
Zurich, 2.12.2019 

Dear Dr. Kala, 

We have revised our manuscript number gmd-2019-200, titled  

P-model v1.0: An optimality-based light use efficiency model for simulating ecosystem gross primary 
production 

and have addressed all comments by the two referees. We are confident that we have been able to 
resolve critical points and satisfy suggestions for additions. Because we slightly adjusted the data 
filtering criteria (no longer removing negative observational GPP for calibration) and the model forcing 
data (using daytime mean temperature and vapour pressure deficit, instead of mean daily values ), we 
re-ran all calibrations and evaluations and updated all numbers and figures. The change in the results is 
hardly noticeable (differences of less than 1% to before) and all interpretations and conclusions remained 
the same. 

The most important additions we included in response to requests by the reviewers are: 

● Results from global simulations with the P-model and a comparison to a set of other remote 
sensing data-driven GPP models (see response to RC1). 

● Results from out-of-sample calibrations and evaluations for all 59 sites (see response to RC2). 

In the meantime, the R package rpmodel, which implements the model presented and evaluated here, has 
been published on CRAN (https://cran.r-project.org/web/packages/rpmodel/index.html).   

We sincerely thank you for handling our manuscript and granting us an extended revision phase.  

In the name of all co-authors, with kind regards, 

 

 

beni stocker 

https://cran.r-project.org/web/packages/rpmodel/index.html


Response to Anonymous Referee #1 

We sincerely thank the reviewer for their effort and the very useful comments. We have revised our 
manuscript P-model v1.0: An optimality-based light use efficiency model for simulating ecosystem 
gross primary production and have addressed all points raised by the reviewer. 

Below, we provide a point-by-point response to all the comments. Text by the reviewer is in blue and 
indented. Our response is in black. New text is green, italic. Existing (unchanged) manuscript text is 
black italic.  

I have a mixed feeling[s] for this review. On the good side, this is incredibly well written. All figures 
and analysis are highly professional. On the other side, this manuscript degraded the elegance of 
optimality hypothesis. I fully understand the original paper on optimality hypothesis (Han et al 
2017) was not perfect. It had much room for improvements. But the way to improve in this 
manuscript is not attractive in my view with following reasons. 

We thank the reviewer for the very positive assessment of the quality of text and figures. We also 
thank the reviewer for raising the point regarding the scope of the present manuscript and its relation 
to previous publications based on the same theoretical approach for modelling photosynthesis and its 
acclimation to the environment. We would like to highlight that the scope of the present manuscript is 
not to extend the theoretical approach described by (Prentice et al., 2014) and (Wang et al., 2017). We 
modified text in the introduction to clarify the purpose of the present manuscript: 

The purpose of this paper is (i) to provide a full documentation of the model implementation and 
reference for open-source software (rpmodelR package, https://stineb.github.io/rpmodel/); (ii) to 
provide an evaluation of model-predicted LUE and GPP against GPP derived from eddy covariance flux 
measurements (FLUXNET 2015 Tier 1 dataset); (iii) to apply this model for global-scale simulations and 
compare spatial patterns and global totals of simulated GPP with other estimates with global coverage; 
and (iv) to introduce a robust and pragmatic solution to resolving model bias under dry and cold 
conditions. With (iv) we do not aim at extending the theoretical basis for the P-model (Prentice et al., 
2014; Wang et al., 2017), but to include environmental controls in the LUE model that serve to make the 
model applicable as a remote sensing data-driven GPP model for a wide range of conditions and 
vegetation types. 

More detailed responses, related to related points raised by reviewer #1, are given below. 

1) AET/PET was used for aridity index to consider drought effects. The authors used SPLASH 
model. If AET can be modeled so well, then GPP must be modeled well too as they are both tightly 
correlated via stomatal conductance. Therefore, in my humble opinion, bringing AET to consider 
drought effects in GPP estimates are logically odd. The key motivation of this study is to add soil 
stress function into P-model which leads [to a] better prediction of GPP, but that added soil 
moisture function appears decoupled from stomata conductance in the framework of optimality 
hypothesis. So in a physiological sense, it is not any more optimal model. Bringing stomatal 
conductance from SPLASH would be one option although it is ugly... but the assumption of using 
AET/PET is that stomatal conductance is correct. 

We think there are two points here. First, as a clarification, AET is not used directly to scale GPP in the 
model. Errors in simulated AET are thus not linearly translated into errors in simulated GPP. Instead, 
the annual mean fraction of daily AET/PET, simulated by the SPLASH model, is used to scale the 
sensitivity  light use efficiency (LUE) to low soil moisture (Eq. 22). Furthermore, AET simulated by the 
SPLASH model is based on the Priestly-Taylor equation (Priestley and Taylor, 1972) for estimating 
potential evapotranspiration (PET), and thus assumes that PET is controlled by net radiation only, 
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independent of the vapour pressure deficit and stomatal conductance. In other words, this assumes a 
fully “decoupled” boundary layer (Jarvis, 1986). Therefore,  “bringing stomatal conductance from 
SPLASH” is not actually possible. 

The second point made here addresses the implementation of the soil moisture effects and its relation 
to the basic theory embodied by the P-model. With “basic theory” we mean principle of balancing the 
unit costs of transpiration and carboxylation following (Prentice et al., 2014) and the balancing of gains 
and costs associated with the maximum rate of electron transport, Jmax following (Wang et al., 2017). 
This theory is implemented by the equations described in Section 2 in our manuscript. The reviewer 
makes the point that the soil moisture stress function is not linked to the stomatal conductance 
predicted by the basic theory of the P-model. Point 5) (see below) is related to this point. 

We fully agree with the reviewer as we explicitly state on l. 437: 

“[] the use of an empirical function is not consistent with the optimality approach that underlies the 
P-model.” 

The potential for extending this theoretical framework and possible ways forward are discussed on 
subsequent lines (l. 522). We consider an inclusion of soil moisture effects into the theory underlying 
the P-model to be a very promising way forward and are actively working towards this goal. However, 
developing such an extension of the theoretical framework is a substantial piece of work as is 
demonstrated by the fact that similar efforts are currently being pursued by several research groups 
(Christoffersen et al., 2016; Mencuccini et al., 2019; Sperry et al., 2017; Wolf et al., 2016). In revising the 
manuscript text, we made sure to clarify that the empirical soil moisture stress function (Eqs. 21 and 
22) is not to be understood as an extension of the optimality theory (Eqs. 3 and 14), but rather as a 
pragmatic solution to resolving known bias (see also our response above). E.g., on l. 69 we write: 

To resolve model biases under conditions of low soil moisture, (Stocker et al., 2019) further applied an 
empirical stress function to reduce LUE under dry soil conditions 

 

2) There has been a series of papers that proposed global GPP maps with evaluations against 
fluxnet database. Many papers which were cited in this manuscript already evaluated model 
performance across scales from site level to the global land, daily to seasonal to annual scales. 
When I agreed to review this manuscript, I expected what would be global GPP, and how it varies 
in space and time from P-model. Site level evaluation for seasonal scale does not convince me 
about the overall performance of this model. In my past experience, I could match the modeled 
seasonal variations of GPP with fluxnet GPP extremely well; but in that case, global GPP values 
and interannual variation/trends were weird. I mean the authors should test the revised P model 
across different scales. Current evaluation is not enough. 

We now conducted global simulations with the P-model using the parameters from the site-level 
calibration (FULL setup) and we included a description of the respective model forcings, a presentation 
of results, and a comparison against other global GPP estimates and the spatial distribution of 
sun-induced fluorescence (SiF). We complemented text and figures in several instances. The most 
important changes/additions are: 

Two new figures: 
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Figure 10. Global distribution of GPP. Shown are the mean annual values, averaged over years 2000 to 
2016. The GPP shown as “mean of other models” is the average of MTE (Jung et al., 2011), FLUXCOM 
(‘RS+METEO’ setup) (Tramontana et al., n.d.), MODIS GPP(collection 55 and 6) (Running et al., 2004; 
Turner et al., 2005), BESS (Jiang and Ryu, 2016), BEPS (Chen et al., 2016; He et al., 2018), and VPM 
(Zhang et al., 2017). P-model results are from simulations with the FULL setup and calibrated parameters 
as given in Table 1. 

 

 

Figure 11. Latitudinal distribution of GPP and SiF. Values shown (GPP on the left y-axis, SiF on the right 
y-axis) are gridcell area-weighted sums along 0.5 degree latitudinal bands. 
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Abstract (l. 16): 

Applying this model for global-scale simulations yields a total global GPP of 106-122 GtC yr−1 (mean of 
2001-2011), depending on the fAPAR forcing data. 

Introduction (l. 77): 

The purpose of this paper is [...] (iii) to apply this model for global-scale simulations and compare 
spatial patterns and global totals of simulated GPP with other estimates with global coverage; 

L. 227 (Methods section): 

3.2.2  Global simulations 

Global simulations were conducted for the setup FULL, using the respectively calibrated parameters 
from thesite-scale simulations. All vegetation is assumed to follow the C3 photosynthetic pathway and 
we do not distinguish between croplands and other vegetation. Given the comparatively high light use 
efficiency of crops (Guanter et al., 2014) and given that data from cropland sites was excluded from 
calibration, not treating croplands separately should thus tend to underestimate GPP on respective 
areas. 

L. 265 (Methods section): 

For global-scale simulations, we used two alternative fAPAR datasets. ‘MODIS FPAR’ is from globally 
gridded MODIS FPAR  data  at  0.5 degree resolution  derived  at  ICDC 
(http://icdc.cen.uni-hamburg.de),  based  on  the  MOD15A2H  MODIS  Terra Leaf Area Index/FPAR 
8-Day L4 Global 500m SIN Grid V006 dataset (Myneni et al., 2015a). For the present application, 8-daily 
data is aggregated (mean) to monthly data. ‘fAPAR3g’ is based on AVHRR GIMMS FPAR3g v2 data (Zhu 
et al., 2013), 15 days, 1/12 degree resolution and aggregated for the present application to 0.5 degree 
and monthly data. For all global P-model simulations, fAPAR is held constant for each day in respective 
months. Simulations cover years 2000-2016. Due to limited temporal coverage, January 2000 data is 
taken as February 2000 for simulations driven by MODIS FPAR. 

L. 282 (Methods section): 

For global-scale simulations, we use daily, 0.5 degrees meteorological forcing from WATCH-WFDEI 
(Weedon et al., 2014). We use mean daily 2 m air temperature; daily snow and rainfall; shortwave 
downwelling radiation converted to mol photons m−2 d−1 by multiplication with kEC; and daily 2 m 
specific humidity (qair), converted to VPD (D) as described in Appendix E. We used daily minimum and 
maximum air temperatures for each month from CRU TS 4.01 data (Harris et al., 2014) to calculate a 
respective VPD and use their mean as a daily varying input to P-model simulations in order to reduce 
effects of the non-linear dependence of D on T(D = (D(Tmin) +D(Tmax)/2). All processes that depend on 
atmospheric pressure use Eq. B10 and the 0.5◦resolution elevation map from WATCH-WFDEI (Weedon 
et al., 2014) to calculate a temporally constant atmospheric pressure for each gridcell. 

L. 305 (Methods section): 

3.5.2    Global datasets for GPP comparison 

We compare the simulated spatial distribution of GPP from global-scale simulations against seven 
different remote sensing data-driven GPP estimates with global coverage and two sun-induced 
fluorescence (SiF) data products. The global GPP estimates are from the following models: MTE (Jung 
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et al., 2011), FLUXCOM (‘RS+METEO’ setup) (Tramontana et al., 2016), MODIS GPP (collection 55 and 6) 
(Running et al., 2004; Zhao et al., 2005), BESS (Jiang and Ryu, 2016), BEPS (He et al.,2018; Chen et al., 
2016), and VPM (Zhang et al., 2017b). A more detailed description of these models and aggregation to a 
common grid of 0.5 degrees and monthly resolution can be found in (Luo et al., 2018). For sun-induced 
fluorescence (SiF), we use data from GOME-2A and GOME-2B, based on v.2 (V27) 740 nm terrestrial 
chlorophyll fluorescence from the MetOp-A andMetOp-B satellites (Joiner et al., 2013, 2016). Data were 
aggregated to monthly and 0.5 resolution by mean, as further described in Luo et al. (2018). 

L. 451 (Results section): 

4.7  Global GPP 

Simulated global total GPP is 106 GtC yr-1 when using MODIS FPAR and 122 GtC yr-1 when using 
fAPAR3g forcing data (mean over years 2001-2011, setup FULL). The spatial pattern of simulated GPP 
differs substantially between simulations forced by MODIS FPAR and fAPAR3g (Fig. 8). This is most 
evident in their latitudinal distribution (Fig. 9). The global spatial pattern of fAPAR3g-based GPP 
simulated by the P-model generally matches the global distribution of the mean across other remote 
sensing-based GPP models and lies within the range of their estimates for the latitudinal distribution. 
The MODIS FPAR-forced P-model simulation suggests lower values in the tropics that differ from the 
fAPAR3g-based estimates by a factor of ~2 around the equator. The moderate tropical GPP of the 
MODIS FPAR-based P-model simulation agrees well with the latitudinal distribution of sun-induced 
fluorescence (SiF) from GOME-2A and GOME-2B. 

L. 450 (Discussion section): 

The P-model-based estimates of global GPP (106 GtC yr−1when using MODIS FPAR and 122 GtC yr−1 
when usingfAPAR3g forcing data, mean over 2001-2011, FULL setup) are within the range of other 
estimates of global GPP (also means over 2001-2011): 133 GtC yr−1 for MTE (Jung et al., 2011), 130 
GtC yr−1for FLUXCOM (Tramontana et al., 2016), 112 GtC yr−1for MODIS-55 GPP and 105 GtC yr−1 for 
MODIS-6 GPP (Running et al., 2004; Zhao et al., 2005), 133 GtC yr−1 for BESS (Jiang and Ryu, 2016; Ryu 
et al., 2011), 121 GtC yr−1 for BEPS (He et al., 2018; Chen et al., 2016), and 135 GtC yr−1 for VPM 
(Zhang et al., 2017b). The P-model results presented here are based on simulations that embody 
relatively strong simplifying assumptions. In particular, we assumed all vegetation to follow the C3 
photosynthetic pathway and we made no distinction between croplands and other vegetation, although 
crops are generally more productive (Guanter et al., 2014).  

The  large  spread  of  tropical  GPP  estimates  is  striking.  The  highest  estimate  among  the  other 
GPP  models  we  used  for evaluation here - coming from BESS - is more than 50% higher than MODIS 
GPP from Collection 6. The fAPAR3g-based P-model tropical GPP estimate falls within the range of 
other GPP models, while the MODIS FPAR-based estimate is lower than all other models. However, the 
latter’s comparably low tropical GPP agrees well with the latitudinal distribution of SiF.However, large 
changes in leaf area index across latitudes, combined with a dependency of the SiF signal on vegetation 
structure (Zeng et al., 2019) may undermine the validity of SiF as a benchmark for GPP models. A lack 
of evaluation data from eddy-covariance measurements in dense tropical forests precludes us from 
drawing conclusions on the accurateness of these diverging tropical GPP estimates. 

We now realised that in the published Discussions manuscript, two short sections describing the 
results of the evaluations of 8-daily, interannual, and spatial variations were missing. Respective text 
was lost when formatting the document for GMDD. We duly apologize for this. In the revised 
manuscript, we added this text back to the manuscript. Figures and tables that show model 
performance for 8-daily, interannual, and spatial variations and that are referred to in added text had 
been included already in the published Discussions manuscript. Added text reads: 

https://paperpile.com/c/o9hLlX/l0W9
https://paperpile.com/c/o9hLlX/O2hI+w0zr


 

4.1.1    8-day means 

The P-model version ORG captures 69% of the variance in observed GPP with data aggregated to 8-day 
means (60’450 data points). Model performance both with respect to explained variance (R2) and the 
RMSE is improved when additionally accounting for effects of temperature on the quantum yield 
efficiency (BRC, R2 = 72%), and when additionally factoring in the empirical soil moisture stress function 
(FULL, R2 = 75%, Fig. 2). The NULL model with temporally constant and spatially uniform LUE performed 
equally well as ORG, but is outperformed by model versions BRC and FULL. All performance statistics are 
given in Tables 3 and 4. 

[...] 

4.1.3    Spatial and annual variations 

The R2 for annual GPP simulated by the P-model setups ranges from 0.57 (ORG) to 0.70 (FULL). The 
NULL model achieves an R2 of 0.58. Most of the explanatory power of the different models for predicting 
annual total GPP stems from their power in predicting between-site (“spatial”) variations (Fig. 3, Tabs. 3 
and 4). The R2 for spatial variations ranges from 0.62 (ORG) to 0.70 (FULL), and 0.64 for the NULL model. 
In contrast, inter-annual  variations (across years within a given site) are poorly simulated (R2: 0.06-0.09 
for P-model setups, and 0.04 for the NULL model). Interannual variations are generally much smaller 
than across site variations, which likely adds to the challenge of accurately capturing interannual 
variations. Interannual GPP variations are generally better captured at sites where the variability is high 
and in particular at dry sites.  

Taken together, we are providing a comprehensive evaluation, assessing 8-daily, annual, spatial, and 
seasonal variations; responses to droughts; and global GPP. In other words, we are not just evaluating 
seasonal variations as suggested by the reviewer. Temporal trends cannot currently be assessed using 
eddy-covariance data with confidence. This is mainly due to the (still) relatively short time series 
available from flux measurements (see below) and the relatively high interannual variability. Hence, we 
avoid comparing also temporal trends in global GPP. 

 

Fig. A Time series length in FLUXNET 2015 data for different sites in the Tier 1 set. 

 



3) The authors have incorporated an empirical soil moisture stress function to downregulate 
LUEopt. I understand why the authors introduced soil moisture stress function after the 1st 
author’s fantastic papers on drought and fLUE. However, I think the introduced soil module is too 
heavy given the elegance of optimality hypothesis. It is a typical soil bucket model which requires 
soil properties and rainfall. To scale up P-model globally, the key barrier will be this soil module- 
they are too uncertain and P-model will be coupled with a heavy hydrological model like SPLASH. 
We know microwave remote sensing based soil moisture only captures top soils.  

The soil water balance model implemented here is arguably the simplest form of such a model. It 
considers only one bucket (other models treat water movement across multiple soil layers which 
requires a computationally expensive numerical scheme), and simulates potential evapotranspiration 
following  Priestly-Taylor (1972) (other models account for effects of boundary layer and surface 
resistance following the Penman-Monteith Equation). Any model that accounts for soil moisture 
effects must somehow treat soil moisture prognostically, unless it’s prescribed from observations. We 
followed arguably the “lightest” possible prognostic soil moisture model, SPLASH. As the reviewer 
notes, observation-based soil moisture, e.g. based on microwave remote sensing (Al Bitar et al., 2016; 
Dorigo et al., 2017), are subject to the limitation that they only capture signals from the uppermost soil 
layers and may thus not be representative for plant water stress and of limited use for the present 
application.  

 

4) The improved model still showed poor performance in capturing interannual variations of GPP. 
That’s disappointed given the introduction of temperature and soil moisture terms. 

We have added text in the discussion to put this result into context (l. 458).  

While seasonal and spatial variations in GPP are reliably simulated by the P-model, the model's 
performance in simulating interannual GPP variations is weaker. Similar results have been found from 
previous studies from both empirical (Richardson et al., 2007; Urbanski et al., 2007) and process 
model-based (Keenan et al., 2012) analyses. This is likely due to lagged effects of climate anomalies 
expressed through biotic responses (Biederman et al., 2016; Keenan et al., 2012; Richardson et al., 2007). 

 

5) Overall framework of revised P-model is almost identical to MODIS LUE model. MODIS GPP 
model downregulates LUEmax via temperature and VPD. Recent papers proposed a universal LUE 
max, or pixel based LUEopt that varies with time. That is the current status of MODIS GPP model. 
Then the revised P-model is almost following same direction; incorporating temperature and soil 
moisture to reduce LUEopt. Although the processes differ between two models in terms of 
f(temp) and f(water), overall philosophical framework appears very similar. That is the reason that 
I wrote "degradation of elegant P-model" in my general comments. If optimality hypothesis does 
not reflect temperature and water stress well, that indicates the optimality hypothesis is incorrect. 
Decoupling stomata conductance from added soil moisture function is a drawback in the 
framework of optimality. I would wish the authors incorporate temp/water effects into optimality 
theory in a more elegant way. The current way is too MODIS LUE style....  

The model presented here differs from the MODIS GPP model (Running et al., 2004) in several 
fundamental ways. First, spatial variations in LUE are not prescribed, as is done by MODIS GPP based 
on biome-specific LUEopt values used in combination with a global biome classification, but are 
predicted based on the optimality principle (Eq. 3 in our manuscript) balancing costs associated with 
carbon gains and water losses. Second, the model presented here combines the enzyme kinetics for 
simulating photosynthesis described by the FvCB model with the Coordination Hypothesis to derive a 
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formulation for LUE that turns out to be linear with absorbed light. In other words, the LUE model 
concept emerges from the theory embodied in the model and is not pre-imposed. 

As discussed above (see our response to point 1) the implementation of a simple water stress scalar 
was motivated by pragmatism. We modified text in the Discussion section to better elucidate 
mechanisms behind the “temperature stress” function applied here. Modified text reads: 

A reduction in the quantum yield efficiency arises from several mechanisms, including increased 
non-photochemical quenching, a reduction in chlorophyll and absorption by screening pigments (Adams 
et al., 2004; Ensminger et al., 2004; Huner et al., 1993; Oquist and Huner, 2003; Verhoeven, 2014). These 
adaptations serve to limit oxidative damage under high light and low temperature conditions, where an 
imbalance between electron supply and demand exists, arising from an imbalance between 
temperature-insensitive photochemical rates and temperature-sensitive biochemical rates. The reversion 
of these adaptations and resumption of the intrinsic quantum yield efficiency and photosynthesis 
requires sustained temperatures above a certain critical threshold (Rogers et al., 2017; Tanja et al., 2003) 
and exhibits a delay with respect to instantaneous air temperatures (Mäkelä et al., 2004; Pelkonen and 
Hari, 1980). Approaches accounting for a delayed resumption of photosynthesis after cold periods offer 
scope for further improvement of the P-model and may be included in global vegetation and Earth 
system models where this effect is currently not accounted for (Rogers et al., 2017; Tanja et al., 2003). 

We disagree that the apparent necessity to account for a water and temperature stress factor is 
indicative of the ”optimality hypothesis [being] incorrect”. Rather, it is incomplete (noting that every 
model is necessarily incomplete). We write on l. 521: 

The bias reduction associated with using an empirical soil  moisture  stress  function  hints  at  missing 
factors  in  the  theoretical  approach  which  rests  on  an  assumed  constancy  of the unit costs of 
transpiration (a in Eq. 3). 

It might be a viable approach to include a cost associated with oxidative stress, governed by the 
imbalance between the photochemical and biochemical rates (Oquist and Huner, 2003). However, such 
an approach would have to account for the large diurnal variations in light availability. Α reasonable 
alternative is to account for low-temperature stress by describing the phenomenon, as we do, rather 
than predicting its emergence based on photochemical and biochemical processes. We note that there 
are several other parameters and relationships in the photosynthesis model, including the 
light-response curve, that are empirical. The strength of our approach lies in our demonstration that the 
model can be effectively "scaled up" by taking account of acclimatory responses of model parameters.  

As regards the soil moisture parameterization, this could (conceptually) be replaced by an extension of 
the optimality framework to include the additional costs of extracting water from dry soils. However, 
this will be a substantial project in itself, requiring (among other things) an optimality-based estimate 
of root-zone size. For the present, therefore, we find it useful to work with and present a hybrid model 
in which the response to low soil moisture is not optimality-based.  

 

6) Current model evaluation is not enough. I strongly recommend testing the revised model at 
global scale across MODIS years. For example, Keenan et al (2017) showed recent increase of 
global GPP via P-model. Does the revised P-model still support this finding? Or does new modules 
of soil moisture and temperature reduce global GPP? I request this as P-model was already 
published so the authors may move many lines about original P model description to Appendix. 
The novelty of this model must be evaluation across diverse scales.  
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As discussed above in our response to the referee’s point 2), we have added results and analyses of 
global P-model simulations. The version of the P-model used in  Keenan et al. (2017) is different from 
the one applied here as described on lines 66-69. It did not include the Jmax limitation introduced by 
(Wang et al., 2017). We avoid presenting an evaluation of trends over the MODIS period (after February 
2000) since we consider it too short for robust analyses. We have added text in the Discussion section 
to clarify these points. 

Due to the short period for which forcing data and outputs from comparable models are available, we did 
not analyse temporal trends in global GPP here. Analyses not shown here indicate that the introduction 
of the Jmax cost factor (not included, e.g., in (Keenan et al., 2016)) increases the sensitivity of modelled 
GPP to CO2. Further evaluation of model behaviour against data from CO2 manipulation experiments will 
be necessary before applying the model to simulate CO2-related trends. 

 

Only a few specific comments follow as the manuscript is so well written. - L118: What was beta 
in Wang et al (2017a)? 

We added the values used by Wang et al. (2017) and in the present study: 

The unit cost ratio β has been estimated by Wang et al. (2017a) to 240 based on global leaf δ13C 
data and a simplified version of the P-model (assumingΓ∗= 0 and neglecting the Jmax limitation). 
Here, we re-estimated β to 146 based on the full version of the model using the same global leaf 
δ13C dataset. 

 

 - L370: MODI -> MODIS 

Done. 
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Response to Anonymous Referee #2 

We sincerely thank the reviewer for her/his effort and the very useful comments. We have revised our 
manuscript P-model v1.0: An optimality-based light use efficiency model for simulating ecosystem gross 
primary production and have addressed all points raised by the reviewer. 

Below, we provide a point-by-point response to all the comments. Text by the reviewer is in blue and 
indented. Our response is in black. New text is green, italic. Existing (unchanged) manuscript text is black 
italic.  

Stocker et al present, calibrate, and evaluate a GPP model that is built off a previously published 
P-model. From the way the manuscript is structured it seems that the new additions to the P-model 
are the temperature dependence and the soil moisture stress (but this isn’t clear from the abstract or 
the introduction). The authors should be commended for developing the model into an R package, 
using the FLUXNET2015 data in a way that recognizes the GPP is modeled product with considerable 
uncertainty (i.e., by analyzing multiple partitioning methods), and for providing throughout 
background for the modeling framework. Overall, the manuscript is well-written. 

We greatly appreciate this positive assessment and the recognition of the value of our open-access 
model implementation. In order to clarify the new additions and relation of the P-model to earlier 
publications early on, we added the following sentence to the abstract: 

[...] The model builds on the theory developed in Prentice et al. (2014) and Wang et al. (2017a) and is 
extended to include low temperature effects on the intrinsic quantum yield and an empirical soil moisture 
stress factor. [...] 

This is clarified further by the text in the introduction that we have added in response to referee 1: 

The purpose of this paper is [...] (iv) to introduce a robust and pragmatic solution to resolving model bias 
under dry and cold conditions.  

 

My recommendations for improvements are: 

Be clearer about what is new to this version of the P-model. Based on the components of the model 
that are in the introduction vs. methods, I would assume that the temperature dependence and the 
soil moisture stress are the new components. 

This is addressed by added text in the abstract and introduction as described above. 

 

Since the modeling framework depends on the SPLASH model, more detail is needed about that 
model. How many parameters does it require and how where the SPLASH parameters determined? 
Any parameters that it requires should be added to Table A6. 

 



The SPLASH model was described in detail and all parameters defined in (Davis et al., 2017). The only 
difference to their model version is that we include a soil texture-dependent water holding capacity 
instead of a globally uniform value. This is now stated more explicitly. Modified text reads: 

Soil moisture (θ), AET, and PET are simulated using the SPLASH model (Davis et al., 2017), which treats soil 
water storage as a single bucket and calculates potential evapotranspiration based on Priestley and Taylor 
(1972). The only difference to the model version described by (Davis et al., 2017) is that we account here 
for a variable water holding capacity calculated based on soil texture and depth data from SoilGrids (Hengl 
et al., 2014). A detailed description of the applied empirical functions for calculating plant-available water 
holding capacity from texture data is given in Appendix D. 

Appendix D then provides a detailed description of how we derived water holding capacity values around 
the FLUXNET sites. We decided not to include further descriptions of the SPLASH model here in order to 
save space and to focus on what is implemented also in the rpmodel R package. 

 

It seems that the evaluation set included the calibration set plus additional sites. A more robust 
evaluation would use an independent set of sites for evaluation. I recommend presenting results for 
the set of independent sites to help understand how the model works out-of-sample. 

We thank the reviewer for this important point. Due to the small number of parameters that we calibrated 
simultaneously (1 for ORG and BRC, 3 for FULL setup) and due to the large amount of data from a wide 
variety of sites, the risk of over-fitting is small. This is confirmed by the additional calibration and 
evaluation we performed. Results show that the calibrated parameter values vary within around 1% 
across the entire set of out-of-bag calibrations. To clarify this point, we added content as follows. 

We added text in the methods description in Section 3.3 Model calibration: 

To test the robustness of the calibration and evaluation metrics, we additionally performed out-of-sample 
calibrations for the FULL setup where the training set included data from all but one site. The test dataset, 
used to calculate R2 and RMSE, contained only data from that single left-out site. 

We added text and a new figure in a new results sub-section: 

4.1 Calibration results 

The calibration of model parameters, done with data from all calibration sites simultaneously, yielded 
values that closely matched the means across parameter values derived from the out-of-sample 
calibrations (Fig. 2). This confirms the robustness of the calibration and a negligible degree of overfitting. 
Similarly for the evaluation metrics, the R2 and RMSE values reported from evaluations against data from 
all evaluation sites pooled yielded values that closely match the means across the out-of-sample evaluation 
metrics (each calculated with data from the single left-out site). This analysis also shows that the 
distribution of the evaluation metrics is skewed, with evaluations against a few sites indicating particularly 
relatively performance (R2 below 0.5 for ZM-Mon, AR-Vir, and FR-Pue), while the most frequent values 
indicate very good model performance (evaluations at 21 sites giving R2 values of above 0.8). Because the 
out-of-bag calibrations are computationally very demanding, we performed this analysis only for one setup 
(FULL) and below report evaluation metrics done with pooled data from all evaluation sites.  
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Figure 2.Out-of-sample calibration and evaluation results. (a-c) Distribution of parameter values from 
calibrations where data from one site was left out for each individual calibration. Parameterŝaθand̂bθare 
unitless. (d, e) Distribution of evaluation metrics calculated on data from the left-out site based on 
simulations with model parameters calibrated on all other sites’ data. Solid red vertical lines represent the 
parameter values calibrated with data from all calibration pooled. These are the values reported in Tabs. 3 
and 4. Dashed red lines represent the mean across values from out-of-bag calibrations and evaluations 

 

The variable Iabs is not defined in the text (only in equations) 

We added on line 118: 

Iabs is the amount of absorbed light and φ0 is the intrinsic quantum yield efficiency. 

 

I recommend having the main text or the SI present the full model used predict GPP in its entirety. 
While I can piece it together across equations, a combined equation would help me understand the 
model in its complete form 

Unfortunately, to some degree, piecing it together is inevitable in view of the monstrous algebraic 
expression this would yield. To facilitate this point, though, we added a summary of the theory for GPP in 
Appendix F2: 

To sum up, the P-model calculates GPP as 



 

where 

 

and  

 

Iabs is the absorbed light (taken as fAPAR x PPFD, mol m-2), φ0 is the temperature-dependent intrinsic 
quantum yield, β(θ) is the soil moisture stress factor, and MC is the molar mass of carbon (g mol-1). 

 

The * in Table 1 is not defined (I think it is the footnote). 

We added the asterisk in the footnote. 

 

More detail is needed about the comparison to other GPP products described in the first paragraph of 
the discussion. Were they using the same evaluation dataset? Where their evaluations on 
out-of-sample sites or the same sites used in calibration? Also, it seems the P-model is only 
marginally better than the VPM and slightly worse that the annual MODIS GPP. Please provide more 
information and context for interpreting these comparisons. 

We write on line 457: 

Unfortunately, we cannot present a direct comparison between these models, based on data from identical 
dates and sites. A targeted model intercomparison may address this. 

In other words, we cannot state why the P-model performs better or worse than other comparable 
models. (Stocker et al., 2019) found that all the remote sensing-based models they investigated (most of 
which are referred to here as well), exhibited a systematic bias under drought conditions. The evaluation 
we provide here (Fig. 6) indicates that the P-model in its FULL setup largely resolves this issue. We further 
show that this resolution also leads to better predictions across all other scales investigated here (spatial, 
annual, seasonal, daily anomalies, see Tabs. 3 and 4). Due to missing published information on the other 
models’ performance across all scales, we cannot provide a comparison at this level of detail. 
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