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This document contains a point-by-point response to the reviews, including a list of all relevant 
changes made in the manuscript, and a marked-up manuscript version at the end of the 
document. 
  
     Reviewer 1 
 
General comments 
In this paper, the authors develop a statistical method for assessing CMIP5 climate model 
simulations of upwelling in the Senegalo-Mauritanian upwelling region and briefly discuss future 
projections of upwelling from a subset of the best-performing models. The method for assessing 
the models appears sound and seems to produce acceptable results in evaluating the models. 
However, I found the description of the method and its application difficult to follow at some 
points, as detailed in the specific comments below. There are also a number of typographical, 
grammatical, and organizational issues which impede the reader’s ability to interpret the writing 
at some points. 
 
I have provided some specific comments on some corrections needed in the technical 
corrections section, but this is not an exhaustive list and the authors should carefully proofread 
the paper prior to submitted any revised version. Finally, there seems to be a mismatch in the 
wind data discussed in the Data section versus the wind data used to produce Figure 10, as 
detailed in the specific comments below. All of these issues should be corrected before any 
subsequent version of the paper can be evaluated. 
 
We would like to thank the reviewer for his/her careful reading of the manuscript and his/her 
relevant comments. We answered them carefully, and we believe the manuscript has definitely 
improved. We apologize for the typos and grammatical issues underlined by the reviewer. We 
have carefully revised the whole manuscript to improve this point specifically. We detail below ll 
the modifications that have been implemented in the text.  
 
Specific comments 
Lines 22-23: Give a brief summary of the main findings on the future behavior of the Senegalo-
Mauritanian upwelling in the abstract, rather than simply stating that the future behavior was 
assessed. 
This sentence was changed into “The future reduction of the Senegalo-Mauritanian upwelling 
proposed in recent studies is then revisited using this multi-model selection.”  
 
 
Lines 106-107: More detail is needed on the ERSST_v3b data set. How is this dataset 
produced, and why was it chosen as the “observation field” for comparison with the Models? 
Some details on the ERSST_v3b were added. We also explained that other data sets would 
have been available, in particular HadISST. A previous study has shown that differences in the 
Senegal-Mauritania upwelling are relatively weak. Yet, sensitivity of the method to the target 
field should definitely be addressed in the future, we thank the reviewer for this remark.  
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Lines 112-114: Similar to the ERSST_v3b data set, please provide some additional detail on the 
QUICKSCAT (sic) product. And is this product actually used in the paper? 
 
In the caption for figure 10, the TropFlux data set is referenced rather than QuikSCAT in the 
discussion of the wind stress and Ekman transport (see comment on line 826), and there is no 
mention of QuickSCAT or TropFlux in the discussion of this figure in section 5.1. Additionally, 
“QuikSCAT” is the correct spelling of this satellite. 
We apologize for the typo on the name of the satellite. We also apologize for the fact that 
QuickSCAT data is indeed not used in the final version of the paper. The wind stress was 
evaluated against the TropFlux reanalysis. Information about this product was added (end of 
section 2.1)  
 
Line 118: Does “Sylla et al. (in rev.)” refer to the Sylla et al. 2019 Climate Dynamics paper, or 
another work? If this is another paper, it should be added to the reference List. 
Sylla et al. (in rev.) and Sylla et al (2019) are indeed the same paper, accepted in the course of 
the preparation of the present manuscript. The citations have been homogenized, we apologize 
for this.  
 
Section 3.2 (starting on line 168): It’s not clear to me why the SOM classification followed by the 
HAC clustering was necessary. What is the reason for performing both classifications rather 
than just using one method or the other? 
 
The SOM model has been used to determine a vector quantization of the dataset: i.e. to 
determine referent vectors that are a representative summary of the learning dataset. The 
vector quantization compresses the total database into a quite small (with respect to the size of 
the database) number of referent vectors such as each data is not too different of its nearest 
referent according to a distance (The Euclidean distance in the present case). The exact 
number of referents, that is the number of neurons, does not really matter because this number 
will be reduced by the HAC. Doing so allows us to take the non-linearities of the dataset into 
account in the analysis. The exact number at the end of the SOM+HAC procedure is not known 
a priori but at the end of the study by looking at the HAC dendrogram, which suggests several 
possibilities for the number of classes to estimate. A compromise between the number of 
classes we can explain from a physical point of view and the number we need to include the 
information embedded in the dataset is made. This procedure has been used with success in 
several papers (Jouini et al, 2016, JGR; Farikou et al, 2015, JGR; Sawadogo et al, 2009, IEEE; 
Niang et al, 2003, RSE).  

We have added an introduction at the beginning of section 3 to explain this point. Note that it 
was also raised by reviewer 2. We are grateful to both reviewers for requiring this classification.  

Lines 197-198: What is a “standard statistic algorithm”? Is this referring to the calculation of the 
standard deviation? 
It refers indeed to the calculation of the spread in each neuron. We have re-phrased this 
sentence as: 
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“for each region-cluster, we estimated the monthly mean of the SST seasonal cycles and the 
associated spread captured by the neurons constituting this region-cluster” . Thank you for this 
clarification.  
 
Section 3.4 (lines 255-330): Perhaps it is just my own ignorance, but I find figure 4 and the 
accompanying discussion quite difficult to interpret. What, conceptually, do the x and y axes and 
the grouping of the points on the plot represent? The description says that “proximity between a 
model and a region-cluster leads us to affirm that this region-cluster is well represented by that 
model”, but the observations and the “highest skill” models 7 and 25 are far away from any of 
the region clusters. . .? And I think I understand that model 7 is considered as having good skill 
because it lies close to the “obs” point on the plot, but why is model 25 considered to have 
better skill than models 24, 19, 8, and 40, which are located a similar distance from the “obs” 
point as model 7? Have any previous studies used this method to assess the skill of models? 
 
Sub-section 3.4 is now section 4. In fact the MCA method used in this section is different from 
the SOM and quite new in geophysics; it therefore deserves a dedicated section in which we 
give more details on the functioning of the MCA. We have rewritten the presentation of the MCA 
analysis in order to get an easier understanding of the functioning of this analysis and to facilitate 
the understanding of  Figure 4. The new writing of the beginning of the MCA presentation 
(section 4) is shown below.  Our changes are in yellow in this new writing.  

“In order to further progress in the selection of the models, the 47 climate models and the 
Observation field were then analyzed by using a Multiple Correspondence Analysis (MCA in the 
following). MCA is a multivariate statistical technique that is conceptually similar to principal 
component analysis (PCA in the following), but applies to categorical rather than continuous 
data. Similarly as PCA, it provides a way of displaying a set of data in a two-dimensional 
graphical form.  

In the following, we applied a MCA analysis to the (47 , 7) matrix R = [Rmi] whose 
elements represent the skills of the clusters of the models shown in front of the color bars in Fig. 
3:  the rows m represent the 47 different models, the columns i the 7 region-clusters. The MCA, 
as the PCA does, projects the initial matrix in a new basis in such a way that the new axes are the 
matrix eigenvectors (PC), the inertia of each axe being the related eigenvalues. According to the 
theory, the MCA matrix analysis gives 6=(7-1) independent PCs. Each model is now associated 
with a 6-dimensional vector. The MCA uses for this analysis the khi 2 distance. In figure 4, we 
present the projection of the models and the “region clusters” in the plane formed by the two first 
axes (x=PC1 and y= PC2) of the MCA that represent 70 % of the total inertia. Each model is 
represented by a small circle and each Region-cluster by a purple square. Moreover, we 
projected the observation field (green diamond) on that plane as a supplementary individual. The 
proximities in figure 4 is represented by the khi2 distance. To have a more precise view, it 
should be necessary to consider the projection on the 5 other PCs which represent 30% of the 
inertia.  

In the (PC1, PC2) plane, the shorter the distance between two models, the more similar 
the distribution of their region-cluster skills. The seven clusters of the observation field are 
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represented by purple squares. Proximity between a model and a region-cluster leads us to affirm 
that this region-cluster is well represented by that model. ..; 

……………. 

……………; 

 In this above analysis, we must be aware that we are confronted to the intrinsic difficulty 
to represent multidimensional data in a plan. The representation of some data can be biased thank 
to the importance given to the other axes.” 

 
 
Line 826: What is the TropFlux data set? This needs to be described and its use justified in the 
Data section. 
The TropFlux reanalysis combines the ERA-Interim reanalysis for turbulent and long-wave 
fluxes, and ISCCP (International Satellite Cloud Climatology Project) surface radiation data for 
shortwave fluxes. This wind stress product is described and evaluated in Praveen Kumar et al. 
(2011). 
These lines were added in the Data section.  
 
Technical corrections 
The writing in this paper is frequently conversational in tone rather than technical, and there are 
many instances of imprecise filler words like “very”, “pretty”, and “nicely”.  
In line 250, “let us say. . .” is a conversational phrase that is not appropriate to use in a scientific 
manuscript in this context.  
Also, the mention of “ongoing studies in our group” (line 527) is fine for a conference 
presentation but, in my opinion, is not appropriate to write in a scientific paper.  
Please proofread the paper and correct these and other such instances of informal language. 
The text was largely revised and improved in this respect. The two specific sentences cited 
above were corrected. We thank the reviewer for this remark that led us to significantly improve 
the language of the manuscript.  
 
There are several excessively long paragraphs that are taxing on the reader. For example, 
the paragraph from lines 30-73 in the Introduction and the paragraph from lines 332-377 in 
section 4 are very difficult to read due to their length. Please break up and reorganize these and 
other long paragraphs. 
These two paragraphs and several others have been cut. Thanks also for this remark that 
improves the readability of the paper.  
 
There are a number of typographical and grammatical errors throughout the paper, which 
impede its interpretability to the reader in some places. I have given a few examples below, but 
this is not an exhaustive list, and the authors should check the entire paper carefully for such 
errors in any subsequent versions of the manuscript. 
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- Title: Extra space after the word “in” 
Corrected 
 
- I am not able to read the full “short summary” on the discussion paper web site, but 
the part I can see contains three misspelled words. 
We are not sure why the short summary could not be read from the website, but the short 
summary was corrected  
 
- Errors in capitalization of words (e.g. “Observation field” in line 108, seasonal “Cycle” 
in line 299) 
These capitalizations intended to put emphasis on the elements of the mathematical procedure. 
Yet, we realize that this was not clear so that we removed all the capital letters in these 
expressions.  
 
- Lines 16-18: Abrupt shift from first-person to third person (“We used a neural classifier. . .” to 
“One can then determine. . .”) 
corrected 
 
- Line 83: Typo (“lies at is the southern. . .”) 
corrected 
 
- Lines 109-110: Typo (“were been regridded”) 
corrected 
 
- Line 525: Typo (“costal” instead of “coastal”) 
corrected 
 
Line 16: Typically self-organizing maps are described as an “artificial neural network” rather 
than a “neural classifier”. 
This was changed: In the text we now use a artificial neural network (Self-Organizing Maps), 
 
Line 21: What is meant by the phrase “performing multi-model ensemble”? 
This phrase was changed to “an efficient multi-model combination of 12 climate models” 
 
Line 26: CMIP5 stands for the “Coupled Model Intercomparison Project, Phase 5” (not the “5th 
Climate Model Intercomparison Project”). 
corrected 
 
Line 383: Shouldn’t this say “(Fig. 8, left)”? 
Corrected, apologizes for this mistake 
 
Line 755: Figure 1 appears distorted and blurry in the PDF version of the paper. Please 
correct this figure to make it easier to read. 
This figure was corrected and the .eps version attached to the revisions is not blurred.  
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Reviewer 2 
 
Mignot et al. use self organising maps to evaluate the behaviour of a multi-model ensemble in 
the Senegalo-Mauritanian upwelling region, with the aim of producing accurate projections of 
future climate changes in the region. Their algorithm aims to select models that yield a specific 
desired quantity - in this case, a multi model mean. They then project the selected models 
through the future to assess changes in the region. 
 
There is clearly a great deal of potential in the technical work in this paper. The idea of using 
Self Organising Maps as a dimension reduction and interpretation technique is a good one, and 
appears to work very well. It can clearly add a great deal of value to the analysis of a large 
multi-model ensemble in this region. However, I feel a degree of restructuring, clarification of the 
aims of the paper, and editing for overall clarity is required before the scientific content can be 
properly assessed. 
 
We would like to thank the reviewer for his/her careful reading of the manuscript and his/her 
constructive and challenging comments. We have restructured the manuscript as suggested, 
and clarified the methodology as much as we could. This has greatly improved the manuscript. 
We have also paid specific attention to editing issues for which we apologize. We detail below 
on all the modifications that have been implemented the text. 
 
I feel the paper would most benefit from restructuring so that the objectives, details and then 
method of assessment of the algorithm were more clearly laid out earlier in the paper, and the 
reader were more carefully led through that process. As it stands, intense technical detail 
follows very broad overview statements, and important details about the analysis are left until 
later in the paper, so the reader is left confused and searching for appropriate context into which 
to place technical detail. Some choices in the analysis feel arbitrary, and it is unclear whether 
this is because they are indeed arbitrary, or that they are inadequately described. 
 
The most obvious candidate for restructuring is the start of section 3, describing the methods 
used for classification of the models. This section dives straight into a detailed description of self 
organising maps (SOMs), without a discussion of precisely what the algorithm aims to achieve, 
how that can be assessed, and why SOMs were chosen as opposed to any other dimension 
reduction technique. As it is, the paper reads as “we decided to use SOMS and this is what you 
can do with them”, rather than “we are trying to solve a specific problem and here is how SOMs 
can help”. One suggestion would be to take the description of the methods from the start of 
section 6 (Discussion and Conclusion), expand upon it and place it at the start of section 3. 
 
The SOMs appear to successfully cluster the model field into regions with different dynamics. 
This seems useful and interesting. How does it help solve the specific problem? I think it would 
be useful to set out near the beginning of the paper the exact strategy that will be used, and 
how to tell if it is successful or not.  
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Thank you for these detailed and constructive remarks. We restructured the paper by taking  the 
remarks of the reviewer exposed in the above paragraphs into account. First, at the end of the 
introduction we now mention that our method is based on classification. At the beginning of 
section 3, we now justify the use of a classification method on the one hand and then choice of 
the SOM+HAC on the other hand.  
Moreover, Sub-section 3.4 is now section 4. In fact the MCA method used in this section is 
different from the SOM and quite new in geophysics; it therefore deserves a dedicated section 
in which we give more details on the functioning of the MCA. 
We also cut some long paragraphs in smaller paragraphs in order to facilitate the understanding 
of the text.  
 
Regarding the relevance of the SOM in particular, note that this question was also raised by 
reviewer 1. We are grateful to both reviewers for  requiring this classification.  As answered 
above, the SOM model has been used to determine a vector quantization of the dataset: i.e. to 
determine referent vectors that are a representative summary of the learning dataset. The 
vector quantization compresses the total database into a quite small (with respect to the size of 
the database) number of referent vectors such as each data is not too different of its nearest 
referent according to a distance (The Euclidean distance in the present case). The exact 
number of referents, that is the number of neurons, does not really matter because this number 
will be reduced by the HAC. Doing so allows us to take the non-linearities of the dataset into 
account in the analysis. This explanation now appears at the beginning of section 3.  
 
For example, It seems clear that the assessment algorithm (starting line 232) can be used to 
rank the models in terms of their closeness to observations and dynamics in particular regions. 
 
One downside however, is that it does not give the modeller an intuition into how far the model 
is from “good” behaviour in absolute terms. We simply get an averaged “skill score” from 28% to 
79%, but without an idea of how this might relate to more traditional measures of skill. So how 
close is the best model and how far is the worst model from reality? We have only a score 
(useful as that is) to guide us. 
 
In this paper we give a global index that is the mean of 7 indices associated with the seven 
Region-clusters. This mean index shows the ability of a given model to represent the global 
area. But for each Model and each Region-Cluster, we give the ratio that represents how that 
model represents that Region-cluster. These indices are visible on the colorbar of figure 3.So 
each modelling group can evaluate how its numerical schemes represent the dynamic of  the 
observations. 
We also give a visual interpretation of the fitting of the different CMIP5 models with respect to 
observations in Figure 4. The best models are the closest to the observations with respect to the 
khi2 distance.  
In general, we agree with the reviewer that there is a huge amount of information to take out 
from this method  in general and from Fig. 3 and 4 in particular. Each modelling group could use 
this information to better understand the reasons for their model’s difference to observation. And 
specialists of the Senegal-Mauritania region can use it to better understand the reasons for the 
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weak representation of this region in climate models. In this paper we propose an illustration of 
the method application. After publication, the method will be free of use for more various 
applications. We thus added a sentence in the text as well as in the conclusion to stress that 
point. We are grateful to the reviewer for having stressed that point.  
 
The paper makes the claim that it offers an objective method for the assessment of the 
behaviour of models with regards historical observations. I struggle to accept this, given the 
number of subjective choices made with regards to the way the analysis is conducted. 
Subjective judgements will always need to be made in the analysis of climate model output - this 
is inevitable, and perfectly reasonable as long as labelled as such. The paper only examines a 
subset of model fields for example, and a subjective choice as to which of those fields to select 
has been made. 
The reviewer is right in several aspects:  

- The study focuses on the ability of CMIP5 models to reproduce the ocean seasonal 
variability in the Senegalo-Mauritanian upwelling region only. The models which 
represent this region at best  do not necessarily represent other regions at best. Our 
study is not devoted to the comparison of the CMIP5 models in general but to their ability 
to reproduce the Senegal-Mauritanian upwelling area only.  We now mention that point 
explicitly in the conclusion. Furthermore, a full representation of the geophysical 
phenomenon should involve more variables, as explained in Sylla et al (2019) and this 
first study is more a test-case than a full analysis. 
 

- Concerning the use of statistics, we are aware that  statistics are only a support to 
understand or interpret  what is hidden in the dataset, mainly if the number of data and 
observations is large.  This is the present case because we want to compare  47 
different models with respect to a set of observations, with a focus on the dynamical 
behavior of each dataset (multidimensional analysis in a  12-dimensional space, the 
monthly SST anomalies).  We built a method to solve that problem. Other methods could 
possibly lead to different results depending of what we looked for:  The number of 
possible statistical studies is huge. In that sense, the choice of the method contains 
some subjectivity.  

 
Nevertheless, the method we propose is not subjective ; it allows to rank the models according 
to the reduction of information we made (the seven dynamical region-clusters, after the SOM). 
This is in some way a classical problem in geophysics, where we need to classify, organize the 
information. Here it is done using relatively novel statistical tools (SOM+HAC). Finally, the MCA 
is a qualitative (but rational) method to summarize and visualize on a graphic the “similarities” of 
the models, the observations and the region-clusters.  
 
For these reasons, we consider that the title is not misleading: our method is a step towards an 
objective assessment. Yet, considering the reviewer’s remark, we have modified the sentence 
claiming for an “objective method” in the abstract and this term is now better justified in the 
conclusion section.  
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A core problem that needs to be addressed in the paper can be illustrated by considering the 
section starting on line 285: 
“As indicated in the introduction, the main objective of the methodology is to select an ensemble 
of models that represents at best the upwelling behavior with respect to the observations and to 
use this ensemble to predict the impact of climate change in the Senegalo-Mauritanian 
upwelling with some confidence. The problem is now to determine a subset of models that can 
adequately represent the observations, as the number of models is small enough we choose to 
cluster them by HAC according to their projections onto the seven axes provided by the MCA, 
and select the optimal jump in the hierarchical tree (Jain and Dubes, 1998).”  
I cannot see a description of what it means for a subset of models to “adequately represent the 
observations”. 
 
We agree with the reviewer that the phrase “adequately represent the observations” is 
misleading.  
Through MAC+HAC, we group the models into Model-clusters, using the khi2 distance, 
according to their proximity to the observations and their internal similarity. Model group 4 
appears as the one closest to observations with respect to that distance. In Figure 4, we see the 
projection of the individual models on the first two axes of the MCA. The fact that only two axes 
are shown here  can introduce some bias in the visualization and this figure must be considered 
with some caution. We associated a multi-model  with the Model-group 4 (close to the 
observations),whose outputs are the mean of the outputs of the models constituting the Model-
group 4. We agree with the fact that we cannot prove that this is the best. An exhaustive 
research in order to find the best subset is nevertheless prohibitive due to the enormous number 
of possible combinations.  The phrase “a subset of models that can adequately represent the 
observations” was changed into “a subset of models which has a better skill than Model-All”. 
 
 
 I also cannot see an adequate description for what the “optimal jump in the hierarchical tree” of 
Jain and Dubes (1998) is, or what it might mean for the ensemble members. The clustering of 
the models in figure 4 looks reasonable by eye, but there are a large number of other ways that 
the models could be clustered that might be equally as reasonable. The authors claim that their 
algorithm selects a number of ensemble members that best represent an ensemble mean. I 
don’t believe that they provide sufficient justification for why the ensemble mean should be 
selected for, or that the ensemble members their algorithm selects members in a way that is 
superior to a subjective selection.  
 
We recall that the HAC (hierarchical ascending clustering) is a bottom-up algorithm for dataset 
clustering. The key operation in hierarchical bottom-up clustering is to repeatedly combine the 
two nearest (according to a certain distance) clusters into a larger  cluster. The HAC starts from 
individuals and combines them according to their similarity (with respect  to  the  chosen 
distance) to obtain new clusters.The process is repeated up to get one cluster only (the full 
dataset). This algorithm is visualised by a tree-like diagram, the so-called connection tree : the 
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connections between the clusters are represented  by the branches of the connection tree (see 
figure below) according to their proximities. Due to the bottom-up algorithm,  the construction of 
clusters is therefore objective with respect to the chosen distance.  The objects are finally 
categorized  into a hierarchy similar to a tree-like diagram which is called a dendrogram (see figure). A 
major problem then arises: When do I stop combining clusters and consider that I have optimal 
clusters? 
The problem is semi-qualitative. It depends on the dataset under study. Most of the time, it is a 
compromise between a sufficient number of clusters to explain the complexity of the dataset 
and a relatively small number of clusters in such a way that every cluster can be handled and 
explained.   
 
In the present study, we decided to deepen the statistical aspect of the problem and to choose 
an “optimal” model according to the data provided by the MCA algorithm (the data are the rows 
of the matrix   R = [Rmi] representing the 7 component vector-skill of the models). The HAC 
clusters the models according to their similarities (based on the  Khi2 distance). The HAC used 
in the MCA analysis yields the following dendrogram (not shown in the paper): 
 

 
Figure: HAC dendrogram 

 
On the horizontal line, we have displayed the 47 CMIP5 models, each model being associated 
with its 7 component skill-vector.  As the dendrogram represents  a hierarchy of clusters,  the 
numbers on the y axis give the distance between two clusters;  Clearly there is an optimal jump 
on this graph: for 4 clusters we obtain well separated Model-groups that are very different.  The 
horizontal black line materializes this optimal jump on the figure (level 1.5 in the vertical axis)..  
The purpose of this explanation is to highlight the rationality of the selection. We reckon that 
there is subjectivity in the choice of the approach of the statistical tool, and also in the use of the 
geophysical knowledge of the region. But by themselves, these tools rely on rational criteria.  
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.  This is presented as a “model weighting” paper, and while that might be possible with this 
algorithm, I do not believe that is where the strength of the analysis lies. 
 
It was not our intention to present this study as a “model weighting” one. Although model 
weighting strategies are indeed presented in the introduction, the text only refers to model 
selection. We have carefully proofread the text so as to make sure to remove this misleading 
message 
We indeed agree with the fact that we do not determine a weighted ensemble model but an 
ensemble model that better represents the observations than Model-all, which is the mean of all 
the CMIP5 models we have considered,  and also better than the other Model-groups. Our 
model selection is based on the distance separating the models to the observations . 
This combination is provided by the MCA which deals with the 7 component skill-vector 
associated with each model (and permits to determine a distance to the observation field also 
associated with a 7 component skill vector) which is more informative than the average skill 
which has one component only.  
Our paper is a “model selection” one.  
 
The paper would be better re-cast as a model analysis paper, using an interesting and useful 
algorithm to explore the dynamical deficiencies of the models in the region, and informing 
climate modellers of those deficiencies. I think if the authors wish it to be a model weighting 
paper, then more emphasis needs to be given to the meaning and justification of the weighting 
scheme. Further, the authors should develop placing the weighting scheme in the context of 
established work on the meaning of multi-model ensembles. 
 
We agree with the reviewer that our methodology provides rich and objective information about 
climate models performance in a specific region. This is one outcome of our study (mainly 
section 3) and we have strengthened this message in the text and in the conclusion.  
Nevertheless, We do not agree with the suggestion of the reviewer that the paper is a model 
analysis paper. Section 4 indeed provides a way (through the MCA) to use a 7 component skill 
vector to obtain an efficient combination of climate models leading to an efficient multi-model. 
(Efficient means that  its skill is better than the one of Model-all).  
 Another question may arise, which is far beyond the objective of the present paper: Is model 
weighting the best strategy to obtain the most efficient multi-model? Or should  we envisage 
statistical combinations based on multi-parameter analyzes as those developed in the present 
study?. 
In our view, the major contribution of our paper can be summarized into the following sentences 
included in section 7 (discussion and conclusion): 
 
“The extraction of information embedded in the vector-skill whose 7 components are the skills 

associated with the 7 sub-regions and the resulting efficient multi-model combination imply the 

use of advanced statistical tools  such as the MCA. Moreover, the study of the vector skill also 

permits to separate information provided on large offshore ocean circulation from those 
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occurring in the upwelling region leading to diagnose the deficiencies of some climate models 

with respect to the modelling of physical processes. Another contribution of the MCA is the 

visualization of the 47 models and the observations on the  plane constituted by the first two 

MCA axes, which represents 70% of the information embedded in the data.  The similarities of 

the climate models with respect to the observations and the region-clusters are well evidenced. 

The ‘mean’ skill associated with each climate model and proposed in this study is easy to use but 

is far less informative than the vector-skill whose 7 components are the skills associated with the 

7 sub-regions. “ 

 
We would like to thank again the reviewer for these comments that helped us improve the 
paper.  
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Abstract. Climate simulations require very complex numerical models. Unfortunately, they 10 

typically present biases due to parameterizations, choices of numerical schemes, and the 11 

complexity of many physical processes. Beyond improving the models themselves, a way to 12 

improve the performance of the modeled climate is to consider multi-model combinations. In the 13 

present study, we propose a method to select the models that yield an efficient multi-model 14 

ensemble combination. We used a neural classifier (Self-Organizing Maps), associated with a 15 

multi-correspondence analysis to identify the models that represent some target climate property 16 

at best. We can thereby determine an efficient multi-model ensemble. We illustrated the 17 

methodology with results focusing on the mean sea surface temperature seasonal cycle over the 18 

Senegalo-Mauritanian region. We compared 47 CMIP5 model configurations to available 19 

observations. The method allows us to identify an efficient multi-model combination of 12 20 

climate models. The future decrease of the Senegalo-Mauritanian upwelling proposed in recent 21 

studies is then revisited using this multi-model selection.  22 

 23 

 24 

1- Introduction 25 

In this study, we present a methodology aiming at selecting a coherent sub-ensemble of the 26 

models involved in the Climate Model Intercomparison Project, Phase 5 (CMIP5) that best 27 

represents specific observed characteristics. The analysis is performed on the capacity of the 28 

models to represent the seasonal cycle of the sea surface temperature (SST) in the region of the 29 

Senegalo-Mauritanian upwelling off the west coast of Africa.  30 
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The Senegalo-Mauritanian upwelling has focused increasing attention over the recent 1 

years. It presents an important seasonal cycle associated with mesoscale patterns whose 2 

variability has been recently studied by several oceanographic campaigns (Capet et al., 2017; 3 

Faye et al., 2015; Ndoye et al., 2014). The very productive waters associated with the upwelling 4 

have a strong economic impact on fisheries in Senegal and Mauritania, and a crucial societal 5 

importance for local populations. It is therefore of importance to predict the evolution of the 6 

dynamics and the physics of the upwelling in the forthcoming decades due to the effect of 7 

climate warming and its consequences on biological productivity which may impact the 8 

fisheries.  9 

The most common way to predict the evolution of the climate is to run climate models 10 

that include fully coupled atmosphere-ocean-cryosphere-biosphere modules. Because of their 11 

quite low resolution and the fact that they use different parameterizations of the physics, 12 

numerical schemes and sometimes include or neglect different processes, these models have 13 

some marked biases in specific regions. They also have different responses to an imposed 14 

increase of atmospheric greenhouse gases, which partly explain their mean climate biases. This 15 

variety of models allows us to assess the uncertainty of present climate representation when 16 

compared to observations and, by studying their dispersion, to roughly estimate the uncertainty 17 

of the response to future climate change.  18 

For several generations of climate models, it has been shown that for a large variety of 19 

variables the multi-model average mostly agrees better with observations of present day climate 20 

than any single model, and that the average also consistently scores higher in almost all 21 

diagnostics (Lambert and Boer, 2001; Phillips and Gleckler, 2006; Reichler and Kim, 2008; 22 

Santer et al., 2009; Tebaldi and Knutti, 2007). Several studies also suggest that the most reliable 23 

climate projection is given by a multi-model averaging (Knutti et al., 2010), rather than 24 

averaging different projections performed with a single model run with different initial 25 

conditions for example. This result relies on the assumption that if choices of parameterizations, 26 

specific numerical schemes, are made independently for each model, then the errors might at 27 

least partly compensate, resulting in a multi-model average that is more skillful than its 28 

constitutive terms(Tebaldi and Knutti, 2007). The significant gain in accuracy can be explained 29 

by the fact that the errors specific to each model compensate each other in the averaging 30 

procedure used to build the multi-model. However, the number of GCMs available for climate 31 
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change projections is increasing rapidly. For example, the CMIP5 archive (Taylor et al., 2012), 1 

which was used for the fifth IPCC Assessment Report (Stocker et al., 2013), contains outputs 2 

from 61 different GCMs and 70 contributions are expected for CMIP6. Nevertheless, these 3 

models constitute a fully independent ensemble (e.g. Masson and Knutti, 2011). It thus becomes 4 

possible and probably needed to select and/or weigh the models constituting such an average. 5 

Recent work has suggested that weighting the multi-model averaging procedure could help to 6 

reduce the spread and thus uncertainty of future projections. Such an approach has been applied 7 

extensively to the issue of climate sensitivity (Fasullo and Trenberth, 2012; Gordon et al., 2013; 8 

Huber and Knutti, 2012; Tan et al., 2016). Valuable improvement of models selection has also 9 

been found in studies of the carbon cycle (Cox et al., 2013; Wenzel et al., 2014), the hydrological 10 

cycle (Deangelis et al., 2015; O’Gorman et al., 2012), the Antarctic atmospheric circulation (Son 11 

et al., 2010; Wenzel et al., 2016), extratropical atmospheric rivers (Gao et al., 2016) atmospheric 12 

and ocean heat transports (Loeb et al., 2015), the European temperature variability (Stegehuis et 13 

al., 2013) and temperature extremes (Borodina et al., 2017). 14 

The present paper is dedicated to the elaboration of an objective method to select models 15 

according to their performance over the Senegalo-Mauritanian upwelling area, with the aim of 16 

constructing an efficient climate multi-model combination together with its related confidence 17 

interval in order to anticipate the effect of climate warming by the end of the century in this 18 

region.  This upwelling is very intense and presents a well-marked seasonal variability. Its 19 

intensity is stronger in boreal winter and it disappears in summer with the northward progression 20 

of the ITCZ.  Due to the enrichment of the sea surface layers with nutrients upwelled from deep 21 

layers, it drives an important phytoplankton bloom that is observed on ocean color satellite 22 

images (Demarcq and Faure, 2000; Farikou et al., 2015). The maximum intensity of this bloom 23 

occurs in March-April (Farikou et al., 2015; Faye et al., 2015; Ndoye et al., 2014). This 24 

upwelling lies at the southern end of the Canarian upwelling system, which has itself a much 25 

weaker seasonality and is maximum in summer. Consequently, the Senegalo-Mauritanian 26 

upwelling is characterized by a very specific seasonality which is observed on satellite SST 27 

(Demarcq and Faure, 2000; Sawadogo et al., 2009). Sylla et al., 2019) have recently shown that 28 

the intensity of the SST seasonal cycle along the coast of Senegal and Mauritania was a good 29 

marker of the upwelling in climate models. The method we have developed is based on the 30 

capability of the climate models to reproduce the SST seasonal cycle observed during the 31 
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historical period in key sub-regions. These sub-regions are identified by a neural classifier. The 1 

method leads us to rank the different models and to determine an efficient multi-model 2 

combination for the analysis of the Senegalo-Mauritanian upwelling and projections of its 3 

behavior in global warming conditions. 4 

The paper is articulated as follows: section 2 presents the different climate models and 5 

the climatological observations used in the study, together with the region of interest. The 6 

classification method is described in section 3 and applied to the extended region. Section 4 7 

presents a qualitative analysis able to group the different climate models in clusters presenting 8 

similar performances. Section 5 investigates the results of the method applied over a smaller 9 

area, more focused over the upwelling region. Section 6 uses the two multi-model clusters 10 

defined in sections 4 and 5 respectively to tentatively predict the representation of the Senegalo-11 

Mauritanian upwelling changes under global warming. Conclusions are given in section 7.  12 

 13 

2- Climate Models and region of interest 14 

2.1 Data 15 

This study is based on the CMIP5 (Coupled Model Inter-comparison Project Phase 5) database.  16 

We used the output of the 47 simulations listed in Table 1. The models were evaluated over the 17 

historical period defined as [1975-2005] by comparing their output to observations. The mean 18 

seasonal cycle of SST anomalies over this period is constructed for each model grid point as the 19 

difference between the monthly mean temperature and the mean annual temperature. When 20 

several members of historical simulations are available for a specific model configuration, they 21 

are averaged together. However, this has practically no impact on the estimated mean seasonal 22 

cycle (not shown). The mean climatological cycle of the CMIP5 models under study is evaluated 23 

against the Extended Reconstructed Sea Surface Temperature data set (ERSST- v3b, Smith et al., 24 

2008), averaged over the same time period. This data set is produced by NOAA at 2° spatial 25 

resolution. It is derived from the International Comprehensive Ocean–Atmosphere Dataset with 26 

missing data filled in by statistical methods. This dataset is used as the target to be reproduced 27 

and is denoted "observation field" hereinafter.  In order to deal with data at the same resolution, 28 

all model outputs as well the observation fields were regridded on a 1-degree resolution regular 29 

grid prior to analysis. A previous study (Sylla et al., 2019) has compared the performance of this 30 
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dataset as compared to the gridded SST data set from the Met Office Hadley Centre HadISST 1 

(Rayner, 2003). Although differences are relatively weak, a subsequent study should analyze the 2 

sensitivity of the method to the choice of the target dataset.  3 

In section 6, the models’ selections are used to characterize the response of the upwelling to 4 

climate change. This response is characterized in terms of SST anomalies but also wind intensity. 5 

For this, the simulated wind stress is compared to the TropFlux reanalysis. This data set 6 

combines the ERA-Interim reanalysis for turbulent and long-wave fluxes, and ISCCP 7 

(International Satellite Cloud Climatology Project) surface radiation data for shortwave fluxes. 8 

This wind stress product is described and evaluated in (Praveen Kumar et al., 2011). 9 

 10 

2.2 The Senegalo-Mauritanian upwelling region 11 

In the present research, we evaluated the ability of the different climate models to represent the 12 

Senegalo-Mauritanian upwelling. Following (Sylla et al., 2019), we consider the intensity of the 13 

seasonal cycle of the SST anomaly as a marker of the upwelling variability and localization. This 14 

variable is shown in Fig. 1 for the eastern tropical Atlantic. This figure confirms that the 15 

Senegalo-Mauritanian coast stands out with a very strong seasonal SST cycle as compared to 16 

what is found at similar latitudes in the open ocean. This results from the cold SST generated by 17 

the strong winds occurring in winter. The Senegalo-Mauritanian upwelling is confined in a small 18 

region of the order of 100km off the western coast of Africa. It is part of a complex and fine 19 

scale regional circulation system recently revisited by Kounta et al., 2018. Since the grid mesh of 20 

most of the climate models is of the order of 1° (~100km), this regional circulation is thus poorly 21 

resolved, and this pleads for a relatively large-scale analysis of the upwelling representation in 22 

climate models. The Senegalo-Mauritanian upwelling is also embedded in a large scale oceanic 23 

circulation pattern, encompassing the North Equatorial Counter Current flowing eastward in the 24 

southern part of the region and the return branch of the subtropical gyre in the northwestern part. 25 

Therefore, we will firstly study the representation of the SST seasonal cycle intensity in the 26 

different climate models over a relatively large region that includes part of the Canary current in 27 

the North and the Guinea dome in the South. The so-called “extended region” is defined by a 28 

rectangular box extending from 9°W to 45°W and from 5°N to 30°N (Fig. 1). In a second step, 29 

we will proceed to the same analysis and classification of the models within a much more 30 
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focused (hereafter zoomed) region, namely [16°W-28°W and 10°N-23°N] (Fig. 1). All the 1 

results below will be first shown for the extended region. Comparison with the focused region 2 

will be done in section 4.  3 

3 - Comparing observations and models: a methodological approach 4 

The methodology we have developed is based on the ability of the climate models to adequately 5 

reproduce the climatology of the seasonal cycle of the SST anomalies as observed during the last 6 

three decades in key sub-regions of the studied domain. These key sub-regions were determined 7 

from the similarity of their physical and statistical characteristics through an unsupervised 8 

classification, which clusters pixels having similar observed seasonal SST climatology. We 9 

chose to deal with a neural classifier, the so-called self-organizing map (SOM hereinafter) 10 

developed by Kohonen, 2013 followed by a Hierarchical Ascendant Clustering (HAC, Jain and 11 

Dubes, 1998). This method leads to a dynamically interpretable classification. The SOM 12 

determines a vector quantization of the dataset, which compresses the initial dataset into a 13 

relatively small number of referent vectors. Doing so allows to take the non-linearities of the 14 

dataset into account and to filter the noise, which can make the classification spurious. This 15 

reduced number of dataset vectors enables an HAC to determine the highly non-linear borders 16 

between the different SOM clusters. This procedure has been used with success in several studies 17 

(Farikou et al., 2015; Jouini et al., 2016; Niang et al., 2003, 2006; Sawadogo et al., 2009). Note 18 

that the use of an HAC directly on the initial dataset would not be efficient in the present study 19 

because the number of degrees of freedom (here the grid points of the initial domain) is too large 20 

for this method to work efficiently. In the present section, we describe the methodology we 21 

developed to score the different climate models with respect to the observations. In section 4, we 22 

will tentatively group the different climate models into blocks having the same behavior by using 23 

a Multiple Correspondence Analysis (MCA in the following).  24 

 25 

 3.1 The unsupervised classification method 26 

The first step of the methodology was to decompose the selected region in different classes (the 27 

key sub-regions mentioned above) by using a neural network classifier, the so-called SOM 28 

(Kohonen, 2013). This algorithm constitutes a powerful nonlinear unsupervised classification 29 
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method. It has been commonly used to solve environmental problems (Hewitson and Crane, 1 

2002; Jouini et al., 2013, 2016; Liu et al., 2006; Reusch et al., 2007; Richardson et al., 2003). 2 

The SOM aims at clustering vectors (here the 12 SST seasonal anomalies) of a multidimensional 3 

database (D) (here the grid points of the studied domain) into classes represented by a fixed 4 

network of neurons (the SOM map).  The self-organizing map (SOM-map) is defined as an 5 

undirected graph, usually a 2D rectangular grid. This graphical structure is used to define a 6 

discrete distance (denoted by 𝛿) between the neurons of the map and thereby identify the shortest 7 

path between two neurons. Moreover, SOM enables the partition of D in which each cluster is 8 

associated with a neuron of the map and is represented by a prototype that is a synthetic 9 

multidimensional vector (the referent vector w). Each vector z of D is assigned to the neuron 10 

whose referent w is the closest, in the sense of the Euclidean Norm (EN), and is called the 11 

projection of the vector z on the map. A fundamental property of a SOM is the topological 12 

ordering provided at the end of the clustering phase: two neurons that are close on the map 13 

represent data that are close in the data space. In other words, the neurons are gathered in such a 14 

way that if two vectors of D are projected on two “relatively” close neurons (with respect to 𝛿) 15 

on the map, they are similar and share the same properties. The estimation of the referent vectors 16 

w of a SOM and the topological order is achieved through a minimization process using a 17 

learning data set base, here from the observations.  The cost function to be minimized is of the 18 

form:  19 

𝐽!"#! 𝜒,𝑊 = 𝐾!(𝛿 𝑐,𝜒 𝑧! )‖𝑧! − 𝑤!‖!
!∈!"#!"∈!

 

where 𝑐 ∈ 𝑆𝑂𝑀 indices the neurons of the SOM map, 𝜒 is the allocation function that assigns 20 

each element zi of D to its referent vector 𝑤!(!!) and 𝛿(𝑐,𝜒 𝑧! )  is the discrete distance on the 21 

SOM-map between a neuron c and the neuron allocated to observation zi. 𝐾!a kernel function 22 

parameterized by T (where T stands for “temperature” in the scientific literature dedicated to 23 

SOM) that weights the discrete distance on the map and decreases during the minimization 24 

process. At the end of the learning process, the classification can be visualized onto the SOM-25 

map and interpreted in term of geophysics. 26 

3.2 - Classification of the observations  27 

In the present problem we chose to classify the annual cycles of the SST seasonal anomalies 28 

observed in the Senegalo-Mauritanian upwelling. The study was made over the “extended 29 



8 

 

region” constituted of 25 x 36 = 900 pixels, but this enlarged region covers a part of the African 1 

continent and 157 pixels are in fact over land. That means that we have truly 743 ocean pixels to 2 

deal with. We consider the time-period of 30 years [1975 to 2005] extracted from the ERSST-V3b 3 

database. For a given grid point and a given year and month, the monthly anomaly is the SST of 4 

the pixel for which we have subtracted the mean of the considered year. The climatological mean 5 

of the anomaly is then computed for each grid point by averaging each climatological month 6 

over the 30 years. Thus, the learning data set D is a set of 743 twelve-component vectors z, each 7 

component being the mean monthly anomaly computed as above. We denote “SST seasonal 8 

cycle” the vector z in the following. 9 

We used a SOM-map to summarize the different SST seasonal cycles present in the "extended 10 

region". We found that 120 prototypes (or neurons) can accurately represent the 743 vectors of 11 

D.  This reduction (or vector quantization) is made by using a rectangular SOM-map of 30 x 4 12 

neurons. 13 

We then reduced the number of neurons in order to facilitate their interpretation in terms of 14 

geophysical processes. For this, we applied a Hierarchical Ascendant Clustering algorithm 15 

(HAC) using the Ward dissimilarity (Jain and Dubes, 1988). We grouped the 120 neurons of the 16 

SOM into a hierarchy that can contain between 1 and 120 clusters. Then the different 17 

classifications proposed by the HAC were applied to the geographical region: each SST seasonal 18 

cycle of each grid point of the region is assigned to a neuron and consequently to a cluster 19 

(assignment process), thereby defining the so-called region-clusters. The problem is then to 20 

choose a number of clusters that adequately synthesizes the geophysical phenomena over the 21 

region. This was done by looking at the different possible classifications and choosing one 22 

representing the major characteristics of the upwelling region.  In Fig. 2a, we observe that when 23 

we partition the SOM in 7 clusters, the associated 7 region-clusters are constituted of contiguous 24 

pixels in the geographic map, and that two clusters (6, 7) are within the upwelling region and 25 

present a well-marked seasonal cycle.  For each region-cluster, we estimated the monthly mean 26 

of the SST seasonal cycle and the associated spread captured by the neurons constituting this 27 

region-cluster.  28 

The typical SST climatological cycles for each region-cluster are presented in Fig. 2b 29 

together with their related error bars. We note that the region-clusters are well identified, their 30 
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typical climatological annual cycles of SST being well separated. Furthermore, the 7 region-1 

clusters are spatially coherent and have a definite geophysical significance.  2 

For the extended region under study, 7 therefore appears to be an adequate cluster 3 

number, since this number allows a clear partition of the clusters on the HAC decision tree on the 4 

one hand, and permits to assign a clear physical significance to each region-cluster on the other 5 

hand. the Senegalo-Mauritanian coastal upwelling is associated with clusters 7 and 6. Cluster 2 6 

corresponds to deep tropical waters associated with the equatorial Countercurrent. Cluster 1 7 

corresponds to surface waters of the Gulf of Guinea. Cluster 3 corresponds to the offshore 8 

tropical Atlantic, and cluster 5 has extratropical characteristics. Cluster 4 is transition between 3 9 

and 5. As expected, the equatorial regions (clusters 1 and 2) have a very weak seasonal cycle, 10 

which increases towards the extratropics (clusters 3 to 5). The upwelling regions (clusters 6 and 11 

7) are characterized by an exceptionally strong seasonal variability.  12 

 13 

3.3 – Classification of the climate models over the extended upwelling region  14 

The aim is now to find the model(s) that best fit the “observation field”. A heuristic 15 

manner is to compare the pattern of the different region-clusters of the CMIP5 models with 16 

respect to those of the “observation field” through a sight evaluating process. This kind of 17 

approach has been proposed in Sylla et al., 2019, and we indeed immediately see that some 18 

models better fit the “observation field” than others. But this method remains very subjective.  19 

In the following, we present a more objective approach. We use the previous 20 

classification to objectively estimate how each CMIP5 model fits the “observation field” and its 21 

seven region-clusters. For this, we projected the SST annual cycle of each CMIP5 model grid 22 

point of the extended region onto the SOM learned with the observations (section 3.2) using the 23 

assignment procedure described in this section. Each grid point thus corresponds to a cluster of 24 

the SOM and is represented on the geographical map by its corresponding color.  Doing so, we 25 

can represent each CMIP5 model by the geographical pattern of the 7 clusters partitioning the 26 

SST seasonal cycle of its grid points. The geographical maps representing the 47 models and 27 

their associated clusters are plotted in Fig. 3. This graphical visualization is easier to compare 28 

than the original characteristics (amplitude and phase) of the annual cycle at each grid point of a 29 

model since each grid point can only take one discrete value among seven. This representation 30 

immediately allows identifying the model biases and the models that best reproduce the cluster-31 
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regions identified in the observations. A huge amount of information could in principle be 1 

extracted from these maps, both from individual modelling groups, to understand the 2 

representation of this region by the models and origins of possible biases, and from experts of the 3 

area, to understand the difficulties of the climate models to represent the SST seasonal cycle in 4 

this region.  5 

For a more quantitative assessment, we counted the number of grid points of a region-6 

cluster for a given CMIP5 model matching the same region-cluster of the “observation field”. 7 

We then computed the ratio between that matching number and the number of pixels of the 8 

region-cluster of the considered model. That number is noted in the color-bar for each region-9 

cluster in Fig. 3. We denote Rmi the ratio for the region-cluster i and the model m, where 10 

i = 1, …, 7 is the number of the region-cluster and m = 1, …, 47 is the number of the model (see 11 

table 1). We note that Rmi ≤ 1.  Doing so, each model m is represented by a 7-dimensional 12 

vector Rm, each component being the ratio of a region-cluster.  We estimated the total skill of a 13 

model by averaging the 7 ratios. Note that this procedure gives the same weight to each region-14 

cluster whatever its number of grid points and its proximity with the upwelling region. In the 15 

following the skill is presented as a percentage, the higher the skill, the better the fit. In Fig. 3, 16 

the 47 CMIP5 models are ranked by their total skill, which is indicated above each panel beside 17 

the model name. The model skills are very diverse, ranging from 79% to 28%. This figure also 18 

shows that the models presenting the best total skill are also those representing thoroughly the 19 

upwelling region. Some models represent the large-scale structure in the eastern tropical Atlantic 20 

(region-clusters 3, 4, 5) very well but not the upwelling (33-GISS-E2-R and 34-GISS-E2-R-CC 21 

for example). Others represent pretty well the upwelling region-clusters (region-clusters 6 and 7), 22 

but not the large-scale structures of the SST seasonality (13-CSIRO-Mk-3-6-0, 6-CMCC-CESM 23 

for example). None of these models is ranked among the best models, with a score greater than 24 

60%. As indicated above, this representation gives a very synthetic view of the structure of the 25 

seasonality of the SST cycle in each of the models, potentially a very useful guide for climate 26 

modelers to identify rapidly major biases. 27 

 28 

4  – Qualitative  analysis of the climate models 29 
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In order to further progress in the selection of the models, the 47 climate models and the 1 

observation field were then analyzed by using a Multiple Correspondence Analysis (MCA in the 2 

following). MCA is a multivariate statistical technique that is conceptually similar to principal 3 

component analysis (PCA in the following), but applies to categorical rather than continuous 4 

data. Similarly as PCA, it provides a way of displaying a set of data in a two-dimensional 5 

graphical form.  6 

In the following, we apply a MCA analysis to the (47,7) matrix R = [Rmi] whose 7 

elements represent the skills of the clusters of the models shown in front of the color bars in Fig. 8 

3:  the rows m represent the 47 different models, the columns i the 7 region-clusters. The MCA, 9 

as the PCA, projects the initial matrix on a new basis in such a way that the new axes are the 10 

matrix eigenvectors (PC), the inertia of each axis being the corresponding eigenvalues. 11 

According to the theory, the MCA matrix analysis of R gives i-1 = 6 independent PCs. Each 12 

model is thus now associated with a 6-dimensional vector on which it has a specific weight. The 13 

MCA uses for this analysis the khi-2 distance. In figure 4, we present the projection of the 14 

models and the “region clusters” in the plane formed by the two first axes (x=PC1 and y= PC2) 15 

of the MCA. These two axes represent 70 % of the total inertia. Each model is represented by a 16 

small circle and each region-cluster by a purple square. Moreover, we projected the observation 17 

field (green diamond) on that plane as a supplementary individual. To have a more precise view 18 

of the topology, it would be necessary to consider the projection on the 5 other PCs, which 19 

represent 30% of the inertia.  20 

In the (PC1, PC2) plane, the shorter the distance between two models, the more similar 21 

the distribution of their region-cluster skills. Proximity between a model and a region-cluster 22 

leads us to affirm that this region-cluster is well represented by that model. Clearly, some models 23 

adequately represent the southern part of the extended region (region-clusters 1, 2 or 3), where 24 

the SST seasonal cycle is weak, and are very distant from the upwelling regions (region-cluster 6 25 

and region-cluster 7) whose large SST cycle is poorly reproduced. In this group of models, one 26 

recognizes the model 16-IPSL-CM5A-MR, at the extreme bottom of Fig. 4, close to region-27 

clusters 4 and 5, consistently with Fig. 3. At the other end of this group of models, the model 23-28 

HadCM3 for example is located very close to the region-cluster 1. Fig. 3 indeed shows that most 29 

of its grid points over the region of interest have a seasonal cycle resembling the one found in the 30 
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offshore tropical ocean. Another group of models is located in the center of this plan, thus at an 1 

optimal distance of each of the observed regions-clusters, and not far from the overall position of 2 

the observations (diamond). We recognize in this group of models those that have a high skill in 3 

Fig. 3. The positioning of the observations (green diamond in Fig. 4) with respect to the models 4 

indeed allows selecting those that best represent the observations field. The representation given 5 

in Fig. 4 allows understanding the drawback of the different models with respect to the 7 Modes 6 

of SST-cycles.  7 

  As indicated in the introduction, the main objective of the methodology is to select an 8 

ensemble of models that represents at best the upwelling behavior with respect to the 9 

observations and to use this ensemble to predict the impact of climate change in the Senegalo-10 

Mauritanian upwelling with some confidence. The problem is now to determine a subset of 11 

models which has a better skill than Model-All, in other words minimize the distance to the 12 

observations. As the number of models is small enough, we chose to cluster them by an HAC 13 

according to their projections onto the six axes provided by the MCA, and select the optimal 14 

jump in the hierarchical tree (Jain and Dubes, 1988). 15 

Doing so, we obtain four homogeneous groups which are well separated (group 1, 2, 3, 16 

4). They are plotted with different colors in Fig. 4. We denote Model-group 1, Model-group 2, 17 

Model-group 3, Model-group 4 these multi-model ensembles hereinafter. Model-group 4 18 

represents the observations and the upwelling region-clusters at best. 19 

For each group, we computed a multi-model average whose outputs are the mean of the 20 

outputs of its different members and we analyzed it according to the same procedure (projection 21 

of the SST-seasonal cycle and assignment to a region-cluster) used for each individual model. 22 

Besides we introduced the full multi-model average (Model-All in the following), which is the 23 

multi-model ensemble, which averages the 47 CMIP5 model outputs. Model-All was also 24 

projected in the MCA plane and it is represented by a red star in Fig. 4. Comparison of the four 25 

model-groups with Model-All and the observations are presented in Fig. 5. This figure visually 26 

highlights the dominance of Model-group 4 for the reconstruction of the SST seasonal cycles of 27 

the different region-clusters for the extended region. This is particularly clear for region-clusters 28 

6 and 7, which are those located in the upwelling region (Fig. 2). Model-group 3 seems to group 29 

models characterized by an equatorward shift of the main structures, since the region-cluster 1 of 30 
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tropical waters is not reproduced and Region-clusters 4 and 5 of extratropical waters are 1 

overestimated. Fig. 4 indeed shows that this Model-group is very close to the Regions-clusters 4 2 

and 5, which correspond to the extratropical and the transition geographical regions. Model-3 

group 2 misrepresents the region of the Canary upwelling. Model-group 1 overestimates the SST 4 

seasonal cycle in all the tropical open Atlantic. These two last model-groups overestimate the 5 

region-Cluster 1, again consistently with their position in Fig. 4. A detailed physical 6 

interpretation of the Model-groups is nevertheless beyond the scope of this paper. Clearly 7 

Model-All represents the SST seasonal cycle of the off-shore ocean, but it proposes a very poor 8 

representation of the upwelling region.  9 

Two models (models 7 and 25) have a better skill than Model-group 4 and Model-All. 10 

These two models are very close to the observations on the first two axes of the MCA (Fig 4). It 11 

is easily seen that Model-group 4 and the projection of Model-All on this plane is farther than 12 

that of model 7 and model 25 from the observation projection. This explains the lower 13 

performance of these two multi-models as compared to models 7 and 25. In the present case, the 14 

method permits to determine the best models (model 7 and model 25) and to outline the best 15 

multi-model (Model-group 4) whose skill is better than any model with a probability of 95% 16 

(number of models whose skill is smaller than the skill of Model-group 4 with respect to the total 17 

number of models).  Projection of the models on the other planes of the MCA analysis should 18 

confirm this interpretation.  One could then question the use of Model-group 4 rather than model 19 

7 or model 25 individually. Furthermore, we argue that multi-model averages are in general more 20 

robust for climate studies than the use of a single model that can have good performance for a 21 

very specific set of constraints but not for neighboring ones. The following section will partly 22 

justify this point.  23 

 24 

5 - Analysis of the climate models over a zoomed upwelling region  25 

The classification presented above relies largely on the ability of the models to represent 26 

the off-shore seasonal cycle of the SST. In the following, we propose to test the classification 27 

over a much more reduced area in order to focus the analysis on the upwelling area. This 28 

“zoomed upwelling region” is shown in Fig. 1.  29 

As for the extended region, we partitioned the observations of the zoomed upwelling 30 

region with a SOM (ZSOM in the following) followed by a HAC. We then applied a new MCA 31 
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to regroup the climate models. We did a similar analysis as this performed in section 4. We 1 

obtained four new region-clusters well separated denoted ZRegion-clusters. Fig. 6 shows the four 2 

ZRegion-clusters obtained from ERSSTv3b observations together with their associated mean 3 

SST seasonal cycle. Again, the ZRegion-clusters are spatially coherent. The upwelling area is 4 

now decomposed into three ZRegion-clusters (ZRegion-clusters 2, 3, 4). This new 5 

decomposition thus refines the study performed for the extended region: ZRegion-cluster 1 6 

represents the offshore ocean: its grid points typically have a SST seasonal cycle amplitude of 7 

4°C, very similar to Region-cluster 4 in the classification performed over the extended region 8 

(Fig. 2). ZRegion-cluster-4 nicely identifies the core of the Senegalo-Mauritanian region, with 9 

grid points characterized by the greatest amplitude of the SST seasonal cycle of the domain: 10 

typically 6.5°C. It is interesting to note that an additional upwelling ZRegion-cluster (ZRegion-11 

cluster 3) appears south of ZRegion–cluster 4. Indeed, several studies have shown that the Cape 12 

Verde peninsula, located around 15°N, separates the upwelling region into two distinct areas 13 

having a different behavior north and south of this peninsula (Sirven et al., 2019; Sylla et al., 14 

2019). The location of the separation between ZRegion-cluster 3 and 4 is determined with some 15 

uncertainty due to the coarse resolution (1°) of the ocean models. ZRegion-cluster 3 is marked by 16 

a time shift of the seasonal cycle: the warmest season seems to occur somewhat one month 17 

earlier than in the other regions as clearly seen in Fig. 6 (left panel, yellow curve in June). Due a 18 

classification done in a much larger region, such characteristic does not appear in the study over 19 

the extended area study. The physical interpretation of the SST seasonal cycle of this ZRegion-20 

cluster is beyond the scope of the present study, but one can suspect a role of the ITCZ seasonal 21 

migration, covering these grid points earlier than further north. Finally, ZRegion-cluster 2 is a 22 

transition between the large scale ocean and the upwelling region.  23 

As for the extended region, we applied a MCA analysis to the (47 x 4) matrix R = [Rmi] 24 

whose elements represent the skills of the four clusters (i) of the 47 models. This MCA was 25 

followed by a HAC leading the definition of five ZModel-groups. The members of each group 26 

are given in appendix. Fig. 7 shows the ZRegion-cluster obtained in the zoomed area by 27 

projecting these five ZModel-groups and Model-All model on the ZSOM and their associated 28 

performances. ZModel-group 1 is the least performing one: only 25% of the grid cells fall in the 29 

same class as for the observations. The structure of this model-group shows that it is 30 

characterized by an homogeneous amplitude of the seasonal cycle over the whole domain, 31 
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suggesting a largely reduced upwelling: only one grid point at the coast has an enhanced SST 1 

seasonal cycle as compared to the large scale tropical ocean. ZModel-group 2 is the best 2 

performing one: 66% of the grid points are assigned to the correct class and the general picture 3 

indeed represents a four-class picture fairly consistent with the observed structure (Fig. 6). 4 

Important biases yet remain. In particular, the ZRegion-clusters 2 and 4 characterizing the 5 

upwelling extend too far offshore. The three other ZModel-groups are intermediate. A relatively 6 

reduced upwelling area, with an underestimated SST seasonal cycle, characterizes ZModel-7 

groups 3 and 4. ZModel-group 5 corresponds to a shift of the upwelling region towards the north. 8 

Model-All also shows a strongly reduced seasonal cycle, with a large amount of pixel in the 9 

intermediate ZRegion-cluster 3 and very few in the ZRegion-cluster 4. The ZRegion-cluster 3 10 

representing the southern part of the Senegalo-Mauritanian upwelling does not appear in the 11 

pattern of Model-All. 12 

We remark that all the models forming ZModel-group 2 are included in Model-group 4. 13 

For a more precise assessment, we can also project the entire Model-group 4, identified as the 14 

best multi-model ensemble over the extended region, on the ZSOM (Fig. 8, right). We notice that 15 

the performance of Model-group 4 remains very high on this projection, indicating some 16 

robustness of this multi-model ensemble. Moreover, this ensemble now outperforms the single 17 

best model identified over the extended region (Fig. 8, left). This result gives further confidence 18 

in the use of multi-model averages, illustrating that one single model can be very skillful over a 19 

specific region, or for a specific analysis, but multi-model averages are more robust across 20 

various analysis and/or regions. 21 

6 – Impact of climate change on the Senegalo-Mauritanian upwelling 22 

6.1 Representation of the upwelling in the CMIP5 climate models clusters 23 

In this section, we compare the representation of the Senegalo-Mauritanian upwelling system 24 

given by the two best Model-groups identified above (Model-group 4 and ZModel-group 2). For 25 

this evaluation, we use two of the five indices used by (Sylla et al., 2019) to evaluate the full 26 

database, namely the intensity of the SST seasonal cycle and the offshore Ekman transport at the 27 

coast. The former is specific to the seasonal variability of the Senegalo-Mauritanian upwelling 28 

system, and it has been used for the classification. The latter is more general and although it has 29 

recently been shown to partly represent the volume of the upwelled waters (Jacox et al., 2018), it 30 

is extensively used in the scientific literature to characterize upwelling regions (Cropper et al., 31 
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2014; Rykaczewski et al., 2015; Wang et al., 2015). Note also that following Sylla et al., 2019, 1 

evaluation is performed on the period [1985-2005]. This period slightly differs from the 2 

classification period but the SST seasonal cycle is not significantly different (not shown). 3 

Fig. 9 compares the amplitude of the SST seasonal cycle as represented in the 4 

observations, Model-All, Model-group 4 and ZModel-group 2 identified above. Consistently 5 

with Fig. 5 and 7, Model-All dramatically underestimates the upwelling signature in terms of 6 

SST seasonal cycle as compared to the observations. Model-group 4 and ZModel-group 2 yield 7 

improved results: the area of enhanced SST seasonal cycle is larger both in latitude and 8 

longitude, with stronger SST amplitude values. This confirms the efficiency of the selection 9 

operated above. Nevertheless, ZModel-group 2 yields a realistic SST amplitude pattern along the 10 

coast but it extends too far offshore. Furthermore, in ZModel-group 2, the subtropical area (in 11 

green in Fig 9) extends too far towards the south, in particular in the western part of the basin. 12 

The tropical area, characterized by limited amplitude of the seasonal (deep blue in Fig. 9), is 13 

shifted to the south as compared to the observations. In other words, the large scale thermal, and 14 

thus probably dynamical structure of the region is poorly represented in ZModel-group 2. 15 

Finally, Model-group 4 is the least biased one.  16 

The intensity of the wind stress parallel to the coast, inducing offshore Ekman transport 17 

and consequently an Ekman pumping at the coast, is generally considered as the main driver of 18 

the upwelling. We therefore also tested the representation of this driver in the different Model-19 

groups. The idea is to evaluate the impact of the model selection performed above on the 20 

representation of an independent variable by the Model-groups. Fig. 10 shows the latitude-time 21 

evolution of the meridional oceanic wind stress, considering that the coast in the studied region is 22 

oriented approximately meridionally, so that the offshore Ekman transport is mainly zonal. Note 23 

that in Fig. 10, southward winds have positive values so that they correspond to a westward 24 

Ekman transport, favorable to upwelling. Panel (a) shows that the observed meridional wind 25 

stress is, all year long, favorable to the upwelling north of 20°N. At these latitudes, it is stronger 26 

in summer. Between 12°N and 20°N, in the latitude band of the Senegalo-Mauritanian 27 

upwelling, on the contrary, the wind blows southward with a very weak intensity in summer and 28 

it even changes direction in the southern part of this latitude band. It is favorable to the upwelling 29 

in winter-spring, which explains why the Senegalo-Mauritanian upwelling occurs during this 30 

season with a maximum of intensity in March-April (Capet et al., 2017; Farikou et al., 2015).  31 
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The main bias of Model-All (Fig. 10b) is that the wind stress never reverses between 12°N and 1 

20°N. It weakens in the southern part of the Senegalo-Mauritanian latitude band, i.e. south of the 2 

Cape Verde peninsula (15°N), but does not become negative. North of the Cape Verde peninsula, 3 

it blows from the north also in summer, so that the Senegalo-Mauritanian upwelling lacks of 4 

seasonality. This bias is corrected in Model-group 4 and ZModel-group 2 (Fig. 10, panels c and 5 

d) that are, in this aspect, more realistic than Model-All. Model-group 4 shows a slight extension 6 

of the time and latitude range where the oceanic wind stress reverses sign. This constitutes an 7 

improvement. The southward wind is nevertheless too strong in winter over the [12°N-20°N] 8 

latitude band as well as further south from December to March. These two remaining biases are 9 

further reduced in ZModel-group 2. This latter model yields the most realistic seasonal cycle of 10 

meridional oceanic wind stress over the latitude band under study. This is consistent with a very 11 

localized model selection, as the wind index is itself localized along the coast. 12 

To conclude, Model-group 4 and ZModel-group 2 perform in general better than Model-All in 13 

reproducing the major characteristic features of the Senegalo-Mauritanian upwelling. This result 14 

confirms the relevance of the multi-model selection we have presented above. Applying the 15 

methodology over a relatively large region allows to better constraining the spatial extent and 16 

pattern of the SST signature of the upwelling than the reduced area. The latter however yields a 17 

better representation of the wind seasonality along the coast. 18 

6.2 Response of the Senegalo-Mauritanian upwelling to global warming.  19 

In this section, we examine the response of the upwelling system given by the different 20 

multi-model groups we selected, to global warming. For this, we compared the two indices 21 

analyzed above in present-day and future conditions. The present-day conditions are taken as 22 

above as the climatological average of historical simulations over the period [1985-2005]. The 23 

future period is taken as the climatological average of the RCP8.5 scenario over the period 24 

[2080-2100]. Fig. 11 shows the difference of the SST seasonal cycle amplitude between these 25 

two periods. The general behavior is that the SST cycle amplitude will reduce in the upwelling 26 

region. Sylla et al., 2019 showed that this is primarily due to a warming of the winter 27 

temperature, thus suggesting that the upwelling signature in surface will reduce. On the other 28 

hand, this figure shows that the upwelling signature will increase along the Canary current, 29 

which flows along the coast of Morocco, as well as in the subtropical part of our domain. This 30 

behavior is observed in the three multi-model ensembles. Yet, the two selected Model-groups 31 



18 

 

suggest a weaker decrease of the SST seasonal cycle in the upwelling region than the one given 1 

by Model-All. ZModel-group 2 shows an even weaker decrease mainly confined in the southern 2 

part of the upwelling region. This result echoes findings of Sylla et al., 2019 based on another 3 

indicator of the upwelling imprint on the SST: they showed that the difference between the SST 4 

at the coast and offshore is expected to decrease more in the southern part of the Senegalo-5 

Mauritanian upwelling system (SMUS) than in the north . We can hypothesize that the study 6 

conducted on the reduced area permits to separate the Senegalo-Mauritanian upwelling system 7 

into two clusters, a northern one (ZRegion 4) and a southern one (ZRegion-3) (Fig. 7) which 8 

enables to distinguish this specific response.  9 

The meridional wind stress also generally weakens under climate change in the [12°N-10 

20°N] latitude band (Fig. 12), suggesting a general reduction of the upwelling intensity. From 11 

December to March, this is particularly true in the southernmost region of the Senegalo-12 

Mauritanian band, consistently with the results of (Sylla et al., 2019). The wind pattern inferred 13 

from the two Model-groups (Fig. 12, middle and right panels) present a higher seasonal 14 

variability than this of Model-All (left panel). The winter reduction of the southward wind stress 15 

is slightly more confined to the southern region in ZModel-group 2, especially at the end of the 16 

upwelling season (March-April) when the upwelling intensity is the strongest. This may be 17 

consistent with the reduced seasonal cycle in the southernmost part of the upwelling identified 18 

above.  19 

7 - Discussion and Conclusion 20 

This paper proposed a novel methodology for selecting efficient climate models over a specific 21 

area (here the Senegal-Mauritania upwelling region) with respect to observations and according 22 

to well-defined statistical criteria. In the present study, we have specifically checked the ability 23 

of the climate models to reproduce the ocean SST annual cycle observed in specific sub-regions 24 

of the studied domain during the period 1975-2005 as reported in the ERSST_v3b data set. These 25 

sub-regions were defined by a neural classifier (SOM) as clusters having similar seasonal SST 26 

cycle anomalies with respect to some statistical characteristics, and were therefore named region-27 

clusters. They correspond to ocean areas having well marked oceanographic specificities.  28 

We then checked the ability of the different climate models to reproduce the region-clusters 29 

defined on the observation dataset with a SOM. The better a climate model fits the clusters 30 

computed with the SST observation, the higher the skill of the model. To evaluate this, we 31 
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defined geographical regions in the different CMIP5 climate models by projecting the SST 1 

annual cycle anomalies of each model grid point onto the SOM. Each grid point is associated 2 

with a cluster on the SOM map and consequently to a region-cluster on the geographical map. 3 

We built a similarity criterion by	counting	the	number	of	grid	points	in	a	region-cluster	of	a	4 

given	model	matching	the	same	region	cluster	defined	by	processing	the	observation	field.	5 

We then computed the ratio between that matching number and the number of pixels of the 6 

region-cluster	of	the	model	under	study.  We estimated the total skill of a model by averaging 7 

the 7 ratios associated with the 7 region clusters. Note that this procedure presents the advantage 8 

to give the same weight to each region-cluster whatever its number of grid point and its 9 

proximity with the upwelling region. This procedure respects the clustering done by the SOM 10 

since the different clusters have an equal weight in the skill computation. In its present 11 

definition, the total skill is a number between 0 and 1, the higher the skill, the better the fit. Other 12 

measures of the total skill of a Model-group could nevertheless be defined depending on the 13 

objective of the study. One may compare the skill of individual models over a specific region-14 

cluster of interest, or analyze the pattern of skill in one specific model and its sensitivity to 15 

possible various parameterization schemes. The extraction of information embedded in the 16 

vector-skill whose 7 components are the skills associated with the 7 sub-regions and the resulting 17 

efficient multi-model combination imply the use of advanced statistical tools such as the MCA. 18 

Moreover the study of the vector skill also permits to separate information provided on large 19 

offshore ocean circulation from those occurring in the upwelling region leading to diagnose the 20 

deficiencies of some climate models with respect to the modeling of physical processes. Another 21 

contribution of the MCA is the visualization of the 47 models and the observations on the plane 22 

constituted by the first two MCA axes, which represents 70% of the information embedded in the 23 

data.  The similarities of the climate models with respect to the observations and the region-24 

clusters are well evidenced. The ‘mean’ skill associated with each climate model and proposed in 25 

this study is easy to use but is far less informative than the vector-skill whose 7 components are 26 

the skills associated with the 7 sub-regions.  27 

Such a multi-model ensemble selection indeed allows sampling a set of models in order to obtain 28 

a more realistic climatology over the region of interest. The response of the upwelling to climate 29 

change given by the different multi-model ensembles is quite robust in the sense that they give 30 

similar qualitative answers. However, a too selective ensemble of models may lead to noisy 31 
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patterns. A compromise thus has to be found between the advantage of using a large number of 1 

models, in order to smooth biases and unrealistic patterns, or selecting the most realistic models, 2 

with the advantage of using a small number of models in the averaging procedure, but with the 3 

possible inconvenience of getting spurious biases.  4 

As discussed in the introduction, different criteria have been used for extracting some efficient 5 

models from the CMIP5 models used for climatic studies. The most common parameter is the 6 

average annual surface mean temperature of the grid points of the region under study. 7 

Besides,(Knutti et al., 2006) used the seasonal cycle in surface temperature represented by 8 

seasonal amplitude in temperature calculated as summer June–August (JJA) minus winter 9 

December–February (DJF) temperature. This criterion is more informative than the annual mean 10 

temperature since the amplitude of the seasonal variability is an important criterion 11 

characterizing the validity of a climate model. In the present work, we used a much more 12 

informative criterion which is formed of the monthly temperature cycle anomaly represented by 13 

a 12 components vector, each component representing the average monthly temperature of the 14 

year we consider. This new criterion allows taking account the amplitude and the phase of 15 

seasonal variability while the Knutti et al., 2006 criterion only takes into account the amplitude 16 

of the seasonal variability. Note however that it implies a good geophysical knowledge of the 17 

region under interest, in order to determine the relevant region-clusters after the SOM. It is also 18 

very specific to the Senegal-Mauritania upwelling region. Furthermore, Sylla et al., 2019 19 

extensively discussed the possible differences among several indices aiming at characterizing the 20 

upwelling and the need to use some of them to have a complete understanding of this coastal 21 

phenomenon. This conclusion is probably general to any physical process of the climate system. 22 

In the present study, the model selection is based on only one signature of the SMUS. Several 23 

possibilities can be envisaged to improve the resolution of this problem such as merging several 24 

indices like SST, temperature at several depths, wind vector, ocean currents,... This approach 25 

could also allow a selection of models based on the representation of several distinct regional 26 

behaviors. In spite of several subjective choices, including the studied domain and the statistical 27 

metrics, we argue that this method is a step towards an objective selection of models, based on a 28 

quantitative assessment rather than a qualitative analysis of maps of performance.  29 

Different applications of the multi-model selection strategy proposed in the present study can be 30 

envisaged. Firstly, from a purely modeling point of view, the projection of the models on the 31 
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SOM (or ZSOM) and the results of the HAC yield a very enlightening description of a given 1 

model behavior in terms of region-clusters of the area under study. In our view, such a procedure 2 

could advantageously be used by individual modeling groups to identify, analyze and therefore 3 

hopefully reduce their model biases in a targeted region. Secondly, from a physical point of 4 

view, an identified Model-group can be used to analyze the targeted region (here the SMUS) in 5 

term of processes with the advantages of the multi-model mean in which the constituting models 6 

have been selected from quantitative criteria. Such an application has been briefly illustrated by 7 

showing how the selected Model-group represents an important additional characteristic of the 8 

SMUS, not used for the selection, namely the Ekman pumping. Promising reduction of biases of 9 

the full multi-model mean ensemble has been identified, opening perspectives for process studies 10 

based on this sub-ensemble of the CMIP5 database. A third application of the selection lies in the 11 

prediction of the future climate. Here, we have shown that selected multi-model ensembles may 12 

provide a more precise description of the future behavior of the SMUS. It may nevertheless be 13 

important to note that these conclusions are based on the assumption that the CMIP5 models 14 

which have been selected according to their present-day characteristics, are the most reliable in 15 

terms of future projections, which can be questioned and refined (Lutz et al., 2016; Reifen and 16 

Toumi, 2009).  17 

As discussed in the introduction, the concept of “model democracy”, suggesting that all models 18 

should be equally considered in multi-model ensemble is now strongly questioned (Knutti et al., 19 

2017). The present study proposes a promising way to improve the quality of multi-model 20 

ensemble in terms of model selection. Deep advances in the field of multi-model analysis and 21 

selection can be expected from the emerging topic of climate informatics (Monteleoni et al., 22 

2016) as it has been shown through the present study. Artificial intelligence and machine 23 

learning may indeed provide efficient tools to make the best out of the extraordinary but 24 

imperfect tools that are the climate models and the multi-model intercomparison efforts.  25 
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APPENDIX  2 

 3 

Model-group 1 Model-group 2 Model-group 3 Model-group 4 

ACCESS1-0 
ACCESS1-3 
CESM1-CAM5 
CESM1-CAM5-1-FV2 
CESM1-WACCM 
HadCM3 
MIROC-ESM 
MIROC-ESM-CHEM 
MIROC5 
NorESM1-M 
NorESM1-ME 
 

bcc-csm1-1 
bcc-csm1-1-m 
BNU-ESM 
CCSM4 
CESM1-BGC 
CESM1-FASTCHEM 
GFDL-CM2p1 
GFDL-ESM2G 
GFDL-ESM2M 
MPI-ESM-LR 
MPI-ESM-MR 
MPI-ESM-P 

 

FGOALS-g2 
GISS-E2-H 
GISS-E2-H-CC 
GISS-E2-R 
GISS-E2-R-CC 
inmcm4 
IPSL-CM5A-LR 
IPSL-CM5A-MR 
IPSL-CM5B-LR 
MRI-CGCM3 
MRI-ESM1 
 

CanCM4 
CanESM2 
CMCC-CESM 
CMCC-CM 
CMCC-CMS 
CNRM-CM5 
CNRM-CM5-2 
CSIRO-Mk3-6-0 
FGOALS-s2 
GFDL-CM3 
HadGEM2-AO 
HadGEM2-CC 
HadGEM2-ES 

 4 

ZModel-group 1 ZModel-group 2 ZModel-group 3 ZModel-group 4 

ACCESS1-0 
bcc-csm1-1-m 
CCSM4 
CESM1-BGC 
CESM1-CAM5 
CESM1-CAM5-1-FV2 
CESM1-FASTCHEM 
CESM1-WACCM 
GISS-E2-H 
GISS-E2-H-CC 
GISS-E2-R 
GISS-E2-R-CC 
HadCM3 
inmcm4 
IPSL-CM5B-LR 
MIROC5 
MPI-ESM-LR 
MPI-ESM-MR 
MPI-ESM-P 

CMCC-CMS 
CNRM-CM5 
CNRM-CM5-2 
FGOALS-s2 
GFDL-CM3 

 
 

BNU-ESM 
CanCM4 
CanESM2 
CMCC-CM 
FGOALS-g2 
IPSL-CM5A-LR 
IPSL-CM5A-MR 
MRI-CGCM3 
NorESM1-M 
NorESM1-ME 
 
 

ACCESS1-3 
bcc-csm1-1 
CSIRO-Mk3-6-0 
HadGEM2-AO 
HadGEM2-CC 
HadGEM2-ES 
MIROC-ESM 
MIROC-ESM-CHEM 
MRI-ESM1 
 
 

 

ZModel-group 5 

CMCC-CESM 
GFDL-CM2p1 
GFDL-ESM2G 
GFDL-ESM2M 

 5 

Table A1: Composition of the different Model-groups identified in the main text. In bold, we 6 

show the CMIP5 models which belong to Model-group 4 and ZModel-group 2. We note that all 7 

the models belonging to Zmodel-group 2 also belong to Model-group 4.    8 

  9 



28 

 

 1 

Table 1: List of the CMIP5 models used for the comparison. The reader is referred to the CMIP5 2 
documentation for more information on each of them. Here, each configuration is furthermore 3 

given a number, for easier identification in subsequent figures.  4 
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 2 

Figure 1: Amplitude of the SST seasonal anomalies in the western tropical north Atlantic. SST 3 
data are from the ERSSTv3b data set averaged between 1975 and 2005. The two black boxes 4 
show the extended and zoomed regions respectively, over which the statistical classifications 5 
were performed (see text for details).  6 
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 1 

Figure 2: Left panel: Region-clusters associated with the SOM-clusters obtained after a HAC on 2 
a 30x4 neuron SOM learned on ERSSTv3b observations in the extended zone (see text for 3 
details). Right Panel: Ensemble-mean climatological SST anomalies for the grid points of the 4 
seven Region-clusters. The error bars show the standard deviation of this ensemble mean.  5 
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 2 

Figure 3: Projection of the 47 climate models of the CMIP5 database onto the SOM learned with 3 
ERSSTv3b climatology in the extended zone (see Fig. 1). On top of each panel, we figure: the 4 
number referencing the model, its name (Table 1), and its skill given as a mean percentage (see 5 
text). The models are ordered according to their skill in decreasing order. The 7 Region-clusters 6 
(or SOM-clusters) are defined by applying an HAC to the SOM output learned with the 7 
observation field.  They are represented by different colors. The numbers in the colorbar at the 8 
right of each panel represent the skill for each Region-cluster. The observation field is shown in 9 
the bottom right panel and the numbers in front of the colorbar reference the Region-cluster. 10 
  11 
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Figure 4: Projection of the CMIP5 models (colored circles) and the observation field (green 2 
diamond) defined by their cluster skill vectors on the first two axis of the MCA.  The seven 3 
region-clusters of the observation field are represented by purple squares. The colours of the 4 
circles denote the four groups of models obtained after an HAC was performed on the seven 5 
MCA components of the models. The projection of the full multi-model mean (47 models) is 6 
represented by a red star. We stress here the fact that representing the full MCA output is 7 
complicated because of the multidimensional property. The representation of some data along 8 
the first two axis as here can be biased because of the importance of the other axes. 9 
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 1 

Figure 5: (a)-(d): Projection of the multi-model ensembles (Model-group) onto the SOM learned 2 
with ERSSTv3b climatology in the extended zone.  Multi-model ensemble performances are 3 
obtained by averaging the skill of the models forming each group.  The performances are given 4 
on top of each panel.  The Region-clusters determined by processing the observations in the 5 
extended area and their associated colors are given in the bottom right panel. The colorbars at the 6 
right of each multi-ensemble panel represent the skill (in %) associated with each Region-cluster. 7 
Panel (e) shows the same for the full multi-model ensemble. Panel (f) reproduces the Region-8 
clusters based on the observations also shown in Fig. 2.  9 
 10 
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Figure 6: Left panel: ZRegion-clusters associated with the ZSOM-clusters obtained after a HAC 2 
on a 10x12 neuron SOM learned on ERSSTv3b observations in the zoomed zone (see text for 3 
details). Right Panel: Ensemble-mean climatological SST anomalies for the grid points of the 4 
four ZRegion-clusters. The error bars show the standard deviation of this ensemble mean.  5 
  6 
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Figure 7: (a)-(e): Projection of the multi-model ensembles (ZModel-groups) onto the ZSOM. 2 
The performances are given on top of each panel. The ZRegion-clusters determined by 3 
processing the observations in the zoomed region and their associated colors are given in the 4 
bottom right panel. The colorbars at the right of each multi-ensemble panel represent the skill (in 5 
%) associated with each ZRegion-cluster. Panel (f) shows the same for the full multi-model 6 
ensemble. Panel (g) reproduces the Region-clusters based on the observations also shown in Fig. 7 
6. 8 
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 1 

Figure 8 : Same as Fig. 7 but for the individual model CMCC-CM (model 7) (left) and the 2 
Model-group 4 (right).  3 
  4 
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 1 

Figure 9: Amplitude of the SST seasonal cycle in the (a) ERSSTv3b Observations (b) Model-All, 2 
c) Model-group 4 (best Model-group for the extended area, figured out by the black rectangular 3 
box) and (d) ZModel-group 2 (best Model-group for the reduced area, figured out by the small 4 
black rectangular box). The SST seasonal cycle is computed over the period 1985-2005 5 
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 1 

Figure 10: Latitude-time plot of depth integrated Ekman transport computed over the grid point 2 
located along the coast (magenta stars in Fig. 9.a). The time axis shows climatological months 3 
over the period 1985-2005.  Positive (negative) values correspond to upwelling (downwelling) 4 
conditions. Panel (a) stands for TropFlux data set (see (Praveen Kumar et al., 2011) (b) Model-5 
All, (c) Model-group 4 and (d) ZModel-group 2. In each panel, the black contour shows the 6 
contour zero. The horizontal dashed lines are positioned at 12°N and 20°N and give a rough 7 
limitation of the senegalo-mauritanian upwelling region. 8 
 9 
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Figure 11: Evolution of the amplitude of the SST seasonal cycle at the end of the 21st century. 2 
The figure shows the difference between the seasonal cycle amplitude averaged over the period 3 
[2080-2100] following the RCP8.5 scenario and the amplitude averaged over the period [1985-4 
2005] in the historical simulations. A positive value (red) means that the seasonal cycle is more 5 
marked over the period 2080-2100. 6 
 7 
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Figure 12: Latitude-time diagram of the seasonal shift of the meridional component of the wind-2 
stress with respect to the present days. For each month and at each latitude, we show the 3 
meridional wind stress shift with respect to the present days averaged over the period [2080-4 
2100]. Positive values (red) means that the wind stress shift is southward and is thus favorable to 5 
upwelling. Panel (a) stands for Model-All, (b) Model-group 4 and (c) ZModel-group 2. 6 
 7 

 8 
 9 
 10 
  11 


