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It	is	not	correct	to	consider	the	CMIP	models	independent	in	a	generic	sense.	
Indeed,	the	editor	is	right,	this	sentence	is	ambiguous.	It	has	been	removed.	
	
As	was	alluded	to	by	one	of	the	reviewers,	the	language	use	is	on	occasion	not	succinct	
and	precise	or	contains	mistakes.	I	highlight	a	small	number	of	examples	of	this	below,	
but	the	manuscript	needs	to	go	through	a	comprehensive	copy	editing	process.	GMD	
does	offer	this:	
https://publications.copernicus.org/services/copy_editing_for_english.html	but	please	
don’t	feel	obliged	to	use	this	service	if	you	co	do	this	yourself	or	by	different	means.	
	
Thanks	for	this	offer.	A	native	English	colleague	has	read	through	the	text.	We	hope	that	
the	language	is	now	acceptable.		
	
.	P1	L17	‘an	efficient	multi-model’	What	does	efficient	mean	in	this	context?	
We have expanded this sentence into “a multi-model ensemble combination that efficiently 
reproduces target features of the observations” to clarify our point 
	
.	P1	L20	‘combination	of	12’	implies	that	the	models	within	those	12	offers	something	
unique	or	are	ordered	in	some	way.	This	perhaps	plays	into	the	reviewer's	view	that	you	
were	trying	to	weight	models	rather	than	subset	models.	It	maybe	that	you	are	
suggesting	they	offer	something	unique,	but	my	interpretation	here	is	that	you	mean	
‘subset’.	
The	editor	is	right,	and	we	have	corrected	this	flowing	his	suggestion.	
	
.	P2	L19	‘for	a	large	variety	of	variables	the	multi-model	average	mostly	agrees	better	
with	observations	of	present	day	climate	than	any	single	model,	and	that	the	average	
also	consistently	scores	higher	in	almost	all	diagnostics’	-	the	second	part	of	this	
sentence	is	redundant.	
It	has	been	removed	
	
.	P2L30	‘each	other	in	the	averaging	procedure	used	to	build	the	multi-model’	-	missing	
‘mean’.	
Corrected





Towards an objective assessment of climate multi-model 

ensembles. A case study : the Senegalo-Mauritanian upwelling 

region 
Juliette Mignot1, Carlos Mejia1, Charles Sorror1, Adama Sylla1,2, Michel Crépon1 and Sylvie 

Thiria1,3. 

1 IPSL-LOCEAN, SU/IRS/CNRS/MNHN, Paris, France 
2 LPAO-SF, ESP, UCAD, Dakar, Sénégal 
3 UVSQ, F-78035, Versailles, France 
Correspondence to: Juliette Mignot (Juliette.mignot@locean-ipsl.upmc.fr) 

Abstract.	Climate simulations require very complex numerical models. Unfortunately, they 

typically present biases due to parameterizations, choices of numerical schemes, and the 

complexity of many physical processes. Beyond improving the models themselves, a way to 

improve the performance of the modeled climate is to consider multi-model combinations. In 

the present study, we propose a method to select the models that yield a multi-model 

ensemble combination that efficiently reproduces target features of the observations. We used 

a neural classifier (Self-Organizing Maps), associated with a multi-correspondence analysis to 

identify the models that  best represent some target climate property. We can thereby 

determine an efficient multi-model ensemble. We illustrated the methodology with results 

focusing on the mean sea surface temperature seasonal cycle on the Senegalo-Mauritanian 

region. We compared 47 CMIP5 model configurations to available observations. The method 

allows us to identify a subset of CMIP5 models able to form an efficient multi-model 

ensemble. The future decrease of the Senegalo-Mauritanian upwelling proposed in recent 

studies is then revisited using this multi-model selection.  

 

 

1- Introduction 

In this study, we present a methodology aimed at selecting a coherent sub-ensemble of the 

models involved in the Climate Model Intercomparison Project, Phase 5 (CMIP5) that best 

represents specific observed characteristics. While the future evolution of the global climate is 

subject to great changes and great uncertainty (Collins et al., 2014), the most common way to 

predict the evolution of the climate is to run climate models that include fully coupled 

atmosphere-ocean-cryosphere-biosphere modules. Due to their low resolution, and the fact 



that they use different parameterizations of the physics, numerical schemes and sometimes 

include or neglect different processes, these models have some marked biases in specific 

regions. They also have different responses to an imposed increase of atmospheric greenhouse 

gases, which partly explain their mean climate biases. This variety of models allows us to 

assess the uncertainty of present climate representation when compared to observations and, 

by studying their dispersion, to roughly estimate the uncertainty of the response to future 

climate change.  

For several generations of climate models, it has been shown that for a large variety of 

variables the multi-model average generally agrees better with observations of present day 

climate than any single model (Lambert and Boer, 2001; Phillips and Gleckler, 2006; Reichler 

and Kim, 2008; Santer et al., 2009; Tebaldi and Knutti, 2007). Several studies also suggest 

that the most reliable climate projection is given by a multi-model averaging (Knutti et al., 

2010), rather than, for example, averaging different projections performed with a single 

model run with different initial conditions. This result relies on the assumption that if choices 

of parameterizations or specific numerical schemes are made independently for each model, 

then the errors might at least partly compensate, resulting in a multi-model average that is 

more skillful than its constitutive terms(Tebaldi and Knutti, 2007). The significant gain in 

accuracy can be explained by the fact that the errors specific to each model compensate each 

other in the averaging procedure used to build the multi-model mean. However, the number of 

GCMs available for climate change projections is increasing rapidly. For example, the CMIP5 

archive (Taylor et al., 2012), which was used for the fifth IPCC Assessment Report (Stocker 

et al., 2013), contains outputs from 61 different GCMs and 70 contributions are expected for 

CMIP6. Nevertheless, these models constitute a fully independent ensemble (e.g. Masson and 

Knutti, 2011). It thus becomes possible - and probably needed - to select and/or weight the 

models constituting such an average. Recent work has suggested that weighting the multi-

model averaging procedure could help to reduce the spread and thus uncertainty of future 

projections. Such an approach has been applied extensively to the issue of climate sensitivity 

(Fasullo and Trenberth, 2012; Gordon et al., 2013; Huber and Knutti, 2012; Tan et al., 2016). 

Valuable improvement of model selection has also been found in studies of the carbon cycle 

(Cox et al., 2013; Wenzel et al., 2014), the hydrological cycle (Deangelis et al., 2015; 

O’Gorman et al., 2012), the Antarctic atmospheric circulation (Son et al., 2010; Wenzel et al., 

2016), extratropical atmospheric rivers (Gao et al., 2016), atmospheric and ocean heat 

transports (Loeb et al., 2015), European temperature variability (Stegehuis et al., 2013) and 

temperature extremes (Borodina et al., 2017). 



The present paper is dedicated to the elaboration of an objective method to select 

models according to their performance for a specific phenomenon. Here, we use the 

Senegalo-Mauritanian upwelling area as a case study to construct an efficient climate multi-

model combination together with its related confidence interval in order to anticipate the 

effect of climate warming by the end of the century in this region.  The Senegalo-Mauritanian 

upwelling has been the focus of increasing attention over recent years. The very productive 

waters associated with the upwelling have a strong economic impact on fisheries in Senegal 

and Mauritania, and a crucial societal importance for local populations. It is therefore 

important to predict the evolution of the dynamics and the physics of the upwelling in the 

forthcoming decades, due to the effect of climate warming and its consequences on biological 

productivity, which may impact the fisheries. The Senegalo-Mauritanian upwelling lies at the 

southern end of the Canarian upwelling system, which has itself a relatively weak seasonality 

and is maximum in summer. Consequently, is characterized by a very specific seasonality 

which is observed on satellite SST (Demarcq and Faure, 2000; Sawadogo et al., 2009). On the 

contrary, the Senegalo-Mauritanian upwelling presents on the contrary a well-marked 

seasonal variability. Its intensity is stronger in boreal winter and it disappears in summer with 

the northward progression of the ITCZ.  Due to the enrichment of the sea surface layers with 

nutrients upwelled from deep layers, it drives an important phytoplankton bloom that is 

observed on ocean color satellite images (Demarcq and Faure, 2000; Farikou et al., 2015). 

The maximum intensity of this bloom occurs in March-April (Farikou et al., 2015; Faye et al., 

2015; Ndoye et al., 2014). Its important seasonal cycle is also associated with mesoscale 

patterns whose variability has been recently studied by several oceanographic campaigns 

(Capet et al., 2017; Faye et al., 2015; Ndoye et al., 2014) and theoretical work (Sirven et al., 

2019). Sylla et al., 2019 have recently shown that the intensity of the SST seasonal cycle 

along the coast of Senegal and Mauritania was a good marker of the upwelling in this specific 

region in climate models. They have used this index together with other more dynamical 

indices to predict that the upwelling will decrease by about 10% of its present-day amplitude 

by the end of the 21st century. Nevertheless, their study also highlighted a large uncertainty 

due to model biases in this region. The method we have developed selects a subset of the 

CMIP5 ensemble based on the capability of the climate models to reproduce the SST seasonal 

cycle observed during the historical period in key sub-regions. These sub-regions are 

identified by a neural classifier. The method leads us to rank the different models and to 

determine an efficient multi-model combination for the analysis of the Senegalo-Mauritanian 

upwelling and projections of its behavior in global warming conditions. 



The paper is structured as follows: section 2 presents the different climate models and 

the climatological observations used in the study, together with the region of interest. The 

classification method is described in section 3 and applied to the extended region. Section 4 

presents a qualitative analysis able to group the different climate models in clusters presenting 

similar performances. Section 5 investigates the results of the method applied over a smaller 

area, more focused over the upwelling region. Section 6 uses the two multi-model clusters 

defined in sections 4 and 5 respectively to tentatively predict the representation of the 

Senegalo-Mauritanian upwelling changes under global warming. Conclusions are given in 

section 7.  

 

2- Climate Models and region of interest 

2.1 Data 

This study is based on the CMIP5 (Coupled Model Inter-comparison Project Phase 5) 

database.  We use the output of 47 simulations listed in Table 1. The models are evaluated 

over the historical period defined as [1975-2005] by comparing their output to observations. 

The mean seasonal cycle of SST anomalies over this period is constructed for each model grid 

point as the difference between the monthly mean temperature and the mean annual 

temperature. When several members of historical simulations are available for a specific 

model configuration, they are averaged together. However, this has practically no impact on 

the estimated mean seasonal cycle (not shown). The mean climatological cycle of the CMIP5 

models under study is evaluated against the Extended Reconstructed Sea Surface Temperature 

data set (ERSST- v3b, Smith et al., 2008), averaged over the same time period. This data set 

was produced by NOAA at 2° spatial resolution. It is derived from the International 

Comprehensive Ocean–Atmosphere Dataset with missing data filled in by statistical methods. 

This dataset is used as the target to be reproduced and is denoted "observation field" hereafter.  

In order to deal with data at the same resolution, all model outputs as well the observation 

fields were regridded on a 1-degree resolution regular grid prior to analysis. A previous study 

(Sylla et al., 2019) has compared the performance of this dataset as compared to the gridded 

SST data set from the Met Office Hadley Centre HadISST (Rayner, 2003). The main results 

regarding the future of the upwelling were shown to be independent of the validation dataset 

primarily because the models’ biases and the inter-model differences were much larger than 

the differences between the validation datasets. The methodological and oceanographic 



results presented in this study are thus expected to depend only very weakly on the target 

dataset.  

In section 6, the model selections are used to characterize the response of the upwelling to 

climate change. This response is characterized in terms of SST anomalies as well as wind 

intensity. For wind intensity, the simulated wind stress is compared to the TropFlux 

reanalysis. This data set combines the ERA-Interim reanalysis for turbulent and long-wave 

fluxes, and ISCCP (International Satellite Cloud Climatology Project) surface radiation data 

for shortwave fluxes. This wind stress product is described and evaluated in (Praveen Kumar 

et al., 2011). 

 

2.2 The Senegalo-Mauritanian upwelling region 

In this study, we evaluate the ability of the different climate models to represent the Senegalo-

Mauritanian upwelling. Following (Sylla et al., 2019), we consider the intensity of the 

seasonal cycle of the SST anomaly as a marker of the upwelling variability and localization. 

This variable is shown in Fig. 1 for the eastern tropical Atlantic. This figure confirms that the 

Senegalo-Mauritanian coast stands out with a very strong seasonal SST cycle as compared to 

similar latitudes in the open ocean. This results from the cold SST generated by the strong 

winds occurring in winter. The Senegalo-Mauritanian upwelling is confined in a small region 

of the order of 100km off the western coast of Africa. It is part of a complex and fine-scale 

regional circulation system recently revisited by Kounta et al., 2018. Since the grid mesh of 

most of the climate models is of the order of 1° (~100km), this regional circulation is poorly 

resolved, which favors a relatively large-scale analysis of the upwelling representation in 

climate models. The Senegalo-Mauritanian upwelling is also embedded in a large scale 

oceanic circulation pattern, encompassing the North Equatorial Counter Current flowing 

eastward in the southern part of the region and the return branch of the subtropical gyre in the 

northwestern part. Therefore, we firstly study the representation of the SST seasonal cycle 

intensity in the different climate models over a relatively large region that includes part of the 

Canary current in the north and the Guinea dome in the south. The so-called “extended 

region” is defined by a rectangular box extending from 9°W to 45°W and from 5°N to 30°N 

(Fig. 1). In a second step, we will proceed to the same analysis and classification of the 

models within a much more focused (hereafter zoomed) region, namely [16°W-28°W and 



10°N-23°N] (Fig. 1). All the results below will be first shown for the extended region. 

Comparison with the focused region will be done in section 4.  

3 - Comparing observations and models: a methodological approach 

The methodology we have developed is based on the ability of the climate models to 

adequately reproduce the climatology of the seasonal cycle of the SST anomalies as observed 

during the last three decades in key sub-regions of the studied domain. These key sub-regions 

are determined from the similarity of their physical and statistical characteristics through an 

unsupervised classification, which clusters pixels having similar observed seasonal SST 

climatology. We chose to deal with a neural classifier, the so-called self-organizing map 

(SOM hereafter) developed by Kohonen, 2013 followed by a Hierarchical Ascendant 

Clustering (HAC, Jain and Dubes, 1998). This method leads to a dynamically interpretable 

classification. The SOM determines a vector quantization of the dataset, which compresses 

the initial dataset into a relatively small number of reference vectors. Doing so allows us to 

take the non-linearities of the dataset into account and to filter the noise, which can make the 

classification spurious. This reduced number of dataset vectors enables an HAC to determine 

the highly non-linear borders between the different SOM clusters. This procedure has been 

used with success in several studies (Farikou et al., 2015; Jouini et al., 2016; Niang et al., 

2003, 2006; Sawadogo et al., 2009). Note that the use of an HAC directly on the initial dataset 

would not be efficient in the present study because the number of degrees of freedom (here 

the grid points of the initial domain) is too large for this method to work efficiently. In the 

present section, we describe the methodology we developed to score the different climate 

models with respect to the observations. In section 4, we will tentatively group the different 

climate models into blocks having the same behavior by using a Multiple Correspondence 

Analysis (MCA).  

 

 3.1 The unsupervised classification method 

The first step of the methodology was to decompose the selected region in different classes 

(the key sub-regions mentioned above) by using a neural network classifier, the so-called 

SOM (Kohonen, 2013). This algorithm constitutes a powerful nonlinear unsupervised 

classification method. It has been commonly used to solve environmental problems 

(Hewitson and Crane, 2002; Jouini et al., 2013, 2016; Liu et al., 2006; Reusch et al., 2007; 

Richardson et al., 2003). The SOM aims at clustering vectors (here the 12 SST seasonal 



anomalies) of a multidimensional database (D) (here the grid points of the studied domain) 

into classes represented by a fixed network of neurons (the SOM map).  The self-organizing 

map (SOM-map) is defined as an undirected graph, usually a 2D rectangular grid. This 

graphical structure is used to define a discrete distance (denoted by 𝛿) between the neurons of 

the map and thereby identify the shortest path between two neurons. Moreover, SOM enables 

the partition of D in which each cluster is associated with a neuron of the map and is 

represented by a prototype that is a synthetic multidimensional vector (the referent vector w). 

Each vector z of D is assigned to the neuron whose referent w is the closest, in the sense of the 

Euclidean Norm (EN), and is called the projection of the vector z on the map. A fundamental 

property of a SOM is the topological ordering provided at the end of the clustering phase: two 

neurons that are close on the map represent data that are close in the data space. In other 

words, the neurons are gathered in such a way that if two vectors of D are projected on two 

“relatively” close neurons (with respect to 𝛿) on the map, they are similar and share the same 

properties. The estimation of the referent vectors w of a SOM and the topological order is 

achieved through a minimization process using a learning data set base, here from the 

observations.  The cost function to be minimized is of the form:  

𝐽!"#! 𝜒,𝑊 = 𝐾!(𝛿 𝑐,𝜒 𝑧! )‖𝑧! − 𝑤!‖!
!∈!"#!"∈!

 

where 𝑐 ∈ 𝑆𝑂𝑀 indices the neurons of the SOM map, 𝜒 is the allocation function that assigns 

each element zi of D to its referent vector 𝑤!(!!) and 𝛿(𝑐,𝜒 𝑧! )  is the discrete distance on the 

SOM-map between a neuron c and the neuron allocated to observation zi. 𝐾!a kernel function 

parameterized by T (where T stands for “temperature” in the scientific literature dedicated to 

SOM) that weights the discrete distance on the map and decreases during the minimization 

process. At the end of the learning process, the classification can be visualized onto the SOM-

map and interpreted in term of geophysics. 

3.2 - Classification of the observations  

In the present problem we chose to classify the annual cycles of the SST seasonal anomalies 

observed in the Senegalo-Mauritanian upwelling. The study was made on the “extended 

region” constituted of 25 x 36 = 900 pixels, but this enlarged region covers a part of the 

African continent and 157 pixels are in fact over land. That means that we have truly 743 

ocean pixels to deal with. We consider a time-period of 30 years [1975 to 2005] extracted 

from the ERSST-V3b database. For a given grid point and a given year and month, the 

monthly anomaly is the SST of the pixel for which we have subtracted the mean of the 



considered year. The climatological mean of the anomaly is then computed for each grid point 

by averaging each climatological month over the 30 years. Thus, the learning data set D is a 

set of 743 twelve-component vectors z, each component being the mean monthly anomaly 

computed as above. We denote “SST seasonal cycle” the vector z in the following. 

We used a SOM-map to summarize the different SST seasonal cycles present in the "extended 

region". We found that 120 prototypes (or neurons) can accurately represent the 743 vectors 

of D.  This reduction (or vector quantization) is made by using a rectangular SOM-map of 

30 x 4 neurons. 

We then reduced the number of neurons in order to facilitate their interpretation in terms of 

geophysical processes. For this, we applied a HAC using the Ward dissimilarity (Jain and 

Dubes, 1988). We grouped the 120 neurons of the SOM into a hierarchy that can contain 

between 1 and 120 clusters. Then the different classifications proposed by the HAC were 

applied to the geographical region: each SST seasonal cycle of each grid point of the region is 

assigned to a neuron and consequently to a cluster (assignment process), thereby defining the 

so-called region-clusters. The problem is then to choose a number of clusters that adequately 

synthesizes the geophysical phenomena over the region. This was done by looking at the 

different possible classifications and choosing one representing the major characteristics of 

the upwelling region.  In Fig. 2a, we observe that when we partition the SOM in 7 clusters, 

the associated 7 region-clusters are constituted of contiguous pixels in the geographic map, 

and that two clusters (6, 7) are within the upwelling region and present a well-marked 

seasonal cycle.  For each region-cluster, we estimated the monthly mean of the SST seasonal 

cycle and the associated spread captured by the neurons constituting this region-cluster.  

The typical SST climatological cycles for each region-cluster are presented in Fig. 2b 

together with their related error bars. We note that the region-clusters are well identified, their 

typical climatological annual cycles of SST being well separated. Furthermore, the 7 region-

clusters are spatially coherent and have a definite geophysical significance.  

For the extended region under study, 7 therefore appears to be an adequate cluster 

number, since this number balances a clear partition of the clusters on the HAC decision tree 

with a clear physical significance to each region-cluster. The Senegalo-Mauritanian coastal 

upwelling is associated with clusters 7 and 6. Cluster 2 corresponds to deep tropical waters 

associated with the equatorial Countercurrent. Cluster 1 corresponds to surface waters of the 

Gulf of Guinea. Cluster 3 corresponds to the offshore tropical Atlantic, and cluster 5 has 

extratropical characteristics. Cluster 4 is transition between 3 and 5. As expected, the 

equatorial regions (clusters 1 and 2) have a very weak seasonal cycle, which increases 



towards the extratropics (clusters 3 to 5). The upwelling regions (clusters 6 and 7) are 

characterized by an exceptionally strong seasonal variability.  

 

3.3 – Classification of the climate models on the extended upwelling region  

The aim is now to find the model(s) that best fit the “observation field”. A heuristic 

manner is to compare the pattern of the different region-clusters of the CMIP5 models with 

respect to those of the “observation field” through a sight evaluating process. This kind of 

approach has been proposed in Sylla et al., 2019, and we indeed immediately see that some 

models better fit the “observation field” than others. Nonetheless, this method remains very 

subjective.  

In the following, we present a more objective approach. We use the previous 

classification to objectively estimate how each CMIP5 model fits the “observation field” and 

its seven region-clusters. For this, we projected the SST annual cycle of each CMIP5 model 

grid point of the extended region onto the SOM learned with the observations (section 3.2) 

using the assignment procedure described in this section. Each grid point thus corresponds to 

a cluster of the SOM and is represented on the geographical map by its corresponding color.  

Doing so, we can represent each CMIP5 model by the geographical pattern of the 7 clusters 

partitioning the SST seasonal cycle of its grid points. The geographical maps representing the 

47 models and their associated clusters are plotted in Fig. 3. This graphical visualization is 

easier to compare than the original characteristics (amplitude and phase) of the annual cycle at 

each grid point of a model since each grid point can only take one discrete value among 

seven. This representation immediately allows identification of the model biases and the 

models that best reproduce the cluster-regions identified in the observations. A huge amount 

of information could in principle be extracted from these maps, both from individual 

modelling groups, to understand the representation of this region by the models and the 

origins of possible biases, and from experts of the area, to understand the difficulties of the 

climate models in representing the SST seasonal cycle in this region.  

For a more quantitative assessment, we counted the number of grid points of a region-

cluster for a given CMIP5 model matching the same region-cluster of the “observation field”. 

We then computed the ratio between that matching number and the number of pixels of the 

region-cluster of the considered model. That number is noted in the color-bar for each region-

cluster in Fig. 3. We denote Rmi the ratio for the region-cluster i and the model m, where 

i = 1, …, 7 is the number of the region-cluster and m = 1, …, 47 is the number of the model 

(see table 1). We note that Rmi ≤ 1.  Doing so, each model m is represented by a 7-



dimensional vector Rm, each component being the ratio of a region-cluster.  We estimated the 

total skill of a model by averaging the 7 ratios. Note that this procedure gives the same weight 

to each region-cluster whatever its number of grid points and its proximity with the upwelling 

region. In the following, the skill is presented as a percentage: the higher the skill, the better 

the fit. In Fig. 3, the 47 CMIP5 models are ranked by their total skill, which is indicated 

above each panel beside the model name. The model skills are very diverse, ranging from 

79% to 28%. This figure also shows that the models presenting the best total skill are also 

those representing thoroughly the upwelling region. Some models represent the large-scale 

structure in the eastern tropical Atlantic (region-clusters 3, 4, 5) very well but not the 

upwelling (33-GISS-E2-R and 34-GISS-E2-R-CC for example). Others represent pretty well 

the upwelling region-clusters (region-clusters 6 and 7), but not the large-scale structures of the 

SST seasonality (13-CSIRO-Mk-3-6-0, 6-CMCC-CESM for example). None of these models 

is ranked among the best models, with a score greater than 60%. As indicated above, this 

representation gives a very synthetic view of the structure of the seasonality of the SST cycle 

in each of the models, potentially a very useful guide for climate modelers to identify rapidly 

major biases. 

 

4  – Qualitative  analysis of the climate models 

In order to further progress in the selection of the models, the 47 climate models and 

the observation field were then analyzed by using a Multiple Correspondence Analysis (MCA 

in the following). MCA is a multivariate statistical technique that is conceptually similar to 

principal component analysis (PCA), but applies to categorical rather than continuous data. 

Similarly as PCA, it provides a way of displaying a set of data in a two-dimensional graphical 

form.  

In the following, we apply a MCA analysis to the (47,7) matrix R = [Rmi] whose 

elements represent the skills of the clusters of the models shown in front of the color bars in 

Fig. 3:  the rows m represent the 47 different models, the columns i the 7 region-clusters. The 

MCA, as the PCA, projects the initial matrix on a new basis in such a way that the new axes 

are the matrix eigenvectors (PC), the inertia of each axis being the corresponding eigenvalues. 

According to the theory, the MCA matrix analysis of R gives i-1 = 6 independent PCs. Each 

model is thus now associated with a 6-dimensional vector on which it has a specific weight. 

The MCA uses for this analysis the χ2 distance. In figure 4, we present the projection of the 



models and the “region clusters” in the plane formed by the two first axes (x=PC1 and y= 

PC2) of the MCA. These two axes represent 70 % of the total inertia. Each model is 

represented by a small circle and each region-cluster by a purple square. We also projected 

the observation field (green diamond) on that plane. To have a more precise view of the 

topology, it would be necessary to consider the projection on the 5 other PCs, which represent 

30% of the inertia.  

In the (PC1, PC2) plane, the shorter the distance between two models, the more 

similar the distribution of their region-cluster skills. Proximity between a model and a region-

cluster leads us to affirm that this region-cluster is well represented by that model. Clearly, 

some models adequately represent the southern part of the extended region (region-clusters 1, 

2 or 3), where the SST seasonal cycle is weak, and are very distant from the upwelling 

regions (region-cluster 6 and region-cluster 7) whose large SST cycle is poorly reproduced. In 

this group of models, one recognizes the model 16-IPSL-CM5A-MR, at the extreme bottom 

of Fig. 4, close to region-clusters 4 and 5, consistently with Fig. 3. At the other end of this 

group of models, the model 23-HadCM3 for example is located very close to the region-

cluster 1. Fig. 3 indeed shows that most of its grid points over the region of interest have a 

seasonal cycle resembling the one found in the offshore tropical ocean. Another group of 

models is located in the center of this plan, thus at an optimal distance of each of the observed 

regions-clusters, and not far from the overall position of the observations (diamond). We 

recognize in this group of models those that have a high skill in Fig. 3. The positioning of the 

observations (green diamond in Fig. 4) with respect to the models indeed allows selecting 

those that best represent the observations field. The representation given in Fig. 4 allows 

understanding the drawback of the different models with respect to the 7 Modes of SST-

cycles. 	

  As indicated in the introduction, the main objective of the methodology is to select an 

ensemble of models that represents at best the upwelling behavior with respect to the 

observations and to use this ensemble to predict the impact of climate change in the Senegalo-

Mauritanian upwelling with some confidence. The problem is now to determine a subset of 

models which has a better skill than Model-All, in other words minimize the distance to the 

observations. As the number of models is small enough, we chose to cluster them by an HAC 

according to their projections onto the six axes provided by the MCA, and select the optimal 

jump in the hierarchical tree (Jain and Dubes, 1988). We recall that the HAC (hierarchical 

ascending clustering) is a bottom-up algorithm for dataset clustering. The key operation in 



hierarchical bottom-up clustering is to repeatedly combine the two nearest (according to a 

certain distance) clusters into a larger cluster. The HAC starts from individuals and combines 

them according to their similarity (with respect to the chosen distance) to obtain new clusters. 

The process is repeated up to get one cluster only (the full dataset). This algorithm is 

visualized through a tree-like diagram, the so-called connection tree or dendrogram: the 

branches of the connection tree  represent the connections between the clusters (Fig. 5). From 

Fig. 5, we obtain four homogeneous groups which are well separated (group 1, 2, 3, 4). They 

are plotted with different colors in Fig. 4. We denote Model-group 1, Model-group 2, Model-

group 3, Model-group 4 these multi-model ensembles hereafter. Note that Fig. 4 shows the 

projection of the individual models on the first two axes of the MCA. The fact that only two 

axes are shown here can introduce some bias in the visualization and this figure must be 

considered with some caution. 

Through MCA+HAC, we thus grouped the models into clusters, using the χ2 distance, 

according to their proximity to the observations and their internal similarity. For each group, 

we computed a multi-model average whose outputs are the mean of the outputs of its different 

members and we analyzed it according to the same procedure (projection of the SST-seasonal 

cycle and assignment to a region-cluster) used for each individual model. In addition, we 

introduced the full multi-model average (Model-All in the following), which is the multi-

model ensemble, which averages the 47 CMIP5 model outputs. Model-All was also projected 

in the MCA plane and it is represented by a red star in Fig. 4. Comparison of the four model-

groups with Model-All and the observations are presented in Fig. 6. This figure visually 

highlights the dominance of Model-group 4 for the reconstruction of the SST seasonal cycles 

of the different region-clusters for the extended region. This is particularly clear for region-

clusters 6 and 7, which are those located in the upwelling region (Fig. 2). Model-group 3 

seems to group models characterized by an equatorward shift of the main structures, since the 

region-cluster 1 of tropical waters is not reproduced and Region-clusters 4 and 5 of 

extratropical waters are overestimated. Fig. 4 indeed shows that this Model-group is very 

close to the Regions-clusters 4 and 5, which correspond to the extratropical and the transition 

geographical regions. Model-group 2 misrepresents the region of the Canary upwelling. 

Model-group 1 overestimates the SST seasonal cycle in all the tropical open Atlantic. These 

two last model-groups overestimate the region-Cluster 1, again consistently with their 

position in Fig. 4. A detailed physical interpretation of the Model-groups is nevertheless 



beyond the scope of this paper. Clearly Model-All represents the SST seasonal cycle of the 

off-shore ocean, but it proposes a very poor representation of the upwelling region.  

Two models (models 7 and 25) have a better skill than Model-group 4 and Model-All. 

These two models are very close to the observations on the first two axes of the MCA (Fig 4). 

It is easily seen that Model-group 4 and the projection of Model-All on this plane is farther 

than that of model 7 and model 25 from the observation projection. This explains the lower 

performance of these two multi-models as compared to models 7 and 25. In the present case, 

the method permits to determine the best models (model 7 and model 25) and to outline the 

best multi-model (Model-group 4) whose skill is better than any model with a probability of 

95% (number of models whose skill is smaller than the skill of Model-group 4 with respect to 

the total number of models).  Projection of the models on the other planes of the MCA 

analysis should confirm this interpretation.  One could then question the use of Model-group 

4 rather than model 7 or model 25 individually. Furthermore, we argue that multi-model 

averages are in general more robust for climate studies than the use of a single model that can 

have good performance for a very specific set of constraints but not for neighboring ones. The 

following section will partly justify this point.  

 

5 - Analysis of the climate models over a zoomed upwelling region  

The classification presented above relies largely on the ability of the models to 

represent the offshore seasonal cycle of the SST. In the following, we propose to test the 

classification over a much more reduced area in order to focus the analysis on the upwelling 

area. This “zoomed upwelling region” is shown in Fig. 1.  

As for the extended region, we partitioned the observations of the zoomed upwelling 

region with a SOM (ZSOM in the following) followed by a HAC. We then applied a new 

MCA to regroup the climate models. We did a similar analysis as this performed in section 4. 

We obtained four new well separated region-clusters denoted ZRegion-clusters. Fig. 7 shows 

the four ZRegion-clusters obtained from ERSSTv3b observations together with their 

associated mean SST seasonal cycle. Again, the ZRegion-clusters are spatially coherent. The 

upwelling area is now decomposed into three ZRegion-clusters (ZRegion-clusters 2, 3, 4). 

This new decomposition thus refines the study performed for the extended region: ZRegion-

cluster 1 represents the offshore ocean, its grid points typically have a SST seasonal cycle 

amplitude of 4°C, very similar to Region-cluster 4 in the classification performed over the 

extended region (Fig. 2). ZRegion-cluster-4 identifies the core of the Senegalo-Mauritanian 



region, with grid points characterized by the greatest amplitude of the SST seasonal cycle of 

the domain, typically 6.5°C. It is interesting to note that an additional upwelling ZRegion-

cluster (ZRegion-cluster 3) appears south of ZRegion–cluster 4. Indeed, several studies have 

shown that the Cape Verde peninsula, located around 15°N, separates the upwelling region 

into two distinct areas having a different behavior north and south of this peninsula (Sirven et 

al., 2019b; Sylla et al., 2019). The location of the separation between ZRegion-cluster 3 and 4 

is determined with some uncertainty due to the coarse resolution (1°) of the ocean models. 

ZRegion-cluster 3 is marked by a time shift of the seasonal cycle: the warmest season seems 

to occur somewhat one month earlier than in the other regions as clearly seen in Fig. 7 (left 

panel, yellow curve in June). Due a classification using a much larger region, such a 

characteristic does not appear in the extended area study. The physical interpretation of the 

SST seasonal cycle of this ZRegion-cluster is beyond the scope of the present study, but one 

can suspect a role of the ITCZ seasonal migration covering these grid points earlier than 

further north. Finally, ZRegion-cluster 2 is a transition between the large scale ocean and the 

upwelling region.  

As for the extended region, we applied a MCA analysis to the (47 x 4) matrix 

R = [Rmi] whose elements represent the skills of the four clusters (i) of the 47 models. This 

MCA was followed by a HAC leading the definition of five ZModel-groups. The members of 

each group are given in appendix. Fig. 8 shows the ZRegion-cluster obtained in the zoomed 

area by projecting these five ZModel-groups and Model-All model on the ZSOM and their 

associated performances. ZModel-group 1 is the worst performing one: only 25% of the grid 

cells fall in the same class as for the observations. The structure of this model-group shows 

that it is characterized by an homogeneous amplitude of the seasonal cycle over the whole 

domain, suggesting a largely reduced upwelling: only one grid point at the coast has an 

enhanced SST seasonal cycle as compared to the large scale tropical ocean. ZModel-group 2 

is the best performing one: 66% of the grid points are assigned to the correct class and the 

general picture indeed represents a four-class picture fairly consistent with the observed 

structure (Fig. 7). Important biases yet remain. In particular, the ZRegion-clusters 2 and 4 

characterizing the upwelling extend too far offshore. The three other ZModel-groups are 

intermediate. A relatively reduced upwelling area, with an underestimated SST seasonal 

cycle, characterizes ZModel-groups 3 and 4. ZModel-group 5 corresponds to a shift of the 

upwelling region towards the north. Model-All also shows a strongly reduced seasonal cycle, 

with a large number of pixels in the intermediate ZRegion-cluster 3 and very few in the 



ZRegion-cluster 4. The ZRegion-cluster 3, representing the southern part of the Senegalo-

Mauritanian upwelling, does not appear in the pattern of Model-All. 

It is notable that all the models forming ZModel-group 2 are included in Model-group 

4. For a more precise assessment, we can also project the entire Model-group 4, identified as 

the best multi-model ensemble over the extended region, on the ZSOM (Fig. 9, right). We 

notice that the performance of Model-group 4 remains high on this projection, indicating 

some robustness of this multi-model ensemble. Moreover, this ensemble now outperforms the 

single best model identified over the extended region (Fig. 9, left panel). This result gives 

further confidence in the use of multi-model averages, illustrating that one single model can 

be very skillful over a specific region, or for a specific analysis, but multi-model averages are 

more robust across various analysis and/or regions. 

6 – Impact of climate change on the Senegalo-Mauritanian upwelling 

6.1 Representation of the upwelling in the CMIP5 climate models clusters 

In this section, we compare the representation of the Senegalo-Mauritanian upwelling system 

given by the two best Model-groups identified above (Model-group 4 and ZModel-group 2). 

For this evaluation, we use two of the five indices used by (Sylla et al., 2019) to evaluate the 

full database, namely the intensity of the SST seasonal cycle and the offshore Ekman 

transport at the coast. The former is specific to the seasonal variability of the Senegalo-

Mauritanian upwelling system, and it has been used for the classification. The latter is more 

general and although it has recently been shown to partly represent the volume of the 

upwelled waters (Jacox et al., 2018), it is extensively used in the scientific literature to 

characterize upwelling regions (Cropper et al., 2014; Rykaczewski et al., 2015; Wang et al., 

2015). Note also that following Sylla et al., 2019, evaluation is performed on the period 

[1985-2005]. This period slightly differs from the classification period but the SST seasonal 

cycle is not significantly different (not shown). 

Fig. 10 compares the amplitude of the SST seasonal cycle as represented in the 

observations, Model-All, Model-group 4 and ZModel-group 2 identified above. Consistently 

with Fig. 6 and 8, Model-All dramatically underestimates the upwelling signature in terms of 

SST seasonal cycle as compared to the observations. Model-group 4 and ZModel-group 2 

yield improved results: the area of enhanced SST seasonal cycle is larger both in latitude and 

longitude, with stronger SST amplitude values. This confirms the efficiency of the selection 

operated above. Nevertheless, ZModel-group 2 yields a realistic SST amplitude pattern along 

the coast but it extends too far offshore. Furthermore, in ZModel-group 2, the subtropical area 

(in green in Fig 10) extends too far towards the south, in particular in the western part of the 



basin. The tropical area, characterized by limited amplitude of the seasonal cycle of SST 

(deep blue in Fig. 10), is shifted to the south as compared to the observations. In other words, 

the large scale thermal - and thus probably dynamical - structure of the region is poorly 

represented in ZModel-group 2. Finally, Model-group 4 is the least biased one.  

The intensity of the wind stress parallel to the coast, inducing offshore Ekman 

transport and consequently an Ekman pumping at the coast, is generally considered as the 

main driver of the upwelling. We therefore also tested the representation of this driver in the 

different Model-groups. The idea is to evaluate the impact of the model selection performed 

above on the representation of an independent variable by the Model-groups. Fig. 11 shows 

the latitude-time evolution of the meridional oceanic wind stress, considering that the coast in 

the studied region is oriented approximately meridionally, so that the offshore Ekman 

transport is mainly zonal. Note that in Fig. 11, southward winds have positive values so that 

they correspond to a westward Ekman transport, favorable to upwelling. Panel (a) shows that 

the observed meridional wind stress is, all year long, favorable to the upwelling north of 

20°N. At these latitudes, the meridional wind stress is stronger in summer. Conversely, 

between 12°N and 20°N, in the latitude band of the Senegalo-Mauritanian upwelling, the 

wind blows southward with a very weak intensity in summer and it even changes direction in 

the southern part of this latitude band. It is favorable to the upwelling in winter-spring, which 

explains why the Senegalo-Mauritanian upwelling occurs during this season with a maximum 

of intensity in March-April (Capet et al., 2017; Farikou et al., 2015).  The main bias of 

Model-All (Fig. 11b) is due to the fact that the wind stress never reverses between 12°N and 

20°N. It weakens in the southern part of the Senegalo-Mauritanian latitude band, i.e. south of 

the Cape Verde peninsula (15°N), but does not become negative. North of the Cape Verde 

peninsula, it also blows from the north in summer, so that the Senegalo-Mauritanian 

upwelling lacks seasonality. This bias is corrected in Model-group 4 and ZModel-group 2 

(Fig. 11, panels c and d) that are, in this aspect, more realistic than Model-All. Model-group 4 

shows a slight extension of the time and latitude range where the oceanic wind stress reverses 

sign. This constitutes an improvement. The southward wind is nevertheless too strong in 

winter on the [12°N-20°N] latitude band as well as further south from December to March. 

These two remaining biases are further reduced in ZModel-group 2. This latter model yields 

the most realistic seasonal cycle of meridional oceanic wind stress on the latitude band under 

study. This is consistent with a very localized model selection, as the wind index is itself 

localized along the coast. 



To conclude, Model-group 4 and ZModel-group 2 perform in general better than Model-All 

in reproducing the major, characteristic features of the Senegalo-Mauritanian upwelling. This 

result confirms the relevance of the multi-model selection we have presented above. Applying 

the methodology over a relatively large region allows better constraining the spatial extent 

and pattern of the SST signature of the upwelling than the reduced area. The latter however 

yields a better representation of the wind seasonality along the coast. 

6.2 Response of the Senegalo-Mauritanian upwelling to global warming.  

In this section, we examine the response of the upwelling system given by the 

different multi-model groups we selected to global warming. For this, we compared the two 

indices analyzed above in present-day and future conditions. The present-day conditions are 

taken as above as the climatological average of historical simulations over the period [1985-

2005]. The future period is taken as the climatological average of the RCP8.5 scenario over 

the period [2080-2100]. Fig. 12 shows the difference of the SST seasonal cycle amplitude 

between these two periods. The general behavior is that the SST cycle amplitude will reduce 

in the upwelling region. Sylla et al., 2019 showed that this is primarily due to a warming of 

the winter temperature, thus suggesting that the upwelling signature at the surface will reduce. 

On the other hand, this figure shows that the upwelling signature will increase along the 

Canary current, which flows along the coast of Morocco, as well as in the subtropical part of 

our domain. This behavior is observed in the three multi-model ensembles. Yet, the two 

selected Model-groups suggest a weaker decrease of the SST seasonal cycle in the upwelling 

region than the one given by Model-All. ZModel-group 2 shows an even weaker decrease 

mainly confined in the southern part of the upwelling region. This result echoes findings of 

Sylla et al., 2019 based on another indicator of the upwelling imprint on the SST: they 

showed that the difference between the SST at the coast and offshore is expected to decrease 

more in the southern part of the Senegalo-Mauritanian upwelling system (SMUS) than in the 

north . We hypothesize that the study conducted on the reduced area permits separation of the 

Senegalo-Mauritanian upwelling system into two clusters, a northern one (ZRegion 4) and a 

southern one (ZRegion-3) (Fig. 8) which enables to distinguish this specific response.  

The meridional wind stress also generally weakens under climate change in the [12°N-

20°N] latitude band (Fig. 13), suggesting a general reduction of the upwelling intensity. From 

December to March, this is particularly true in the southernmost region of the Senegalo-

Mauritanian band, consistent with the results of (Sylla et al., 2019). The wind pattern inferred 

from the two Model-groups (Fig. 13, middle and right panels) present a higher seasonal 

variability than those of Model-All (left panel). The winter reduction of the southward wind 



stress is slightly more confined to the southern region in ZModel-group 2, especially at the 

end of the upwelling season (March-April) when the upwelling intensity is the strongest. This 

may be consistent with the reduced seasonal cycle in the southernmost part of the upwelling 

identified above.  

7 - Discussion and Conclusion 

This paper proposed a novel methodology for selecting efficient climate models on a specific 

area with respect to observations and according to well-defined statistical criteria. The present 

study has specifically focused on the ability of climate models to reproduce the ocean SST 

annual cycle observed in specific sub-regions of the studied domain during the period 1975-

2005 as reported in the ERSST_v3b data set. These sub-regions were defined by a neural 

classifier (SOM) as clusters having similar seasonal SST cycle anomalies with respect to 

some statistical characteristics, and were therefore named region-clusters. They correspond to 

ocean areas having well marked oceanographic specificities.  

We then checked the ability of the different climate models to reproduce the region-clusters 

defined on the observation dataset with a SOM. The better a climate model fits the clusters 

computed with the SST observation, the higher the skill of the model. To evaluate this, we 

defined geographical regions in the different CMIP5 climate models by projecting the SST 

annual cycle anomalies of each model grid point onto the SOM. Each grid point is associated 

with a cluster on the SOM map and consequently to a region-cluster on the geographical map. 

We built a similarity criterion by	counting	the	number	of	grid	points	in	a	region-cluster	of	

a	given	model	matching	the	same	region	cluster	defined	by	processing	the	observation	

field.	We then computed the ratio between that matching number and the number of pixels of 

the region-cluster	 of	 the	model	 under	 study.  We estimated the total skill of a model by 

averaging the 7 ratios associated with the 7 region clusters. Note that this procedure presents 

the advantage of giving the same weight to each region-cluster whatever its number of grid 

points and its proximity with the upwelling region. This procedure respects the clustering 

done by the SOM since the different clusters have an equal weight in the skill computation. In 

its present definition, the total skill is a number between 0 and 1, the higher the skill, the 

better the fit. Other measures of the total skill of a Model-group could nevertheless be defined 

depending on the objective of the study. One may compare the skill of individual models over 

a specific region-cluster of interest, or analyze the pattern of skill in one specific model and 

its sensitivity to possible various parameterization schemes. The extraction of information 

embedded in the vector-skill whose 7 components are the skills associated with the 7 sub-

regions and the resulting efficient multi-model combination imply the use of advanced 



statistical tools such as the MCA. Moreover the vector skill also contains information 

behavior of models in terms of large offshore ocean circulation as well as in the upwelling 

region. It could thus be used to diagnose the deficiencies of some climate models with respect 

to the modeling of physical processes. Another contribution of the MCA is the visualization 

of the 47 models and the observations on the plane constituted by the first two MCA axes, 

which represents 70% of the information embedded in the data.  The similarities of the 

climate models with respect to the observations and the region-clusters can be clearly 

visualized. The ‘mean’ skill associated with each climate model and proposed in this study is 

easy to use but is far less informative than the vector-skill whose 7 components are the skills 

associated with the 7 sub-regions.  

Such a multi-model ensemble selection allows sampling a set of models in order to obtain a 

more realistic climatology over the region of interest. The response of the upwelling to 

climate change given by the different multi-model ensembles is quite robust in the sense that 

they give similar qualitative answers. However, a too-selective ensemble of models may lead 

to noisy patterns. A compromise thus has to be found: a large number of models leads to 

smoothed biases and unrealistic patterns, but also damps the characteristics of the selection. 

On the other hand, selecting the most realistic models may yield spurious biases in the 

ensemble mean.  

As discussed in the introduction, different criteria have been used for extracting some 

efficient models from the CMIP5 models used for climatic studies. The most common 

parameter is the average annual surface mean temperature of the grid points of the region 

under study. However,(Knutti et al., 2006) used the seasonal cycle in surface temperature, 

represented by the seasonal amplitude calculated as summer June–August (JJA) minus winter 

December–February (DJF) temperatures. This criterion is more informative than the annual 

mean temperature since the amplitude of the seasonal variability is an important criterion 

characterizing the validity of a climate model. In the present work, we used a more 

informative criterion which is formed of the monthly temperature cycle anomaly represented 

by a 12-component vector, each component representing the average monthly temperature of 

the year we consider. This new criterion allows account to be taken of the amplitude and 

phase of seasonal variability while the Knutti et al., 2006 criterion only takes into account the 

amplitude of the seasonal variability. Note however that it implies a good geophysical 

knowledge of the region under interest, in order to determine the relevant region-clusters after 

the SOM. It is also very specific to the Senegal-Mauritania upwelling region. Furthermore, 

Sylla et al., 2019 extensively discussed the possible differences among several indices aiming 



at characterizing the upwelling and the need to use some of them to have a complete 

understanding of this coastal phenomenon. This conclusion is probably general to any 

physical process of the climate system. In the present study, the model selection is based on 

only one signature of the SMUS. Several possibilities can be envisaged to improve the 

resolution of this problem such as merging several indices like SST, temperature at several 

depths, wind vector or ocean currents. This approach could also allow a selection of models 

based on the representation of several distinct regional behaviors. In spite of several 

subjective choices, including the studied domain and the statistical metrics, we argue that this 

method is a step towards an objective selection of models, based on a quantitative assessment 

rather than a qualitative analysis of maps of performance.  

The methodology is general and can be adapted to any climate or oceanographic 

phenomenon. Different applications of the multi-model selection strategy proposed in the 

present study can also be envisaged. Firstly, from a purely modeling point of view, the 

projection of the models on the SOM (or ZSOM) and the results of the HAC yield a very 

enlightening description of a given model behavior in terms of region-clusters of the area 

under study. Such a procedure could advantageously be used by individual modeling groups 

to identify, analyze and therefore hopefully reduce their model biases in a targeted region. 

Secondly, from a physical point of view, an identified Model-group can be used to analyze 

the targeted region (here the SMUS) in terms of processes, with the advantages of a subset of 

models which have been selected from quantitative criteria. Such an application has been 

briefly illustrated by showing how the selected Model-group represents an important 

additional characteristic of the SMUS, not used for the selection, namely Ekman pumping. A 

promising reduction of biases of the full multi-model mean ensemble has been identified, 

opening possibilities for process studies based on this sub-ensemble of the CMIP5 database. 

A third application of the selection lies in the prediction of the future climate. Here, we have 

shown that selected multi-model ensembles may provide a more precise description of the 

future behavior of the SMUS. It may nevertheless be important to note that these conclusions 

are based on the assumption that the CMIP5 models, which have been selected according to 

their present-day characteristics, are the most reliable in terms of future projections, which 

can be questioned and refined (Lutz et al., 2016; Reifen and Toumi, 2009).  

As discussed in the introduction, the concept of “model democracy”, suggesting that all 

models should be equally considered in multi-model ensemble is now strongly questioned 

(Knutti et al., 2017). The present study proposes a promising way to improve the quality of 

multi-model ensemble in terms of model selection. Deep advances in the field of multi-model 



analysis and selection can be expected from the emerging topic of climate informatics 

(Monteleoni et al., 2016) as it has been shown through the present study. Machine learning 

can indeed provide efficient tools to make the best out of the extraordinary but imperfect tools 

that are the climate models and multi-model intercomparison efforts.  
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APPENDIX  

 

Model-group	1	 Model-group	2	 Model-group	3	 Model-group	4	

ACCESS1-0	
ACCESS1-3	
CESM1-CAM5	
CESM1-CAM5-1-FV2	
CESM1-WACCM	
HadCM3	
MIROC-ESM	
MIROC-ESM-CHEM	
MIROC5	
NorESM1-M	
NorESM1-ME	
	

bcc-csm1-1	
bcc-csm1-1-m	
BNU-ESM	
CCSM4	
CESM1-BGC	
CESM1-FASTCHEM	
GFDL-CM2p1	
GFDL-ESM2G	
GFDL-ESM2M	
MPI-ESM-LR	
MPI-ESM-MR	
MPI-ESM-P	

	

FGOALS-g2	
GISS-E2-H	
GISS-E2-H-CC	
GISS-E2-R	
GISS-E2-R-CC	
inmcm4	
IPSL-CM5A-LR	
IPSL-CM5A-MR	
IPSL-CM5B-LR	
MRI-CGCM3	
MRI-ESM1	
	

CanCM4	
CanESM2	
CMCC-CESM	
CMCC-CM	
CMCC-CMS	
CNRM-CM5	
CNRM-CM5-2	
CSIRO-Mk3-6-0	
FGOALS-s2	
GFDL-CM3	
HadGEM2-AO	
HadGEM2-CC	
HadGEM2-ES	

 

ZModel-group	1	 ZModel-group	2	 ZModel-group	3	 ZModel-group	4	

ACCESS1-0	
bcc-csm1-1-m	
CCSM4	
CESM1-BGC	
CESM1-CAM5	
CESM1-CAM5-1-FV2	
CESM1-FASTCHEM	
CESM1-WACCM	
GISS-E2-H	
GISS-E2-H-CC	
GISS-E2-R	
GISS-E2-R-CC	
HadCM3	
inmcm4	
IPSL-CM5B-LR	
MIROC5	
MPI-ESM-LR	
MPI-ESM-MR	
MPI-ESM-P	

CMCC-CMS	
CNRM-CM5	
CNRM-CM5-2	
FGOALS-s2	
GFDL-CM3	

	
	

BNU-ESM	
CanCM4	
CanESM2	
CMCC-CM	
FGOALS-g2	
IPSL-CM5A-LR	
IPSL-CM5A-MR	
MRI-CGCM3	
NorESM1-M	
NorESM1-ME	
	
	

ACCESS1-3	
bcc-csm1-1	
CSIRO-Mk3-6-0	
HadGEM2-AO	
HadGEM2-CC	
HadGEM2-ES	
MIROC-ESM	
MIROC-ESM-CHEM	
MRI-ESM1	
	
	

	

ZModel-group	5	

CMCC-CESM	
GFDL-CM2p1	
GFDL-ESM2G	
GFDL-ESM2M	

 

Table A1: Composition of the different Model-groups identified in the main text. In bold, we 

show the CMIP5 models which belong to Model-group 4 and ZModel-group 2. We note that 

all the models belonging to Zmodel-group 2 also belong to Model-group 4.    

	  



 
Table 1: List of the CMIP5 models used for the comparison. The reader is referred to the 
CMIP5 documentation for more information on each of them. Here, each configuration is 
furthermore given a number, for easier identification in subsequent figures.  
	  



 

 
Figure 1: Amplitude of the SST seasonal anomalies in the western tropical north Atlantic. 
SST data are from the ERSSTv3b data set averaged between 1975 and 2005. The two black 
boxes show the extended and zoomed regions respectively, on which the statistical 
classifications were performed (see text for details).  
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Figure 2: Left panel: Region-clusters associated with the SOM-clusters obtained after a HAC 
on a 30x4 neuron SOM learned on ERSSTv3b observations in the extended zone (see text for 
details). Right Panel: Ensemble-mean monthly climatological SST anomalies for the grid 
points of the seven Region-clusters. The error bars show the standard deviation of this 
ensemble mean.  
	  



 
 

Figure 3: Projection of the 47 climate models of the CMIP5 database onto the SOM learned 
with ERSSTv3b climatology in the extended zone (see Fig. 1). On top of each panel, we 
figure: the number referencing the model, its name (Table 1), and its skill given as a mean 
percentage (see text). The models are ordered according to their skill in decreasing order. The 
7 Region-clusters (or SOM-clusters) are defined by applying an HAC to the SOM output 
learned with the observation field.  They are represented by different colors. The numbers in 
the colorbar at the right of each panel represent the skill for each Region-cluster. The 
observation field is shown in the bottom right panel and the numbers in front of the colorbar 
reference the Region-cluster. 
	  



 
Figure 4: Projection of the CMIP5 models (colored circles) and the observation field (green 
diamond) defined by their cluster skill vectors on the first two axis of the MCA.  The seven 
region-clusters of the observation field are represented by purple squares. The colours of the 
circles denote the four groups of models obtained after an HAC was performed on the seven 
MCA components of the models. The projection of the full multi-model mean (47 models) is 
represented by a red star. We note that some bias can be introduced in this projection since the 
projection on the other axes can be of importance 
	 	



 
 
Figure 5: HAC Dendrogram. The horizontal line displays the 47 CMIP5 models, each model 
being associated with its 7 component skill-vector.  As the dendrogram represents  a hierarchy 
of clusters,  the numbers on the y axis give the distance between two clusters. We note an 
optimal ‘jump’ on this graph: the level 1.5 in the vertical axis (materialized by a horizontal 
black line) is associated with 4 well-separated clusters corresponding to 4 Model-groups that 
are very different.	

	 	



 

 

 
Figure 6: (a)-(d): Projection of the multi-model ensembles (Model-group) onto the SOM 
learned with ERSSTv3b climatology in the extended zone.  Multi-model ensemble 
performances are obtained by averaging the skill of the models forming each group.  The 
performances are given on top of each panel.  The Region-clusters determined by processing 
the observations in the extended area and their associated colors are given in the bottom right 
panel. The colorbars at the right of each multi-ensemble panel represent the skill (in %) 
associated with each Region-cluster. Panel (e) shows the projection for the full multi-model 
ensemble. Panel (f) reproduces the Region-clusters based on the observations also shown in 
Fig. 2.  
 

	  



 
Figure 7: Left panel: ZRegion-clusters associated with the ZSOM-clusters obtained after a 
HAC on a 10x12 neuron SOM learned on ERSSTv3b observations in the zoomed zone (see 
text for details). Right Panel: Ensemble-mean monthly climatological SST anomalies for the 
grid points of the four ZRegion-clusters. The error bars show the standard deviation of this 
ensemble mean.  
  
 

	  



 
Figure 8: (a)-(e): Projection of the multi-model ensembles (ZModel-groups) onto the ZSOM. 
The performances are given on top of each panel. The ZRegion-clusters determined by 
processing the observations in the zoomed region and their associated colors are given in the 
bottom right panel. The colorbars at the right of each multi-ensemble panel represent the skill 
(in %) associated with each ZRegion-cluster. Panel (f) shows the same for the full multi-
model ensemble. Panel (g) reproduces the Region-clusters based on the observations also 
shown in Fig. 6. 
	  



 
Figure 9 : Same as Fig. 7 but for the individual model CMCC-CM (model 7) (left) and the 
Model-group 4 (right).  
	  



 
Figure 10: Amplitude of the SST seasonal cycle in the (a) ERSSTv3b Observations (b) 
Model-All, c) Model-group 4 (best Model-group for the extended area, figured out by the 
black rectangular box) and (d) ZModel-group 2 (best Model-group for the reduced area, 
figured out by the small black rectangular box). The SST seasonal cycle is computed over the 
period 1985-2005 
	  



 
Figure 11: Latitude-time plot of depth integrated Ekman transport computed over the grid 
point located along the coast (magenta stars in Fig. 9.a). The time axis shows climatological 
months over the period 1985-2005.  Positive (negative) values correspond to upwelling 
(downwelling) conditions. Panel (a) stands for TropFlux data set (see (Praveen Kumar et al., 
2011) (b) Model-All, (c) Model-group 4 and (d) ZModel-group 2. In each panel, the black 
contour shows the contour zero. The horizontal dashed lines are positioned at 12°N and 20°N 
and give a rough limitation of the Senegalo-Mauritanian upwelling region. 
 

	  



 
Figure 12: Evolution of the amplitude of the SST seasonal cycle at the end of the 21st century. 
The figure shows the difference between the seasonal cycle amplitude averaged over the 
period [2080-2100] following the RCP8.5 scenario and the amplitude averaged over the 
period [1985-2005] in the historical simulations. A positive value (red) means that the 
seasonal cycle is more marked over the period 2080-2100. 
 

	  



 
Figure 13: Latitude-time diagram of the seasonal shift of the meridional component of the 
wind-stress with respect to the present days. For each month and at each latitude, we show the 
meridional wind stress shift with respect to the present days averaged over the period [2080-
2100]. Positive values (red) means that the wind stress shift is southward and is thus favorable 
to upwelling. Panel (a) stands for Model-All, (b) Model-group 4 and (c) ZModel-group 2. 
 

	


