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Abstract.	 Climate simulations require very complex numerical models. Unfortunately, they 11	

typically present biases due to parameterizations, choices of numerical schemes, and the 12	

complexity of many physical processes. Beyond improving the models themselves, a way to 13	

improve the performance of the modeled climate is to consider multi-model combinations. In the 14	

present study, we propose a method to select the models that yield an efficient multi-model 15	

ensemble combination. We used a neural classifier (Self-Organizing Maps), associated with a 16	

multi-correspondence analysis to identify the models that represent some target climate property 17	

at best. We can thereby determine an efficient multi-model ensemble. We illustrated the 18	

methodology with results focusing on the mean sea surface temperature seasonal cycle over the 19	

Senegalo-Mauritanian region. We compared 47 CMIP5 model configurations to available 20	

observations. The method allows us to identify an efficient multi-model combination of 12 21	

climate models. The future decrease of the Senegalo-Mauritanian upwelling proposed in recent 22	

studies is then revisited using this multi-model selection.  23	

 24	

 25	

1- Introduction 26	
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In this study, we present a methodology aiming at selecting a coherent sub-ensemble of the 27	

models involved in the Climate Model Intercomparison Project, Phase 5 (CMIP5) that best 28	

represents specific observed characteristics. The analysis is performed on the capacity of the 29	

models to represent the seasonal cycle of the sea surface temperature (SST) in the region of the 30	

Senegalo-Mauritanian upwelling off the west coast of Africa.  31	

The Senegalo-Mauritanian upwelling has focused increasing attention over the recent 32	

years. It presents an important seasonal cycle associated with mesoscale patterns whose 33	

variability has been recently studied by several oceanographic campaigns (Capet et al., 2017; 34	

Faye et al., 2015; Ndoye et al., 2014). The very productive waters associated with the upwelling 35	

have a strong economic impact on fisheries in Senegal and Mauritania, and a crucial societal 36	

importance for local populations. It is therefore of importance to predict the evolution of the 37	

dynamics and the physics of the upwelling in the forthcoming decades due to the effect of climate 38	

warming and its consequences on biological productivity which may impact the fisheries.  39	

The most common way to predict the evolution of the climate is to run climate models 40	

that include fully coupled atmosphere-ocean-cryosphere-biosphere modules. Because of their 41	

quite low resolution and the fact that they use different parameterizations of the physics, 42	

numerical schemes and sometimes include or neglect different processes, these models have 43	

some marked biases in specific regions. They also have different responses to an imposed 44	

increase of atmospheric greenhouse gases, which partly explain their mean climate biases. This 45	

variety of models allows us to assess the uncertainty of present climate representation when 46	

compared to observations and, by studying their dispersion, to roughly estimate the uncertainty of 47	

the response to future climate change.  48	

For several generations of climate models, it has been shown that for a large variety of 49	

variables the multi-model average mostly agrees better with observations of present day climate 50	

than any single model, and that the average also consistently scores higher in almost all 51	

diagnostics (Lambert and Boer, 2001; Phillips and Gleckler, 2006; Reichler and Kim, 2008; 52	

Santer et al., 2009; Tebaldi and Knutti, 2007). Several studies also suggest that the most reliable 53	

climate projection is given by a multi-model averaging (Knutti et al., 2010), rather than averaging 54	

different projections performed with a single model run with different initial conditions for 55	

example. This result relies on the assumption that if choices of parameterizations, specific 56	



	3	
	

numerical schemes, are made independently for each model, then the errors might at least partly 57	

compensate, resulting in a multi-model average that is more skillful than its constitutive 58	

terms(Tebaldi and Knutti, 2007). The significant gain in accuracy can be explained by the fact 59	

that the errors specific to each model compensate each other in the averaging procedure used to 60	

build the multi-model. However, the number of GCMs available for climate change projections is 61	

increasing rapidly. For example, the CMIP5 archive (Taylor et al., 2012), which was used for the 62	

fifth IPCC Assessment Report (Stocker et al., 2013), contains outputs from 61 different GCMs 63	

and 70 contributions are expected for CMIP6. Nevertheless, these models constitute a fully 64	

independent ensemble (e.g. Masson and Knutti, 2011). It thus becomes possible and probably 65	

needed to select and/or weigh the models constituting such an average. Recent work has 66	

suggested that weighting the multi-model averaging procedure could help to reduce the spread 67	

and thus uncertainty of future projections. Such an approach has been applied extensively to the 68	

issue of climate sensitivity (Fasullo and Trenberth, 2012; Gordon et al., 2013; Huber and Knutti, 69	

2012; Tan et al., 2016). Valuable improvement of models selection has also been found in studies 70	

of the carbon cycle (Cox et al., 2013; Wenzel et al., 2014), the hydrological cycle (Deangelis et 71	

al., 2015; O’Gorman et al., 2012), the Antarctic atmospheric circulation (Son et al., 2010; Wenzel 72	

et al., 2016), extratropical atmospheric rivers (Gao et al., 2016) atmospheric and ocean heat 73	

transports (Loeb et al., 2015), the European temperature variability (Stegehuis et al., 2013) and 74	

temperature extremes (Borodina et al., 2017). 75	

The present paper is dedicated to the elaboration of an objective method to select models 76	

according to their performance over the Senegalo-Mauritanian upwelling area, with the aim of 77	

constructing an efficient climate multi-model combination together with its related confidence 78	

interval in order to anticipate the effect of climate warming by the end of the century in this 79	

region.  This upwelling is very intense and presents a well-marked seasonal variability. Its 80	

intensity is stronger in boreal winter and it disappears in summer with the northward progression 81	

of the ITCZ.  Due to the enrichment of the sea surface layers with nutrients upwelled from deep 82	

layers, it drives an important phytoplankton bloom that is observed on ocean color satellite 83	

images (Demarcq and Faure, 2000; Farikou et al., 2015). The maximum intensity of this bloom 84	

occurs in March-April (Farikou et al., 2015; Faye et al., 2015; Ndoye et al., 2014). This 85	

upwelling lies at the southern end of the Canarian upwelling system, which has itself a much 86	

weaker seasonality and is maximum in summer. Consequently, the Senegalo-Mauritanian 87	
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upwelling is characterized by a very specific seasonality which is observed on satellite SST 88	

(Demarcq and Faure, 2000; Sawadogo et al., 2009). Sylla et al., 2019) have recently shown that 89	

the intensity of the SST seasonal cycle along the coast of Senegal and Mauritania was a good 90	

marker of the upwelling in climate models. The method we have developed is based on the 91	

capability of the climate models to reproduce the SST seasonal cycle observed during the 92	

historical period in key sub-regions. These sub-regions are identified by a neural classifier. The 93	

method leads us to rank the different models and to determine an efficient multi-model 94	

combination for the analysis of the Senegalo-Mauritanian upwelling and projections of its 95	

behavior in global warming conditions. 96	

The paper is articulated as follows: section 2 presents the different climate models and the 97	

climatological observations used in the study, together with the region of interest. The 98	

classification method is described in section 3 and applied to the extended region. Section 4 99	

presents a qualitative analysis able to group the different climate models in clusters presenting 100	

similar performances. Section 5 investigates the results of the method applied over a smaller area, 101	

more focused over the upwelling region. Section 6 uses the two multi-model clusters defined in 102	

sections 4 and 5 respectively to tentatively predict the representation of the Senegalo-Mauritanian 103	

upwelling changes under global warming. Conclusions are given in section 7.  104	

 105	

2- Climate Models and region of interest 106	

2.1 Data 107	

This study is based on the CMIP5 (Coupled Model Inter-comparison Project Phase 5) database.  108	

We used the output of the 47 simulations listed in Table 1. The models were evaluated over the 109	

historical period defined as [1975-2005] by comparing their output to observations. The mean 110	

seasonal cycle of SST anomalies over this period is constructed for each model grid point as the 111	

difference between the monthly mean temperature and the mean annual temperature. When 112	

several members of historical simulations are available for a specific model configuration, they 113	

are averaged together. However, this has practically no impact on the estimated mean seasonal 114	

cycle (not shown). The mean climatological cycle of the CMIP5 models under study is evaluated 115	

against the Extended Reconstructed Sea Surface Temperature data set (ERSST- v3b, Smith et al., 116	
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2008), averaged over the same time period. This data set is produced by NOAA at 2° spatial 117	

resolution. It is derived from the International Comprehensive Ocean–Atmosphere Dataset with 118	

missing data filled in by statistical methods. This dataset is used as the target to be reproduced 119	

and is denoted "observation field" hereinafter.  In order to deal with data at the same resolution, 120	

all model outputs as well the observation fields were regridded on a 1-degree resolution regular 121	

grid prior to analysis. A previous study (Sylla et al., 2019) has compared the performance of this 122	

dataset as compared to the gridded SST data set from the Met Office Hadley Centre HadISST 123	

(Rayner, 2003). Although differences are relatively weak, a subsequent study should analyze the 124	

sensitivity of the method to the choice of the target dataset.  125	

In section 6, the models’ selections are used to characterize the response of the upwelling to 126	

climate change. This response is characterized in terms of SST anomalies but also wind intensity. 127	

For this, the simulated wind stress is compared to the TropFlux reanalysis. This data set 128	

combines the ERA-Interim reanalysis for turbulent and long-wave fluxes, and ISCCP 129	

(International Satellite Cloud Climatology Project) surface radiation data for shortwave fluxes. 130	

This wind stress product is described and evaluated in (Praveen Kumar et al., 2011). 131	

 132	

2.2 The Senegalo-Mauritanian upwelling region 133	

In the present research, we evaluated the ability of the different climate models to represent the 134	

Senegalo-Mauritanian upwelling. Following (Sylla et al., 2019), we consider the intensity of the 135	

seasonal cycle of the SST anomaly as a marker of the upwelling variability and localization. This 136	

variable is shown in Fig. 1 for the eastern tropical Atlantic. This figure confirms that the 137	

Senegalo-Mauritanian coast stands out with a very strong seasonal SST cycle as compared to 138	

what is found at similar latitudes in the open ocean. This results from the cold SST generated by 139	

the strong winds occurring in winter. The Senegalo-Mauritanian upwelling is confined in a small 140	

region of the order of 100km off the western coast of Africa. It is part of a complex and fine scale 141	

regional circulation system recently revisited by Kounta et al., 2018. Since the grid mesh of most 142	

of the climate models is of the order of 1° (~100km), this regional circulation is thus poorly 143	

resolved, and this pleads for a relatively large-scale analysis of the upwelling representation in 144	

climate models. The Senegalo-Mauritanian upwelling is also embedded in a large scale oceanic 145	

circulation pattern, encompassing the North Equatorial Counter Current flowing eastward in the 146	
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southern part of the region and the return branch of the subtropical gyre in the northwestern part. 147	

Therefore, we will firstly study the representation of the SST seasonal cycle intensity in the 148	

different climate models over a relatively large region that includes part of the Canary current in 149	

the North and the Guinea dome in the South. The so-called “extended region” is defined by a 150	

rectangular box extending from 9°W to 45°W and from 5°N to 30°N (Fig. 1). In a second step, 151	

we will proceed to the same analysis and classification of the models within a much more 152	

focused (hereafter zoomed) region, namely [16°W-28°W and 10°N-23°N] (Fig. 1). All the results 153	

below will be first shown for the extended region. Comparison with the focused region will be 154	

done in section 4.  155	

3 - Comparing observations and models: a methodological approach 156	

The methodology we have developed is based on the ability of the climate models to adequately 157	

reproduce the climatology of the seasonal cycle of the SST anomalies as observed during the last 158	

three decades in key sub-regions of the studied domain. These key sub-regions were determined 159	

from the similarity of their physical and statistical characteristics through an unsupervised 160	

classification, which clusters pixels having similar observed seasonal SST climatology. We chose 161	

to deal with a neural classifier, the so-called self-organizing map (SOM hereinafter) developed by 162	

Kohonen, 2013 followed by a Hierarchical Ascendant Clustering (HAC, Jain and Dubes, 1998). 163	

This method leads to a dynamically interpretable classification. The SOM determines a vector 164	

quantization of the dataset, which compresses the initial dataset into a relatively small number of 165	

referent vectors. Doing so allows to take the non-linearities of the dataset into account and to 166	

filter the noise, which can make the classification spurious. This reduced number of dataset 167	

vectors enables an HAC to determine the highly non-linear borders between the different SOM 168	

clusters. This procedure has been used with success in several studies (Farikou et al., 2015; Jouini 169	

et al., 2016; Niang et al., 2003, 2006; Sawadogo et al., 2009). Note that the use of an HAC 170	

directly on the initial dataset would not be efficient in the present study because the number of 171	

degrees of freedom (here the grid points of the initial domain) is too large for this method to work 172	

efficiently. In the present section, we describe the methodology we developed to score the 173	

different climate models with respect to the observations. In section 4, we will tentatively group 174	

the different climate models into blocks having the same behavior by using a Multiple 175	

Correspondence Analysis (MCA in the following).  176	
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 177	

 3.1 The unsupervised classification method 178	

The first step of the methodology was to decompose the selected region in different classes (the 179	

key sub-regions mentioned above) by using a neural network classifier, the so-called SOM 180	

(Kohonen, 2013). This algorithm constitutes a powerful nonlinear unsupervised classification 181	

method. It has been commonly used to solve environmental problems (Hewitson and Crane, 182	

2002; Jouini et al., 2013, 2016; Liu et al., 2006; Reusch et al., 2007; Richardson et al., 2003). The 183	

SOM aims at clustering vectors (here the 12 SST seasonal anomalies) of a multidimensional 184	

database (D) (here the grid points of the studied domain) into classes represented by a fixed 185	

network of neurons (the SOM map).  The self-organizing map (SOM-map) is defined as an 186	

undirected graph, usually a 2D rectangular grid. This graphical structure is used to define a 187	

discrete distance (denoted by 𝛿) between the neurons of the map and thereby identify the shortest 188	

path between two neurons. Moreover, SOM enables the partition of D in which each cluster is 189	

associated with a neuron of the map and is represented by a prototype that is a synthetic 190	

multidimensional vector (the referent vector w). Each vector z of D is assigned to the neuron 191	

whose referent w is the closest, in the sense of the Euclidean Norm (EN), and is called the 192	

projection of the vector z on the map. A fundamental property of a SOM is the topological 193	

ordering provided at the end of the clustering phase: two neurons that are close on the map 194	

represent data that are close in the data space. In other words, the neurons are gathered in such a 195	

way that if two vectors of D are projected on two “relatively” close neurons (with respect to 𝛿) on 196	

the map, they are similar and share the same properties. The estimation of the referent vectors w 197	

of a SOM and the topological order is achieved through a minimization process using a learning 198	

data set base, here from the observations.  The cost function to be minimized is of the form:  199	

𝐽!"#! 𝜒,𝑊 = 𝐾!(𝛿 𝑐,𝜒 𝑧! )‖𝑧! − 𝑤!‖!
!∈!"#!"∈!

 

where 𝑐 ∈ 𝑆𝑂𝑀 indices the neurons of the SOM map, 𝜒 is the allocation function that assigns 200	

each element zi of D to its referent vector 𝑤!(!!) and 𝛿(𝑐,𝜒 𝑧! )  is the discrete distance on the 201	

SOM-map between a neuron c and the neuron allocated to observation zi. 𝐾!a kernel function 202	

parameterized by T (where T stands for “temperature” in the scientific literature dedicated to 203	
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SOM) that weights the discrete distance on the map and decreases during the minimization 204	

process. At the end of the learning process, the classification can be visualized onto the SOM-205	

map and interpreted in term of geophysics. 206	

3.2 - Classification of the observations  207	

In the present problem we chose to classify the annual cycles of the SST seasonal anomalies 208	

observed in the Senegalo-Mauritanian upwelling. The study was made over the “extended 209	

region” constituted of 25 x 36 = 900 pixels, but this enlarged region covers a part of the African 210	

continent and 157 pixels are in fact over land. That means that we have truly 743 ocean pixels to 211	

deal with. We consider the time-period of 30 years [1975 to 2005] extracted from the ERSST-V3b 212	

database. For a given grid point and a given year and month, the monthly anomaly is the SST of 213	

the pixel for which we have subtracted the mean of the considered year. The climatological mean 214	

of the anomaly is then computed for each grid point by averaging each climatological month over 215	

the 30 years. Thus, the learning data set D is a set of 743 twelve-component vectors z, each 216	

component being the mean monthly anomaly computed as above. We denote “SST seasonal 217	

cycle” the vector z in the following. 218	

We used a SOM-map to summarize the different SST seasonal cycles present in the "extended 219	

region". We found that 120 prototypes (or neurons) can accurately represent the 743 vectors of D.  220	

This reduction (or vector quantization) is made by using a rectangular SOM-map of 30 x 4 221	

neurons. 222	

We then reduced the number of neurons in order to facilitate their interpretation in terms of 223	

geophysical processes. For this, we applied a Hierarchical Ascendant Clustering algorithm 224	

(HAC) using the Ward dissimilarity (Jain and Dubes, 1988). We grouped the 120 neurons of the 225	

SOM into a hierarchy that can contain between 1 and 120 clusters. Then the different 226	

classifications proposed by the HAC were applied to the geographical region: each SST seasonal 227	

cycle of each grid point of the region is assigned to a neuron and consequently to a cluster 228	

(assignment process), thereby defining the so-called region-clusters. The problem is then to 229	

choose a number of clusters that adequately synthesizes the geophysical phenomena over the 230	

region. This was done by looking at the different possible classifications and choosing one 231	

representing the major characteristics of the upwelling region.  In Fig. 2a, we observe that when 232	

we partition the SOM in 7 clusters, the associated 7 region-clusters are constituted of contiguous 233	
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pixels in the geographic map, and that two clusters (6, 7) are within the upwelling region and 234	

present a well-marked seasonal cycle.  For each region-cluster, we estimated the monthly mean 235	

of the SST seasonal cycle and the associated spread captured by the neurons constituting this 236	

region-cluster.  237	

The typical SST climatological cycles for each region-cluster are presented in Fig. 2b 238	

together with their related error bars. We note that the region-clusters are well identified, their 239	

typical climatological annual cycles of SST being well separated. Furthermore, the 7 region-240	

clusters are spatially coherent and have a definite geophysical significance.  241	

For the extended region under study, 7 therefore appears to be an adequate cluster 242	

number, since this number allows a clear partition of the clusters on the HAC decision tree on the 243	

one hand, and permits to assign a clear physical significance to each region-cluster on the other 244	

hand. the Senegalo-Mauritanian coastal upwelling is associated with clusters 7 and 6. Cluster 2 245	

corresponds to deep tropical waters associated with the equatorial Countercurrent. Cluster 1 246	

corresponds to surface waters of the Gulf of Guinea. Cluster 3 corresponds to the offshore 247	

tropical Atlantic, and cluster 5 has extratropical characteristics. Cluster 4 is transition between 3 248	

and 5. As expected, the equatorial regions (clusters 1 and 2) have a very weak seasonal cycle, 249	

which increases towards the extratropics (clusters 3 to 5). The upwelling regions (clusters 6 and 250	

7) are characterized by an exceptionally strong seasonal variability.  251	

 252	

3.3 – Classification of the climate models over the extended upwelling region  253	

The aim is now to find the model(s) that best fit the “observation field”. A heuristic 254	

manner is to compare the pattern of the different region-clusters of the CMIP5 models with 255	

respect to those of the “observation field” through a sight evaluating process. This kind of 256	

approach has been proposed in Sylla et al., 2019, and we indeed immediately see that some 257	

models better fit the “observation field” than others. But this method remains very subjective.  258	

In the following, we present a more objective approach. We use the previous 259	

classification to objectively estimate how each CMIP5 model fits the “observation field” and its 260	

seven region-clusters. For this, we projected the SST annual cycle of each CMIP5 model grid 261	

point of the extended region onto the SOM learned with the observations (section 3.2) using the 262	
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assignment procedure described in this section. Each grid point thus corresponds to a cluster of 263	

the SOM and is represented on the geographical map by its corresponding color.  Doing so, we 264	

can represent each CMIP5 model by the geographical pattern of the 7 clusters partitioning the 265	

SST seasonal cycle of its grid points. The geographical maps representing the 47 models and 266	

their associated clusters are plotted in Fig. 3. This graphical visualization is easier to compare 267	

than the original characteristics (amplitude and phase) of the annual cycle at each grid point of a 268	

model since each grid point can only take one discrete value among seven. This representation 269	

immediately allows identifying the model biases and the models that best reproduce the cluster-270	

regions identified in the observations. A huge amount of information could in principle be 271	

extracted from these maps, both from individual modelling groups, to understand the 272	

representation of this region by the models and origins of possible biases, and from experts of the 273	

area, to understand the difficulties of the climate models to represent the SST seasonal cycle in 274	

this region.  275	

For a more quantitative assessment, we counted the number of grid points of a region-276	

cluster for a given CMIP5 model matching the same region-cluster of the “observation field”. We 277	

then computed the ratio between that matching number and the number of pixels of the region-278	

cluster of the considered model. That number is noted in the color-bar for each region-cluster in 279	

Fig. 3. We denote Rmi the ratio for the region-cluster i and the model m, where i = 1, …, 7 is the 280	

number of the region-cluster and m = 1, …, 47 is the number of the model (see table 1). We note 281	

that Rmi ≤ 1.  Doing so, each model m is represented by a 7-dimensional vector Rm, each 282	

component being the ratio of a region-cluster.  We estimated the total skill of a model by 283	

averaging the 7 ratios. Note that this procedure gives the same weight to each region-cluster 284	

whatever its number of grid points and its proximity with the upwelling region. In the following 285	

the skill is presented as a percentage, the higher the skill, the better the fit. In Fig. 3, the 47 286	

CMIP5 models are ranked by their total skill, which is indicated above each panel beside the 287	

model name. The model skills are very diverse, ranging from 79% to 28%. This figure also 288	

shows that the models presenting the best total skill are also those representing thoroughly the 289	

upwelling region. Some models represent the large-scale structure in the eastern tropical Atlantic 290	

(region-clusters 3, 4, 5) very well but not the upwelling (33-GISS-E2-R and 34-GISS-E2-R-CC 291	

for example). Others represent pretty well the upwelling region-clusters (region-clusters 6 and 7), 292	

but not the large-scale structures of the SST seasonality (13-CSIRO-Mk-3-6-0, 6-CMCC-CESM 293	
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for example). None of these models is ranked among the best models, with a score greater than 294	

60%. As indicated above, this representation gives a very synthetic view of the structure of the 295	

seasonality of the SST cycle in each of the models, potentially a very useful guide for climate 296	

modelers to identify rapidly major biases. 297	

 298	

4  – Qualitative  analysis of the climate models 299	

In order to further progress in the selection of the models, the 47 climate models and the 300	

observation field were then analyzed by using a Multiple Correspondence Analysis (MCA in the 301	

following). MCA is a multivariate statistical technique that is conceptually similar to principal 302	

component analysis (PCA in the following), but applies to categorical rather than continuous 303	

data. Similarly as PCA, it provides a way of displaying a set of data in a two-dimensional 304	

graphical form.  305	

In the following, we apply a MCA analysis to the (47,7) matrix R = [Rmi] whose 306	

elements represent the skills of the clusters of the models shown in front of the color bars in Fig. 307	

3:  the rows m represent the 47 different models, the columns i the 7 region-clusters. The MCA, 308	

as the PCA, projects the initial matrix on a new basis in such a way that the new axes are the 309	

matrix eigenvectors (PC), the inertia of each axis being the corresponding eigenvalues. 310	

According to the theory, the MCA matrix analysis of R gives i-1 = 6 independent PCs. Each 311	

model is thus now associated with a 6-dimensional vector on which it has a specific weight. The 312	

MCA uses for this analysis the khi-2 distance. In figure 4, we present the projection of the 313	

models and the “region clusters” in the plane formed by the two first axes (x=PC1 and y= PC2) 314	

of the MCA. These two axes represent 70 % of the total inertia. Each model is represented by a 315	

small circle and each region-cluster by a purple square. Moreover, we projected the observation 316	

field (green diamond) on that plane as a supplementary individual. To have a more precise view 317	

of the topology, it would be necessary to consider the projection on the 5 other PCs, which 318	

represent 30% of the inertia.  319	

In the (PC1, PC2) plane, the shorter the distance between two models, the more similar 320	

the distribution of their region-cluster skills. Proximity between a model and a region-cluster 321	

leads us to affirm that this region-cluster is well represented by that model. Clearly, some models 322	
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adequately represent the southern part of the extended region (region-clusters 1, 2 or 3), where 323	

the SST seasonal cycle is weak, and are very distant from the upwelling regions (region-cluster 6 324	

and region-cluster 7) whose large SST cycle is poorly reproduced. In this group of models, one 325	

recognizes the model 16-IPSL-CM5A-MR, at the extreme bottom of Fig. 4, close to region-326	

clusters 4 and 5, consistently with Fig. 3. At the other end of this group of models, the model 23-327	

HadCM3 for example is located very close to the region-cluster 1. Fig. 3 indeed shows that most 328	

of its grid points over the region of interest have a seasonal cycle resembling the one found in the 329	

offshore tropical ocean. Another group of models is located in the center of this plan, thus at an 330	

optimal distance of each of the observed regions-clusters, and not far from the overall position of 331	

the observations (diamond). We recognize in this group of models those that have a high skill in 332	

Fig. 3. The positioning of the observations (green diamond in Fig. 4) with respect to the models 333	

indeed allows selecting those that best represent the observations field. The representation given 334	

in Fig. 4 allows understanding the drawback of the different models with respect to the 7 Modes 335	

of SST-cycles. 	336	

  As indicated in the introduction, the main objective of the methodology is to select an 337	

ensemble of models that represents at best the upwelling behavior with respect to the 338	

observations and to use this ensemble to predict the impact of climate change in the Senegalo-339	

Mauritanian upwelling with some confidence. The problem is now to determine a subset of 340	

models which has a better skill than Model-All, in other words minimize the distance to the 341	

observations. As the number of models is small enough, we chose to cluster them by an HAC 342	

according to their projections onto the six axes provided by the MCA, and select the optimal 343	

jump in the hierarchical tree (Jain and Dubes, 1988). 344	

Doing so, we obtain four homogeneous groups which are well separated (group 1, 2, 3, 4). 345	

They are plotted with different colors in Fig. 4. We denote Model-group 1, Model-group 2, 346	

Model-group 3, Model-group 4 these multi-model ensembles hereinafter. Model-group 4 347	

represents the observations and the upwelling region-clusters at best. 348	

For each group, we computed a multi-model average whose outputs are the mean of the 349	

outputs of its different members and we analyzed it according to the same procedure (projection 350	

of the SST-seasonal cycle and assignment to a region-cluster) used for each individual model. 351	

Besides we introduced the full multi-model average (Model-All in the following), which is the 352	
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multi-model ensemble, which averages the 47 CMIP5 model outputs. Model-All was also 353	

projected in the MCA plane and it is represented by a red star in Fig. 4. Comparison of the four 354	

model-groups with Model-All and the observations are presented in Fig. 5. This figure visually 355	

highlights the dominance of Model-group 4 for the reconstruction of the SST seasonal cycles of 356	

the different region-clusters for the extended region. This is particularly clear for region-clusters 357	

6 and 7, which are those located in the upwelling region (Fig. 2). Model-group 3 seems to group 358	

models characterized by an equatorward shift of the main structures, since the region-cluster 1 of 359	

tropical waters is not reproduced and Region-clusters 4 and 5 of extratropical waters are 360	

overestimated. Fig. 4 indeed shows that this Model-group is very close to the Regions-clusters 4 361	

and 5, which correspond to the extratropical and the transition geographical regions. Model-362	

group 2 misrepresents the region of the Canary upwelling. Model-group 1 overestimates the SST 363	

seasonal cycle in all the tropical open Atlantic. These two last model-groups overestimate the 364	

region-Cluster 1, again consistently with their position in Fig. 4. A detailed physical 365	

interpretation of the Model-groups is nevertheless beyond the scope of this paper. Clearly Model-366	

All represents the SST seasonal cycle of the off-shore ocean, but it proposes a very poor 367	

representation of the upwelling region.  368	

Two models (models 7 and 25) have a better skill than Model-group 4 and Model-All. 369	

These two models are very close to the observations on the first two axes of the MCA (Fig 4). It 370	

is easily seen that Model-group 4 and the projection of Model-All on this plane is farther than 371	

that of model 7 and model 25 from the observation projection. This explains the lower 372	

performance of these two multi-models as compared to models 7 and 25. In the present case, the 373	

method permits to determine the best models (model 7 and model 25) and to outline the best 374	

multi-model (Model-group 4) whose skill is better than any model with a probability of 95% 375	

(number of models whose skill is smaller than the skill of Model-group 4 with respect to the total 376	

number of models).  Projection of the models on the other planes of the MCA analysis should 377	

confirm this interpretation.  One could then question the use of Model-group 4 rather than model 378	

7 or model 25 individually. Furthermore, we argue that multi-model averages are in general more 379	

robust for climate studies than the use of a single model that can have good performance for a 380	

very specific set of constraints but not for neighboring ones. The following section will partly 381	

justify this point.  382	
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 383	

5 - Analysis of the climate models over a zoomed upwelling region  384	

The classification presented above relies largely on the ability of the models to represent 385	

the off-shore seasonal cycle of the SST. In the following, we propose to test the classification 386	

over a much more reduced area in order to focus the analysis on the upwelling area. This 387	

“zoomed upwelling region” is shown in Fig. 1.  388	

As for the extended region, we partitioned the observations of the zoomed upwelling 389	

region with a SOM (ZSOM in the following) followed by a HAC. We then applied a new MCA 390	

to regroup the climate models. We did a similar analysis as this performed in section 4. We 391	

obtained four new region-clusters well separated denoted ZRegion-clusters. Fig. 6 shows the four 392	

ZRegion-clusters obtained from ERSSTv3b observations together with their associated mean 393	

SST seasonal cycle. Again, the ZRegion-clusters are spatially coherent. The upwelling area is 394	

now decomposed into three ZRegion-clusters (ZRegion-clusters 2, 3, 4). This new decomposition 395	

thus refines the study performed for the extended region: ZRegion-cluster 1 represents the 396	

offshore ocean: its grid points typically have a SST seasonal cycle amplitude of 4°C, very similar 397	

to Region-cluster 4 in the classification performed over the extended region (Fig. 2). ZRegion-398	

cluster-4 nicely identifies the core of the Senegalo-Mauritanian region, with grid points 399	

characterized by the greatest amplitude of the SST seasonal cycle of the domain: typically 6.5°C. 400	

It is interesting to note that an additional upwelling ZRegion-cluster (ZRegion-cluster 3) appears 401	

south of ZRegion–cluster 4. Indeed, several studies have shown that the Cape Verde peninsula, 402	

located around 15°N, separates the upwelling region into two distinct areas having a different 403	

behavior north and south of this peninsula (Sirven et al., 2019; Sylla et al., 2019). The location of 404	

the separation between ZRegion-cluster 3 and 4 is determined with some uncertainty due to the 405	

coarse resolution (1°) of the ocean models. ZRegion-cluster 3 is marked by a time shift of the 406	

seasonal cycle: the warmest season seems to occur somewhat one month earlier than in the other 407	

regions as clearly seen in Fig. 6 (left panel, yellow curve in June). Due a classification done in a 408	

much larger region, such characteristic does not appear in the study over the extended area study. 409	

The physical interpretation of the SST seasonal cycle of this ZRegion-cluster is beyond the scope 410	

of the present study, but one can suspect a role of the ITCZ seasonal migration, covering these 411	
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grid points earlier than further north. Finally, ZRegion-cluster 2 is a transition between the large 412	

scale ocean and the upwelling region.  413	

As for the extended region, we applied a MCA analysis to the (47 x 4) matrix R = [Rmi] 414	

whose elements represent the skills of the four clusters (i) of the 47 models. This MCA was 415	

followed by a HAC leading the definition of five ZModel-groups. The members of each group 416	

are given in appendix. Fig. 7 shows the ZRegion-cluster obtained in the zoomed area by 417	

projecting these five ZModel-groups and Model-All model on the ZSOM and their associated 418	

performances. ZModel-group 1 is the least performing one: only 25% of the grid cells fall in the 419	

same class as for the observations. The structure of this model-group shows that it is 420	

characterized by an homogeneous amplitude of the seasonal cycle over the whole domain, 421	

suggesting a largely reduced upwelling: only one grid point at the coast has an enhanced SST 422	

seasonal cycle as compared to the large scale tropical ocean. ZModel-group 2 is the best 423	

performing one: 66% of the grid points are assigned to the correct class and the general picture 424	

indeed represents a four-class picture fairly consistent with the observed structure (Fig. 6). 425	

Important biases yet remain. In particular, the ZRegion-clusters 2 and 4 characterizing the 426	

upwelling extend too far offshore. The three other ZModel-groups are intermediate. A relatively 427	

reduced upwelling area, with an underestimated SST seasonal cycle, characterizes ZModel-428	

groups 3 and 4. ZModel-group 5 corresponds to a shift of the upwelling region towards the north. 429	

Model-All also shows a strongly reduced seasonal cycle, with a large amount of pixel in the 430	

intermediate ZRegion-cluster 3 and very few in the ZRegion-cluster 4. The ZRegion-cluster 3 431	

representing the southern part of the Senegalo-Mauritanian upwelling does not appear in the 432	

pattern of Model-All. 433	

We remark that all the models forming ZModel-group 2 are included in Model-group 4. 434	

For a more precise assessment, we can also project the entire Model-group 4, identified as the 435	

best multi-model ensemble over the extended region, on the ZSOM (Fig. 8, right). We notice that 436	

the performance of Model-group 4 remains very high on this projection, indicating some 437	

robustness of this multi-model ensemble. Moreover, this ensemble now outperforms the single 438	

best model identified over the extended region (Fig. 8, left). This result gives further confidence 439	

in the use of multi-model averages, illustrating that one single model can be very skillful over a 440	
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specific region, or for a specific analysis, but multi-model averages are more robust across 441	

various analysis and/or regions. 442	

6 – Impact of climate change on the Senegalo-Mauritanian upwelling 443	

6.1 Representation of the upwelling in the CMIP5 climate models clusters 444	

In this section, we compare the representation of the Senegalo-Mauritanian upwelling system 445	

given by the two best Model-groups identified above (Model-group 4 and ZModel-group 2). For 446	

this evaluation, we use two of the five indices used by (Sylla et al., 2019) to evaluate the full 447	

database, namely the intensity of the SST seasonal cycle and the offshore Ekman transport at the 448	

coast. The former is specific to the seasonal variability of the Senegalo-Mauritanian upwelling 449	

system, and it has been used for the classification. The latter is more general and although it has 450	

recently been shown to partly represent the volume of the upwelled waters (Jacox et al., 2018), it 451	

is extensively used in the scientific literature to characterize upwelling regions (Cropper et al., 452	

2014; Rykaczewski et al., 2015; Wang et al., 2015). Note also that following Sylla et al., 2019, 453	

evaluation is performed on the period [1985-2005]. This period slightly differs from the 454	

classification period but the SST seasonal cycle is not significantly different (not shown). 455	

Fig. 9 compares the amplitude of the SST seasonal cycle as represented in the 456	

observations, Model-All, Model-group 4 and ZModel-group 2 identified above. Consistently with 457	

Fig. 5 and 7, Model-All dramatically underestimates the upwelling signature in terms of SST 458	

seasonal cycle as compared to the observations. Model-group 4 and ZModel-group 2 yield 459	

improved results: the area of enhanced SST seasonal cycle is larger both in latitude and 460	

longitude, with stronger SST amplitude values. This confirms the efficiency of the selection 461	

operated above. Nevertheless, ZModel-group 2 yields a realistic SST amplitude pattern along the 462	

coast but it extends too far offshore. Furthermore, in ZModel-group 2, the subtropical area (in 463	

green in Fig 9) extends too far towards the south, in particular in the western part of the basin. 464	

The tropical area, characterized by limited amplitude of the seasonal (deep blue in Fig. 9), is 465	

shifted to the south as compared to the observations. In other words, the large scale thermal, and 466	

thus probably dynamical structure of the region is poorly represented in ZModel-group 2. Finally, 467	

Model-group 4 is the least biased one.  468	
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The intensity of the wind stress parallel to the coast, inducing offshore Ekman transport 469	

and consequently an Ekman pumping at the coast, is generally considered as the main driver of 470	

the upwelling. We therefore also tested the representation of this driver in the different Model-471	

groups. The idea is to evaluate the impact of the model selection performed above on the 472	

representation of an independent variable by the Model-groups. Fig. 10 shows the latitude-time 473	

evolution of the meridional oceanic wind stress, considering that the coast in the studied region is 474	

oriented approximately meridionally, so that the offshore Ekman transport is mainly zonal. Note 475	

that in Fig. 10, southward winds have positive values so that they correspond to a westward 476	

Ekman transport, favorable to upwelling. Panel (a) shows that the observed meridional wind 477	

stress is, all year long, favorable to the upwelling north of 20°N. At these latitudes, it is stronger 478	

in summer. Between 12°N and 20°N, in the latitude band of the Senegalo-Mauritanian upwelling, 479	

on the contrary, the wind blows southward with a very weak intensity in summer and it even 480	

changes direction in the southern part of this latitude band. It is favorable to the upwelling in 481	

winter-spring, which explains why the Senegalo-Mauritanian upwelling occurs during this season 482	

with a maximum of intensity in March-April (Capet et al., 2017; Farikou et al., 2015).  The main 483	

bias of Model-All (Fig. 10b) is that the wind stress never reverses between 12°N and 20°N. It 484	

weakens in the southern part of the Senegalo-Mauritanian latitude band, i.e. south of the Cape 485	

Verde peninsula (15°N), but does not become negative. North of the Cape Verde peninsula, it 486	

blows from the north also in summer, so that the Senegalo-Mauritanian upwelling lacks of 487	

seasonality. This bias is corrected in Model-group 4 and ZModel-group 2 (Fig. 10, panels c and 488	

d) that are, in this aspect, more realistic than Model-All. Model-group 4 shows a slight extension 489	

of the time and latitude range where the oceanic wind stress reverses sign. This constitutes an 490	

improvement. The southward wind is nevertheless too strong in winter over the [12°N-20°N] 491	

latitude band as well as further south from December to March. These two remaining biases are 492	

further reduced in ZModel-group 2. This latter model yields the most realistic seasonal cycle of 493	

meridional oceanic wind stress over the latitude band under study. This is consistent with a very 494	

localized model selection, as the wind index is itself localized along the coast. 495	

To conclude, Model-group 4 and ZModel-group 2 perform in general better than Model-All in 496	

reproducing the major characteristic features of the Senegalo-Mauritanian upwelling. This result 497	

confirms the relevance of the multi-model selection we have presented above. Applying the 498	

methodology over a relatively large region allows to better constraining the spatial extent and 499	
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pattern of the SST signature of the upwelling than the reduced area. The latter however yields a 500	

better representation of the wind seasonality along the coast. 501	

6.2 Response of the Senegalo-Mauritanian upwelling to global warming.  502	

In this section, we examine the response of the upwelling system given by the different 503	

multi-model groups we selected, to global warming. For this, we compared the two indices 504	

analyzed above in present-day and future conditions. The present-day conditions are taken as 505	

above as the climatological average of historical simulations over the period [1985-2005]. The 506	

future period is taken as the climatological average of the RCP8.5 scenario over the period [2080-507	

2100]. Fig. 11 shows the difference of the SST seasonal cycle amplitude between these two 508	

periods. The general behavior is that the SST cycle amplitude will reduce in the upwelling region. 509	

Sylla et al., 2019 showed that this is primarily due to a warming of the winter temperature, thus 510	

suggesting that the upwelling signature in surface will reduce. On the other hand, this figure 511	

shows that the upwelling signature will increase along the Canary current, which flows along the 512	

coast of Morocco, as well as in the subtropical part of our domain. This behavior is observed in 513	

the three multi-model ensembles. Yet, the two selected Model-groups suggest a weaker decrease 514	

of the SST seasonal cycle in the upwelling region than the one given by Model-All. ZModel-515	

group 2 shows an even weaker decrease mainly confined in the southern part of the upwelling 516	

region. This result echoes findings of Sylla et al., 2019 based on another indicator of the 517	

upwelling imprint on the SST: they showed that the difference between the SST at the coast and 518	

offshore is expected to decrease more in the southern part of the Senegalo-Mauritanian upwelling 519	

system (SMUS) than in the north . We can hypothesize that the study conducted on the reduced 520	

area permits to separate the Senegalo-Mauritanian upwelling system into two clusters, a northern 521	

one (ZRegion 4) and a southern one (ZRegion-3) (Fig. 7) which enables to distinguish this 522	

specific response.  523	

The meridional wind stress also generally weakens under climate change in the [12°N-524	

20°N] latitude band (Fig. 12), suggesting a general reduction of the upwelling intensity. From 525	

December to March, this is particularly true in the southernmost region of the Senegalo-526	

Mauritanian band, consistently with the results of (Sylla et al., 2019). The wind pattern inferred 527	

from the two Model-groups (Fig. 12, middle and right panels) present a higher seasonal 528	

variability than this of Model-All (left panel). The winter reduction of the southward wind stress 529	
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is slightly more confined to the southern region in ZModel-group 2, especially at the end of the 530	

upwelling season (March-April) when the upwelling intensity is the strongest. This may be 531	

consistent with the reduced seasonal cycle in the southernmost part of the upwelling identified 532	

above.  533	

7 - Discussion and Conclusion 534	

This paper proposed a novel methodology for selecting efficient climate models over a specific 535	

area (here the Senegal-Mauritania upwelling region) with respect to observations and according 536	

to well-defined statistical criteria. In the present study, we have specifically checked the ability of 537	

the climate models to reproduce the ocean SST annual cycle observed in specific sub-regions of 538	

the studied domain during the period 1975-2005 as reported in the ERSST_v3b data set. These 539	

sub-regions were defined by a neural classifier (SOM) as clusters having similar seasonal SST 540	

cycle anomalies with respect to some statistical characteristics, and were therefore named region-541	

clusters. They correspond to ocean areas having well marked oceanographic specificities.  542	

We then checked the ability of the different climate models to reproduce the region-clusters 543	

defined on the observation dataset with a SOM. The better a climate model fits the clusters 544	

computed with the SST observation, the higher the skill of the model. To evaluate this, we 545	

defined geographical regions in the different CMIP5 climate models by projecting the SST 546	

annual cycle anomalies of each model grid point onto the SOM. Each grid point is associated 547	

with a cluster on the SOM map and consequently to a region-cluster on the geographical map. 548	

We built a similarity criterion by	counting	the	number	of	grid	points	in	a	region-cluster	of	a	549	

given	model	matching	the	same	region	cluster	defined	by	processing	the	observation	field.	550	

We then computed the ratio between that matching number and the number of pixels of the 551	

region-cluster	of	the	model	under	study.  We estimated the total skill of a model by averaging 552	

the 7 ratios associated with the 7 region clusters. Note that this procedure presents the advantage 553	

to give the same weight to each region-cluster whatever its number of grid point and its proximity 554	

with the upwelling region. This procedure respects the clustering done by the SOM since the 555	

different clusters have an equal weight in the skill computation. In its present definition, the total 556	

skill is a number between 0 and 1, the higher the skill, the better the fit. Other measures of the 557	

total skill of a Model-group could nevertheless be defined depending on the objective of the 558	

study. One may compare the skill of individual models over a specific region-cluster of interest, 559	



	20	
	

or analyze the pattern of skill in one specific model and its sensitivity to possible various 560	

parameterization schemes. The extraction of information embedded in the vector-skill whose 7 561	

components are the skills associated with the 7 sub-regions and the resulting efficient multi-562	

model combination imply the use of advanced statistical tools such as the MCA. Moreover the 563	

study of the vector skill also permits to separate information provided on large offshore ocean 564	

circulation from those occurring in the upwelling region leading to diagnose the deficiencies of 565	

some climate models with respect to the modeling of physical processes. Another contribution of 566	

the MCA is the visualization of the 47 models and the observations on the plane constituted by 567	

the first two MCA axes, which represents 70% of the information embedded in the data.  The 568	

similarities of the climate models with respect to the observations and the region-clusters are well 569	

evidenced. The ‘mean’ skill associated with each climate model and proposed in this study is 570	

easy to use but is far less informative than the vector-skill whose 7 components are the skills 571	

associated with the 7 sub-regions.  572	

Such a multi-model ensemble selection indeed allows sampling a set of models in order to obtain 573	

a more realistic climatology over the region of interest. The response of the upwelling to climate 574	

change given by the different multi-model ensembles is quite robust in the sense that they give 575	

similar qualitative answers. However, a too selective ensemble of models may lead to noisy 576	

patterns. A compromise thus has to be found between the advantage of using a large number of 577	

models, in order to smooth biases and unrealistic patterns, or selecting the most realistic models, 578	

with the advantage of using a small number of models in the averaging procedure, but with the 579	

possible inconvenience of getting spurious biases.  580	

As discussed in the introduction, different criteria have been used for extracting some efficient 581	

models from the CMIP5 models used for climatic studies. The most common parameter is the 582	

average annual surface mean temperature of the grid points of the region under study. 583	

Besides,(Knutti et al., 2006) used the seasonal cycle in surface temperature represented by 584	

seasonal amplitude in temperature calculated as summer June–August (JJA) minus winter 585	

December–February (DJF) temperature. This criterion is more informative than the annual mean 586	

temperature since the amplitude of the seasonal variability is an important criterion characterizing 587	

the validity of a climate model. In the present work, we used a much more informative criterion 588	

which is formed of the monthly temperature cycle anomaly represented by a 12 components 589	
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vector, each component representing the average monthly temperature of the year we consider. 590	

This new criterion allows taking account the amplitude and the phase of seasonal variability 591	

while the Knutti et al., 2006 criterion only takes into account the amplitude of the seasonal 592	

variability. Note however that it implies a good geophysical knowledge of the region under 593	

interest, in order to determine the relevant region-clusters after the SOM. It is also very specific 594	

to the Senegal-Mauritania upwelling region. Furthermore, Sylla et al., 2019 extensively discussed 595	

the possible differences among several indices aiming at characterizing the upwelling and the 596	

need to use some of them to have a complete understanding of this coastal phenomenon. This 597	

conclusion is probably general to any physical process of the climate system. In the present 598	

study, the model selection is based on only one signature of the SMUS. Several possibilities can 599	

be envisaged to improve the resolution of this problem such as merging several indices like SST, 600	

temperature at several depths, wind vector, ocean currents,... This approach could also allow a 601	

selection of models based on the representation of several distinct regional behaviors. In spite of 602	

several subjective choices, including the studied domain and the statistical metrics, we argue that 603	

this method is a step towards an objective selection of models, based on a quantitative assessment 604	

rather than a qualitative analysis of maps of performance.  605	

Different applications of the multi-model selection strategy proposed in the present study can be 606	

envisaged. Firstly, from a purely modeling point of view, the projection of the models on the 607	

SOM (or ZSOM) and the results of the HAC yield a very enlightening description of a given 608	

model behavior in terms of region-clusters of the area under study. In our view, such a procedure 609	

could advantageously be used by individual modeling groups to identify, analyze and therefore 610	

hopefully reduce their model biases in a targeted region. Secondly, from a physical point of view, 611	

an identified Model-group can be used to analyze the targeted region (here the SMUS) in term of 612	

processes with the advantages of the multi-model mean in which the constituting models have 613	

been selected from quantitative criteria. Such an application has been briefly illustrated by 614	

showing how the selected Model-group represents an important additional characteristic of the 615	

SMUS, not used for the selection, namely the Ekman pumping. Promising reduction of biases of 616	

the full multi-model mean ensemble has been identified, opening perspectives for process studies 617	

based on this sub-ensemble of the CMIP5 database. A third application of the selection lies in the 618	

prediction of the future climate. Here, we have shown that selected multi-model ensembles may 619	

provide a more precise description of the future behavior of the SMUS. It may nevertheless be 620	
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important to note that these conclusions are based on the assumption that the CMIP5 models 621	

which have been selected according to their present-day characteristics, are the most reliable in 622	

terms of future projections, which can be questioned and refined (Lutz et al., 2016; Reifen and 623	

Toumi, 2009).  624	

As discussed in the introduction, the concept of “model democracy”, suggesting that all models 625	

should be equally considered in multi-model ensemble is now strongly questioned (Knutti et al., 626	

2017). The present study proposes a promising way to improve the quality of multi-model 627	

ensemble in terms of model selection. Deep advances in the field of multi-model analysis and 628	

selection can be expected from the emerging topic of climate informatics (Monteleoni et al., 629	

2016) as it has been shown through the present study. Artificial intelligence and machine learning 630	

may indeed provide efficient tools to make the best out of the extraordinary but imperfect tools 631	

that are the climate models and the multi-model intercomparison efforts.  632	
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APPENDIX  830	

 831	

Model-group	1	 Model-group	2	 Model-group	3	 Model-group	4	

ACCESS1-0	
ACCESS1-3	
CESM1-CAM5	
CESM1-CAM5-1-FV2	
CESM1-WACCM	
HadCM3	
MIROC-ESM	
MIROC-ESM-CHEM	
MIROC5	
NorESM1-M	
NorESM1-ME	
	

bcc-csm1-1	
bcc-csm1-1-m	
BNU-ESM	
CCSM4	
CESM1-BGC	
CESM1-FASTCHEM	
GFDL-CM2p1	
GFDL-ESM2G	
GFDL-ESM2M	
MPI-ESM-LR	
MPI-ESM-MR	
MPI-ESM-P	

	

FGOALS-g2	
GISS-E2-H	
GISS-E2-H-CC	
GISS-E2-R	
GISS-E2-R-CC	
inmcm4	
IPSL-CM5A-LR	
IPSL-CM5A-MR	
IPSL-CM5B-LR	
MRI-CGCM3	
MRI-ESM1	
	

CanCM4	
CanESM2	
CMCC-CESM	
CMCC-CM	
CMCC-CMS	
CNRM-CM5	
CNRM-CM5-2	
CSIRO-Mk3-6-0	
FGOALS-s2	
GFDL-CM3	
HadGEM2-AO	
HadGEM2-CC	
HadGEM2-ES	

 832	

ZModel-group	1	 ZModel-group	2	 ZModel-group	3	 ZModel-group	4	

ACCESS1-0	
bcc-csm1-1-m	
CCSM4	
CESM1-BGC	
CESM1-CAM5	
CESM1-CAM5-1-FV2	
CESM1-FASTCHEM	
CESM1-WACCM	
GISS-E2-H	
GISS-E2-H-CC	
GISS-E2-R	
GISS-E2-R-CC	
HadCM3	
inmcm4	
IPSL-CM5B-LR	
MIROC5	
MPI-ESM-LR	
MPI-ESM-MR	
MPI-ESM-P	

CMCC-CMS	
CNRM-CM5	
CNRM-CM5-2	
FGOALS-s2	
GFDL-CM3	

	
	

BNU-ESM	
CanCM4	
CanESM2	
CMCC-CM	
FGOALS-g2	
IPSL-CM5A-LR	
IPSL-CM5A-MR	
MRI-CGCM3	
NorESM1-M	
NorESM1-ME	
	
	

ACCESS1-3	
bcc-csm1-1	
CSIRO-Mk3-6-0	
HadGEM2-AO	
HadGEM2-CC	
HadGEM2-ES	
MIROC-ESM	
MIROC-ESM-CHEM	
MRI-ESM1	
	
	

	

ZModel-group	5	

CMCC-CESM	
GFDL-CM2p1	
GFDL-ESM2G	
GFDL-ESM2M	

 833	
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Table A1: Composition of the different Model-groups identified in the main text. In bold, we 834	

show the CMIP5 models which belong to Model-group 4 and ZModel-group 2. We note that all 835	

the models belonging to Zmodel-group 2 also belong to Model-group 4.    836	

	  837	
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 838	

Table 1: List of the CMIP5 models used for the comparison. The reader is referred to the CMIP5 839	
documentation for more information on each of them. Here, each configuration is furthermore 840	

given a number, for easier identification in subsequent figures.  841	
	  842	
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 843	

 844	

Figure 1: Amplitude of the SST seasonal anomalies in the western tropical north Atlantic. SST 845	
data are from the ERSSTv3b data set averaged between 1975 and 2005. The two black boxes 846	
show the extended and zoomed regions respectively, over which the statistical classifications 847	
were performed (see text for details).  848	
	  849	
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 850	

Figure 2: Left panel: Region-clusters associated with the SOM-clusters obtained after a HAC on 851	
a 30x4 neuron SOM learned on ERSSTv3b observations in the extended zone (see text for 852	
details). Right Panel: Ensemble-mean climatological SST anomalies for the grid points of the 853	
seven Region-clusters. The error bars show the standard deviation of this ensemble mean.  854	
	  855	
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 856	

 857	

Figure 3: Projection of the 47 climate models of the CMIP5 database onto the SOM learned with 858	
ERSSTv3b climatology in the extended zone (see Fig. 1). On top of each panel, we figure: the 859	
number referencing the model, its name (Table 1), and its skill given as a mean percentage (see 860	
text). The models are ordered according to their skill in decreasing order. The 7 Region-clusters 861	
(or SOM-clusters) are defined by applying an HAC to the SOM output learned with the 862	
observation field.  They are represented by different colors. The numbers in the colorbar at the 863	
right of each panel represent the skill for each Region-cluster. The observation field is shown in 864	
the bottom right panel and the numbers in front of the colorbar reference the Region-cluster. 865	
	  866	
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 867	

Figure 4: Projection of the CMIP5 models (colored circles) and the observation field (green 868	
diamond) defined by their cluster skill vectors on the first two axis of the MCA.  The seven 869	
region-clusters of the observation field are represented by purple squares. The colours of the 870	
circles denote the four groups of models obtained after an HAC was performed on the seven 871	
MCA components of the models. The projection of the full multi-model mean (47 models) is 872	
represented by a red star. We stress here the fact that representing the full MCA output is 873	
complicated because of the multidimensional property. The representation of some data along the 874	
first two axis as here can be biased because of the importance of the other axes. 875	
	  876	
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 877	

Figure 5: (a)-(d): Projection of the multi-model ensembles (Model-group) onto the SOM learned 878	
with ERSSTv3b climatology in the extended zone.  Multi-model ensemble performances are 879	
obtained by averaging the skill of the models forming each group.  The performances are given 880	
on top of each panel.  The Region-clusters determined by processing the observations in the 881	
extended area and their associated colors are given in the bottom right panel. The colorbars at the 882	
right of each multi-ensemble panel represent the skill (in %) associated with each Region-cluster. 883	
Panel (e) shows the same for the full multi-model ensemble. Panel (f) reproduces the Region-884	
clusters based on the observations also shown in Fig. 2.  885	
 886	

	  887	
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 888	

Figure 6: Left panel: ZRegion-clusters associated with the ZSOM-clusters obtained after a HAC 889	
on a 10x12 neuron SOM learned on ERSSTv3b observations in the zoomed zone (see text for 890	
details). Right Panel: Ensemble-mean climatological SST anomalies for the grid points of the 891	
four ZRegion-clusters. The error bars show the standard deviation of this ensemble mean.  892	
  893	
 894	

	  895	
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 896	

Figure 7: (a)-(e): Projection of the multi-model ensembles (ZModel-groups) onto the ZSOM. The 897	
performances are given on top of each panel. The ZRegion-clusters determined by processing the 898	
observations in the zoomed region and their associated colors are given in the bottom right panel. 899	
The colorbars at the right of each multi-ensemble panel represent the skill (in %) associated with 900	
each ZRegion-cluster. Panel (f) shows the same for the full multi-model ensemble. Panel (g) 901	
reproduces the Region-clusters based on the observations also shown in Fig. 6. 902	
	  903	
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 904	

Figure 8 : Same as Fig. 7 but for the individual model CMCC-CM (model 7) (left) and the 905	
Model-group 4 (right).  906	
	  907	
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 908	

Figure 9: Amplitude of the SST seasonal cycle in the (a) ERSSTv3b Observations (b) Model-All, 909	
c) Model-group 4 (best Model-group for the extended area, figured out by the black rectangular 910	
box) and (d) ZModel-group 2 (best Model-group for the reduced area, figured out by the small 911	
black rectangular box). The SST seasonal cycle is computed over the period 1985-2005 912	
	  913	
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 914	

Figure 10: Latitude-time plot of depth integrated Ekman transport computed over the grid point 915	
located along the coast (magenta stars in Fig. 9.a). The time axis shows climatological months 916	
over the period 1985-2005.  Positive (negative) values correspond to upwelling (downwelling) 917	
conditions. Panel (a) stands for TropFlux data set (see (Praveen Kumar et al., 2011) (b) Model-918	
All, (c) Model-group 4 and (d) ZModel-group 2. In each panel, the black contour shows the 919	
contour zero. The horizontal dashed lines are positioned at 12°N and 20°N and give a rough 920	
limitation of the senegalo-mauritanian upwelling region. 921	
 922	

	  923	
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 924	

Figure 11: Evolution of the amplitude of the SST seasonal cycle at the end of the 21st century. 925	
The figure shows the difference between the seasonal cycle amplitude averaged over the period 926	
[2080-2100] following the RCP8.5 scenario and the amplitude averaged over the period [1985-927	
2005] in the historical simulations. A positive value (red) means that the seasonal cycle is more 928	
marked over the period 2080-2100. 929	
 930	

	  931	
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 932	

Figure 12: Latitude-time diagram of the seasonal shift of the meridional component of the wind-933	
stress with respect to the present days. For each month and at each latitude, we show the 934	
meridional wind stress shift with respect to the present days averaged over the period [2080-935	
2100]. Positive values (red) means that the wind stress shift is southward and is thus favorable to 936	
upwelling. Panel (a) stands for Model-All, (b) Model-group 4 and (c) ZModel-group 2. 937	
 938	


