by temperature fol-
lowing an Arrhenius-type temperature response function
fArrh(TK,1H0∗) with activation energy 1H0∗, and is cor-10

rected for atmospheric pressure p(z) at elevation z.

0∗(TK,z)= 0
∗

25,p0
fArrh(TK,1H0∗)

p(z)

p0
(B1)

Values of 1H0∗ and 0∗25,p0
are taken from Bernac-

chi et al. (2001). The latter is converted to Pa and
standardised to p0 by multiplication with p0 (0∗25,p0

=15

42.75 µmol mol−1
× 10−6

× 101 325 Pa= 4.332 Pa). 1H0∗
is 37 830 J mol−1. All parameter values are summarised in
Table A2. The function p(z) is defined in Sect. B4. Note that
TK indicates that the respective temperature value is given in
Kelvin and TK,0 = 298.15 K.20

To correct for effects by temperature following the Arrhe-
nius equation with its form x(TK)= exp(c−1Ha/(TKR)),
the temperature-correction function fArrh(TK,1Ha), used in
Eq. (B1) and further equations below, is given by

fArrh(TK)= x(TK)/x(TK,0)= exp
(
1H(TK− TK,0)

TK,0 R TK

)
, (B2)25

where 1H is the respective activation energy (e.g.
1H0∗ in Eq. B1), and R is the universal gas constant
(8.3145 J mol−1 K−1).

B2 Deriving 0∗

The temperature and pressure dependency of 0∗ follows30

from the temperature dependencies of Kc, Ko, Vc,max, and
Vo,max and the pressure dependency of pO2(p):

0∗(TK,p)=
pO2(p) Kc(TK) Vomax(TK)

2 Ko(TK) Vcmax(TK)
. (B3)

pO2(p) is the partial pressure of atmospheric oxygen (Pa)
and scales linearly with p(z). Kc is the Michaelis–Menten35

constant for carboxylation (Pa); Ko is the Michaelis–Menten
constant for oxygenation (Pa); Vcmax is maximum rate
of carboxylation (µmol m−2 s−1); and Vomax is the maxi-
mum rate of oxygenation (µmol m−2 s−1). The temperature-
dependency equations for these four terms are given in Ta-40

ble 1 of Bernacchi et al. (2001) with respective scaling con-

stants c and activation energies 1Ha as

Kc(TK)= exp(38.05− 79.43/(TKR)) (B4a)
Ko(TK)= 1000× exp(20.30− 36.38/(TKR)) (B4b)
Vo,max(TK)= exp(22.98− 60.11/(TKR)) (B4c) 45

Vc,max(TK)= exp(26.35− 65.33/(TKR)). (B4d)

By substituting the temperature-dependency equations for
each term in Eq. (B3) and rearranging terms, 0∗ can be writ-
ten as

0∗(TK,z)= pO2(z) exp(6.779− 37.83/(TKR)) . (B5) 50

With pO2(p) at standard atmospheric pressure (101 325 Pa)
taken to be 21 000 Pa, and assuming a constant mixing ratio
across the troposphere, its pressure dependence can be ex-
pressed as

pO2(p)= 0.2095 ·p(z) ; (B6) 55

hence,

0∗(TK,p)= p(z)exp(5.205− 37.83/(TKR)). (B7)

We can use this to calculate 0∗ at standard tempera-
ture (TK = 298.15 K) and pressure (p(z)= 101 325 Pa) as
0∗25,p0

= 4.332 Pa. 60

Note that to convert Eq. (B5) to the form corresponding
to the one given by Bernacchi et al. (2001), the partial pres-
sure of oxygen (pO2) has to be assumed at standard condi-
tions. pO2 is approximately 21 000 Pa and with the standard
atmospheric pressure of 101 325 Pa, pO2 can be converted 65

from Pascals to parts per million (ppm) as 21000/101325×
106
= 207254 ppm = exp(12.24) ppm. This can be combined

with the exponent in Eq. (B5) to exp(12.24) · exp(6.779)=
exp(19.02). This corresponds to the parameter values deter-
mining the temperature dependence of 0∗ given by Bernac- 70

chi et al. (2001) as 0∗ = exp(19.02− 37.83/(TKR)).

B3 Michaelis–Menten coefficient of photosynthesis

The effective Michaelis–Menten coefficient K (Pa) of
RuBisCO-limited photosynthesis (Eq. 6) is determined by
the Michaelis–Menten constants for the carboxylation and 75

oxygenation reactions (Farquhar et al., 1980):

K(TK,p)=Kc(TK)

(
1+

pO2(p)

Ko(TK)

)
, (B8)

where Kc is the Michaelis–Menten constant for CO2 (Pa),
Ko is the Michaelis–Menten constant for the carboxylation
and oxygenation reaction, respectively, and pO2 is the partial 80

pressure of oxygen (Pa). Kc and Ko follow a temperature
dependence, given by the Arrhenius equation analogously to
the temperature dependence of 0∗ (Eq. B1):

Kc(TK)=Kc25 fArrh(TK,1HKc) (B9a)
Ko(TK)=Ko25 fArrh(TK,1HKo). (B9b) 85
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Values 1HKc = 79 430 J mol−1, 1HKo = 36 380 J mol−1,
Kc25 = 39.97 Pa, and Ko25 = 27 480 Pa are taken from
Bernacchi et al. (2001) (see also Table A2). The latter two
have been converted from µmol mol−1 in Bernacchi et al.
(2001) to units of Pa by multiplication with the standard at-5

mosphere (101 325 Pa). Note thatKc25 andKo25 are rate con-
stants and are independent of atmospheric pressure. Pressure
dependence of K is solely in pO2(p) (see Eq. B6).

B4 Atmospheric pressure

The elevation dependence of atmospheric pressure is com-10

puted by assuming a linear decrease in temperature with el-
evation and a mean adiabatic lapse rate (Berberan-Santos
et al., 1997):

p(z)= p0

(
1−

Lz

TK,0

)gMa(RL)
−1

, (B10)

where z is the elevation above mean sea level (m), g is the15

gravitational constant (9.80665 m s−2), p0 is the standard at-
mospheric pressure at 0 m a.s.l. (101 325 Pa), L is the mean
adiabatic lapse rate (0.0065 K m−2), Ma is the molecular
weight for dry air (0.028963 kg mol−1), and R is the uni-
versal gas constant (8.3145 J mol−1 K−1). All parameter val-20

ues that are held fixed in the model (not calibrated) are sum-
marised in Table A2.

Appendix C: Corollary of the χ prediction

C1 Stomatal conductance

Stomatal conductance gs (mol C Pa−1) follows from the pre-25

diction of χ given by Eq. (8) and gs = A/(ca (1−χ)) (from
Eq. 5). Stomatal conductance can thus be written as

gs =

(
1+

ξ
√
D

)
A

ca−0∗
. (C1)

This has a similar form as the solution for gs derived from a
different optimality principle by Medlyn et al. (2011) (their30

Eq. 11). Differences are that an additional term g0 is miss-
ing here and that 0∗ does not appear in Medlyn et al. (2011).
The theory presented by Prentice et al. (2014) provides a the-
oretical interpretation for the parameter g1 in Medlyn et al.
(2011): it is given by ξ (Eq. 9) and can thus be predicted from35

the environment. However, it is notable that the underlying
optimality criterion used by Medlyn et al. (2011), as pro-
posed by Cowan and Farquhar (1977), is one that maintains
a constant marginal water cost of carbon gain λ= ∂E/∂A. It
thus describes an instantaneous gs adjustment, e.g. to diurnal40

variations in D and has been adopted into DVMs and ESMs
for respective predictions (with a given Vcmax ). In contrast,
the theory presented here and underlying the P-model pre-
dicts χ which is jointly controlled by gs and Vcmax. In other
words, it predicts a gs that is coordinated with Vcmax and thus45

acclimates at a similar timescale (which is on the order of
days to weeks). This χ can be understood as a “set point”
for an average χ with actual χ varying around it at a daily to
subdaily timescale.

C2 Intrinsic water use efficiency 50

The intrinsic water use efficiency (iWUE, in Pa) has been de-
fined as the ratio of assimilation over stomatal conductance
(to water) (Beer et al., 2009) as iWUE= A/(1.6gs). The fac-
tor 1.6 accounts for the difference in diffusivity between CO2
and H2O. Using Fick’s law (Eq. 5), this is simply 55

iWUE=
ca(1−χ)

1.6
, (C2)

or, using the prediction of optimal χ given by Eq. (8), this
can be expressed as

iWUE=
1

1.6
(

1+ ξ
√
D

) (ca−0
∗). (C3)

C3 Maximum carboxylation capacity 60

With AJ = AC, Vcmax can directly be derived as

Vcmax = ϕ0 Iabs
ci+K

ci+ 20∗
= ϕ0 Iabs

m′

mC
. (C4)

ci is given by caχ . The second part of the equation follows
from the definitions ofm (Eq. 11) andmC (Eq. 7). Normalis-
ing Vcmax to standard temperature (25 ◦C) following a mod- 65

ified Arrhenius function based on Kattge and Knorr (2007)
gives Vcmax25 as

Vcmax25 = Vcmax/fV(TK,TK,0) (C5)

fV(TK,TK,0)= fArrh(TK,1HV)

·
1+ exp((TK,01S−Hd)/(TK,0R))

1+ exp((TK1S−Hd)/(TKR))
, (C6) 70

whereHV is the activation energy (71 513 J mol−1),Hd is the
deactivation energy (200 000 J mol−1), and 1S is an entropy
term (J mol−1 K−1) calculated using a linear relationship
with T from Kattge and Knorr (2007), with a slope of bS =

1.07 J mol−1 K−2 and intercept of aS = 668.39 J mol−1 K−1: 75

1S = aS− bST . (C7)

Note that T is in units of ◦C in the above equation. Equa-
tion (C6) describes the instantaneous response to tempera-
ture and is not the same as the optimality-driven acclimation
to temperature predicted by the P-model. 80
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C4 Dark respiration Rd

Dark respiration at standard temperature Rd25 is calculated
as being proportional to Vcmax25:

Rd25 = b0 Vcmax25, (C8)

where b0 = 0.015 (Atkin et al., 2015). Dark respiration fol-5

lows a slightly different instantaneous temperature sensitivity
than Vcmax following Heskel et al. (2016):

Rd = Rd25 fR (C9)

fR = exp
(

0.1012(TK,0− TK)− 0.0005(T 2
K,0− T

2
K)
)
.

(C10)

By combining Eqs. (C6), (C8), and (C9), Rd at growth tem-10

perature T can directly be calculated from Vcmax as

Rd = b0
fR

fV
Vcmax. (C11)

Appendix D: Soil water holding capacity

The soil water balance is solved following the SPLASH
model but with the total soil water holding capacity per15

unit ground area (θWHC, in mm) calculated as a function
of the soil texture. Precipitation in the form of rain (Prain)
and snow (Psnow) are taken from WATCH-WFDEI (Weedon
et al., 2014) and are summed and converted from kg m−2 s−1

to mm d−1 by multiplication of (60× 60× 24) s d−1. To ob-20

tain θWHC, we use soil depth to bedrock and texture data
from SoilGrids (Hengl et al., 2014), extracted around the
FLUXNET sites. We assumed that the plant-available WHC
is determined by the WHC down to a maximum depth of 2 m
and is limited by the depth to bedrock. The water holding ca-25

pacity (wWHC, in mm) was defined as the difference in volu-
metric soil water storage at field capacity (WFC, in m3 m−3)
and the permanent wilting point (WPWP, in m3 m−3):

θWHC = (WFC−WPWP) (1− fgravel)

·min(zbedrock,zmax). (D1)

fgravel is the gravel fraction, zbedrock is the depth to bedrock30

(in mm), and zmax is 2000 mm. The volumetric soil water
storage at field capacity and wilting point were derived from
texture and organic matter content data through pedotransfer
functions, as described by Saxton and Rawls (2006). WFC is
calculated as35

WFC = kFC+ (1.283 · k2
FC− 0.374 · kFC− 0.015) , (D2)

where

kFC =−0.251 · fsand+ 0.195 · fclay+ 0.011 · fOM (D3)
+ 0.006 · (fsandfOM) (D4)
− 0.027 · (fclayfOM) (D5)40

+ 0.452 · (fsandfclay) (D6)
+ 0.299. (D7)

fsand, fclay, fOM are the sand, clay, and organic matter con-
tents in percent by weight. WPWP is calculated as

WPWP = kPWP+ (0.14 · kPWP− 0.02) , (D8) 45

where

kPWP =−0.024 · fsand+ 0.487 · fclay+ 0.006 · fOM (D9)
+ 0.005 · (fsandfOM) (D10)
− 0.013 · (fclayfOM) (D11)
+ 0.068 · (fsandfclay) (D12) 50

+ 0.031. (D13)

Appendix E: Vapour pressure deficit

Vapour pressure deficit (D) is calculated from specific hu-
midity (qair) as

D = esat− eact , (E1) 55

with

esat = 611.0 · exp
(

17.27 T
T + 237.3

)
(E2)

and

eact =
p(z) wair Rv

Rd+wair Rv
. (E3)

p(z) is atmospheric pressure, taken here as a constant func- 60

tion of elevation z (Sect. B4); wair is the mass mixing ratio of
water vapour to dry air (dimensionless) and derived from spe-
cific humidity aswair = qair/(1−qair).Rd andRv are the spe-
cific gas constants of dry air and water vapour, respectively,
and are given by R/Md and R/Mv, respectively, where R 65

is the universal gas constant (8.314 J mol−1 K−1) and Md
(28.963 g mol−1) and Mv (18.02 g mol−1) are the molecular
mass of dry air of water vapour, respectively. T is air temper-
ature in ◦C.

Appendix F: Extended theory 70

F1 Deriving χ

Using Eqs. (4) and (5), the term on the left-hand side of
Eq. (3) can thus be written as

∂(E/A)

∂χ
=

1.6 D
ca (1−χ)2

. (F1)

Using Eq. (6) and the simplification 0∗ = 0, the derivative 75

term on the right-hand side of Eq. (3) can be written as

∂(Vcmax/A)

∂χ
=−

K

ca χ2 . (F2)
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Equation (3) can thus be written as

a
1.6 D

ca (1−χ)2
= b

K

ca χ2 , (F3)

and solved for χ :

χ =
ξ

ξ +
√
D

(F4)

ξ =

√
βK

1.6η∗
, (F5)5

where b/a = β/η∗. The exact solution, without the simplifi-
cation 0∗ = 0, and following analogous steps, is

χ =
0∗

ca
+

(
1−

0∗

ca

)
ξ

ξ +
√
D

(F6)

ξ =

√
b(K +0∗)

1.6 a
. (F7)

This can also be written as10

ci =
0∗
√
D+ ξ ca

ξ +
√
D

. (F8)

F2 Deriving the Jmax limitation factor

By taking the derivative of AJ with respect to Jmax , Eq. (14)
can be expressed as

c =
m(ϕ0Iabs)

3

4

√[
(ϕ0Iabs)2+ (

Jmax
4 )2

]3
. (F9)15

This can be rearranged to(
4c
m

)2/3

=
1

1+
(

Jmax
4ϕ0Iabs

)2 . (F10)

For simplification, we can substitute

k =
4ϕ0Iabs

Jmax
(F11)

and20

u=

(
4c
m

)2/3

. (F12)

With this, we can write

1
1+ k−2 = u . (F13)

This can be rearranged to

(1− u)1/2 =
1

√
1+ k2

. (F14)25

The right-hand term now corresponds to the Jmax limitation
factor L in Eq. (13), and we get Eq. (15).

To sum up, the P-model calculates GPP as

GPP= Iabs ϕ0(T ) β(θ) m
′ MC , (F15)

where 30

m′ =m

√
1−

(
c∗

m

)2/3

(F16)

and

m=
ca−0

∗

ca+ 20∗+ 30∗
√

1.6η∗D
β (K+0∗)

. (F17)

Iabs is the absorbed light (taken as fAPAR×PPFD, mol m−2),
ϕ0(T ) is the temperature-dependent intrinsic quantum yield, 35

β(θ) is the soil moisture stress factor, and MC is the molar
mass of carbon (g mol−1).

F3 An alternative method for introducing the Jmax
limitation

Section 2.2 introduced the effect of a finite Jmax leading to a 40

saturating relationship between absorbed light and the light-
limited assimilation rate, AJ. An alternative method was pre-
sented by Smith et al. (2019) and is implemented in rp-
model as an optional method (argument method_jmaxlim
= “smith19”). Following their approach, the light-limited 45

assimilation rate is described as

AJ =

(
J

4

)
m . (F18)

m is the CO2 limitation factor (Eq. 11), and J is a saturating
function of absorbed light, approaching Jmax for high light
levels, following Farquhar et al. (1980): 50

θJ 2
− (ϕ0Iabs + Jmax)J +ϕ0IabsJmax = 0 . (F19)

θ is a unitless parameter determining the curvature of the re-
sponse of J to Iabs, here taken as 0.85, based on Smith et al.
(2019) and references therein. Equation (F19) can be substi-
tuted into Eq. (F18) to yield 55

AJ =
(m

4

)
ϕ0Iabs+ Jmax±

√
(ϕ0Iabs+ Jmax)

2
− 4θϕ0IabsJmax

2θ
, (F20)

from which the smaller root is used to derive AJ. Similar as
in the method used by Wang et al. (2017a) and outlined in
Sect. 2.2, a proportionality between AJ and Jmax is assumed
(∂A/∂Jmax = c; Eq. 14). Taking the derivative of Eq. (F20) 60

with respect to Jmax and setting equal to c leads to

Jmax = ϕ0 Iabs ω, (F21)
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with

ω =−(1− 2θ )+

√√√√√(1− θ)
 1

4c
m

(
1− θ 4c

m

) − 4θ

 . (F22)

Using this,AJ can be written analogously to Eq. (16) but with

m′ =m
ω∗

8θ
, (F23)

and5

ω∗ = 1+ω−
√
(1+ω)2− 4θω . (F24)

The cost parameter c was assumed to be non-varying. Under
standard conditions of 25 ◦C, 101 325 Pa atmospheric pres-
sure, 1000 Pa vapour pressure deficit, and 360 ppm CO2, at
which the ratio of Jmax to Vcmax was assumed to be 2.0710

(Smith and Dukes, 2017), c was derived as 0.053 (Smith
et al., 2019).

Using the definition of Vcmax from Eq. (C4), m can be re-
placed by m′ from Eq. (F23) to calculate an “intermediate
rate of Vcmax” (Smith et al., 2019) as15

Vcmax = ϕ0 Iabs
m′

mC
. (F25)

Appendix G: The rpmodel() function of the rpmodel
R package

The rpmodel R package provides an implementation of the P-
model as described here. The main function is rpmodel(),20

which returns a list of variables that are mutually consistent
within the theory of the P-model (Sect. 2) and based on cal-
culations defined in this paper. References for the returned
list of variables are given in Table A3.

Geosci. Model Dev., 13, 1–37, 2020 www.geosci-model-dev.net/13/1/2020/



B. D. Stocker et al.: P-model v1.0 29

Author contributions. BDS designed the study, wrote the model
code, conducted the analysis, and wrote the paper. HW developed
the model and wrote the initial version of the model description.
NGS developed the model and implemented model code. SPH con-
tributed to designing the study and writing the manuscript. TK con-5

tributed to the study design, model implementation, and manuscript
writing. DS implemented the water holding capacity model. TD
wrote an initial version of the model code and model documen-
tation. ICP developed the model and contributed to designing the
study.10

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. Benjamin D. Stocker was funded by ERC
H2020-MSCA-IF-2015 (grant no. 701329) and the Swiss Na-
tional Science Foundation grant no. PCEFP2_181115. Nicholas15

G. Smith acknowledges support from Texas Tech University. Trevor
F. Keenan acknowledges support from the Laboratory Directed
Research and Development (LDRD) fund under the auspices of
DOE, BER Office of Science at Lawrence Berkeley National Lab-
oratory, and the NASA Terrestrial Ecology Program IDS award20

NNH17AE86I. Trevor F. Keenan was supported by the NASA Ter-
restrial Ecology Program IDS Award NNH17AE86I. Sandy P. Har-
rison acknowledges support from the ERC-funded project GC 2.0
(Global Change 2.0: Unlocking the past for a clearer future; grant
no. 694481). I. Colin Prentice acknowledges support from the ERC25

under the European Union’s Horizon 2020 research and innovation
programme (grant agreement no. 787203 REALM). This work con-
tributes to the AXA Chair Programme in Biosphere and Climate
Impacts and the Imperial College initiative on Grand Challenges in
Ecosystems and the Environment.TS330

Financial support. This research has been supported by the H2020
Marie Skłodowska-Curie Actions (grant no. FIBER (701329)), the
Swiss National Science Foundation (grant no. PCEFP2_181115),
the Texas Tech University (grant no. NA), the Laboratory Directed
Research and Development (LDRD) fund under the auspices of35

DOE (DOE grant), BER Office of Science at Lawrence Berkeley
National Laboratory, and the NASA Terrestrial Ecology Program
IDS award (award no. NNH17AE86I), the ERC-funded project GC
2.0 (grant no. 694481), and the ERC under the European Union’s
Horizon 2020 research and innovation programme (grant agreement40

no. 787203 REALM).TS4

Review statement. This paper was edited by Jatin Kala and re-
viewed by two anonymous referees.

References

Acosta, M., Pavelka, M., Montagnani, L., Kutsch, W., Lin-45

droth, A., Juszczak, R., and Janouš, D.: Soil surface CO2
efflux measurements in Norway spruce forests: Com-

parison between four different sites across Europe –
from boreal to alpine forest, Geoderma, 192, 295–303,
https://doi.org/10.1016/j.geoderma.2012.08.027, 2013. 50

Adams, W. W., Zarter, C. R., Ebbert, V., and Demmig-Adams, B.:
Photoprotective Strategies of Overwintering Evergreens, Biosci.,
54, 41–49, 2004.

Ammann, C., Spirig, C., Leifeld, J., and Neftel, A.: Assess-
ment of the nitrogen and carbon budget of two managed tem- 55

perate grassland fields, Agr. Ecosyst. Environ., 133, 150–162,
https://doi.org/10.1016/j.agee.2009.05.006, 2009.

Archibald, S. A., Kirton, A., van der Merwe, M. R., Scholes,
R. J., Williams, C. A., and Hanan, N.: Drivers of inter-
annual variability in Net Ecosystem Exchange in a semi- 60

arid savanna ecosystem, South Africa, Biogeosci., 6, 251–266,
https://doi.org/10.5194/bg-6-251-2009, 2009.

Ardo, J., Molder, M., El-Tahir, B. A., and Elkhidir, H. A. M.: Sea-
sonal variation of carbon fluxes in a sparse savanna in semi arid
Sudan, Carb. Bal. Manage., 3, 7, https://doi.org/10.1186/1750- 65

0680-3-7, 2008.
Atkin, O. K., Bloomfield, K. J., Reich, P. B., Tjoelker, M. G., As-

ner, G. P., Bonal, D., Bönisch, G., Bradford, M. G., Cernusak,
L. A., Cosio, E. G., Creek, D., Crous, K. Y., Domingues, T. F.,
Dukes, J. S., Egerton, J. J. G., Evans, J. R., Farquhar, G. D., Fyl- 70

las, N. M., Gauthier, P. P. G., Gloor, E., Gimeno, T. E., Grif-
fin, K. L., Guerrieri, R., Heskel, M. A., Huntingford, C., Ishida,
F. Y., Kattge, J., Lambers, H., Liddell, M. J., Lloyd, J., Lusk,
C. H., Martin, R. E., Maksimov, A. P., Maximov, T. C., Malhi,
Y., Medlyn, B. E., Meir, P., Mercado, L. M., Mirotchnick, N., 75

Ng, D., Niinemets, U., O’Sullivan, O. S., Phillips, O. L., Poorter,
L., Poot, P., Prentice, I. C., Salinas, N., Rowland, L. M., Ryan,
M. G., Sitch, S., Slot, M., Smith, N. G., Turnbull, M. H., Vander-
Wel, M. C., Valladares, F., Veneklaas, E. J., Weerasinghe, L. K.,
Wirth, C., Wright, I. J., Wythers, K. R., Xiang, J., Xiang, S., and 80

Zaragoza-Castells, J.: Global variability in leaf respiration in re-
lation to climate, plant functional types and leaf traits, New Phy-
tol., 206, 614–636, https://doi.org/10.1111/nph.13253, 2015.

Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B.,
Yernaux, M., and Laitat, E.: Long term carbon dioxide ex- 85

change above a mixed forest in the Belgian Ardennes, Agr.
Forest Meteorol., 108, 293–315, https://doi.org/10.1016/s0168-
1923(01)00244-1, 2001.

Badgley, G., Field, C. B., and Berry, J. A.: Canopy near-infrared
reflectance and terrestrial photosynthesis, Sci. Adv., 3, e1602244, 90

https://doi.org/10.1126/sciadv.1602244, 2017.
Baldocchi, D., Chen, Q., Chen, X., Ma, S., Miller, G., Ryu, Y., Xiao,

J., Wenk, R., and Battles, J.: The Dynamics of Energy, Water,
and Carbon Fluxes in a Blue Oak (Quercus douglasii) Savanna in
California, in: Ecosystem Function in Savannas, 135–151, CRC 95

Press, https://doi.org/10.1201/b10275-10, 2010.
Ball, J. T., Timothy Ball, J., Woodrow, I. E., and Berry, J. A.:

A Model Predicting Stomatal Conductance and its Contribution
to the Control of Photosynthesis under Different Environmental
Conditions, in: Progress in Photosynthesis Research, 221–224, 100

1987.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N.,

Berg, A., and Wood, E. F.: Present and future Köppen-Geiger cli-
mate classification maps at 1-km resolution, Sci. Data, 5, 180214,
https://doi.org/10.1038/sdata.2018.214, 2018. 105

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

www.geosci-model-dev.net/13/1/2020/ Geosci. Model Dev., 13, 1–37, 2020

https://doi.org/10.1016/j.geoderma.2012.08.027
https://doi.org/10.1016/j.agee.2009.05.006
https://doi.org/10.5194/bg-6-251-2009
https://doi.org/10.1186/1750-0680-3-7
https://doi.org/10.1186/1750-0680-3-7
https://doi.org/10.1186/1750-0680-3-7
https://doi.org/10.1111/nph.13253
https://doi.org/10.1016/s0168-1923(01)00244-1
https://doi.org/10.1016/s0168-1923(01)00244-1
https://doi.org/10.1016/s0168-1923(01)00244-1
https://doi.org/10.1126/sciadv.1602244
https://doi.org/10.1201/b10275-10
https://doi.org/10.1038/sdata.2018.214


30 B. D. Stocker et al.: P-model v1.0

Beer, C., Ciais, P., Reichstein, M., Baldocchi, D., Law, B. E., Pa-
pale, D., Soussana, J.-F., Ammann, C., Buchmann, N., Frank,
D., Gianelle, D., Janssens, I. A., Knohl, A., Köstner, B., Moors,
E., Roupsard, O., Verbeeck, H., Vesala, T., Williams, C. A., and
Wohlfahrt, G.: Temporal and among-site variability of inherent5

water use efficiency at the ecosystem level, Global Biogeochem.
Cy., 23, GB2018, https://doi.org/10.1029/2008GB003233, 2009.

Belelli Marchesini, L., Papale, D., Reichstein, M., Vuichard, N.,
Tchebakova, N., and Valentini, R.: Carbon balance assessment
of a natural steppe of southern Siberia by multiple constraint ap-10

proach, Biogeosciences, 4, 581–595, https://doi.org/10.5194/bg-
4-581-2007, 2007.

Berberan-Santos, M. N., Bodunov, E. N., and Pogliani, L.: On the
barometric formula, Am. J. Phys., 65, 404–412, 1997.

Berbigier, P., Bonnefond, J.-M., and Mellmann, P.: CO2 and wa-15

ter vapour fluxes for 2 years above Euroflux forest site, Agr.
Forest Meteorol., 108, 183–197, https://doi.org/10.1016/s0168-
1923(01)00240-4, 2001.

Bergeron, O., Margolis, H. A., Black, T. A., Coursolle, C., Dunn,
A. L., Barr, A. G., and Wofsy, S. C.: Comparison of carbon20

dioxide fluxes over three boreal black spruce forests in Canada,
Global Change Biol., 13, 89–107, https://doi.org/10.1111/j.1365-
2486.2006.01281.x, 2007.

Beringer, J., Hacker, J., Hutley, L. B., Leuning, R., Arndt,
S. K., Amiri, R., Bannehr, L., Cernusak, L. A., Grover, S.,25

Hensley, C., Hocking, D., Isaac, P., Jamali, H., Kanniah, K.,
Livesley, S., Neininger, B., U, K. T. P., Sea, W., Straten,
D., Tapper, N., Weinmann, R., Wood, S., and Zegelin, S.:
SPECIAL–Savanna Patterns of Energy and Carbon Integrated
across the Landscape, B. Am. Meteorol. Soc., 92, 1467–1485,30

https://doi.org/10.1175/2011bams2948.1, 2011a.
Beringer, J., Hutley, L. B., Hacker, J. M., Neininger, B., and

U, K. T. P.: Patterns and processes of carbon, water and
energy cycles across northern Australian landscapes: From
point to region, Agr. Forest Meteorol., 151, 1409–1416,35

https://doi.org/10.1016/j.agrformet.2011.05.003, 2011b.
Beringer, J., Hutley, L. B., Hacker, J. M., Neininger, B., and

U, K. T. P.: Patterns and processes of carbon, water and
energy cycles across northern Australian landscapes: From
point to region, Agr. Forest Meteorol., 151, 1409–1416,40

https://doi.org/10.1016/j.agrformet.2011.05.003, 2011c.
Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell,

D., Cleugh, H. A., Cleverly, J., Resco de Dios, V., Eamus, D.,
Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-
Najera, N., Huete, A., Isaac, P., Kanniah, K., Leuning, R., Lid-45

dell, M. J., Macfarlane, C., Meyer, W., Moore, C., Pendall, E.,
Phillips, A., Phillips, R. L., Prober, S. M., Restrepo-Coupe, N.,
Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Yee, M.
S., Tapper, N. J., van Gorsel, E., Vote, C., Walker, J., and Ward-
law, T.: An introduction to the Australian and New Zealand50

flux tower network – OzFlux, Biogeosciences, 13, 5895–5916,
https://doi.org/10.5194/bg-13-5895-2016, 2016.

Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis, A. R. J., and
Long, S. P.: Improved temperature response functions for models
of Rubisco-limited photosynthesis, Plant Cell Environ., 24, 253–55

259, 2001.
Bernacchi, C. J., Pimentel, C., and Long, S. P.: In vivo tem-

perature response functions of parameters required to model

RuBP-limited photosynthesis, Plant Cell Environ., 26, 1419–
1430, 2003. 60

Biederman, J. A., Scott, R. L., Goulden, M. L., Vargas, R.,
Litvak, M. E., Kolb, T. E., Yepez, E. A., Oechel, W. C.,
Blanken, P. D., Bell, T. W., Garatuza-Payan, J., Maurer, G. E.,
Dore, S., and Burns, S. P.: Terrestrial carbon balance in a
drier world: the effects of water availability in southwest- 65

ern North America, Global Change Biol., 22, 1867–1879,
https://doi.org/10.1111/gcb.13222, 2016.

Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y., Burban, B., Gross,
P., Bonnefond, J.-M., Elbers, J., Longdoz, B., Epron, D.,
Guehl, J.-M., and Granier, A.: Impact of severe dry sea- 70

son on net ecosystem exchange in the Neotropical rainfor-
est of French Guiana, Global Change Biol., 14, 1917–1933,
https://doi.org/10.1111/j.1365-2486.2008.01610.x, 2008.

Bowling, D. R., Bethers-Marchetti, S., Lunch, C. K., Grote, E. E.,
and Belnap, J.: Carbon, water, and energy fluxes in a semiarid 75

cold desert grassland during and following multiyear drought, J.
Geophys. Res., 115, G4, https://doi.org/10.1029/2010jg001322,
2010.

Bristow, M., Hutley, L. B., Beringer, J., Livesley, S. J., Edwards,
A. C., and Arndt, S. K.: Quantifying the relative importance of 80

greenhouse gas emissions from current and future savanna land
use change across northern Australia, Biogeosciences, 13, 6285–
6303, https://doi.org/10.5194/bg-13-6285-2016, 2016.

Cernusak, L. A., Hutley, L. B., Beringer, J., Holtum, J. A.,
and Turner, B. L.: Photosynthetic physiology of euca- 85

lypts along a sub-continental rainfall gradient in north-
ern Australia, Agr. Forest Meteorol., 151, 1462–1470,
https://doi.org/10.1016/j.agrformet.2011.01.006, 2011.

Chen, B., Liu, J., Chen, J. M., Croft, H., Gonsamo, A., He, L., and
Luo, X.: Assessment of foliage clumping effects on evapotran- 90

spiration estimates in forested ecosystems, Agr. Forest Meteorol.,
216, 82–92, https://doi.org/10.1016/j.agrformet.2015.09.017,
2016.

Chen, J.-L., Reynolds, J. F., Harley, P. C., and Tenhunen, J. D.: Co-
ordination theory of leaf nitrogen distribution in a canopy, Oe- 95

cologia, 93, 63–69, 1993.
Chen, S., Chen, J., Lin, G., Zhang, W., Miao, H., Wei,

L., Huang, J., and Han, X.: Energy balance and parti-
tion in Inner Mongolia steppe ecosystems with different
land use types, Agr. Forest Meteorol., 149, 1800–1809, 100

https://doi.org/10.1016/j.agrformet.2009.06.009, 2009.
Chiesi, M., Maselli, F., Bindi, M., Fibbi, L., Cherubini, P., Ar-

lotta, E., Tirone, G., Matteucci, G., and Seufert, G.: Modelling
carbon budget of Mediterranean forests using ground and re-
mote sensing measurements, Agr. Forest Meteorol., 135, 22–34, 105

https://doi.org/10.1016/j.agrformet.2005.09.011, 2005.
Cleverly, J., Boulain, N., Villalobos-Vega, R., Grant, N., Faux, R.,

Wood, C., Cook, P. G., Yu, Q., Leigh, A., and Eamus, D.: Dynam-
ics of component carbon fluxes in a semi-arid Acacia woodland,
central Australia, J. Geophys. Res.-Biogeosci., 118, 1168–1185, 110

https://doi.org/10.1002/jgrg.20101, 2013.
Cleverly, J., Eamus, D., Van Gorsel, E., Chen, C., Rumman, R.,

Luo, Q., Coupe, N. R., Li, L., Kljun, N., Faux, R., Yu, Q.,
and Huete, A.: Productivity and evapotranspiration of two con-
trasting semiarid ecosystems following the 2011 global car- 115

bon land sink anomaly, Agr. Forest Meteorol., 220, 151–159,
https://doi.org/10.1016/j.agrformet.2016.01.086, 2016.

Geosci. Model Dev., 13, 1–37, 2020 www.geosci-model-dev.net/13/1/2020/

https://doi.org/10.1029/2008GB003233
https://doi.org/10.5194/bg-4-581-2007
https://doi.org/10.5194/bg-4-581-2007
https://doi.org/10.5194/bg-4-581-2007
https://doi.org/10.1016/s0168-1923(01)00240-4
https://doi.org/10.1016/s0168-1923(01)00240-4
https://doi.org/10.1016/s0168-1923(01)00240-4
https://doi.org/10.1111/j.1365-2486.2006.01281.x
https://doi.org/10.1111/j.1365-2486.2006.01281.x
https://doi.org/10.1111/j.1365-2486.2006.01281.x
https://doi.org/10.1175/2011bams2948.1
https://doi.org/10.1016/j.agrformet.2011.05.003
https://doi.org/10.1016/j.agrformet.2011.05.003
https://doi.org/10.5194/bg-13-5895-2016
https://doi.org/10.1111/gcb.13222
https://doi.org/10.1111/j.1365-2486.2008.01610.x
https://doi.org/10.1029/2010jg001322
https://doi.org/10.5194/bg-13-6285-2016
https://doi.org/10.1016/j.agrformet.2011.01.006
https://doi.org/10.1016/j.agrformet.2015.09.017
https://doi.org/10.1016/j.agrformet.2009.06.009
https://doi.org/10.1016/j.agrformet.2005.09.011
https://doi.org/10.1002/jgrg.20101
https://doi.org/10.1016/j.agrformet.2016.01.086


B. D. Stocker et al.: P-model v1.0 31

Cook, B. D., Davis, K. J., Wang, W., Desai, A., Berger,
B. W., Teclaw, R. M., Martin, J. G., Bolstad, P. V., Bak-
win, P. S., Yi, C., and Heilman, W.: Carbon exchange and
venting anomalies in an upland deciduous forest in north-
ern Wisconsin, USA, Agr. Forest Meteorol., 126, 271–295,5

https://doi.org/10.1016/j.agrformet.2004.06.008, 2004.
Cowan, I. R. and Farquhar, G. D.: Stomatal function in relation to

leaf metabolism and environment, Symp. Soc. Exp. Biol., 31,
471–505, 1977.

Davis, T. W., Prentice, I. C., Stocker, B. D., Thomas, R. T., Whit-10

ley, R. J., Wang, H., Evans, B. J., Gallego-Sala, A. V., Sykes, M.
T., and Cramer, W.: Simple process-led algorithms for simulating
habitats (SPLASH v.1.0): robust indices of radiation, evapotran-
spiration and plant-available moisture, Geosci. Model Dev., 10,
689–708, https://doi.org/10.5194/gmd-10-689-2017, 2017.15

Delpierre, N., Berveiller, D., Granda, E., and Dufrêne, E.: Wood
phenology, not carbon input, controls the interannual variabil-
ity of wood growth in a temperate oak forest, New Phytol., 210,
459–470, https://doi.org/10.1111/nph.13771, 2015.

Desai, A. R., Bolstad, P. V., Cook, B. D., Davis, K. J., and20

Carey, E. V.: Comparing net ecosystem exchange of car-
bon dioxide between an old-growth and mature forest in the
upper Midwest, USA, Agr. Forest Meteorol., 128, 33–55,
https://doi.org/10.1016/j.agrformet.2004.09.005, 2005.

Desai, A. R., Xu, K., Tian, H., Weishampel, P., Thom, J., Bau-25

mann, D., Andrews, A. E., Cook, B. D., King, J. Y., and
Kolka, R.: Landscape-level terrestrial methane flux observed
from a very tall tower, Agr. Forest Meteorol., 201, 61–75,
https://doi.org/10.1016/j.agrformet.2014.10.017, 2015.

Didan, K.: MOD13Q1 MODIS/Terra Vegetation In-30

dices 16-Day L3 Global 250 m SIN Grid V006,
https://doi.org/10.5067/MODIS/MOD13Q1.006, 2015.

Dragoni, D., Schmid, H. P., Wayson, C. A., Potter, H., Grim-
mond, C. S. B., and Randolph, J. C.: Evidence of increased net
ecosystem productivity associated with a longer vegetated sea-35

son in a deciduous forest in south-central Indiana, USA, Global
Change Biol., 17, 886–897, https://doi.org/10.1111/j.1365-
2486.2010.02281.x, 2011.

Dunn, A. L., Barford, C. C., Wofsy, S. C., Goulden, M. L., and
Daube, B. C.: A long-term record of carbon exchange in a bo-40

real black spruce forest: means, responses to interannual vari-
ability, and decadal trends, Global Change Biol., 13, 577–590,
https://doi.org/10.1111/j.1365-2486.2006.01221.x, 2007.

Egea, G., Verhoef, A., and Vidale, P. L.: Towards an improved
and more flexible representation of water stress in coupled45

photosynthesis–stomatal conductance models, Agr. Forest Me-
teorol., 151, 1370–1384, 2011.

Ensminger, I., Sveshnikov, D., Campbell, D. A., Funk, C., Jans-
son, S., Lloyd, J., Shibistova, O., and Öquist, G.: Intermittent
low temperatures constrain spring recovery of photosynthesis in50

boreal Scots pine forests, Global Change Biol., 10, 995–1008,
https://doi.org/10.1111/j.1365-2486.2004.00781.x, 2004.

Etzold, S., Ruehr, N. K., Zweifel, R., Dobbertin, M., Zingg, A.,
Pluess, P., Häsler, R., Eugster, W., and Buchmann, N.: The Car-
bon Balance of Two Contrasting Mountain Forest Ecosystems in55

Switzerland: Similar Annual Trends, but Seasonal Differences,
Ecosystems, 14, 1289–1309, https://doi.org/10.1007/s10021-
011-9481-3, 2011.

Falge, E., Aubinet, M., Bakwin, P. S., Baldocchi, D., Berbigier,
P., Bernhofer, C., Black, T. A., Ceulemans, R., Davis, K. J., 60

Dolman, A. J., Goldstein, A., Goulden, M. L., Granier, A.,
Hollinger, D. Y., Jarvis, P. G., Jensen, N., Pilegaard, K.,
Katul, G., Kyaw Tha Paw, P., Law, B. E., Lindroth, A.,
Loustau, D., Mahli, Y., Monson, R., Moncrieff, P., Moors,
E., Munger, J. W., Meyers, T., Oechel, W., Schulze, E. d., 65

Thorgeirsson, H., Tenhunen, J., Valentini, R., Verma, S. B.,
Vesala, T., and Wofsy, S. C.: FLUXNET Research Network
Site Characteristics, Investigators, and Bibliography, 2016,
https://doi.org/10.3334/ornldaac/1530, 2017.

Fan, Y., Li, H., and Miguez-Macho, G.: Global Patterns 70

of Groundwater Table Depth, Science, 339, 940–943,
https://doi.org/10.1126/science.1229881, 2013.

Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B.,
and Otero-Casal, C.: Hydrologic regulation of plant root-
ing depth, P. Natl. Acad. Sci. USA, 114, 10572–10577, 75

https://doi.org/10.1073/pnas.1712381114, 2017.
Fares, S., Savi, F., Muller, J., Matteucci, G., and Paoletti, E.: Simul-

taneous measurements of above and below canopy ozone fluxes
help partitioning ozone deposition between its various sinks in a
Mediterranean Oak Forest, Agr. Forest Meteorol., 198-199, 181– 80

191, https://doi.org/10.1016/j.agrformet.2014.08.014, 2014.
Farquhar, G. D. and Wong, S. C.: An Empirical Model

of Stomatal Conductance, Funct. Plant Biol., 11, 191–210,
https://doi.org/10.1071/PP9840191, 1984.

Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochem- 85

ical model of photosynthetic CO2 assimilation in leaves of C3
species, Planta, 149, 78–90, 1980.

Ferréa, C., Zenone, T., Comolli, R., and Seufert, G.: Estimat-
ing heterotrophic and autotrophic soil respiration in a semi-
natural forest of Lombardy, Italy, Pedobiologia, 55, 285–294, 90

https://doi.org/10.1016/j.pedobi.2012.05.001, 2012.
Fick, A.: Ueber Diffusion, Ann. Phys., 170, 59–86,

https://doi.org/10.1002/andp.18551700105, 1855.
Field, C. B., Randerson, J. T., and Malmström, C. M.: Global net

primary production: Combining ecology and remote sensing, Re- 95

mote Sens. Environ., 51, 74–88, https://doi.org/10.1016/0034-
4257(94)00066-V, 1995.

Frank, J. M., Massman, W. J., Ewers, B. E., Huckaby, L. S., and
Negrón, J. F.: Ecosystem CO2/H2O fluxes are explained by
hydraulically limited gas exchange during tree mortality from 100

spruce bark beetles, J. Geophys. Res.-Biogeosci., 119, 1195–
1215, https://doi.org/10.1002/2013jg002597, 2014.

Frankenberg, C., Köhler, P., Magney, T. S., Geier, S., Lawson, P.,
Schwochert, M., McDuffie, J., Drewry, D. T., Pavlick, R., and
Kuhnert, A.: The Chlorophyll Fluorescence Imaging Spectrom- 105

eter (CFIS), mapping far red fluorescence from aircraft, Remote
Sens. Environ., 217, 523–536, 2018.

Galvagno, M., Wohlfahrt, G., Cremonese, E., Rossini, M.,
Colombo, R., Filippa, G., Julitta, T., Manca, G., Siniscalco, C.,
di Cella, U. M., and Migliavacca, M.: Phenology and carbon 110

dioxide source/sink strength of a subalpine grassland in response
to an exceptionally short snow season, Environ. Res. Lett., 8,
025008, https://doi.org/10.1088/1748-9326/8/2/025008, 2013.

Gamon, J., Peñuelas, J., and Field, C.: A narrow-waveband spec-
tral index that tracks diurnal changes in photosynthetic efficiency, 115

Remote Sens. Environ., 41, 35–44, https://doi.org/10.1016/0034-
4257(92)90059-S, 1992.

www.geosci-model-dev.net/13/1/2020/ Geosci. Model Dev., 13, 1–37, 2020

https://doi.org/10.1016/j.agrformet.2004.06.008
https://doi.org/10.5194/gmd-10-689-2017
https://doi.org/10.1111/nph.13771
https://doi.org/10.1016/j.agrformet.2004.09.005
https://doi.org/10.1016/j.agrformet.2014.10.017
https://doi.org/10.5067/MODIS/MOD13Q1.006
https://doi.org/10.1111/j.1365-2486.2010.02281.x
https://doi.org/10.1111/j.1365-2486.2010.02281.x
https://doi.org/10.1111/j.1365-2486.2010.02281.x
https://doi.org/10.1111/j.1365-2486.2006.01221.x
https://doi.org/10.1111/j.1365-2486.2004.00781.x
https://doi.org/10.1007/s10021-011-9481-3
https://doi.org/10.1007/s10021-011-9481-3
https://doi.org/10.1007/s10021-011-9481-3
https://doi.org/10.3334/ornldaac/1530
https://doi.org/10.1126/science.1229881
https://doi.org/10.1073/pnas.1712381114
https://doi.org/10.1016/j.agrformet.2014.08.014
https://doi.org/10.1071/PP9840191
https://doi.org/10.1016/j.pedobi.2012.05.001
https://doi.org/10.1002/andp.18551700105
https://doi.org/10.1016/0034-4257(94)00066-V
https://doi.org/10.1016/0034-4257(94)00066-V
https://doi.org/10.1016/0034-4257(94)00066-V
https://doi.org/10.1002/2013jg002597
https://doi.org/10.1088/1748-9326/8/2/025008
https://doi.org/10.1016/0034-4257(92)90059-S
https://doi.org/10.1016/0034-4257(92)90059-S
https://doi.org/10.1016/0034-4257(92)90059-S


32 B. D. Stocker et al.: P-model v1.0

Gamon, J. A., Huemmrich, K. F., Wong, C. Y. S., Ensminger, I.,
Garrity, S., Hollinger, D. Y., Noormets, A., and Peñuelas, J.: A
remotely sensed pigment index reveals photosynthetic phenol-
ogy in evergreen conifers, P. Natl. Acad. Sci. USA, 113, 13087–
13092, https://doi.org/10.1073/pnas.1606162113, 2016.5

Goldstein, A., Hultman, N., Fracheboud, J., Bauer, M., Panek,
J., Xu, M., Qi, Y., Guenther, A., and Baugh, W.: Effects
of climate variability on the carbon dioxide, water, and sen-
sible heat fluxes above a ponderosa pine plantation in the
Sierra Nevada (CA), Agr. Forest Meteorol., 101, 113–129,10

https://doi.org/10.1016/s0168-1923(99)00168-9, 2000.
Gough, C. M., Hardiman, B. S., Nave, L. E., Bohrer, G., Mau-

rer, K. D., Vogel, C. S., Nadelhoffer, K. J., and Curtis, P. S.:
Sustained carbon uptake and storage following moderate dis-
turbance in a Great Lakes forest, Ecol. Appl., 23, 1202–1215,15

https://doi.org/10.1890/12-1554.1, 2013.
Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein,

M., and Seneviratne, S. I.: Global assessment of trends in
wetting and drying over land, Nat. Geosci, 7, 716–721,
https://doi.org/10.1038/ngeo2247, 2014.20

Grünwald, T. and Bernhofer, C.: A decade of carbon, wa-
ter and energy flux measurements of an old spruce for-
est at the Anchor Station Tharandt, Tellus B, 59, 387–396,
https://doi.org/10.3402/tellusb.v59i3.17000, 2007.

Guan, D.-X., Wu, J.-B., Zhao, X.-S., Han, S.-J., Yu, G.-R., Sun,25

X.-M., and Jin, C.-J.: CO2 fluxes over an old, temperate mixed
forest in northeastern China, Agr. Forest Meteorol., 137, 138–
149, https://doi.org/10.1016/j.agrformet.2006.02.003, 2006.

Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. A.,
Frankenberg, C., Huete, A. R., Zarco-Tejada, P., Lee, J.-E., Su-30

san Moran, M., Ponce-Campos, G., Beer, C., Camps-Valls, G.,
Buchmann, N., Gianelle, D., Klumpp, K., Cescatti, A., Baker,
J. M., and Griffis, T. J.: Global and time-resolved monitoring of
crop photosynthesis with chlorophyll fluorescence, P. Natl. Acad.
Sci. USA, 111, E1327–E1333, 2014.35

Harris, I., Jones, P., Osborn, T., and Lister, D.: Updated
high-resolution grids of monthly climatic observations –
the CRU TS3.10 Dataset, Int. J. Climatol., 34, 623–642,
https://doi.org/10.1002/joc.3711, 2014.

Haxeltine, A. and Prentice, I. C.: A General Model for the Light-40

Use Efficiency of Primary Production, Funct. Ecol., 10, 551–561,
1996.

He, L., Chen, J. M., Gonsamo, A., Luo, X., Wang, R., Liu,
Y., and Liu, R.: Changes in the Shadow: The Shifting Role
of Shaded Leaves in Global Carbon and Water Cycles Un-45

der Climate Change, Geophys. Res. Lett., 45, 5052–5061,
https://doi.org/10.1029/2018GL077560, 2018.

Heinsch, F. A., , Running, S. W., Kimball, J. S., Nemani, R. R.,
Davis, K. J., Bolstad, P. V., Cook, B. D., Desai, A. R., Ricciuto,
D. M., Law, B. E., Oechel, W. C., Wofsy, S. C., Dunn, A. L.,50

Munger, J. W., Baldocchi, D. D., Hollinger, D. Y., Richardson,
A. D., Stoy, P. C., Siqueira, M. B. S., Monson, R. K., Burns, S. P.,
and Flanagan, L. B.: Evaluation of remote sensing based terres-
trial productivity from MODIS using regional tower eddy flux
network observations, IEEE Trans. Geosci. Remote Sens., 44,55

1908–1925, https://doi.org/10.1109/TGRS.2005.853936, 2006.
Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H.,

Heuvelink, G. B. M., Ribeiro, E., Samuel-Rosa, A.,
Kempen, B., Leenaars, J. G. B., Walsh, M. G., and

Gonzalez, M. R.: SoilGrids1km–global soil information 60

based on automated mapping, PLoS One, 9, e105992,
https://doi.org/10.1371/journal.pone.0105992, 2014.

Heskel, M., O’Sullivan, O., Reich, P., Tjoelker, M., Weeras-
inghe, L., Penillard, A., Egerton, J., Creek, D., Bloomfield,
K., Xiang, J., Sinca, F., Stangl, Z., Martinez-De La Torre, 65

A., Griffin, K., Huntingford, C., Hurry, V., Meir, P., Turn-
bull, M., and Atkin, O.: Convergence in the temperature re-
sponse of leaf respiration across biomes and plant func-
tional types, P. Natl. Acad. Sci. USA, 113, 3832–3837,
https://doi.org/10.1073/pnas.1520282113, 2016. 70

Hinko-Najera, N., Isaac, P., Beringer, J., van Gorsel, E., Ewenz, C.,
McHugh, I., Exbrayat, J.-F., Livesley, S. J., and Arndt, S. K.: Net
ecosystem carbon exchange of a dry temperate eucalypt forest,
Biogeosciences, 14, 3781–3800, https://doi.org/10.5194/bg-14-
3781-2017, 2017. 75

Hoshika, Y., Fares, S., Savi, F., Gruening, C., Goded, I., De Marco,
A., Sicard, P., and Paoletti, E.: Stomatal conductance mod-
els for ozone risk assessment at canopy level in two Mediter-
ranean evergreen forests, Agr. Forest Meteorol., 234-235, 212–
221, https://doi.org/10.1016/j.agrformet.2017.01.005, 2017. 80

Huber, M. L., Perkins, R. A., Laesecke, A., Friend, D. G., Sengers,
J. V., Assael, M. J., Metaxa, I. N., Vogel, E., Mares̆, R., and
Miyagawa, K.: New international formulation for the viscosity
of H2O, J. Phys. Chem. Ref. Data, 38, 101–125, 2009.

Hufkens, K.: khufkens/gee_subset: Google Earth Engine subset 85

script and library, https://doi.org/10.5281/zenodo.833789, 2017.
Huner, N. P., Oquist, G., Hurry, V. M., Krol, M., Falk, S., and Grif-

fith, M.: Photosynthesis, photoinhibition and low temperature ac-
climation in cold tolerant plants, Photosynth. Res., 37, 19–39,
1993. 90

Hutley, L. B., Beringer, J., Isaac, P. R., Hacker, J. M., and Cer-
nusak, L. A.: A sub-continental scale living laboratory: Spa-
tial patterns of savanna vegetation over a rainfall gradient in
northern Australia, Agr. Forest Meteorol., 151, 1417–1428,
https://doi.org/10.1016/j.agrformet.2011.03.002, 2011. 95

Imer, D., Merbold, L., Eugster, W., and Buchmann, N.: Temporal
and spatial variations of soil CO2, CH4 and N2O fluxes at three
differently managed grasslands, Biogeosciences, 10, 5931–5945,
https://doi.org/10.5194/bg-10-5931-2013, 2013.

Irvine, J., Law, B. E., and Hibbard, K. A.: Postfire carbon pools 100

and fluxes in semiarid ponderosa pine in Central Oregon, Global
Change Biol., 13, 1748–1760, https://doi.org/10.1111/j.1365-
2486.2007.01368.x, 2007.

Irvine, J., Law, B. E., Martin, J. G., and Vickers, D.: In-
terannual variation in soil CO2 efflux and the response of 105

root respiration to climate and canopy gas exchange in ma-
ture ponderosa pine, Global Change Biol., 14, 2848–2859,
https://doi.org/10.1111/j.1365-2486.2008.01682.x, 2008.

Jacobs, C. M. J., Jacobs, A. F. G., Bosveld, F. C., Hendriks, D.
M. D., Hensen, A., Kroon, P. S., Moors, E. J., Nol, L., Schrier- 110

Uijl, A., and Veenendaal, E. M.: Variability of annual CO2
exchange from Dutch grasslands, Biogeosciences, 4, 803–816,
https://doi.org/10.5194/bg-4-803-2007, 2007.

Jiang, C. and Ryu, Y.: Multi-scale evaluation of global gross pri-
mary productivity and evapotranspiration products derived from 115

Breathing Earth System Simulator (BESS), Remote Sens. Envi-
ron., 186, 528–547, 2016.

Geosci. Model Dev., 13, 1–37, 2020 www.geosci-model-dev.net/13/1/2020/

https://doi.org/10.1073/pnas.1606162113
https://doi.org/10.1016/s0168-1923(99)00168-9
https://doi.org/10.1890/12-1554.1
https://doi.org/10.1038/ngeo2247
https://doi.org/10.3402/tellusb.v59i3.17000
https://doi.org/10.1016/j.agrformet.2006.02.003
https://doi.org/10.1002/joc.3711
https://doi.org/10.1029/2018GL077560
https://doi.org/10.1109/TGRS.2005.853936
https://doi.org/10.1371/journal.pone.0105992
https://doi.org/10.1073/pnas.1520282113
https://doi.org/10.5194/bg-14-3781-2017
https://doi.org/10.5194/bg-14-3781-2017
https://doi.org/10.5194/bg-14-3781-2017
https://doi.org/10.1016/j.agrformet.2017.01.005
https://doi.org/10.5281/zenodo.833789
https://doi.org/10.1016/j.agrformet.2011.03.002
https://doi.org/10.5194/bg-10-5931-2013
https://doi.org/10.1111/j.1365-2486.2007.01368.x
https://doi.org/10.1111/j.1365-2486.2007.01368.x
https://doi.org/10.1111/j.1365-2486.2007.01368.x
https://doi.org/10.1111/j.1365-2486.2008.01682.x
https://doi.org/10.5194/bg-4-803-2007


B. D. Stocker et al.: P-model v1.0 33

Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A.
P., Middleton, E. M., Huemmrich, K. F., Yoshida, Y., and
Frankenberg, C.: Global monitoring of terrestrial chlorophyll
fluorescence from moderate-spectral-resolution near-infrared
satellite measurements: methodology, simulations, and ap-5

plication to GOME-2, Atmos. Meas. Tech., 6, 2803–2823,
https://doi.org/10.5194/amt-6-2803-2013, 2013.

Joiner, J., Yoshida, Y., Guanter, L., and Middleton, E. M.: New
methods for the retrieval of chlorophyll red fluorescence from
hyperspectral satellite instruments: simulations and application10

to GOME-2 and SCIAMACHY, Atmos. Meas. Tech., 9, 3939–
3967, https://doi.org/10.5194/amt-9-3939-2016, 2016.

Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson,
A. D., Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen,
J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G.,15

Law, B. E., Lindroth, A., Merbold, L., Montagnani, L., Moors,
E. J., Papale, D., Sottocornola, M., Vaccari, F., and Williams,
C.: Global patterns of land-atmosphere fluxes of carbon diox-
ide, latent heat, and sensible heat derived from eddy covariance,
satellite, and meteorological observations, J. Geophys. Res.-20

Biogeosci., 116, g00J07, https://doi.org/10.1029/2010JG001566,
2011.

Kato, T., Tang, Y., Gu, S., Hirota, M., Du, M., Li, Y., and
Zhao, X.: Temperature and biomass influences on interan-
nual changes in CO2 exchange in an alpine meadow on the25

Qinghai-Tibetan Plateau, Global Change Biol., 12, 1285–1298,
https://doi.org/10.1111/j.1365-2486.2006.01153.x, 2006.

Kattge, J. and Knorr, W.: Temperature acclimation in a biochemical
model of photosynthesis: a reanalysis of data from 36 species,
Plant Cell Environ., 30, 1176–1190, 2007.30

Keenan, T., Sabate, S., and Gracia, C.: Soil water stress and coupled
photosynthesis–conductance models: Bridging the gap between
conflicting reports on the relative roles of stomatal, mesophyll
conductance and biochemical limitations to photosynthesis, Agr.
Forest Meteorol., 150, 443–453, 2010.35

Keenan, T., Baker, I., Barr, A., Ciais, P., Davis, K., Dietze, M., Drag-
oni, D., Gough, C. M., Grant, R., Hollinger, D., Hufkens, K.,
Poulter, B., McCaughey, H., Raczka, B., Ryu, Y., Schaefer, K.,
Tian, H., Verbeeck, H., Zhao, M., and Richardson, A. D.: Terres-
trial biosphere model performance for inter-annual variability of40

land-atmosphere CO2 exchange, Global Change Biol., 18, 1971–
1987, https://doi.org/10.1111/j.1365-2486.2012.02678.x, 2012.

Keenan, T., Prentice, I., Canadell, J. et al.TS5 : Recent
pause in the growth rate of atmospheric CO2 due to en-
hanced terrestrial carbon uptake, Nat. Commun., 7, 13428,45

https://doi.org/10.1038/ncomms13428, 2016.
Keenan, T. F., Migliavacca, M., Papale, D., Baldocchi, D., Reich-

stein, M., Torn, M., and Wutzler, T.: Widespread inhibition of
daytime ecosystem respiration, Nat. Ecol. Evolut., 3, 407–415,
https://doi.org/10.1038/s41559-019-0809-2, 2019.50

Kilinc, M., Beringer, J., Hutley, L. B., Tapper, N. J., and McGuire,
D. A.: Carbon and water exchange of the world’s tallest an-
giosperm forest, Agr. Forest Meteorol., 182–183, 215–224,
https://doi.org/10.1016/j.agrformet.2013.07.003, 2013.

Knohl, A., Schulze, E.-D., Kolle, O., and Buchmann, N.: Large55

carbon uptake by an unmanaged 250-year-old deciduous for-
est in Central Germany, Agr. Forest Meteorol., 118, 151–167,
https://doi.org/10.1016/s0168-1923(03)00115-1, 2003.

Kok, B.: On the interrelation of respiration and photosynthe-
sis in green plants, Biochim. Biophys. Acta, 3, 625–631, 60

https://doi.org/10.1016/0006-3002(49)90136-5, 1949.
Kurbatova, J., Li, C., Varlagin, A., Xiao, X., and Vygodskaya, N.:

Modeling carbon dynamics in two adjacent spruce forests with
different soil conditions in Russia, Biogeosciences, 5, 969–980,
https://doi.org/10.5194/bg-5-969-2008, 2008. 65

Landsberg, J. J. and Waring, R. H.: A generalised model of for-
est productivity using simplified concepts of radiation-use effi-
ciency, carbon balance and partitioning, For. Ecol. Manage., 95,
209–228, 1997.

Lasslop, G., Reichstein, M., Papale, D., Richardson, A., Ar- 70

neth, A., Barr, A., Stoy, P., and Wohlfahrt, G.: Separa-
tion of net ecosystem exchange into assimilation and res-
piration using a light response curve approach: critical is-
sues and global evaluation, Global Change Biol., 16, 187–208,
https://doi.org/10.1111/j.1365-2486.2009.02041.x, 2010. 75

Leuning, R.: A critical appraisal of a combined stomatal-
photosynthesis model for C3 plants, Plant Cell Environ., 18, 339–
355, 1995.

Leuning, R., Cleugh, H. A., Zegelin, S. J., and Hughes, D.: Carbon
and water fluxes over a temperate Eucalyptus forest and a tropi- 80

cal wet/dry savanna in Australia: measurements and comparison
with MODIS remote sensing estimates, Agr. Forest Meteorol.,
129, 151–173, https://doi.org/10.1016/j.agrformet.2004.12.004,
2005.

Li, X., Xiao, J., He, B., Altaf Arain, M., Beringer, J., Desai, A. R., 85

Emmel, C., Hollinger, D. Y., Krasnova, A., Mammarella, I.,
Noe, S. M., Ortiz, P. S., Rey-Sanchez, A. C., Rocha, A. V.,
and Varlagin, A.: Solar-induced chlorophyll fluorescence is
strongly correlated with terrestrial photosynthesis for a wide
variety of biomes: First global analysis based on OCO-2 and 90

flux tower observations, Glob. Chang. Biol., 24, 3990–4008,
https://doi.org/10.1111/gcb.14297, 2018.

Lindauer, M., Schmid, H., Grote, R., Mauder, M., Stein-
brecher, R., and Wolpert, B.: Net ecosystem exchange over
a non-cleared wind-throw-disturbed upland spruce forest– 95

Measurements and simulations, Agr. Forest Meteorol., 197, 219–
234, https://doi.org/10.1016/j.agrformet.2014.07.005, 2014.

Lloyd, J. and Farquhar, G. D.: 13C discrimination during CO2 as-
similation by the terrestrial biosphere, Oecologia, 99, 201–215,
https://doi.org/10.1007/BF00627732, 1994. 100

Long, S. P., Postl, W. F., and Bolhár-Nordenkampf, H. R.: Quantum
yields for uptake of carbon dioxide in C3 vascular plants of con-
trasting habitats and taxonomic groupings, Planta, 189, 226–234,
1993.

Luo, X., Keenan, T. F., Fisher, J. B., Jiménez-Muñoz, J.-C., Chen, 105

J. M., Jiang, C., Ju, W., Perakalapudi, N.-V., Ryu, Y., and Tadić,
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