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Abstract.	 Climate simulations require very complex numerical models. Unfortunately, they 11	

typically present biases due to parameterizations, choices of numerical schemes, and the 12	

complexity of many physical processes. Beyond improving the models themselves, a way to 13	

improve the performance of the modeled climate is to consider multi-model combinations. In the 14	

present study, we propose a method to select the models that yield a multi-model ensemble 15	

combination that efficiently reproduces target features of the observations. We used a neural 16	

classifier (Self-Organizing Maps), associated with a multi-correspondence analysis to identify the 17	

models that  best represent some target climate property. We can thereby determine an efficient 18	

multi-model ensemble. We illustrated the methodology with results focusing on the mean sea 19	

surface temperature seasonal cycle on the Senegalo-Mauritanian region. We compared 47 CMIP5 20	

model configurations to available observations. The method allows us to identify a subset of 21	

CMIP5 models able to form an efficient multi-model ensemble. The future decrease of the 22	

Senegalo-Mauritanian upwelling proposed in recent studies is then revisited using this multi-23	

model selection.  24	

 25	

 26	

1- Introduction 27	
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In this study, we present a methodology aimed at selecting a coherent sub-ensemble of the 28	

models involved in the Climate Model Intercomparison Project, Phase 5 (CMIP5) that best 29	

represents specific observed characteristics. While the future evolution of the global climate is 30	

subject to great changes and great uncertainty (Collins et al., 2014), the most common way to 31	

predict the evolution of the climate is to run climate models that include fully coupled 32	

atmosphere-ocean-cryosphere-biosphere modules. Due to their low resolution, and the fact that 33	

they use different parameterizations of the physics, numerical schemes and sometimes include or 34	

neglect different processes, these models have some marked biases in specific regions. They also 35	

have different responses to an imposed increase of atmospheric greenhouse gases, which partly 36	

explain their mean climate biases. This variety of models allows us to assess the uncertainty of 37	

present climate representation when compared to observations and, by studying their dispersion, 38	

to roughly estimate the uncertainty of the response to future climate change.  39	

For several generations of climate models, it has been shown that for a large variety of 40	

variables the multi-model average generally agrees better with observations of present day 41	

climate than any single model (Lambert and Boer, 2001; Phillips and Gleckler, 2006; Reichler 42	

and Kim, 2008; Santer et al., 2009; Tebaldi and Knutti, 2007). Several studies also suggest that 43	

the most reliable climate projection is given by a multi-model averaging (Knutti et al., 2010), 44	

rather than, for example, averaging different projections performed with a single model run with 45	

different initial conditions. This result relies on the assumption that if choices of 46	

parameterizations or specific numerical schemes are made independently for each model, then the 47	

errors might at least partly compensate, resulting in a multi-model average that is more skillful 48	

than its constitutive terms(Tebaldi and Knutti, 2007). The significant gain in accuracy can be 49	

explained by the fact that the errors specific to each model compensate each other in the 50	

averaging procedure used to build the multi-model mean. However, the number of GCMs 51	

available for climate change projections is increasing rapidly. For example, the CMIP5 archive 52	

(Taylor et al., 2012), which was used for the fifth IPCC Assessment Report (Stocker et al., 2013), 53	

contains outputs from 61 different GCMs and 70 contributions are expected for CMIP6. It thus 54	

becomes possible - and probably needed - to select and/or weight the models constituting such an 55	

average. Recent work has suggested that weighting the multi-model averaging procedure could 56	

help to reduce the spread and thus uncertainty of future projections. Such an approach has been 57	

applied extensively to the issue of climate sensitivity (Fasullo and Trenberth, 2012; Gordon et al., 58	
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2013; Huber and Knutti, 2012; Tan et al., 2016). Valuable improvement of model selection has 59	

also been found in studies of the carbon cycle (Cox et al., 2013; Wenzel et al., 2014), the 60	

hydrological cycle (Deangelis et al., 2015; O’Gorman et al., 2012), the Antarctic atmospheric 61	

circulation (Son et al., 2010; Wenzel et al., 2016), extratropical atmospheric rivers (Gao et al., 62	

2016), atmospheric and ocean heat transports (Loeb et al., 2015), European temperature 63	

variability (Stegehuis et al., 2013) and temperature extremes (Borodina et al., 2017). 64	

The present paper is dedicated to the elaboration of an objective method to select models 65	

according to their performance for a specific phenomenon. Here, we use the Senegalo-66	

Mauritanian upwelling area as a case study to construct an efficient climate multi-model 67	

combination together with its related confidence interval in order to anticipate the effect of 68	

climate warming by the end of the century in this region.  The Senegalo-Mauritanian upwelling 69	

has been the focus of increasing attention over recent years. The very productive waters 70	

associated with the upwelling have a strong economic impact on fisheries in Senegal and 71	

Mauritania, and a crucial societal importance for local populations. It is therefore important to 72	

predict the evolution of the dynamics and the physics of the upwelling in the forthcoming 73	

decades, due to the effect of climate warming and its consequences on biological productivity, 74	

which may impact the fisheries. The Senegalo-Mauritanian upwelling lies at the southern end of 75	

the Canarian upwelling system, which has itself a relatively weak seasonality and is maximum in 76	

summer. On the contrary, the Senegalo-Mauritanian upwelling presents on the contrary a well-77	

marked seasonal variability. Its intensity is stronger in boreal winter and it disappears in summer 78	

with the northward progression of the ITCZ.  Due to the enrichment of the sea surface layers with 79	

nutrients upwelled from deep layers, it drives an important phytoplankton bloom that is observed 80	

on ocean color satellite images (Demarcq and Faure, 2000; Farikou et al., 2015). The maximum 81	

intensity of this bloom occurs in March-April (Farikou et al., 2015; Faye et al., 2015; Ndoye et 82	

al., 2014). Its important seasonal cycle is also associated with mesoscale patterns whose 83	

variability has been recently studied by several oceanographic campaigns (Capet et al., 2017; 84	

Faye et al., 2015; Ndoye et al., 2014) and theoretical work (Sirven et al., 2019). Sylla et al., 2019 85	

have recently shown that the intensity of the SST seasonal cycle along the coast of Senegal and 86	

Mauritania was a good marker of the upwelling in this specific region in climate models. They 87	

have used this index together with other more dynamical indices to predict that the upwelling will 88	

decrease by about 10% of its present-day amplitude by the end of the 21st century. Nevertheless, 89	
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their study also highlighted a large uncertainty due to model biases in this region. The method we 90	

have developed selects a subset of the CMIP5 ensemble based on the capability of the climate 91	

models to reproduce the SST seasonal cycle observed during the historical period in key sub-92	

regions. These sub-regions are identified by a neural classifier. The method leads us to rank the 93	

different models and to determine an efficient multi-model combination for the analysis of the 94	

Senegalo-Mauritanian upwelling and projections of its behavior in global warming conditions. 95	

The paper is structured as follows: section 2 presents the different climate models and the 96	

climatological observations used in the study, together with the region of interest. The 97	

classification method is described in section 3 and applied to the extended region. Section 4 98	

presents a qualitative analysis able to group the different climate models in clusters presenting 99	

similar performances. Section 5 investigates the results of the method applied over a smaller area, 100	

more focused over the upwelling region. Section 6 uses the two multi-model clusters defined in 101	

sections 4 and 5 respectively to tentatively predict the representation of the Senegalo-Mauritanian 102	

upwelling changes under global warming. Conclusions are given in section 7.  103	

 104	

2- Climate Models and region of interest 105	

2.1 Data 106	

This study is based on the CMIP5 (Coupled Model Inter-comparison Project Phase 5) database.  107	

We use the output of 47 simulations listed in Table 1. The models are evaluated over the 108	

historical period defined as [1975-2005] by comparing their output to observations. The mean 109	

seasonal cycle of SST anomalies over this period is constructed for each model grid point as the 110	

difference between the monthly mean temperature and the mean annual temperature. When 111	

several members of historical simulations are available for a specific model configuration, they 112	

are averaged together. However, this has practically no impact on the estimated mean seasonal 113	

cycle (not shown). The mean climatological cycle of the CMIP5 models under study is evaluated 114	

against the Extended Reconstructed Sea Surface Temperature data set (ERSST- v3b, Smith et al., 115	

2008), averaged over the same time period. This data set was produced by NOAA at 2° spatial 116	

resolution. It is derived from the International Comprehensive Ocean–Atmosphere Dataset with 117	

missing data filled in by statistical methods. This dataset is used as the target to be reproduced 118	
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and is denoted "observation field" hereafter.  In order to deal with data at the same resolution, all 119	

model outputs as well the observation fields were regridded on a 1-degree resolution regular grid 120	

prior to analysis. A previous study (Sylla et al., 2019) has compared the performance of this 121	

dataset as compared to the gridded SST data set from the Met Office Hadley Centre HadISST 122	

(Rayner, 2003). The main results regarding the future of the upwelling were shown to be 123	

independent of the validation dataset primarily because the models’ biases and the inter-model 124	

differences were much larger than the differences between the validation datasets. The 125	

methodological and oceanographic results presented in this study are thus expected to depend 126	

only very weakly on the target dataset.  127	

In section 6, the model selections are used to characterize the response of the upwelling to 128	

climate change. This response is characterized in terms of SST anomalies as well as wind 129	

intensity. For wind intensity, the simulated wind stress is compared to the TropFlux reanalysis. 130	

This data set combines the ERA-Interim reanalysis for turbulent and long-wave fluxes, and 131	

ISCCP (International Satellite Cloud Climatology Project) surface radiation data for shortwave 132	

fluxes. This wind stress product is described and evaluated in (Praveen Kumar et al., 2011). 133	

 134	

2.2 The Senegalo-Mauritanian upwelling region 135	

In this study, we evaluate the ability of the different climate models to represent the Senegalo-136	

Mauritanian upwelling. Following (Sylla et al., 2019), we consider the intensity of the seasonal 137	

cycle of the SST anomaly as a marker of the upwelling variability and localization. This variable 138	

is shown in Fig. 1 for the eastern tropical Atlantic. This figure confirms that the Senegalo-139	

Mauritanian coast stands out with a very strong seasonal SST cycle as compared to similar 140	

latitudes in the open ocean. This results from the cold SST generated by the strong winds 141	

occurring in winter. The Senegalo-Mauritanian upwelling is confined in a small region of the 142	

order of 100km off the western coast of Africa. It is part of a complex and fine-scale regional 143	

circulation system recently revisited by Kounta et al., 2018. Since the grid mesh of most of the 144	

climate models is of the order of 1° (~100km), this regional circulation is poorly resolved, which 145	

favors a relatively large-scale analysis of the upwelling representation in climate models. The 146	

Senegalo-Mauritanian upwelling is also embedded in a large scale oceanic circulation pattern, 147	

encompassing the North Equatorial Counter Current flowing eastward in the southern part of the 148	
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region and the return branch of the subtropical gyre in the northwestern part. Therefore, we firstly 149	

study the representation of the SST seasonal cycle intensity in the different climate models over a 150	

relatively large region that includes part of the Canary current in the north and the Guinea dome 151	

in the south. The so-called “extended region” is defined by a rectangular box extending from 152	

9°W to 45°W and from 5°N to 30°N (Fig. 1). In a second step, we will proceed to the same 153	

analysis and classification of the models within a much more focused (hereafter zoomed) region, 154	

namely [16°W-28°W and 10°N-23°N] (Fig. 1). All the results below will be first shown for the 155	

extended region. Comparison with the focused region will be done in section 4.  156	

3 - Comparing observations and models: a methodological approach 157	

The methodology we have developed is based on the ability of the climate models to adequately 158	

reproduce the climatology of the seasonal cycle of the SST anomalies as observed during the last 159	

three decades in key sub-regions of the studied domain. These key sub-regions are determined 160	

from the similarity of their physical and statistical characteristics through an unsupervised 161	

classification, which clusters pixels having similar observed seasonal SST climatology. We chose 162	

to deal with a neural classifier, the so-called self-organizing map (SOM hereafter) developed by 163	

Kohonen, 2013 followed by a Hierarchical Ascendant Clustering (HAC, Jain and Dubes, 1998). 164	

This method leads to a dynamically interpretable classification. The SOM determines a vector 165	

quantization of the dataset, which compresses the initial dataset into a relatively small number of 166	

reference vectors. Doing so allows us to take the non-linearities of the dataset into account and to 167	

filter the noise, which can make the classification spurious. This reduced number of dataset 168	

vectors enables an HAC to determine the highly non-linear borders between the different SOM 169	

clusters. This procedure has been used with success in several studies (Farikou et al., 2015; Jouini 170	

et al., 2016; Niang et al., 2003, 2006; Sawadogo et al., 2009). Note that the use of an HAC 171	

directly on the initial dataset would not be efficient in the present study because the number of 172	

degrees of freedom (here the grid points of the initial domain) is too large for this method to work 173	

efficiently. In the present section, we describe the methodology we developed to score the 174	

different climate models with respect to the observations. In section 4, we will tentatively group 175	

the different climate models into blocks having the same behavior by using a Multiple 176	

Correspondence Analysis (MCA).  177	

 178	
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 3.1 The unsupervised classification method 179	

The first step of the methodology was to decompose the selected region in different classes (the 180	

key sub-regions mentioned above) by using a neural network classifier, the so-called SOM 181	

(Kohonen, 2013). This algorithm constitutes a powerful nonlinear unsupervised classification 182	

method. It has been commonly used to solve environmental problems (Hewitson and Crane, 183	

2002; Jouini et al., 2013, 2016; Liu et al., 2006; Reusch et al., 2007; Richardson et al., 2003). The 184	

SOM aims at clustering vectors (here the 12 SST seasonal anomalies) of a multidimensional 185	

database (D) (here the grid points of the studied domain) into classes represented by a fixed 186	

network of neurons (the SOM map).  The self-organizing map (SOM-map) is defined as an 187	

undirected graph, usually a 2D rectangular grid. This graphical structure is used to define a 188	

discrete distance (denoted by 𝛿) between the neurons of the map and thereby identify the shortest 189	

path between two neurons. Moreover, SOM enables the partition of D in which each cluster is 190	

associated with a neuron of the map and is represented by a prototype that is a synthetic 191	

multidimensional vector (the referent vector w). Each vector z of D is assigned to the neuron 192	

whose referent w is the closest, in the sense of the Euclidean Norm (EN), and is called the 193	

projection of the vector z on the map. A fundamental property of a SOM is the topological 194	

ordering provided at the end of the clustering phase: two neurons that are close on the map 195	

represent data that are close in the data space. In other words, the neurons are gathered in such a 196	

way that if two vectors of D are projected on two “relatively” close neurons (with respect to 𝛿) on 197	

the map, they are similar and share the same properties. The estimation of the referent vectors w 198	

of a SOM and the topological order is achieved through a minimization process using a learning 199	

data set base, here from the observations.  The cost function to be minimized is of the form:  200	

𝐽!"#! 𝜒,𝑊 = 𝐾!(𝛿 𝑐,𝜒 𝑧! )‖𝑧! − 𝑤!‖!
!∈!"!!"∈!

 

where 𝑐 ∈ 𝑆𝑂𝑀 indices the neurons of the SOM map, 𝜒 is the allocation function that assigns 201	

each element zi of D to its referent vector 𝑤!(!!) and 𝛿(𝑐,𝜒 𝑧! )  is the discrete distance on the 202	

SOM-map between a neuron c and the neuron allocated to observation zi. 𝐾!a kernel function 203	

parameterized by T (where T stands for “temperature” in the scientific literature dedicated to 204	

SOM) that weights the discrete distance on the map and decreases during the minimization 205	
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process. At the end of the learning process, the classification can be visualized onto the SOM-206	

map and interpreted in term of geophysics. 207	

3.2 - Classification of the observations  208	

In the present problem we chose to classify the annual cycles of the SST seasonal anomalies 209	

observed in the Senegalo-Mauritanian upwelling. The study was made on the “extended region” 210	

constituted of 25 x 36 = 900 pixels, but this enlarged region covers a part of the African continent 211	

and 157 pixels are in fact over land. That means that we have truly 743 ocean pixels to deal with. 212	

We consider a time-period of 30 years [1975 to 2005] extracted from the ERSST-V3b database. 213	

For a given grid point and a given year and month, the monthly anomaly is the SST of the pixel 214	

for which we have subtracted the mean of the considered year. The climatological mean of the 215	

anomaly is then computed for each grid point by averaging each climatological month over the 216	

30 years. Thus, the learning data set D is a set of 743 twelve-component vectors z, each 217	

component being the mean monthly anomaly computed as above. We denote “SST seasonal 218	

cycle” the vector z in the following. 219	

We used a SOM-map to summarize the different SST seasonal cycles present in the "extended 220	

region". We found that 120 prototypes (or neurons) can accurately represent the 743 vectors of D.  221	

This reduction (or vector quantization) is made by using a rectangular SOM-map of 30 x 4 222	

neurons. 223	

We then reduced the number of neurons in order to facilitate their interpretation in terms of 224	

geophysical processes. For this, we applied a HAC using the Ward dissimilarity (Jain and Dubes, 225	

1988). We grouped the 120 neurons of the SOM into a hierarchy that can contain between 1 and 226	

120 clusters. Then the different classifications proposed by the HAC were applied to the 227	

geographical region: each SST seasonal cycle of each grid point of the region is assigned to a 228	

neuron and consequently to a cluster (assignment process), thereby defining the so-called region-229	

clusters. The problem is then to choose a number of clusters that adequately synthesizes the 230	

geophysical phenomena over the region. This was done by looking at the different possible 231	

classifications and choosing one representing the major characteristics of the upwelling region.  232	

In Fig. 2a, we observe that when we partition the SOM in 7 clusters, the associated 7 region-233	

clusters are constituted of contiguous pixels in the geographic map, and that two clusters (6, 7) 234	

are within the upwelling region and present a well-marked seasonal cycle.  For each region-235	



	9	
	

cluster, we estimated the monthly mean of the SST seasonal cycle and the associated spread 236	

captured by the neurons constituting this region-cluster.  237	

The typical SST climatological cycles for each region-cluster are presented in Fig. 2b 238	

together with their related error bars. We note that the region-clusters are well identified, their 239	

typical climatological annual cycles of SST being well separated. Furthermore, the 7 region-240	

clusters are spatially coherent and have a definite geophysical significance.  241	

For the extended region under study, 7 therefore appears to be an adequate cluster 242	

number, since this number balances a clear partition of the clusters on the HAC decision tree with 243	

a clear physical significance to each region-cluster. The Senegalo-Mauritanian coastal upwelling 244	

is associated with clusters 7 and 6. Cluster 2 corresponds to deep tropical waters associated with 245	

the equatorial Countercurrent. Cluster 1 corresponds to surface waters of the Gulf of Guinea. 246	

Cluster 3 corresponds to the offshore tropical Atlantic, and cluster 5 has extratropical 247	

characteristics. Cluster 4 is transition between 3 and 5. As expected, the equatorial regions 248	

(clusters 1 and 2) have a very weak seasonal cycle, which increases towards the extratropics 249	

(clusters 3 to 5). The upwelling regions (clusters 6 and 7) are characterized by an exceptionally 250	

strong seasonal variability.  251	

 252	

3.3 – Classification of the climate models on the extended upwelling region  253	

The aim is now to find the model(s) that best fit the “observation field”. A heuristic 254	

manner is to compare the pattern of the different region-clusters of the CMIP5 models with 255	

respect to those of the “observation field” through a sight evaluating process. This kind of 256	

approach has been proposed in Sylla et al., 2019, and we indeed immediately see that some 257	

models better fit the “observation field” than others. Nonetheless, this method remains very 258	

subjective.  259	

In the following, we present a more objective approach. We use the previous 260	

classification to objectively estimate how each CMIP5 model fits the “observation field” and its 261	

seven region-clusters. For this, we projected the SST annual cycle of each CMIP5 model grid 262	

point of the extended region onto the SOM learned with the observations (section 3.2) using the 263	

assignment procedure described in this section. Each grid point thus corresponds to a cluster of 264	
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the SOM and is represented on the geographical map by its corresponding color.  Doing so, we 265	

can represent each CMIP5 model by the geographical pattern of the 7 clusters partitioning the 266	

SST seasonal cycle of its grid points. The geographical maps representing the 47 models and 267	

their associated clusters are plotted in Fig. 3. This graphical visualization is easier to compare 268	

than the original characteristics (amplitude and phase) of the annual cycle at each grid point of a 269	

model since each grid point can only take one discrete value among seven. This representation 270	

immediately allows identification of the model biases and the models that best reproduce the 271	

cluster-regions identified in the observations. A huge amount of information could in principle be 272	

extracted from these maps, both from individual modelling groups, to understand the 273	

representation of this region by the models and the origins of possible biases, and from experts of 274	

the area, to understand the difficulties of the climate models in representing the SST seasonal 275	

cycle in this region.  276	

For a more quantitative assessment, we counted the number of grid points of a region-277	

cluster for a given CMIP5 model matching the same region-cluster of the “observation field”. We 278	

then computed the ratio between that matching number and the number of pixels of the region-279	

cluster of the considered model. That number is noted in the color-bar for each region-cluster in 280	

Fig. 3. We denote Rmi the ratio for the region-cluster i and the model m, where i = 1, …, 7 is the 281	

number of the region-cluster and m = 1, …, 47 is the number of the model (see table 1). We note 282	

that Rmi ≤ 1.  Doing so, each model m is represented by a 7-dimensional vector Rm, each 283	

component being the ratio of a region-cluster.  We estimated the total skill of a model by 284	

averaging the 7 ratios. Note that this procedure gives the same weight to each region-cluster 285	

whatever its number of grid points and its proximity with the upwelling region. In the following, 286	

the skill is presented as a percentage: the higher the skill, the better the fit. In Fig. 3, the 47 287	

CMIP5 models are ranked by their total skill, which is indicated above each panel beside the 288	

model name. The model skills are very diverse, ranging from 79% to 28%. This figure also 289	

shows that the models presenting the best total skill are also those representing thoroughly the 290	

upwelling region. Some models represent the large-scale structure in the eastern tropical Atlantic 291	

(region-clusters 3, 4, 5) very well but not the upwelling (33-GISS-E2-R and 34-GISS-E2-R-CC 292	

for example). Others represent pretty well the upwelling region-clusters (region-clusters 6 and 7), 293	

but not the large-scale structures of the SST seasonality (13-CSIRO-Mk-3-6-0, 6-CMCC-CESM 294	

for example). None of these models is ranked among the best models, with a score greater than 295	
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60%. As indicated above, this representation gives a very synthetic view of the structure of the 296	

seasonality of the SST cycle in each of the models, potentially a very useful guide for climate 297	

modelers to identify rapidly major biases. 298	

 299	

4  – Qualitative  analysis of the climate models 300	

In order to further progress in the selection of the models, the 47 climate models and the 301	

observation field were then analyzed by using a Multiple Correspondence Analysis (MCA in the 302	

following). MCA is a multivariate statistical technique that is conceptually similar to principal 303	

component analysis (PCA), but applies to categorical rather than continuous data. Similarly as 304	

PCA, it provides a way of displaying a set of data in a two-dimensional graphical form.  305	

In the following, we apply a MCA analysis to the (47,7) matrix R = [Rmi] whose 306	

elements represent the skills of the clusters of the models shown in front of the color bars in Fig. 307	

3:  the rows m represent the 47 different models, the columns i the 7 region-clusters. The MCA, 308	

as the PCA, projects the initial matrix on a new basis in such a way that the new axes are the 309	

matrix eigenvectors (PC), the inertia of each axis being the corresponding eigenvalues. 310	

According to the theory, the MCA matrix analysis of R gives i-1 = 6 independent PCs. Each 311	

model is thus now associated with a 6-dimensional vector on which it has a specific weight. The 312	

MCA uses for this analysis the χ2 distance. In figure 4, we present the projection of the models 313	

and the “region clusters” in the plane formed by the two first axes (x=PC1 and y= PC2) of the 314	

MCA. These two axes represent 70 % of the total inertia. Each model is represented by a small 315	

circle and each region-cluster by a purple square. We also projected the observation field (green 316	

diamond) on that plane. To have a more precise view of the topology, it would be necessary to 317	

consider the projection on the 5 other PCs, which represent 30% of the inertia.  318	

In the (PC1, PC2) plane, the shorter the distance between two models, the more similar 319	

the distribution of their region-cluster skills. Proximity between a model and a region-cluster 320	

leads us to affirm that this region-cluster is well represented by that model. Clearly, some models 321	

adequately represent the southern part of the extended region (region-clusters 1, 2 or 3), where 322	

the SST seasonal cycle is weak, and are very distant from the upwelling regions (region-cluster 6 323	
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and region-cluster 7) whose large SST cycle is poorly reproduced. In this group of models, one 324	

recognizes the model 16-IPSL-CM5A-MR, at the extreme bottom of Fig. 4, close to region-325	

clusters 4 and 5, consistently with Fig. 3. At the other end of this group of models, the model 23-326	

HadCM3 for example is located very close to the region-cluster 1. Fig. 3 indeed shows that most 327	

of its grid points over the region of interest have a seasonal cycle resembling the one found in the 328	

offshore tropical ocean. Another group of models is located in the center of this plan, thus at an 329	

optimal distance of each of the observed regions-clusters, and not far from the overall position of 330	

the observations (diamond). We recognize in this group of models those that have a high skill in 331	

Fig. 3. The positioning of the observations (green diamond in Fig. 4) with respect to the models 332	

indeed allows selecting those that best represent the observations field. The representation given 333	

in Fig. 4 allows understanding the drawback of the different models with respect to the 7 Modes 334	

of SST-cycles. 	335	

  As indicated in the introduction, the main objective of the methodology is to select an 336	

ensemble of models that represents at best the upwelling behavior with respect to the 337	

observations and to use this ensemble to predict the impact of climate change in the Senegalo-338	

Mauritanian upwelling with some confidence. The problem is now to determine a subset of 339	

models which has a better skill than Model-All, in other words minimize the distance to the 340	

observations. As the number of models is small enough, we chose to cluster them by an HAC 341	

according to their projections onto the six axes provided by the MCA, and select the optimal 342	

jump in the hierarchical tree (Jain and Dubes, 1988). We recall that the HAC (hierarchical 343	

ascending clustering) is a bottom-up algorithm for dataset clustering. The key operation in 344	

hierarchical bottom-up clustering is to repeatedly combine the two nearest (according to a certain 345	

distance) clusters into a larger cluster. The HAC starts from individuals and combines them 346	

according to their similarity (with respect to the chosen distance) to obtain new clusters. The 347	

process is repeated up to get one cluster only (the full dataset). This algorithm is visualized 348	

through a tree-like diagram, the so-called connection tree or dendrogram: the branches of the 349	

connection tree  represent the connections between the clusters (Fig. 5). From Fig. 5, we obtain 350	

four homogeneous groups which are well separated (group 1, 2, 3, 4). They are plotted with 351	

different colors in Fig. 4. We denote Model-group 1, Model-group 2, Model-group 3, Model-352	

group 4 these multi-model ensembles hereafter. Note that Fig. 4 shows the projection of the 353	

individual models on the first two axes of the MCA. The fact that only two axes are shown here 354	
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can introduce some bias in the visualization and this figure must be considered with some 355	

caution. 356	

Through MCA+HAC, we thus grouped the models into clusters, using the χ2 distance, 357	

according to their proximity to the observations and their internal similarity. For each group, we 358	

computed a multi-model average whose outputs are the mean of the outputs of its different 359	

members and we analyzed it according to the same procedure (projection of the SST-seasonal 360	

cycle and assignment to a region-cluster) used for each individual model. In addition, we 361	

introduced the full multi-model average (Model-All in the following), which is the multi-model 362	

ensemble, which averages the 47 CMIP5 model outputs. Model-All was also projected in the 363	

MCA plane and it is represented by a red star in Fig. 4. Comparison of the four model-groups 364	

with Model-All and the observations are presented in Fig. 6. This figure visually highlights the 365	

dominance of Model-group 4 for the reconstruction of the SST seasonal cycles of the different 366	

region-clusters for the extended region. This is particularly clear for region-clusters 6 and 7, 367	

which are those located in the upwelling region (Fig. 2). Model-group 3 seems to group models 368	

characterized by an equatorward shift of the main structures, since the region-cluster 1 of tropical 369	

waters is not reproduced and Region-clusters 4 and 5 of extratropical waters are overestimated. 370	

Fig. 4 indeed shows that this Model-group is very close to the Regions-clusters 4 and 5, which 371	

correspond to the extratropical and the transition geographical regions. Model-group 2 372	

misrepresents the region of the Canary upwelling. Model-group 1 overestimates the SST seasonal 373	

cycle in all the tropical open Atlantic. These two last model-groups overestimate the region-374	

Cluster 1, again consistently with their position in Fig. 4. A detailed physical interpretation of the 375	

Model-groups is nevertheless beyond the scope of this paper. Clearly Model-All represents the 376	

SST seasonal cycle of the off-shore ocean, but it proposes a very poor representation of the 377	

upwelling region.  378	

Two models (models 7 and 25) have a better skill than Model-group 4 and Model-All. 379	

These two models are very close to the observations on the first two axes of the MCA (Fig 4). It 380	

is easily seen that Model-group 4 and the projection of Model-All on this plane is farther than 381	

that of model 7 and model 25 from the observation projection. This explains the lower 382	

performance of these two multi-models as compared to models 7 and 25. In the present case, the 383	

method permits to determine the best models (model 7 and model 25) and to outline the best 384	
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multi-model (Model-group 4) whose skill is better than any model with a probability of 95% 385	

(number of models whose skill is smaller than the skill of Model-group 4 with respect to the total 386	

number of models).  Projection of the models on the other planes of the MCA analysis should 387	

confirm this interpretation.  One could then question the use of Model-group 4 rather than model 388	

7 or model 25 individually. Furthermore, we argue that multi-model averages are in general more 389	

robust for climate studies than the use of a single model that can have good performance for a 390	

very specific set of constraints but not for neighboring ones. The following section will partly 391	

justify this point.  392	

 393	

5 - Analysis of the climate models over a zoomed upwelling region  394	

The classification presented above relies largely on the ability of the models to represent 395	

the offshore seasonal cycle of the SST. In the following, we propose to test the classification over 396	

a much more reduced area in order to focus the analysis on the upwelling area. This “zoomed 397	

upwelling region” is shown in Fig. 1.  398	

As for the extended region, we partitioned the observations of the zoomed upwelling 399	

region with a SOM (ZSOM in the following) followed by a HAC. We then applied a new MCA 400	

to regroup the climate models. We did a similar analysis as this performed in section 4. We 401	

obtained four new well separated region-clusters denoted ZRegion-clusters. Fig. 7 shows the four 402	

ZRegion-clusters obtained from ERSSTv3b observations together with their associated mean 403	

SST seasonal cycle. Again, the ZRegion-clusters are spatially coherent. The upwelling area is 404	

now decomposed into three ZRegion-clusters (ZRegion-clusters 2, 3, 4). This new decomposition 405	

thus refines the study performed for the extended region: ZRegion-cluster 1 represents the 406	

offshore ocean, its grid points typically have a SST seasonal cycle amplitude of 4°C, very similar 407	

to Region-cluster 4 in the classification performed over the extended region (Fig. 2). ZRegion-408	

cluster-4 identifies the core of the Senegalo-Mauritanian region, with grid points characterized by 409	

the greatest amplitude of the SST seasonal cycle of the domain, typically 6.5°C. It is interesting 410	

to note that an additional upwelling ZRegion-cluster (ZRegion-cluster 3) appears south of 411	

ZRegion–cluster 4. Indeed, several studies have shown that the Cape Verde peninsula, located 412	

around 15°N, separates the upwelling region into two distinct areas having a different behavior 413	

north and south of this peninsula (Sirven et al., 2019; Sylla et al., 2019). The location of the 414	
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separation between ZRegion-cluster 3 and 4 is determined with some uncertainty due to the 415	

coarse resolution (1°) of the ocean models. ZRegion-cluster 3 is marked by a time shift of the 416	

seasonal cycle: the warmest season seems to occur somewhat one month earlier than in the other 417	

regions as clearly seen in Fig. 7 (left panel, yellow curve in June). Due a classification using a 418	

much larger region, such a characteristic does not appear in the extended area study. The physical 419	

interpretation of the SST seasonal cycle of this ZRegion-cluster is beyond the scope of the 420	

present study, but one can suspect a role of the ITCZ seasonal migration covering these grid 421	

points earlier than further north. Finally, ZRegion-cluster 2 is a transition between the large scale 422	

ocean and the upwelling region.  423	

As for the extended region, we applied a MCA analysis to the (47 x 4) matrix R = [Rmi] 424	

whose elements represent the skills of the four clusters (i) of the 47 models. This MCA was 425	

followed by a HAC leading the definition of five ZModel-groups. The members of each group 426	

are given in appendix. Fig. 8 shows the ZRegion-cluster obtained in the zoomed area by 427	

projecting these five ZModel-groups and Model-All model on the ZSOM and their associated 428	

performances. ZModel-group 1 is the worst performing one: only 25% of the grid cells fall in the 429	

same class as for the observations. The structure of this model-group shows that it is 430	

characterized by an homogeneous amplitude of the seasonal cycle over the whole domain, 431	

suggesting a largely reduced upwelling: only one grid point at the coast has an enhanced SST 432	

seasonal cycle as compared to the large scale tropical ocean. ZModel-group 2 is the best 433	

performing one: 66% of the grid points are assigned to the correct class and the general picture 434	

indeed represents a four-class picture fairly consistent with the observed structure (Fig. 7). 435	

Important biases yet remain. In particular, the ZRegion-clusters 2 and 4 characterizing the 436	

upwelling extend too far offshore. The three other ZModel-groups are intermediate. A relatively 437	

reduced upwelling area, with an underestimated SST seasonal cycle, characterizes ZModel-438	

groups 3 and 4. ZModel-group 5 corresponds to a shift of the upwelling region towards the north. 439	

Model-All also shows a strongly reduced seasonal cycle, with a large number of pixels in the 440	

intermediate ZRegion-cluster 3 and very few in the ZRegion-cluster 4. The ZRegion-cluster 3, 441	

representing the southern part of the Senegalo-Mauritanian upwelling, does not appear in the 442	

pattern of Model-All. 443	
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It is notable that all the models forming ZModel-group 2 are included in Model-group 4. 444	

For a more precise assessment, we can also project the entire Model-group 4, identified as the 445	

best multi-model ensemble over the extended region, on the ZSOM (Fig. 9, right). We notice that 446	

the performance of Model-group 4 remains high on this projection, indicating some robustness of 447	

this multi-model ensemble. Moreover, this ensemble now outperforms the single best model 448	

identified over the extended region (Fig. 9, left panel). This result gives further confidence in the 449	

use of multi-model averages, illustrating that one single model can be very skillful over a specific 450	

region, or for a specific analysis, but multi-model averages are more robust across various 451	

analysis and/or regions. 452	

6 – Impact of climate change on the Senegalo-Mauritanian upwelling 453	

6.1 Representation of the upwelling in the CMIP5 climate models clusters 454	

In this section, we compare the representation of the Senegalo-Mauritanian upwelling system 455	

given by the two best Model-groups identified above (Model-group 4 and ZModel-group 2). For 456	

this evaluation, we use two of the five indices used by (Sylla et al., 2019) to evaluate the full 457	

database, namely the intensity of the SST seasonal cycle and the offshore Ekman transport at the 458	

coast. The former is specific to the seasonal variability of the Senegalo-Mauritanian upwelling 459	

system, and it has been used for the classification. The latter is more general and although it has 460	

recently been shown to partly represent the volume of the upwelled waters (Jacox et al., 2018), it 461	

is extensively used in the scientific literature to characterize upwelling regions (Cropper et al., 462	

2014; Rykaczewski et al., 2015; Wang et al., 2015). Note also that following Sylla et al., 2019, 463	

evaluation is performed on the period [1985-2005]. This period slightly differs from the 464	

classification period but the SST seasonal cycle is not significantly different (not shown). 465	

Fig. 10 compares the amplitude of the SST seasonal cycle as represented in the 466	

observations, Model-All, Model-group 4 and ZModel-group 2 identified above. Consistently with 467	

Fig. 6 and 8, Model-All dramatically underestimates the upwelling signature in terms of SST 468	

seasonal cycle as compared to the observations. Model-group 4 and ZModel-group 2 yield 469	

improved results: the area of enhanced SST seasonal cycle is larger both in latitude and 470	

longitude, with stronger SST amplitude values. This confirms the efficiency of the selection 471	

operated above. Nevertheless, ZModel-group 2 yields a realistic SST amplitude pattern along the 472	

coast but it extends too far offshore. Furthermore, in ZModel-group 2, the subtropical area (in 473	
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green in Fig 10) extends too far towards the south, in particular in the western part of the basin. 474	

The tropical area, characterized by limited amplitude of the seasonal cycle of SST (deep blue in 475	

Fig. 10), is shifted to the south as compared to the observations. In other words, the large scale 476	

thermal - and thus probably dynamical - structure of the region is poorly represented in ZModel-477	

group 2. Finally, Model-group 4 is the least biased one.  478	

The intensity of the wind stress parallel to the coast, inducing offshore Ekman transport 479	

and consequently an Ekman pumping at the coast, is generally considered as the main driver of 480	

the upwelling. We therefore also tested the representation of this driver in the different Model-481	

groups. The idea is to evaluate the impact of the model selection performed above on the 482	

representation of an independent variable by the Model-groups. Fig. 11 shows the latitude-time 483	

evolution of the meridional oceanic wind stress, considering that the coast in the studied region is 484	

oriented approximately meridionally, so that the offshore Ekman transport is mainly zonal. Note 485	

that in Fig. 11, southward winds have positive values so that they correspond to a westward 486	

Ekman transport, favorable to upwelling. Panel (a) shows that the observed meridional wind 487	

stress is, all year long, favorable to the upwelling north of 20°N. At these latitudes, the 488	

meridional wind stress is stronger in summer. Conversely, between 12°N and 20°N, in the 489	

latitude band of the Senegalo-Mauritanian upwelling, the wind blows southward with a very 490	

weak intensity in summer and it even changes direction in the southern part of this latitude band. 491	

It is favorable to the upwelling in winter-spring, which explains why the Senegalo-Mauritanian 492	

upwelling occurs during this season with a maximum of intensity in March-April (Capet et al., 493	

2017; Farikou et al., 2015).  The main bias of Model-All (Fig. 11b) is due to the fact that the 494	

wind stress never reverses between 12°N and 20°N. It weakens in the southern part of the 495	

Senegalo-Mauritanian latitude band, i.e. south of the Cape Verde peninsula (15°N), but does not 496	

become negative. North of the Cape Verde peninsula, it also blows from the north in summer, so 497	

that the Senegalo-Mauritanian upwelling lacks seasonality. This bias is corrected in Model-group 498	

4 and ZModel-group 2 (Fig. 11, panels c and d) that are, in this aspect, more realistic than Model-499	

All. Model-group 4 shows a slight extension of the time and latitude range where the oceanic 500	

wind stress reverses sign. This constitutes an improvement. The southward wind is nevertheless 501	

too strong in winter on the [12°N-20°N] latitude band as well as further south from December to 502	

March. These two remaining biases are further reduced in ZModel-group 2. This latter model 503	

yields the most realistic seasonal cycle of meridional oceanic wind stress on the latitude band 504	
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under study. This is consistent with a very localized model selection, as the wind index is itself 505	

localized along the coast. 506	

To conclude, Model-group 4 and ZModel-group 2 perform in general better than Model-All in 507	

reproducing the major, characteristic features of the Senegalo-Mauritanian upwelling. This result 508	

confirms the relevance of the multi-model selection we have presented above. Applying the 509	

methodology over a relatively large region allows better constraining the spatial extent and 510	

pattern of the SST signature of the upwelling than the reduced area. The latter however yields a 511	

better representation of the wind seasonality along the coast. 512	

6.2 Response of the Senegalo-Mauritanian upwelling to global warming.  513	

In this section, we examine the response of the upwelling system given by the different 514	

multi-model groups we selected to global warming. For this, we compared the two indices 515	

analyzed above in present-day and future conditions. The present-day conditions are taken as 516	

above as the climatological average of historical simulations over the period [1985-2005]. The 517	

future period is taken as the climatological average of the RCP8.5 scenario over the period [2080-518	

2100]. Fig. 12 shows the difference of the SST seasonal cycle amplitude between these two 519	

periods. The general behavior is that the SST cycle amplitude will reduce in the upwelling region. 520	

Sylla et al., 2019 showed that this is primarily due to a warming of the winter temperature, thus 521	

suggesting that the upwelling signature at the surface will reduce. On the other hand, this figure 522	

shows that the upwelling signature will increase along the Canary current, which flows along the 523	

coast of Morocco, as well as in the subtropical part of our domain. This behavior is observed in 524	

the three multi-model ensembles. Yet, the two selected Model-groups suggest a weaker decrease 525	

of the SST seasonal cycle in the upwelling region than the one given by Model-All. ZModel-526	

group 2 shows an even weaker decrease mainly confined in the southern part of the upwelling 527	

region. This result echoes findings of Sylla et al., 2019 based on another indicator of the 528	

upwelling imprint on the SST: they showed that the difference between the SST at the coast and 529	

offshore is expected to decrease more in the southern part of the Senegalo-Mauritanian upwelling 530	

system (SMUS) than in the north . We hypothesize that the study conducted on the reduced area 531	

permits separation of the Senegalo-Mauritanian upwelling system into two clusters, a northern 532	

one (ZRegion 4) and a southern one (ZRegion-3) (Fig. 8) which enables to distinguish this 533	

specific response.  534	



	19	
	

The meridional wind stress also generally weakens under climate change in the [12°N-535	

20°N] latitude band (Fig. 13), suggesting a general reduction of the upwelling intensity. From 536	

December to March, this is particularly true in the southernmost region of the Senegalo-537	

Mauritanian band, consistent with the results of (Sylla et al., 2019). The wind pattern inferred 538	

from the two Model-groups (Fig. 13, middle and right panels) present a higher seasonal 539	

variability than those of Model-All (left panel). The winter reduction of the southward wind 540	

stress is slightly more confined to the southern region in ZModel-group 2, especially at the end of 541	

the upwelling season (March-April) when the upwelling intensity is the strongest. This may be 542	

consistent with the reduced seasonal cycle in the southernmost part of the upwelling identified 543	

above.  544	

7 - Discussion and Conclusion 545	

This paper proposed a novel methodology for selecting efficient climate models on a specific 546	

area with respect to observations and according to well-defined statistical criteria. The present 547	

study has specifically focused on the ability of climate models to reproduce the ocean SST annual 548	

cycle observed in specific sub-regions of the studied domain during the period 1975-2005 as 549	

reported in the ERSST_v3b data set. These sub-regions were defined by a neural classifier 550	

(SOM) as clusters having similar seasonal SST cycle anomalies with respect to some statistical 551	

characteristics, and were therefore named region-clusters. They correspond to ocean areas having 552	

well marked oceanographic specificities.  553	

We then checked the ability of the different climate models to reproduce the region-clusters 554	

defined on the observation dataset with a SOM. The better a climate model fits the clusters 555	

computed with the SST observation, the higher the skill of the model. To evaluate this, we 556	

defined geographical regions in the different CMIP5 climate models by projecting the SST 557	

annual cycle anomalies of each model grid point onto the SOM. Each grid point is associated 558	

with a cluster on the SOM map and consequently to a region-cluster on the geographical map. 559	

We built a similarity criterion by	counting	the	number	of	grid	points	in	a	region-cluster	of	a	560	

given	model	matching	the	same	region	cluster	defined	by	processing	the	observation	field.	561	

We then computed the ratio between that matching number and the number of pixels of the 562	

region-cluster	of	the	model	under	study.  We estimated the total skill of a model by averaging 563	

the 7 ratios associated with the 7 region clusters. Note that this procedure presents the advantage 564	
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of giving the same weight to each region-cluster whatever its number of grid points and its 565	

proximity with the upwelling region. This procedure respects the clustering done by the SOM 566	

since the different clusters have an equal weight in the skill computation. In its present definition, 567	

the total skill is a number between 0 and 1, the higher the skill, the better the fit. Other measures 568	

of the total skill of a Model-group could nevertheless be defined depending on the objective of 569	

the study. One may compare the skill of individual models over a specific region-cluster of 570	

interest, or analyze the pattern of skill in one specific model and its sensitivity to possible various 571	

parameterization schemes. The extraction of information embedded in the vector-skill whose 7 572	

components are the skills associated with the 7 sub-regions and the resulting efficient multi-573	

model combination imply the use of advanced statistical tools such as the MCA. Moreover the 574	

vector skill also contains information behavior of models in terms of large offshore ocean 575	

circulation as well as in the upwelling region. It could thus be used to diagnose the deficiencies of 576	

some climate models with respect to the modeling of physical processes. Another contribution of 577	

the MCA is the visualization of the 47 models and the observations on the plane constituted by 578	

the first two MCA axes, which represents 70% of the information embedded in the data.  The 579	

similarities of the climate models with respect to the observations and the region-clusters can be 580	

clearly visualized. The ‘mean’ skill associated with each climate model and proposed in this 581	

study is easy to use but is far less informative than the vector-skill whose 7 components are the 582	

skills associated with the 7 sub-regions.  583	

Such a multi-model ensemble selection allows sampling a set of models in order to obtain a more 584	

realistic climatology over the region of interest. The response of the upwelling to climate change 585	

given by the different multi-model ensembles is quite robust in the sense that they give similar 586	

qualitative answers. However, a too-selective ensemble of models may lead to noisy patterns. A 587	

compromise thus has to be found: a large number of models leads to smoothed biases and 588	

unrealistic patterns, but also damps the characteristics of the selection. On the other hand, 589	

selecting the most realistic models may yield spurious biases in the ensemble mean.  590	

As discussed in the introduction, different criteria have been used for extracting some efficient 591	

models from the CMIP5 models used for climatic studies. The most common parameter is the 592	

average annual surface mean temperature of the grid points of the region under study. 593	

However,(Knutti et al., 2006) used the seasonal cycle in surface temperature, represented by the 594	
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seasonal amplitude calculated as summer June–August (JJA) minus winter December–February 595	

(DJF) temperatures. This criterion is more informative than the annual mean temperature since 596	

the amplitude of the seasonal variability is an important criterion characterizing the validity of a 597	

climate model. In the present work, we used a more informative criterion which is formed of the 598	

monthly temperature cycle anomaly represented by a 12-component vector, each component 599	

representing the average monthly temperature of the year we consider. This new criterion allows 600	

account to be taken of the amplitude and phase of seasonal variability while the Knutti et al., 601	

2006 criterion only takes into account the amplitude of the seasonal variability. Note however 602	

that it implies a good geophysical knowledge of the region under interest, in order to determine 603	

the relevant region-clusters after the SOM. It is also very specific to the Senegal-Mauritania 604	

upwelling region. Furthermore, Sylla et al., 2019 extensively discussed the possible differences 605	

among several indices aiming at characterizing the upwelling and the need to use some of them to 606	

have a complete understanding of this coastal phenomenon. This conclusion is probably general 607	

to any physical process of the climate system. In the present study, the model selection is based 608	

on only one signature of the SMUS. Several possibilities can be envisaged to improve the 609	

resolution of this problem such as merging several indices like SST, temperature at several 610	

depths, wind vector or ocean currents. This approach could also allow a selection of models 611	

based on the representation of several distinct regional behaviors. In spite of several subjective 612	

choices, including the studied domain and the statistical metrics, we argue that this method is a 613	

step towards an objective selection of models, based on a quantitative assessment rather than a 614	

qualitative analysis of maps of performance.  615	

The methodology is general and can be adapted to any climate or oceanographic phenomenon. 616	

Different applications of the multi-model selection strategy proposed in the present study can 617	

also be envisaged. Firstly, from a purely modeling point of view, the projection of the models on 618	

the SOM (or ZSOM) and the results of the HAC yield a very enlightening description of a given 619	

model behavior in terms of region-clusters of the area under study. Such a procedure could 620	

advantageously be used by individual modeling groups to identify, analyze and therefore 621	

hopefully reduce their model biases in a targeted region. Secondly, from a physical point of view, 622	

an identified Model-group can be used to analyze the targeted region (here the SMUS) in terms 623	

of processes, with the advantages of a subset of models which have been selected from 624	

quantitative criteria. Such an application has been briefly illustrated by showing how the selected 625	
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Model-group represents an important additional characteristic of the SMUS, not used for the 626	

selection, namely Ekman pumping. A promising reduction of biases of the full multi-model mean 627	

ensemble has been identified, opening possibilities for process studies based on this sub-628	

ensemble of the CMIP5 database. A third application of the selection lies in the prediction of the 629	

future climate. Here, we have shown that selected multi-model ensembles may provide a more 630	

precise description of the future behavior of the SMUS. It may nevertheless be important to note 631	

that these conclusions are based on the assumption that the CMIP5 models, which have been 632	

selected according to their present-day characteristics, are the most reliable in terms of future 633	

projections, which can be questioned and refined (Lutz et al., 2016; Reifen and Toumi, 2009).  634	

As discussed in the introduction, the concept of “model democracy”, suggesting that all models 635	

should be equally considered in multi-model ensemble is now strongly questioned (Knutti et al., 636	

2017). The present study proposes a promising way to improve the quality of multi-model 637	

ensemble in terms of model selection. Deep advances in the field of multi-model analysis and 638	

selection can be expected from the emerging topic of climate informatics (Monteleoni et al., 639	

2016) as it has been shown through the present study. Machine learning can indeed provide 640	

efficient tools to make the best out of the extraordinary but imperfect tools that are the climate 641	

models and multi-model intercomparison efforts.  642	
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 847	

APPENDIX  848	

 849	

Model-group	1	 Model-group	2	 Model-group	3	 Model-group	4	

ACCESS1-0	
ACCESS1-3	
CESM1-CAM5	
CESM1-CAM5-1-FV2	
CESM1-WACCM	
HadCM3	
MIROC-ESM	
MIROC-ESM-CHEM	
MIROC5	
NorESM1-M	
NorESM1-ME	
	

bcc-csm1-1	
bcc-csm1-1-m	
BNU-ESM	
CCSM4	
CESM1-BGC	
CESM1-FASTCHEM	
GFDL-CM2p1	
GFDL-ESM2G	
GFDL-ESM2M	
MPI-ESM-LR	
MPI-ESM-MR	
MPI-ESM-P	

	

FGOALS-g2	
GISS-E2-H	
GISS-E2-H-CC	
GISS-E2-R	
GISS-E2-R-CC	
inmcm4	
IPSL-CM5A-LR	
IPSL-CM5A-MR	
IPSL-CM5B-LR	
MRI-CGCM3	
MRI-ESM1	
	

CanCM4	
CanESM2	
CMCC-CESM	
CMCC-CM	
CMCC-CMS	
CNRM-CM5	
CNRM-CM5-2	
CSIRO-Mk3-6-0	
FGOALS-s2	
GFDL-CM3	
HadGEM2-AO	
HadGEM2-CC	
HadGEM2-ES	

 850	

ZModel-group	1	 ZModel-group	2	 ZModel-group	3	 ZModel-group	4	

ACCESS1-0	
bcc-csm1-1-m	
CCSM4	
CESM1-BGC	
CESM1-CAM5	
CESM1-CAM5-1-FV2	
CESM1-FASTCHEM	
CESM1-WACCM	
GISS-E2-H	
GISS-E2-H-CC	
GISS-E2-R	
GISS-E2-R-CC	
HadCM3	
inmcm4	
IPSL-CM5B-LR	
MIROC5	
MPI-ESM-LR	
MPI-ESM-MR	
MPI-ESM-P	

CMCC-CMS	
CNRM-CM5	
CNRM-CM5-2	
FGOALS-s2	
GFDL-CM3	

	
	

BNU-ESM	
CanCM4	
CanESM2	
CMCC-CM	
FGOALS-g2	
IPSL-CM5A-LR	
IPSL-CM5A-MR	
MRI-CGCM3	
NorESM1-M	
NorESM1-ME	
	
	

ACCESS1-3	
bcc-csm1-1	
CSIRO-Mk3-6-0	
HadGEM2-AO	
HadGEM2-CC	
HadGEM2-ES	
MIROC-ESM	
MIROC-ESM-CHEM	
MRI-ESM1	
	
	

	

ZModel-group	5	

CMCC-CESM	
GFDL-CM2p1	
GFDL-ESM2G	
GFDL-ESM2M	

 851	
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Table A1: Composition of the different Model-groups identified in the main text. In bold, we 852	

show the CMIP5 models which belong to Model-group 4 and ZModel-group 2. We note that all 853	

the models belonging to Zmodel-group 2 also belong to Model-group 4.    854	

	  855	
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 856	

Table 1: List of the CMIP5 models used for the comparison. The reader is referred to the CMIP5 857	
documentation for more information on each of them. Here, each configuration is furthermore 858	

given a number, for easier identification in subsequent figures.  859	
	  860	
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 861	

 862	

Figure 1: Amplitude of the SST seasonal anomalies in the western tropical north Atlantic. SST 863	
data are from the ERSSTv3b data set averaged between 1975 and 2005. The two black boxes 864	
show the extended and zoomed regions respectively, on which the statistical classifications were 865	
performed (see text for details).  866	
	  867	
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 868	

Figure 2: Left panel: Region-clusters associated with the SOM-clusters obtained after a HAC on 869	
a 30x4 neuron SOM learned on ERSSTv3b observations in the extended zone (see text for 870	
details). Right Panel: Ensemble-mean monthly climatological SST anomalies for the grid points 871	
of the seven Region-clusters. The error bars show the standard deviation of this ensemble mean.  872	
	  873	
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 874	

 875	

Figure 3: Projection of the 47 climate models of the CMIP5 database onto the SOM learned with 876	
ERSSTv3b climatology in the extended zone (see Fig. 1). On top of each panel, we figure: the 877	
number referencing the model, its name (Table 1), and its skill given as a mean percentage (see 878	
text). The models are ordered according to their skill in decreasing order. The 7 Region-clusters 879	
(or SOM-clusters) are defined by applying an HAC to the SOM output learned with the 880	
observation field.  They are represented by different colors. The numbers in the colorbar at the 881	
right of each panel represent the skill for each Region-cluster. The observation field is shown in 882	
the bottom right panel and the numbers in front of the colorbar reference the Region-cluster. 883	
	  884	
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 885	

Figure 4: Projection of the CMIP5 models (colored circles) and the observation field (green 886	
diamond) defined by their cluster skill vectors on the first two axis of the MCA.  The seven 887	
region-clusters of the observation field are represented by purple squares. The colours of the 888	
circles denote the four groups of models obtained after an HAC was performed on the seven 889	
MCA components of the models. The projection of the full multi-model mean (47 models) is 890	
represented by a red star. We note that some bias can be introduced in this projection since the 891	
projection on the other axes can be of importance 892	
	 	893	
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 894	

 895	

Figure 5: HAC Dendrogram. The horizontal line displays the 47 CMIP5 models, each model 896	
being associated with its 7 component skill-vector.  As the dendrogram represents  a hierarchy of 897	
clusters,  the numbers on the y axis give the distance between two clusters. We note an optimal 898	
‘jump’ on this graph: the level 1.5 in the vertical axis (materialized by a horizontal black line) is 899	
associated with 4 well-separated clusters corresponding to 4 Model-groups that are very different.	900	

	 	901	
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 902	

 903	

 904	

Figure 6: (a)-(d): Projection of the multi-model ensembles (Model-group) onto the SOM learned 905	
with ERSSTv3b climatology in the extended zone.  Multi-model ensemble performances are 906	
obtained by averaging the skill of the models forming each group.  The performances are given 907	
on top of each panel.  The Region-clusters determined by processing the observations in the 908	
extended area and their associated colors are given in the bottom right panel. The colorbars at the 909	
right of each multi-ensemble panel represent the skill (in %) associated with each Region-cluster. 910	
Panel (e) shows the projection for the full multi-model ensemble. Panel (f) reproduces the 911	
Region-clusters based on the observations also shown in Fig. 2.  912	
 913	

	  914	
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 915	

Figure 7: Left panel: ZRegion-clusters associated with the ZSOM-clusters obtained after a HAC 916	
on a 10x12 neuron SOM learned on ERSSTv3b observations in the zoomed zone (see text for 917	
details). Right Panel: Ensemble-mean monthly climatological SST anomalies for the grid points 918	
of the four ZRegion-clusters. The error bars show the standard deviation of this ensemble mean.  919	
  920	
 921	

	  922	
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 923	

Figure 8: (a)-(e): Projection of the multi-model ensembles (ZModel-groups) onto the ZSOM. The 924	
performances are given on top of each panel. The ZRegion-clusters determined by processing the 925	
observations in the zoomed region and their associated colors are given in the bottom right panel. 926	
The colorbars at the right of each multi-ensemble panel represent the skill (in %) associated with 927	
each ZRegion-cluster. Panel (f) shows the same for the full multi-model ensemble. Panel (g) 928	
reproduces the Region-clusters based on the observations also shown in Fig. 6. 929	
	  930	
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 931	

Figure 9 : Same as Fig. 7 but for the individual model CMCC-CM (model 7) (left) and the 932	
Model-group 4 (right).  933	
	  934	
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 935	

Figure 10: Amplitude of the SST seasonal cycle in the (a) ERSSTv3b Observations (b) Model-936	
All, c) Model-group 4 (best Model-group for the extended area, figured out by the black 937	
rectangular box) and (d) ZModel-group 2 (best Model-group for the reduced area, figured out by 938	
the small black rectangular box). The SST seasonal cycle is computed over the period 1985-2005 939	
	  940	
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 941	

Figure 11: Latitude-time plot of depth integrated Ekman transport computed over the grid point 942	
located along the coast (magenta stars in Fig. 9.a). The time axis shows climatological months 943	
over the period 1985-2005.  Positive (negative) values correspond to upwelling (downwelling) 944	
conditions. Panel (a) stands for TropFlux data set (see (Praveen Kumar et al., 2011) (b) Model-945	
All, (c) Model-group 4 and (d) ZModel-group 2. In each panel, the black contour shows the 946	
contour zero. The horizontal dashed lines are positioned at 12°N and 20°N and give a rough 947	
limitation of the Senegalo-Mauritanian upwelling region. 948	
 949	
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 951	

Figure 12: Evolution of the amplitude of the SST seasonal cycle at the end of the 21st century. 952	
The figure shows the difference between the seasonal cycle amplitude averaged over the period 953	
[2080-2100] following the RCP8.5 scenario and the amplitude averaged over the period [1985-954	
2005] in the historical simulations. A positive value (red) means that the seasonal cycle is more 955	
marked over the period 2080-2100. 956	
 957	
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 959	

Figure 13: Latitude-time diagram of the seasonal shift of the meridional component of the wind-960	
stress with respect to the present days. For each month and at each latitude, we show the 961	
meridional wind stress shift with respect to the present days averaged over the period [2080-962	
2100]. Positive values (red) means that the wind stress shift is southward and is thus favorable to 963	
upwelling. Panel (a) stands for Model-All, (b) Model-group 4 and (c) ZModel-group 2. 964	
 965	


