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We wish to thank the referee for his/her helpful comments. The full reviews are copied 
hereafter and our responses are inserted. The comments of the reviewer are in normal black 
and our answers in bold. 
 
This paper describes a Bayesian inverse modeling system for reactive compounds, PYVAR-
CHIMERE. It also provides an illustration of what this system can do with two one-day inversions 
of emissions over Europe. The paper is generally well written, and the topic of the paper is relevant 
for this journal. Although the results indicate that the system has potential, there are several major 
issues which should be dealt with before this work can be published in GMD.  
 
1) poor quality of the figures and equations. On the screen, it is more or less acceptable (with the 
zoom in feature of my pdf viewer), but upon printing, many figures (especially Figs. 1-4 and Figs. 
6a and 8a) and equations are impossible to read.  
We apologize, the poor quality in particular of the equations was due to conversion from 
OpenOffice to pdf. The resolution of the equations and of the figures has been improved. 
 
Figure 3 is really a Table and should be inserted as such.  
We agree, Figure 3 is now the Table 1. 
 
Some mathematical symbols (e.g. gradient on line 158, multiplication on line 167) are 
inappropriate. 
These symbols have been corrected. 
 
2) Section 3.2 is ’Development of the adjoint of CHIMERE’. But the adjoint of CHIMERE was 
developed a long time ago (publications by L. Menut, I. Pison). What are the specific developments 
realized for this study, besides the minor changes to CHIMERE mentioned in the text? 
Indeed, the adjoint of CHIMERE was developed a long time ago. We first have changed the 
title section into “Development and parallelization of the adjoint and tangent-linear codes of 
CHIMERE”.  
 
We added sentences in Section 3.1: "PYVAR has been adapted to CHIMERE with an adjoint 
code without chemistry a first time by Broquet et al. [2011]. In order to couple PYVAR to the 
new state-of-the-art version of CHIMERE (see Section 3.2), to include chemistry, and to 
increase its modularity, flexibility and clarity, the new system described here has been 
developed. It includes elements of the inversion system (coded in Fortran90) of [Pison et al., 
2007]." 
 
Efforts have indeed been made for the parallelization of the code. This is now explained in the 
text in Section 3.2: “Then, it has been parallelized at LSCE and LISA. This work required a 
redesigning of the whole code, associated with a full testing scheme. Furthermore, the 
tangent-linear (TL) code has been developed and validated at LSCE. Changes have been 
implemented in the forward CHIMERE code embedded in PYVAR-CHIMERE to match 
requirements of the studies lead with PYVAR-CHIMERE. These changes have been 
implemented in both the adjoint and the TL codes. Compared to the CHIMERE 2013 version 
[Menut et al., 2013], the most important of these changes are: 
•For the geometry, the possibility of polar domains and the use of the coordinates of the 
corners of the cells instead of only the centers 
•For the transport, the non-uniform Van Leer transport scheme on the horizontal,  



•For chemistry, various switches have been added to avoid going into the chemistry, 
deposition and wet deposition routines when no species requires them (e.g. no chemistry for 
methane at a regional scale).” 
 
3) the results of inverse modeling studies are very dependent on the inversion setup, in particular 
the definition of the control vector and the construction of the covariance matrices R and especially 
B. What is the strategy in this regard? I understand that the main purpose of the paper is less to 
present specific inversion studies than to describe the general modeling framework. But the very 
simplistic choices made for the two one-day inversions suggest an absence of any strategy. The 
chemical lifetimes of the target species, the duration of the experiments, the initial and boundary 
conditions, and the assumed a priori uncertainties should all play a role in the inverse setup 
definition. 
Indeed, we agree, the main purpose of a GMD paper is less to present specific inversion 
studies than to describe the general modeling framework. Nevertheless, we added information 
to explain our choices of illustrations in the introduction of Section 4: "We have chosen to 
present illustration of CO inversion over a 7-day window, the first week of March 2015. 
Considering the short lifetime of NOx of a few hours [Valin et al., 2013; Liu et al., 2016], we 
have chosen to present illustration of NOx inversion over a 1-day window, the 19th February 
2015. These particular periods have been chosen as they present a representative number of 
super-observations during winter, and as the emissions are high during that period." 
 
We also have added a new "Section 4.2.2. Covariance matrices B and R" to better describe 
the covariance matrices B and R. 
 
 
4) the two illustrations of PYVAR-CHIMERE capabilities are unconvincing. Yes, the system finds 
a minimum to the cost function, and the a posteriori simulation matches the observations quite well; 
but no, the a posteriori emissions are not shown to be closer to reality. With its long lifetime, CO is 
largely determined by the initial and lateral boundary conditions, which are part of the control state 
vector being optimized. The paper does not provide information on the a priori uncertainties for 
these parameters. A discussion is needed, and possibly sensitivity simulations.  
We now provide more information about the initial, lateral and top boundary conditions in 
the new "Section 4.1.2. CHIMERE set-up": "Different climatological values from the LMDZ-
INCA global model [Szopa et al., 2008] or from a MACC reanalysis are used to prescribe 
concentrations at the lateral and top boundaries and the initial atmospheric composition in 
the domain." 
 
Information on the prior uncertainties was given in the former Figure 3, now replaced by 
Table 1. We also added sensitivity tests in Section 4.1.3: “With its lifetime of about two 
months, CO could be strongly driven by the initial and lateral boundary conditions 
prescribed in the CTM. In fact, as seen in Figure 4b, initial and boundary conditions provide 
a relatively flat background and the patterns which appear clearly over the background are 
linked to surface emissions (Figure 4a). To characterize the uncertainties in the concentration 
fields due to the initial and lateral boundary conditions, we performed a sensitivity test by 
using either climatological values from LMDZ-INCA or a MACC reanalysis: the results were 
not significantly different, with relative differences in concentrations of less than 15% over 
continental land (Figure 5c).” 
 
We also added text in the new "Section 4.2.2. Covariance matrices B and R": "Based on the 
sensitivity test in Figure 5, the errors assigned to the CO lateral and top boundary conditions 
and to their initial conditions are set at 15%. As these relative errors are significantly lower 
than those for the emissions and as variations in the CO surface concentrations are mainly 



driven by emissions (Figure 4), we assume a small relative influence of the correction of initial 
and boundary conditions on our results. " 
 
Note that, although the a priori simulation overestimates CO over Central Europe (south of Poland), 
the inversion increases the emissions there by about a factor of 2! Over Germany, the emissions are 
almost doubled in the Southern part, but are unchanged elsewhere. How can this be justified?  
Figure 6 has been updated. The emissions are increased over Central and Eastern Europe, 
except in the south of Poland. 
 
Even for NOx, in spite of their shorter lifetime, the initial and boundary conditions play probably a 
very important role.  
We also checked the impact of initial and boundary conditions on NO2 tropospheric columns. 
Due to its short lifetime, the impact is even smaller than for CO. We chose not to show this 
sensitivity test in the paper. 
 
The discussion of the results for NOx (lines 373-376) is impossible to understand. It says that the 
optimization of NOx fluxes has only a small impact on the model biases. This is not true. 
Comparison of Fig. 7c and 7d show that the optimization works very well! 
We do not agree, as Fig 7c and Fig 7d were not comparable (they did not have the same 
legend). Nevertheless, we agree, it could have been confusing. We now present the impact of 
the optimization of the NOx fluxes differently, in Figure 7. 
 
The authors claim that PYVAR optimizes only the NO2 fluxes, not those of NO. I don’t believe 
this, it doesn’t make sense. Please check this. In any case, clarifications and possibly a sensitivity 
analysis are in order. 
As both the reviewers have been disturbed by the illustration with only NO2 fluxes, we now 
present inversion for NOx emissions.  
 
Other comments: 
- throughout the text, replace "NO2 emissions" by "NOx emissions" (if indeed, as should be the 
case, NOx emissions are optimized, not just NO2) 
See comments above. "NO2 emissions" have indeed been replaced by "NOx" emissions 
throughout the text.  
 
- lines 107-110: please refer also to GEOS-Chem adjoint papers (Henze,Kopacz, Caoetc.) 
A reference to Henze et al. 2007 has been added. A reference to the adjoint-based four-
dimensional variational (4D-Var) assimilation system, WRF-CO2 4D-Var, has also been 
added. 
 
- l. 149 what is meant by "the control of emissions"? 
We have rephrased: "By definition, the observation errors combine errors in both the data 
and the observation operator, in particular  measurement errors and errors in the conversion 
of satellite measurement into concentration data, errors from the CTM, representativity 
errors due to the comparison between point measurements and gridded models or due to the 
representation of the fluxes as gridded maps at a given spatial resolution, and aggregation 
errors associated with the optimization of emissions at a given spatial and/or temporal 
resolution (as specified in the control vector) that is different from (usually coarser than) that 
of the CTM [Wang et al., 2017]." 
 
 
-l. 168-169 What are the thresholds for the ratio between final and initial gradient norm, and for the 
number of iterations? 



This information was already given in Section 4. It is now in the introduction of Section 4: 
“For practical purposes, we recommend to reduce the norm of the gradient of J by 90%. We 
no longer give information about the number of iterations as it depends on each configuration 
system. These information are now given in Section 4.2.3 for CO: " Ten iterations are needed 
to reduce the norm of the gradient of J by 90% with the minimization algorithm M1QN3" 
and in Section 4.2.4 for NOx: "Six iterations are needed to reduce the norm of the gradient of 
J by 85% with the minimization algorithm M1QN3". 
 
-Figure 1. In the orange box on the right, the order of operators should go backwards, shouldn’t 
they? 
Indeed, the adjoint go backwards but these operations are made simultaneously in 
CHIMERE. 
 
- l. 195 leads (instead of lead) 
It has been changed. 
 
-Figure 3. Explain the meaning of the "correction type" and of the three numbers in column "B 
variance coefficients". 
The correction type describes the way the emissions are corrected by the inversion. We have 
added the following descriptions in "Section 3.3. Definition of the control vector": "Several 
types of corrections can be applied, they are defined in the code as "add", "mult" or "scale". 
Both the corrections "add" and "mult" are applied to gridded control variables. For 
correction type “add” the control variables are increments added to the corresponding 
components of the model inputs. For correction type “mult", the control variables are scaling 
factors multiplying the corresponding components of the model inputs. The difference 
between the two options "add" and "mult" plays a role when inverting fluxes which can 
switch from positive to negative values (like CO2 natural fluxes). For type “scale”, the 
corrections consist in applying scaling factors to activity maps and/or masks for regions 
(which is similar to the control of budgets for different regions, types of activities, and/or 
processes in inversions where the control vector is not gridded [Wang et al., 2018]) and adding 
the obtained values to the corresponding components of the model inputs." 
 
The three numbers in column “B variance coefficients” are standard deviation coefficient. We 
have added information: "The variances are specified by the user through standard deviation 
coefficient (Table 1), which can be a fixed value ("fx") or a percentage ("pc") to define the 
diagonal standard deviation matrix ∑."  
 
- Figure 4. The legends mentions text in blue and in grey. I don’t see that on the figure. Is this figure 
useful? 
The sentence mentioning text in blue and in grey has been removed.  
 
- l. 298 What is the resolution of ECMWF data? Are those data interpolated to the model grid? 
The spatial resolution of the ECMWF data is 0.25°x0.25°. They have been interpolated to the 
model grid. 
 
-l. 300 Derognat et al. 2003 does not present a chemical mechanism, but refers to earlier papers. 
The reference to Derognat has been removed. We now refer to Lattuati, 1997 and to the 
lastest CHIMERE documentation. The text is now:"The chemical scheme used in PYVAR-
CHIMERE is MELCHIOR-2, with more than 100 reactions [Lattuati, 1997; CHIMERE 
2017], including 24 for inorganic chemistry". 
 
-What are the a priori lateral boundary conditions? 



The  prior lateral and top boundary conditions are climatological values from the LMDZ-
INCA global model [Szopa et al., 2008]. It was indicated in Section 4.1.1. We now describe 
them in "Section 4.1.2 CHIMERE set-up" and we also made a sensitivity test with a MACC 
reanalysis in "Section 4.1.3. Sensitivity to emissions and to initial and boundary conditions". 
 
- on l. 303 and legend of Fig. 8, the information required to run the inversion are said to be listed in 
Table 1. This is not correct. 
We agree, this is now true (Figure 3 is now called Table 1). 
 
- l. 304 Are only anthropogenic emissions optimized? Or the total of all emissions? 
Only the anthropogenic emissions are optimized here. This is now written in the introduction 
of  Section 4: "The potential of the PYVAR-CHIMERE system to invert emissions of reactive 
species is illustrated with the inversion of CO and NOx anthropogenic emissions in Europe 
respectively based on MOPITT CO data and OMI NO2 data". 

 
This is also now written in the description of the control vectors in Section 4.2.1.  

 
-l. 306-307 The 3D initial conditions at the model resolution are said to represent 8585components 
of the control vector. But what about the vertical dependence? 
The vertical dependence is indeed taken into account. The number of components in the 
control vector has been corrected. 
 
-l. 311-314 What are the non-anthropogenic emissions used in the model? 
The biogenic emissions, that we assume negligible in winter, are not used in our illustration. 
In addition, we should have described that PYVAR-CHIMERE only infers anthropogenic 
emissions at this stage. This is now added in Section3.2 : "It should also be noted that 
PYVAR-CHIMERE only infer anthropogenic emissions at this stage. The optimization of 
biogenic emissions, which are linearly interpolated at the sub-hourly scale in CHIMERE, is 
currently under development." 
 
-Please provide a webpage and reference for EMEP emissions. Aren’t there any publication or 
webpage for the TNO emissions?  
We now provide two references for the EMEP emissions (a publication and a webpage). We 
also provide a reference for the TNO-GHGco used in this paper (submitted in December 2019 
and published in February 2020). The text is now: "The prior anthropogenic emissions for 
CO and NOx emissions come from the TNO-GCHco-v1inventory [Super et al., 2020], the last 
update of the TNO-MACCII inventory [Kuenen et al., 2014]. The prior anthropogenic 
emissions for VOCs come from the EMEP inventory [Vestreng et al., 2005; EMEP/CEIP 
website]." 
 
 
-l. 328 Why the median? 
The median is chosen here to take proper account of the AKs (we can not take the mean of the 
AKs).  
 
-l. 341 With errors of 100% on the emissions, how can negative a posteriori emissions be avoided? 
How is this dealt with? 
We now answered to this remark in "Section 4.2.2. Covariance matrices B and R": "With 
such a set-up, in theory, we could obtained negative posterior emissions since the inversion 
system does not impose a constraint of positivity in the results. Nevertheless, even 100% of 
uncertainty lead to a prior distribution mostly (>80%) on the positive side. The assimilation of 
data showing an increase above the background (at the edges of the domain; not shown) 



further drive the inversion towards positive emissions for both CO and NOx inversions. In 
practice, our inversion does not lead to negative posterior emissions (Figure 7b). Spatial and 
temporal correlations in B would further limit the probability to get negative emissions locally 
by smoothing the posterior emissions at a spatial scale at which the “aggregated” prior 
uncertainty is smaller than 100%. However, a positivity constraint should be implemented in 
future versions of the system." 
 
-Section 4.2 The Figure 5 shows both underestimations and overestimations by the apriori 
simulation. This is not well reflected in the discussion.  
Indeed, this is now reflected in the discussion in Section 4.2.3. 
 
-Figure 7c and 7d should show absolute differences.  
We no longer present these figures. 
 
-A better color scale should be possible for Fig. 7a and 7c 
Indeed, it has been done in Figure 8 and in Figure 10. 



Anonymous Referee #2 
Received and published: 5 December 2019 
 
We wish to thank the referee for his/her helpful comments. The full reviews are copied 
hereafter and our responses are inserted. The comments of the reviewer are in normal black 
and our answers in bold. 
 
The paper describes the variational data assimilation version of the CHIMERE,PYVAR-
CHIMERE, which is capable of inversions of reactive gases. As a demonstration to the newly 
developed code, the inversion of CO and NO2 is shown for two different days in late winter/early 
spring 2015. The papers topic is of good relevance for GMD and contribute to a documented open 
source regional data assimilation system for reactive chemistry. Although the paper is generally 
well written, major changes are requested before publishing the manuscript in GMD.  
 
These major changes are: 
- The quality of figures and formulas is unacceptable. Arrows should be larger/thicker 
(Fig. 1 and 2), annotations in Figs. 5, 6, 7, and 8 are too small, separation of subplots and 7 should 
be clearer. 
The quality of the all the figures have been improved. 
 
- The description of the inversion is unsatisfactory. The cost function and its gradient should 
explicitly show the model operator M, which is currently included in the state vector x.  
We do not agree with this statement, the model operator is not included in the state vector x. 
 
- Further, it is unclear how the emissions are corrected. How can negative emissions be avoided? 
We now answered to this remark in "Section 4.2.2. Covariance matrices B and R": "With 
such a set-up, in theory, we could obtained negative posterior emissions since the inversion 
system does not impose a constraint of positivity in the results. Nevertheless, even 100% of 
uncertainty lead to a prior distribution mostly (>80%) on the positive side. The assimilation of 
data showing an increase above the background (at the edges of the domain; not shown) 
further drive the inversion towards positive emissions for both CO and NOx inversions. In 
practice, our inversion does not lead to negative posterior emissions (Figure 7b). Spatial and 
temporal correlations in B would further limit the probability to get negative emissions locally 
by smoothing the posterior emissions at a spatial scale at which the “aggregated” prior 
uncertainty is smaller than 100%. However, a positivity constraint should be implemented in 
future versions of the system." 
 
- Are the emissions optimized for each time step or for the whole assimilation window? 
The user can chose the time resolution at which the emissions are optimized. In our 
illustrations, we now present inversions at 7-day and at 1-day resolutions. 
 
-Are the emissions constant for the simulation time or does the inversion result in correction factors 
for the emissions? 
Indeed, the emissions are inverted, i.e, the inversion results in correction factors for the 
emissions at the specified time and spatial scales. 
 
-Then, the special treatment of 4D-var for emission factor optimization should be shown, e. g. how 
the positive definiteness of the correction factors is ensured. The manuscript must be more precise 
in this context. 
We do not agree. We would like to emphasize that the PYVAR-CHIMERE system for 
inversion is not a 4D-VAR one. 
 



-The calculation of the size of the control vector is erroneous. The vertical dependence of the initial 
conditions is missing in the calculation. 
The vertical dependence is indeed taken into account. The number of components in the 
control vector has been corrected. 
 
-In the experiment section (section 4) no information on the initial and boundary conditions is 
given.  
We now provide more information about the initial, lateral and top boundary conditions in 
the new "Section 4.1.2. CHIMERE set-up": "Different climatological values from the LMDZ-
INCA global model [Szopa et al., 2008] or from a MACC reanalysis are used to prescribe 
concentrations at the lateral and top boundaries and the initial atmospheric composition in 
the domain." 
 
-It should be illustrated to what degree both are changed during the inversion. Further, a comparison 
or sensitivity test should be shown on what the impact of emission optimization is compared to a 
joint optimization with initial and boundary conditions.  
We choose not to perform such a sensitivity test. We have added text in "Section 4.2.2. 
Covariance matrices B and R" to explain this choice: "Based on the sensitivity test in Figure 5, 
the errors assigned to the CO and NO2 lateral boundary conditions and to their initial 
conditions are set at 15%. As these errors are significantly lower than those of the emissions 
and as CO surface concentrations are mainly due to emissions (Figure 4), we assume a small 
relative influence of the correction of initial and boundary conditions on our results." 
 
-Although the two test cases show a reduction of the difference between the assimilated observation 
and the analysis, this is not a proof of the successful operation of the data assimilation algorithm. A 
comparison with independent observations and a table with quality measures (e. g. bias, root mean 
square error, cost reduction) is necessary.  
Indeed, but the main purpose of a GMD paper is less to present specific inversion studies than 
to describe the general modeling framework. We chose not to present evaluation for our 
illustration, as this is not the scope of this paper. Nevertheless, we have added sentences about 
the reduced mean bias between the observations and the simulation using the posterior 
emissions instead of the prior ones in Section 4.2.3 and in Section 4.2.4 to show the successful 
operation of the inversion system. 
 
- It is advised to perform the analysis on a few consecutive days to assess the stability and quality of 
the inversion on different days. 
We agree, to assess the stability and quality of the inversion, we now present a period of 7 
days for the CO inversion. 
 
- in the description of the test cases both, initial values and boundary conditions are included in the 
control vector, thus, the analysis is not complete without showing these two variables. A discussion 
is needed about the correction for all three variables, i.e. emissions, initial values, and boundary 
conditions, their relative influence on the analysis and about potential limitations of the inversion. 
As already explained above, we choose not to perform such a sensitivity test. We have added 
text in "Section 4.2.2. Covariance matrices B and R" to explain this choice: "Based on the 
sensitivity test in Figure 5, the errors assigned to the CO and NO2 lateral boundary conditions 
and to their initial conditions are set at 15%. As these errors are significantly lower than those 
of the emissions and as CO surface concentrations are mainly due to emissions (Figure 4), we 
assume a small relative influence of the correction of initial and boundary conditions on our 
results." 
 
 



-If the full adjoint of the chemical processes is used there should be an adjoint signal for other 
species than CO and NO2 as well. This must be clarified. Are these signals simply not considered 
or not discussed?  What is the reason for not optimizing NO emissions then?  
The adjoint compute the sensitivity to all the components of the x vector. In the inversion we 
made for the former version of this paper, we chose to only infer NO2 emissions. As both the 
reviewers have been disturbed by this illustration, CO, NO and NO2 are now included in the x 
vector and we now present inversion for NOx emissions. Other species could be considered for 
other studies.  
 
-the model resolution of 0.5 x 0.5 square degrees seems to be a bit coarse for anthropogenic 
emission assessments. Is nesting available? A discussion on this point is needed. 
Yes, nesting is available in CHIMERE. A number of studies for anthropogenic emission 
assessments have been done at even coarser resolution than 0.50x0.5°: for example, Miyazaki 
et al. [2017] using an approximately 2.8◦×2.8◦ resolution  with the global CTM MIROC-Chem 
or Wang et al. [2019] using a  2.5° or 2.5° resolution with Geos-Chem.  
 
We discussed about finer resolutions in the perspectives of the study. 
 
Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., and Kanaya, Y.: Decadal 
changes in global surface NOx emissions from multi-constituent satellite data assimilation, 
Atmos. Chem. Phys., 17, 807–837, https://doi.org/10.5194/acp-17-807-2017, 2017. 
 
Wang, Y., Wang, J., Xu, X., Henze, D. K., and Qu, Z.: Inverse modeling of SO2 and NOx 
emissions over China using multi-sensor satellite data: 1. formulation and sensitivity analysis, 
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-879, in review, 2019. 
 
 
-a better description of the B-matrix is needed in section 4.1.3.  
We agree, we have added information about the B-matrix, in Section 3.3: " Different simple 
but efficient ways of building the error covariance matrix B are implemented in PYVAR-
CHIMERE. The variances and correlations are defined independently. The variances are 
specified by the user through standard deviation coefficient (Table 1), which can be a fixed 
value ("fx") or a percentage ("pc") to define the diagonal standard deviation matrix ∑. For 
correction types "mult" and "scale", as well as for correction type "add" with a fixed value, 
the value is directly used as the standard deviation of the uncertainty in the corresponding 
components of the control vector. For correction type "add" with a percentage provided, 
maps of standard deviation of uncertainty are built by applying this percentage to the 
matching input fields (fluxes, initial conditions, boundary conditions). The user may also 
provide a script to build personalized maps of variances. 
 
Potential correlations between uncertainties in different types of control variables, e.g. 
between fluxes and boundary conditions, and correlations between uncertainties in different 
species, e.g. between fluxes of CO and NOx, are not coded yet. Only correlations for a given 
type of control variable and a given species are so far taken into account so that the B matrix 
is block diagonal. For a given type of control variable and a given species (in the illustration in 
section 4.2.2: CO, NO or NO2 fluxes), spatial and temporal correlations can be defined using 
correlation lengths through time Lt and space Ls. Those lengths are used to model temporal 
and/or spatial auto-correlations using an exponentially decaying function: the correlation r 
between parameters and at a given location but separated by duration ࢞)ࢊ,  or at a given ,(࢞

time but distant by ࢊ൫࢞, ,࢞൫࢘ ൯is given by࢞ ൯࢞ = ࢞ࢋ  ቀିࢊ൫࢞ ൯࢞,
ࡸ

ቁwhere ࡸ (=  is the (ࡿࡸ࢘ ࢀࡸ
corresponding correlation length. There is no correlation between uncertainties in land and 



ocean flux. . Note that the spatial correlations are computed for each vertical level 
independently when dealing with control variables with vertical resolution (3D fields of fluxes 
when accounting for emission injection heights, or boundary/initial conditions). Vertical 
correlations in the uncertainties in such variables have not been coded yet. Apart from this, 
the system assumes that temporal correlations and spatial correlations depend on the time lag 
and distance but not on the specific time and location of the corresponding parameters. It also 
assumes that the correlation between uncertainties at different locations and different time 
can be derived from the product of the corresponding autocorrelation in time and space. 

Each block of B can thus be decomposed based on Kronecker products: B=∑Ct ⊗Cs∑where 
⊗ is the Kronecker product, Ct and Cs are the temporal and spatial correlations, respectively. 
The calculations involving B1/2 are simplified in PYVAR-CHIMERE using the Eigen-
decomposition of Ct and Cs. Its square root can be calculated according to: Ct

1/2= 
VCtDCt

1/2VCt
T (and similarly for Cs)  (Eq 4) where VCt is the matrix with the Eigenvectors as 

columns, and DCt is the diagonal matrix of Eigenvalues of Ct. It is possible to chose a threshold 
under which the eigenvalues are truncated when computing the spatial correlations in order 
to save computation and memory, but not when computing the temporal correlations."  

 
-What about correlations for initial and boundary conditions? 
There is no correlation for initial and boundary conditions in our inversions. 
 
Further minor comments: 
- line 30: (VOCs) instead of "(VOCs))" 
It has been changed. 
 
-line 39: reference for (LRTAP) would be appreciated  
We added the UNECE website as a reference for LRTAP. 
 
-line 43: no commas 
The commas have been removed. 
 
- line 85: CO and NOx (instead of "CO, NOx") 
It has been changed. 
 
-line 88: citation van der A. [2008] is not appropriate (van der A et al. [2008]), also in the reminder 
of the manuscript  
It has been changed. 
 
-line 93/94: ".. for which variational methods are more suitable than KFs by design": a reference 
would be appreciated for this statement. 
This sentence has been removed. 
 
-line 122/123: of the current inversion (instead "of the inversion")  
It has been changed. 
 
-line 163: quasi-Newton (instead "quasi-Newtonian")  
It has been changed. 
 
-line 165: Reference for incremental 4D-var approach is appreciated 
We would like to emphasize that the PYVAR-CHIMERE system for inversion is not a 4D-
VAR one. We do not need reference for incremental 4D-var approach. 



 
- line 203: It would be appreciated if the manuscript contains a table with the available (and adjoint) 
processes of CHIMERE 
The available processes of CHIMERE are already listed in Figure 1 (emissions, transport, 
chemistry and deposition). 
 
- line 227/228: better: "PYVAR, CHIMERE, and text sources are displayed in blue, orange, and 
grey boxes, respectively." 
It has been changed. 
 
- caption of figure 4: better: "Simplified scheme of how PYVAR scripts prepare the observations y 
using satellite data. PYVAR and text sources are displayed in blue and grey boxes, respectively." 
It has been changed. 
 
- line 264: Equation "Cm =" is not a correct mathematical formulation, Cm(o) is a column, xa is the 
state vector (a profile in this context). 
Here, Cm(0) is not a column but the vertical distribution in partial subcolumns from a 
chemistry-transport model at the same satellite pressure levels. xa is not the state vector but 
the a priori profile provided together with the averaging kernels when relevant. We kept this 
formulation. 
 
- line 290: ... days for CO and NO2, respectively (instead of "... days, respectively for CO and 
NO2") 
It has been changed. 
 
- line 302: Table 1 is not control vector specific. This sentence can be removed 
Indeed, we move this sentence in Section 4. 
 
- line 304: for one day (instead "at a 1-day"); resolution (instead "resolutions") 
It has been changed. 
 
- line 313/314: a spin-up for the initial values is needed for an appropriate analysis, otherwise the 
model maybe to far off the observations for a suitable correction. 
We agree, we indeed performed runs with a spin-up of 10 days. We have added this 
information in "Section 4.1.2. CHIMERE set-up": "In order to ensure realistic fields of 
simulated CO and NO2 concentrations from the beginning of the inversion period, runs have 
been preceded with a 10-day spin-up." 
 
- line 317: Reference for MOPITT is missing 
Indeed, we have added a reference. 
 
- line 328: MOPITT instead of "OMI" 
It has been changed. 
 
- page 12, line 4: flown instead of "flying" 
It has been changed. 
 
- line 368: parts (instead of "part"); present (instead of "presents") 
It has been changed. 
 
- page 14, last line: particularly over the Po Valley (instead ", and particularly over PoValley") 
It has been changed. 



 
- caption Fig. 7 d: is it really the difference between prior and posterior? Inconsistency with text 
(see next point) 
- line 374: Fig. 5c seems to be wrong here. Is it Fig. 7d? 
Indeed, this has been corrected. 
 
- line 380/381: Using the full adjoint of CHIMERE, this must already be available. Please check for 
adjoint NO signals 
As already explained above, we now present inversion of NOx emissions. 
 
- line 399: remove "for example" 
It has been removed. 
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Abstract 11 

Up-to-date and accurate emission inventories for air pollutants are essential for understanding their 12 

role in the formation of tropospheric ozone and particulate matter at various temporal scales, for 13 

anticipating pollution peaks and for identifying the key drivers that could help mitigate their 14 

emissions. This paper describes the Bayesian variational inverse system PYVAR-CHIMERE, 15 

which is now adapted to the inversion of reactive species, in addition to greenhouse gases. 16 

Complementarily with bottom-up inventories, this system aims at updating and improving the 17 

knowledge on the high spatio-temporal variability of emissions of air pollutants and their 18 

precursors. The system is designed to use any type of observations, such as satellite observations or 19 

surface station measurements. The potential of PYVAR-CHIMERE is illustrated with inversions of 20 

both CO and NOx emissions in Europe, using the MOPITT and OMI satellite observations, 21 

respectively. 22 

 23 

1. Introduction 24 

The degradation of air quality is a worldwide environmental problem: 91% of the world's 25 

population have breathed polluted air in 2016 according to the World Health Organization (WHO), 26 

resulting in 4.2 millions of premature deaths every year [WHO, 2016]. The recent study of 27 

Lelieveld et al. [2019] even suggests that the health impacts attributable to outdoor air pollution are 28 

substantially higher than previously assumed (with 790,000 premature deaths in the 28 countries of 29 

the European Union against the previously estimated 500,000 [EEA, 2018]). The main regulated 30 

primary (i.e. directly emitted in the atmosphere) anthropogenic air pollutants are carbon monoxide 31 

(CO), nitrogen oxides (NOx =NO+NO2), sulfur dioxide (SO2), ammonia (NH3), volatile organic 32 

compounds (VOCs), and primary particles. These primary  air pollutants are precursors of 33 

secondary (i.e. produced in the atmosphere through chemical reactions) pollutants such as ozone 34 

(O3) and Particulate Matter (PM), which are also threatening to both human health and ecosystems. 35 

Monitoring concentrations and quantifying emissions are still challenging and limit our capability 36 
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to forecast air quality to warn population and to assess i) the exposure of population to air pollution 37 

and ii) the efficiency of mitigation policies. 38 

 39 

Bottom-up (BU) inventories are built in the framework of air quality policies such as The 40 

Convention on Long-Range Transboundary Air Pollution (LRTAP, http://www.unece.org) for air 41 

pollutants. Based on national annual inventories, research institutes compile gridded global or 42 

regional, monthly inventories (mainly for the US, Europe and China) with a high spatial resolution 43 

(currently regional or city scale inventories are typically finer than 0.1°x0.1°). These inventories are 44 

constructed by combining available (economic) statistics data from different detailed activity 45 

sectors with the most appropriate emission factors (defined as the average emission rate of a given 46 

species for a given source or process, relative to the unit of activity). It is important to note that the 47 

activity data (often statistical data) has an inherent uncertainty and that its reliability may vary 48 

between countries or regions. In addition, the emission factors bear large uncertainties in their 49 

quantification [Kuenen et al., 2014; EMEP/EEA, 2016; Kurokawa et al., 2013]. Moreover, these 50 

inventories are often provided at the annual or monthly scale with typical temporal profiles to build 51 

the weekly, daily and hourly variability of the emissions. The combination of uncertain activity 52 

data, emission factors and emission timing can be a large source of uncertainties, if not errors, for 53 

forecasting or analyzing air quality [Menut et al., 2012].  Finally, since updating the inventories and 54 

gathering the required data for a given year is costly in time, manpower and money, only a few 55 

institutes have offered estimates of the gaseous pollutants for each year since 2011 (i.e, EMEP 56 

updated until the year 2017, MEIC updated until the year 2017 to our knowledge). Nevertheless, 57 

using knowledge from inventories and air quality modeling, emissions  have been mitigated. For 58 

example, from 2010 to nowadays, emissions in various countries have been modified and/or 59 

regional trends have been reversed (e.g., the decrease of NOx emissions over China since 2011 [de 60 

Foy et al., 2016]), leading to significant changes in the atmospheric composition. Consequently, the 61 

knowledge of precise and updated budgets, together with seasonal, monthly, weekly and daily 62 

variations of gaseous pollutants driven, amongst other processes, by the emissions are essential for 63 

understanding their role in the formation of tropospheric ozone and PMs at various temporal scales, 64 

for anticipating pollution peaks and for identifying the key drivers that could help mitigate these 65 

emissions.  66 

 67 

In this context, complementary methods have been developed for estimating emissions using 68 

atmospheric observations. They operate in synergy between a chemistry-transport model (CTM) -69 

which links the emissions to the atmospheric concentrations-, atmospheric observations of the 70 

species of interest, and statistical inversion techniques. A number of studies using inverse modeling 71 
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were first carried out for long-lived species such as greenhouses gases (GHGs) (e.g., carbon dioxide 72 

CO2 or methane CH4) at the global or continental scales [Hein et al., 1997; Bousquet et al. 1999], 73 

using surface measurements. Later, following the development of monitoring station networks, the 74 

progress of computing power, and the use of inversion techniques more appropriate to non-linear 75 

problems, these methods were applied to shorter-lived molecules such as CO. For these various 76 

applications (e.g., for CO2, CH4, CO), the quantification of sources was solved at the resolution of 77 

large regions [Pétron et al., 2002]. Finally, the growing availability and reliability of observations 78 

since the early 2000s (in-situ surface data, remote sensing data such as satellite data), the 79 

improvement of the global CTMs, of the computational capacities and of the inversion techniques 80 

have increased the achievable resolution of global inversions, up to the global transport model grid 81 

cells, i.e. typically with a spatial resolution of several hundreds of square kilometers [Stavrakou and 82 

Muller, 2006; Pison et al., 2009; Fortems-Cheiney et al., 2011; Hooghiemstra et al., 2012; Yin et 83 

al., 2015; Miyazaki et al., 2017, Zheng et al., 2019]. 84 

 85 

Today, the scientific and societal issues require an up-to-date quantification of pollutant emissions 86 

at a higher spatial resolution than the global one and imply to widely use regional inverse systems. 87 

However, although they are suited to reactive species such as CO and NOx, and their very large 88 

spatial and temporal variability, they have hardly been used to quantify pollutant emissions. Some 89 

studies inferred NOx [Pison et al., 2007; Tang et al., 2013] and VOC emissions [Koohkan et al., 90 

2013] from surface measurements. Konovalov et al. [2006, 2008, 2010], Mijling et al. [2012, 2013], 91 

van der A et al. [2008], Lin et al. [2012] and Ding et al. [2017] have also shown that satellite 92 

observations are a suitable source of information to constrain the emissions of NOx. These regional 93 

inversions using satellite observations were often based on Kalman Filter (KF) schemes [Mijling et 94 

al., 2012, 2013; Van der A et al., 2008; Lin et al., 2012; Ding et al., 2017]. 95 

 96 

Here, we present the Bayesian variational atmospheric inversion system PYVAR-CHIMERE for the 97 

monitoring of anthropogenic emissions at high spatial resolutions. It takes advantage of the previous 98 

developments for the quantification of fluxes of long-lived GHG species such as CO2 [Broquet et 99 

al., 2011] and CH4 [Pison et al., 2018] at the regional to the local scales, but now solves for reactive 100 

species such as CO and NOx. It has also a better level of robustness, clarity, portability, and 101 

modularity than these previous systems .It is based on the Bayesian variational assimilation code 102 

PYVAR [Chevallier et al. 2005] and on the regional state-of-the-art CTM CHIMERE, dedicated to 103 

the study of regional atmospheric pollution events [Menut et al., 2013, Mailler et al., 2017]. 104 

Variational techniques require the adjoint of the model to compute the sensitivity of simulated 105 

atmospheric concentrations to corrections of the fluxes. CHIMERE is one of the CTMs possessing 106 
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its adjoint code (e.g., for  global models: GEOS-CHEM [Henze et al., 2007], IMAGES [Stavrakou 107 

and Muller, 2006], TM5 [Krol et al., 2008], GELKA [Belikov et al., 2016] and LMDz [Chevallier 108 

et al., 2005; Pison et al., 2009] ; for limited-area models: CMAQ [Hakami et al., 2007], EURAD-109 

IM [Elbern et al., 2007], RAMS/CTM-4DVAR [Yumimoto et Uno, 2006], WRF-CO2 4D-Var 110 

[Zheng et al., 2018]).  111 

 112 

The principle of variational atmospheric inversion and the configuration of PYVAR-CHIMERE are 113 

described in Section 2 and in Section 3, respectively. Details about the forward, tangent-linear and 114 

adjoint codes of CHIMERE are also given. Then, the potential of PYVAR-CHIMERE is illustrated 115 

in Section 4 with the optimization of European CO and NOx emissions, constrained by observations 116 

from the Measurement of Pollution in the Troposphere (MOPITT) and from the Ozone Monitoring 117 

Instrument (OMI) satellite instruments, respectively. 118 

 119 

2. Principle of Bayesian variational atmospheric inversion  120 

The Bayesian variational atmospheric inversion method adjusts a set of control parameters in input 121 

of the CTM, including parameters related to the emissions whose estimate is the primary target of 122 

the inversion. The control vector x contains these variables to be optimized during the inversion 123 

process (surface fluxes but it may also include initial or boundary conditions for example, see 124 

Section 3.3). The adjustments are applied to prior values, usually taken, for the emissions, from pre-125 

existing BU inventories. The principle is to minimize, on the one hand, the departures from the 126 

prior estimates of the control parameters, which are weighted by the uncertainties in these estimates 127 

(called hereafter “prior uncertainties”), and, on the other hand, the differences between simulated 128 

and observed concentrations, which are weighted by all other sources of uncertainties explaining 129 

these differences (called hereafter all together “observation errors”). In statistical terms, the 130 

inversion searches for the most probable estimate of the control parameters given their prior 131 

estimates, the observations, the CTM and the associated uncertainties. The solution, which will be 132 

called posterior estimate in the following, is found by the iterative minimization of a cost function J 133 

[Talagrand et al., 1997], defined as: 134 

(࢞)ܬ = ࢞) − ࢞)ଵି்(࢈࢞ − (࢈࢞ + (࢞)ܪ) − (࢞)ܪ)ଵିࡾ்(࢟ −  135 (Eq. 1)                                               (࢟

 136 

H is the non-linear observation operator that projects the state vector x onto the observation space. 137 

In most of the variational atmospheric inversion cases (such as those described in Section 4), the 138 

observation operator includes the CTM and an interpolation or an extraction and averaging of the 139 

simulated concentration fields (see Section 3.4). The observations in y could be surface 140 

measurements and/or remote sensing data such as satellite data. The prior uncertainties and the 141 
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observation errors are assumed to be centered and to have a Gaussian distribution. Consequently, 142 

the prior uncertainties are characterized by their covariance matrix B and the observation errors are 143 

characterized by their covariance matrix R. By definition, the observation errors combine errors in 144 

both the data and the observation operator, in particular  measurement errors and errors in the 145 

conversion of satellite measurement into concentration data, errors from the CTM, representativity 146 

errors due to the comparison between point measurements and gridded models or due to the 147 

representation of the fluxes as gridded maps at a given spatial resolution, and aggregation errors 148 

associated with the optimization of emissions at a given spatial and/or temporal resolution (as 149 

specified in the control vector) that is different from (usually coarser than) that of the CTM [Wang 150 

et al., 2017].  151 

 152 

For inversions with observation and control vectors having a high dimension, the minimum of J 153 

cannot be found analytically due to computational limitations. It can be reached iteratively with a 154 

descent algorithm. In this case, the iterative minimization of J is based on a gradient method. J is 155 

calculated with the forward observation operator (including the CTM) and its gradient relative to 156 

the control parameters x: (࢞)ܬߘ = ࢞)ଵି − (࢈࢞ + (࢞)ܪ)ଵିࡾ்ܪ −  is provided by the 157 (Eq. 2) (࢟

adjoint of the observation operator (including the adjoint of the CTM). As shown in Figure 1, the 158 

minimization algorithm repeats the forward-adjoint cycle to seek an optimal solution for the control 159 

parameters.  160 

 161 

The high-non linearity of the chemistry for reactive species makes it difficult to use its 162 

tangent-linear to approximate the actual observation operator (e.g. as in Chevallier et al. 163 

[2010] who use the conjugate gradient algorithm of Fisher and Courtier [1995]), and, more 164 

generally, it makes the inversion problem highly non linear. Therefore, in PYVAR-CHIMERE, 165 

we use the M1QN3 limited memory quasi-Newton minimization algorithm [Gilbert and 166 

Lemaréchal, 1989], which relies on the actual CHIMERE non-linear model to compute J at each 167 

iteration of the minimization. As most quasi-Newton methods, it requires an initial regularization 168 

of x, the vector to be optimized, for better efficiency. We adopt the most generally used 169 

regularization, made by minimizing in the space defined by ߯ = 
భ
మ(࢞ −  instead of the control 170 (࢈࢞

space defined by x. Although more advanced regularizations can be chosen, the minimization with χ 171 

is preferred for its simplifying the equation to solve. In the ߯-space, Equation 2 can be re-written as 172 

follows: ߯ܬߘ = ߯ + 
భ
మܪ × ൫ିࡾଵ((࢞)ܪ −  ൯. The criterion for stopping the algorithm is based on 173(࢟

a threshold set on the ratio between the final and initial gradient norms or on the maximum number 174 
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of iterations to perform. Due to the non-linearity of the problem, the minimization may reach only a 175 

local minimum.  176 

 177 

Finally, the calculation of the uncertainty in the estimate of emissions from the inversion, known as 178 

“posterior uncertainty”, is challenging in a variational inverse system. Even though the posterior 179 

uncertainty can be explicitly written in various analytical forms, it requires the inversion of matrices 180 

that are too large to invert given the current computational resources in our variational approach. As 181 

a trade-off between computing resources and comprehensiveness, the analysis error may be 182 

evaluated by an approach based on a propagation of errors through sensitivity tests (e.g., as in 183 

Fortems-Cheiney et al., [2012]). It can also be estimated through a Monte Carlo Ensemble 184 

[Chevallier et al., 2007], implemented in PYVAR. 185 
 186 

 187 
Figure 1. Simplified scheme of the iterative minimization in PYVAR-CHIMERE. PYVAR, 188 
CHIMERE and text sources are displayed in blue, in orange and in grey, respectively. 189 
 190 

3. The PYVAR-CHIMERE configuration  191 

3.1. PYVAR adapted to CHIMERE 192 

The PYVAR-CHIMERE inverse modeling system is based on the Bayesian variational assimilation 193 

code PYVAR [Chevallier et al. 2005] and on a previous inversion system coupled to CHIMERE 194 

[Pison et al., 2007]. PYVAR is an ensemble of Python scripts, which deals with preparing the 195 

vectors and the matrices for the inversion, drives the required Fortran codes of the transport model 196 

and computes the minimization of the cost function to solve the inversion. Previously used for 197 

global inversions with the LMDz model (e.g., Pison et al., 2009; Chevallier et al., 2010; Fortems-198 
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Cheiney et al., 2011; Yin et al., 2015; Locatelli et al., 2015; Zheng et al., 2019), PYVAR has been 199 

adapted to CHIMERE with an adjoint code without chemistry a first time by Broquet et al. 200 

[2011]. In order to couple PYVAR to the new state-of-the-art version of CHIMERE (see 201 

Section 3.2), to include chemistry, and to increase its modularity, flexibility and clarity, the 202 

new system described here has been developed. It includes elements of the inversion system 203 

(coded in Fortran90) of [Pison et al., 2007].  204 

 205 

 3.2. Development and parallelization of the adjoint and tangent-linear codes of 206 

CHIMERE  207 

To compute the sensitivity of simulated atmospheric concentrations to corrections to the fluxes, the 208 

adjoint of CHIMERE has been developed. Originally, the sequential adjoint was coded [Menut et 209 

al., 2000; Menut et al., 2003; Pison et al., 2007].The adjoint has been coded by hand line by line, 210 

following the principles formulated by Talagrand [1997]. It contains exactly the same processes as 211 

the CHIMERE forward model. Then, it has been parallelized. This work required a redesigning 212 

of the whole code, associatedwith a full testing scheme.Furthermore, the tangent-linear (TL) 213 

code has been developed and validated at LSCE.Changes have been implemented in the 214 

forward CHIMERE code embedded in PYVAR-CHIMERE to match requirements of the 215 

studies lead with PYVAR-CHIMERE. These changes have been implemented in both the 216 

adjoint and the TL codes. Compared to the CHIMERE 2013 version [Menut et al., 2013], the 217 

most important of these changes are: 218 

•For the geometry, the possibility of polar domains and the use of the coordinates of the 219 

corners of the cells instead of only the centers 220 

•For the transport, the non-uniform Van Leer transport scheme on the horizontal,  221 

•For chemistry, various switches have been added to avoid going into the chemistry, 222 

deposition and wet deposition routines when no species requires them (e.g. no chemistry for 223 

methane at a regional scale). 224 

 225 

PYVAR-CHIMERE is currently operational for the full module of gaseous chemistry. As a 226 

compromise between the robustness of the method for reactive species, the time required coding the 227 

adjoint and the computational cost with a full chemical scheme, the aerosols modules of CHIMERE 228 

have not been included in the adjoint of CHIMERE yet and are therefore not available in PYVAR-229 

CHIMERE. The development and maintenance of the adjoint means that the version used is 230 

necessarily one or two versions behind the distributed CHIMERE version 231 

(http://www.lmd.polytechnique.fr/chimere/). It should also be noted that PYVAR-CHIMERE 232 

only infer anthropogenic emissions at this stage. The optimization of biogenic emissions, 233 
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which are linearly interpolated at the sub-hourly scale in CHIMERE, is currently under 234 

development. 235 

 236 

As an example, Figure 2 presents a simplified scheme of how PYVAR scripts are used to drive this 237 

version of CHIMERE for forward simulations and inversions using satellite observations. A mode 238 

is also available to test the adjoint: it runs the TL code.  239 
 240 

 241 
Figure 2. Simplified scheme of how PYVAR scripts are used to drive CHIMERE for an inversion 242 

using satellite observations. PYVAR, CHIMERE and text sources are displayed in blue, in orange 243 

and in grey, respectively. “AK” refers to Averaging Kernels as detailed in Section 3.4. 244 

 245 

 3.3. Definition of the control vector 246 

The control vector is specified by the user in a text file. This file is formatted following Table 1.The 247 

parameters to constrain could be fluxes and/or initial conditions and/or boundary concentration 248 

conditions, at the grid-cell resolution or for one region encompassing up to the whole domain. 249 

Several types of corrections can be applied, they are defined in the code as "add", "mult" or 250 

"scale". Both the corrections "add" and "mult" are applied to gridded control variables. For 251 

correction type “add” the control variables are increments added to the corresponding 252 

components of the model inputs. For correction type “mult", the control variables are scaling 253 

factors multiplying the corresponding components of the model inputs. The difference 254 

between the two options "add" and "mult" plays a role when inverting fluxes which can 255 

switch from positive to negative values (like CO2 natural fluxes). For type “scale”, the 256 

corrections consist in applying scaling factors to activity maps and/or masks for regions 257 
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(which is similar to the control of budgets for different regions, types of activities, and/or 258 

processes in inversions where the control vector is not gridded [Wang et al., 2018]) and adding 259 

the obtained values to the corresponding components of the model inputs.  260 

Different simple but efficient ways of building the error covariance matrix B are implemented 261 

in PYVAR-CHIMERE. The variances and correlations are defined independently. The 262 

variances are specified by the user through standard deviation coefficient (Table 1), which 263 

can be a fixed value ("fx") or a percentage ("pc") to define the diagonal standard deviation 264 

matrix ∑. For correction types "mult" and "scale", as well as for correction type "add" with 265 

a fixed value, the value is directly used as the standard deviation of the uncertainty in the 266 

corresponding components of the control vector. For correction type "add" with a percentage 267 

provided, maps of standard deviation of uncertainty are built by applying this percentage to 268 

the matching input fields (fluxes, initial conditions, boundary conditions). The user may also 269 

provide a script to build personalized maps of variances. 270 

 271 

Potential correlations between uncertainties in different types of control variables, e.g. 272 

between fluxes and boundary conditions, and correlations between uncertainties in different 273 

species, e.g. between fluxes of CO and NOx, are not coded yet. Only correlations for a given 274 

type of control variable and a given species are so far taken into account so that the B matrix 275 

is block diagonal. For a given type of control variable and a given species (in the illustration in 276 

section 4.2.2: CO, NO or NO2 fluxes), spatial and temporal correlations can be defined using 277 

correlation lengths through time Lt and space Ls. Those lengths are used to model temporal 278 

and/or spatial auto-correlations using an exponentially decaying function: the correlation r 279 

between parameters and at a given location but separated by duration ࢞)ࢊ,  or at a given 280 ,(࢞

time but distant by ࢊ൫࢞, ,࢞൫࢘ ൯is given by࢞ ൯࢞ = ࢞ࢋ  ቀିࢊ൫࢞ ൯࢞,
ࡸ

ቁwhere ࡸ (=  is the 281 (ࡿࡸ࢘ ࢀࡸ

corresponding correlation length. There is no correlation between uncertainties in land and 282 

ocean flux. Note that the spatial correlations are computed for each vertical level 283 

independently when dealing with control variables with vertical resolution (3D fields of fluxes 284 

when accounting for emission injection heights, or boundary/initial conditions). Vertical 285 

correlations in the uncertainties in such variables have not been coded yet. Apart from this, 286 

the system assumes that temporal correlations and spatial correlations depend on the time lag 287 

and distance but not on the specific time and location of the corresponding parameters. It also 288 

assumes that the correlation between uncertainties at different locations and different time 289 

can be derived from the product of the corresponding autocorrelation in time and space. 290 
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Each block of B can thus be decomposed based on Kronecker products: B=∑Ct ⊗Cs∑ where 291 

⊗ is the Kronecker product, Ct and Cs are the temporal and spatial correlations, respectively. 292 

The calculations involving B1/2 are simplified in PYVAR-CHIMERE using the Eigen-293 

decomposition of Ct and Cs. Its square root can be calculated according to: Ct
1/2= 294 

VCtDCt
1/2VCt

T (and similarly for Cs)  (Eq 4) where VCt is the matrix with the Eigenvectors as 295 

columns, and DCt is the diagonal matrix of Eigenvalues of Ct. It is possible to chose a threshold 296 

under which the eigenvalues are truncated when computing the spatial correlations in order 297 

to save computation and memory, but not when computing the temporal correlations. 298 

Possible ways to define the control vector and to construct the error covariance B matrix 

Constrained 

species 

Correction  

type : 

- Add 

- Mult 

- Scale 

Spatial 

resolution  

- at the 

grid-cell 

resolution 

- for one 

region 

Temporal 

resolution 

(in hours) 

Input to 

constrain: 
-Fluxes 

-Initial 

conditions 

-Lateral 

Boundary 

conditions 

-Top 

Boundary 

conditions 

B variance 

coefficient: 
-fx 

-pc 

Decorrelation 

time 

(in hours) 

Decorrelation 

length on 

land (in km) 

Decorrelation 

length on sea 

(in km) 

Examples of the definition of the control vector and of the construction of the B matrix   

for the experiments presented in Section 4 
CO add 0.5°x0.5° 24 Fluxes 100 % - - - 

CO add 0.5°x0.5° 24 
Initial 

conditions 
15% - - - 

CO add 0.5°x0.5° 24 

Lateral 

Boundary 

conditions 

15% - - - 

CO add 0.5°x0.5° 24 

Top 

Boundary 

conditions 

15% - - - 

NO add 0.5°x0.5° 24 Fluxes 30 % - 50 50 

NO add 0.5°x0.5° 24 
Initial 

conditions 
15% - - - 

NO2 add 0.5°x0.5° 24 Fluxes 30 % - 50 50 

NO2 add 0.5°x0.5° 24 
Initial 

conditions 
15% - - - 

Table 1. Possible ways to define the control vector and to construct the error covariance B matrix 299 
in PYVAR-CHIMERE and examples of the configuration for the experiments presented in Section 4. 300 

 3.4 Equivalents of the observations 301 

The individual data given as constraints in the system are first formatted into a text file described in 302 

Figure 4. During forward simulations, the equivalents of the components of  y (i.e, the equivalents 303 
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of the individual data) are calculated by PYVAR-CHIMERE. It includes the CTM and an 304 

interpolation (see below the vertical interpolation from the model’s grid to the satellite levels) or an 305 

extraction and averaging (e.g. extracting the grid cell matching the geographical coordinates of a 306 

surface station and averaging over one hour). As a compromise between technical issues such as the 307 

time required for reading/writing files, the observation operator H that generates the equivalent of 308 

the observations by the model (i.e. H(x)) has been so far partly embedded in the code of CHIMERE. 309 

It makes it easier to use finer time intervals than available in the usual hourly outputs of CHIMERE 310 

to compute the required information (e.g., within the finer CTM physical time steps). 311 

 312 
Figure 3. Simplified scheme of how PYVAR scripts prepares the observations, using satellite data 313 

 314 

To make comparisons between simulations and satellite observations, the simulated vertical profiles 315 

are first interpolated on the satellite’s levels (with a vertical interpolation on pressure levels) in 316 

CHIMERE. Then, the averaging kernels (AKs), when available, are applied to represent the 317 

vertical sensitivity of the satellite retrieval. Two types of formula, depending on the satellite 318 

observations used, have been detailed in PYVAR-CHIMERE for the use of AKs: ܥ = .ܭܣ  () 319ܥ

or ܥ = ݔ + ൫ܿ()ܭܣ −  ൯ where Cm is the modeled column, AK contains the averaging 320ݔ

kernels, ݔ is the prior profile (provided together with the AKs when relevant) and Cm(o) is the 321 

vertical distribution of the original model partial columns interpolated to the pressure grid of the 322 

averaging kernels.  323 

 324 

 3.5. Numerical language 325 
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The PYVAR code is in Python 2.7, the CHIMERE CTM is coded in Fortran90. The CTM requires 326 

several numerical tools, compilers and libraries. The PYVAR-CHIMERE system was developed 327 

and tested using the software versions as described in Table 2.  328 

 329 

 URL Version 

Software Python  https://www.python.org/downloads/ 2.7 
Fortran 

compiler ifort 
https://software.intel.com/en-us/fortran-compilers Composer-xe-

2013.2.146 
Libraries 

or 

packages 

UnidataNetCDF https://www.unidata.ucar.edu/ 3 
Open MPI https://www.open-mpi.org/ 1.10.5 

GRIB_API https://confluence.ecmwf.int/display/GRIB/Releases 1.14 

 nco http://nco.sourceforge.net/#Source 4.6.3 

Table 2. URL addresses for the development and the use of the PYVAR-CHIMERE system and its 330 
modules.  331 

 332 
PYVAR-CHIMERE’s computation time for one node of 10 CPUs is about 4h for 1 day of inversion 333 

(with ~10 iterations) for the European domain size of 101 (longitude) x 85 (latitude) x 17 (vertical 334 

levels) used in Section 4.2.3. The model parallelism results from a Cartesian division of the main 335 

geographical domain into several sub-domains, each one being processed by a worker process. To 336 

configure the parallel sub-domains, the user has to specify two parameters in the model parameter 337 

file: the number of sub-domains for the zonal and meridian directions. The total number of CPUs 338 

used is therefore the product of these two numbers plus one for the master process. 339 

 340 

4. Potential of PYVAR-CHIMERE for the inversion of CO and NOx emissions 341 

The potential of the PYVAR-CHIMERE system to invert emissions of reactive species is illustrated 342 

with the inversion of CO and NOx anthropogenic emissions in Europe respectively based on 343 

MOPITT CO data andOMI NO2 data. We have chosen to present illustration of CO inversion over 344 

a 7-day window, the first week of March 2015. Considering the short lifetime of NOx of a few 345 

hours [Valin et al., 2013; Liu et al., 2016], we have chosen to present illustration of NOx inversion 346 

over a 1-day window, the 19th February 2015. These particular periods have been chosen as they 347 

present a representative number of super-observations during winter, and as the emissions are high 348 

during that period. All the information required by the system to invert CO and NOx emissions are 349 

listed in Table 1. 350 

 351 

 4.1. Data and model description   352 

  4.1.1. Observations y 353 
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We use CO data from the MOPITT instrument [Deeter et al., 2019]. MOPITT has been flown 354 

onboard the NASA EOS-Terra satellite, on a low sun-synchronous orbit that crosses the equator at 355 

10:30 and 22:30 LST. The spatial resolution of its observations is about 22x22 km2 at nadir. It has 356 

been operated nearly continuously since March 2000. MOPITT CO products are available in three 357 

variants: thermal-infrared TIR only, near-infrared NIR only and the multispectral TIR-NIR product, 358 

all containing total columns and retrieved profiles (expressed on a ten-level grid from the surface to 359 

100 hPa). We choose to constrain CO emissions with the MOPITT surface product for our 360 

illustration. Among the different MOPITTv8 products, we choose to work with the multispectral 361 

MOPITTv8-NIR-TIR one, as it provides the highest number of observations, with a good 362 

evaluation against in situ data from NOAA stations [Deeter et al., 2019]. The MOPITTv8-NIR-TIR 363 

surface concentrations are sub-sampled into “super-observations” in order to reduce the effect of 364 

errors that are correlated between neighboring observations: we selected the median of each subset 365 

of MOPITT data within each 0.5°×0.5° grid-cell and each physical time step (about 5-10 minutes). 366 

After this screening, 8437“super-observations” remain in the 7-day inversion (from 10667 raw 367 

observations). These super-observations are provided to PYVAR-CHIMERE as constraints y, and 368 

treated as described in Section 3.4. It is important to note that the potential of MOPITT to provide 369 

information at a high temporal resolution, up to the daily scale, is hampered by the cloud coverage 370 

(see the blanks in Figure 6b). 371 

 372 

The observational constraint on NO2 emissions comes from the OMI QA4ECV tropospheric 

columns [Muller et al., 2016; Boersma et al., 2016, Boersma et al., 2017]. The Ozone Monitoring 

Instrument (OMI), a near-UV/Visible nadir solar backscatter spectrometer, was launched onboard 

EOS Aura in July 2004. It has been flown on a 705 km sun-synchronous orbit that crosses the 

Equator at 13:30 LT. Our data selection follows the criteria of the OMI QA4ECV data quality 

statement. As the spatial resolution of the OMI data is finer than that of the chosen CHIMERE 

model grid (13x24 km2 against 0.5°×0.5°, respectively), the OMI tropospheric columns are sub-

sampled into “super-observations” (median of the OMI data within the 0.5°×0.5° grid-cell and each 

physical time step and its corresponding AK). 

 

  4.1.2 CHIMERE set-up 373 

CHIMERE is run over a 0.5°×0.5° regular grid (about 50x50km2) and 17 vertical layers, from the 374 

surface to 200hPa (about 12km), with 8 layers within the first two kilometers. The domain includes 375 

101 (longitude) x 85 (latitude) grid-cells (15.5°W-35°E; 31.5°N-74°N, see Figure 5). CHIMERE is 376 

driven by the European Centre for Medium-Range Weather Forecasts (ECMWF) 377 

meteorological forecast [Owens and Hewson, 2018]. The chemical scheme used in PYVAR-378 
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CHIMERE is MELCHIOR-2, with more than 100 reactions [Lattuati, 1997; CHIMERE 2017], 379 

including 24 for inorganic chemistry. The prior anthropogenic emissions for CO and NOx 380 

emissions come from the TNO-GCHco-v1 inventory [Super et al., 2019], the last update of the 381 

TNO-MACCII inventory [Kuenen et al., 2014]. The prior anthropogenic emissions for VOCs 382 

come from the EMEP inventory [Vestreng et al., 2005; EMEP/CEIP website]. Different 383 

climatological values from the LMDZ-INCA global model [Szopa et al., 2008] or from a 384 

MACC reanalysis are used to prescribe concentrations at the lateral and top boundaries and 385 

the initial atmospheric composition in the domain. Full access to and more information about 386 

the MACC reanalysis data can be obtained through the MACC-II web 387 

site(http://www.copernicus-atmosphere.eu). In order to ensure realistic fields of simulated CO 388 

and NO2 concentrations from the beginning of the inversion period, runs have been preceded 389 

with a 10-day spin-up. 390 

 

  4.1.3. Sensitivity to emissions and to initial and boundary conditions 

With its lifetime of about two months, CO could be strongly driven by the initial and lateral 391 

boundary conditions prescribed in the CTM. In fact, as seen in Figure 4b, initial and 392 

boundary conditions provide a relatively flat background and the patterns which appear 393 

clearly over the background are linked to surface emissions (Figure 4a). To characterize the 394 

uncertainties in the concentration fields due to the initial and lateral boundary conditions, we 395 

performed a sensitivity test by using either climatological values from LMDZ-INCA or a 396 

MACC reanalysis: the results were not significantly different, with relative differences in 397 

concentrations of less than 15% over continental land (Figure 5c). 398 

 399 
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Figure 4. CO surface concentrations simulated by CHIMERE a) with anthropogenic and biogenic 

emissions, and b) without emissions, in ppbv, at the 0.5°x0.5° grid-cell resolution, over Europe 

averaged from the 1st to the 7th, March 2015. 

 400 
Figure 5. CO surface concentrations simulated by CHIMERE using for initial and boundary 

conditions, a) the climatological values from the LMDZ-INCA global model  b) the climatological 

values from a MACC reanalysis, in ppbv, and c) the relative differences between these two 

simulations , in %, at the 0.5°x0.5° grid-cell resolution, over Europe averaged from the 1st to the 

7th, March 2015. 

 

  4.1.4. Comparison between CHIMERE and the observations 

 

Large discrepancies are found between the MOPITT CO observations (Figure 6b) and the prior 401 

simulation of their equivalents by CHIMERE over Europe (Figure 6a). For the first week of March 402 

2015, CO concentrations are generally under-estimated by CHIMERE, particularly over Central and 403 

Eastern Europe (excepted in the south of Poland). On the contrary, CO concentrations seems to 404 

be over-estimated over Spain and Portugal. Large discrepancies are also found between the OMI 405 

NO2 super-observations and the prior simulation of their equivalents by PYVAR-CHIMERE 406 

(Figure 7). Over Europe, the prior simulation strongly underestimates the tropospheric columns 407 

over industrial areas (e.g., over the Netherlands and over Po Valley).These discrepancies might be 408 

explained by an underestimation in the BU inventory due to a general trend in emissions (if the 409 

underestimation persists throughout the year) or to an underestimation regarding particular activity 410 

sectors or the time profiles at given scales (daily, monthly). This can also be explained by 411 

uncertainties from the satellite data or from the CTM (e.g., atmospheric production, chemistry with 412 

OH).  413 
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 414 

 415 
Figure 6. CO collocated surface concentrations a) simulated by CHIMERE using the prior TNO-

GHGco-v1 emissions and the climatological values from the LMDZ-INCA global model for initial 

and boundary conditions, b) observed by MOPITTv8-NIR-TIR and c) simulated by CHIMERE using 

the posterior emissions, in ppbv, at the 0.5°x0.5° grid-cell resolution, over Europe averaged from 

the 1st to the 7th, March 2015. Mean bias between simulations and observations are given in 

Section 4.2.3 for the area in the grey box. 

 

 
Figure 7. NO2 collocated surface concentrations a) simulated by CHIMERE using the prior TNO-

GHGco-v1 emissions and the climatological values from the LMDZ-INCA global model for initial 

and boundary conditions, b) observed by OMI and c) simulated by CHIMERE using the posterior 

emissions, in 1e16 molec.cm-2, at the 0.5°x0.5° grid-cell resolution, over Europe the 19th, February 

2015. Mean bias between simulations and observations are given in Section 4.2.4 for the area in 

the grey box. 
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 4.2. Inversions  416 

  4.2.1. Control vector x 417 

For the CO inversion, the control vector x contains: 418 

 the CO anthropogenic emissions for 7-day and at a 0.5° ×0.5° (longitude, latitude) 419 

resolution× 8 vertical levels, i.e.  101×85×8 grid cells, 420 

 the CO 3D initial conditions at a 0.5° ×0.5° (longitude, latitude) resolution × 17 vertical 421 

levels,  422 

 the CO lateral and top boundary conditions for 7-day at a 0.5° ×0.5° (longitude, 423 

latitude) resolution, i.e. (2x101 + 2x85)× 17 vertical levels. 424 

Considering its short lifetime, there is no boundary conditions for  NO2. For the NOxinversion, 425 

the control vector x contains: 426 

 the NO and NO2 anthropogenic emissions for 1-day and at a 0.5° ×0.5° (longitude, 427 

latitude) resolution× 8 vertical levels, i.e.  101×85×8 grid cells, 428 

 the NO and NO2 3D initial conditions at a 0.5° ×0.5° (longitude, latitude) resolution × 429 
17 vertical levels. 430 

  431 

  4.2.2. Covariance matrices B and R 432 

We hardly have sources of estimates ofthe uncertainties in bottom-up emission inventories at 433 

the 0.5° resolution. The characterization of their statistics in the inversion configuration is 434 

consequently often linked with crude assumptions from the inverse modelers. In the NOx 435 

inversions, for both the prior NO and NO2 emissions at 1-day and 0.5° resolution, the prior 436 

error standard deviations is assigned to 30% of the prior estimate of the emissions. As 437 

indicated in Section 3.3 and in Table 1, it is possible to use correlations in B, as in Broquet et 438 

al., [2011], in Broquet et al., [2013] and in Kadygrov et al., [2015]. For this NOx illustration, 439 

spatial correlations are defined by an e-folding length of 50km over land and over the sea.  440 

Even though annual CO emissions in Western Europe may be well known, with uncertainties 441 

of 6% according to Super et al., [2020], larger uncertainties could affect Eastern Europe. 442 

Moreover, large uncertainties still affect bottom-up emission inventories at the 0.5° 443 

resolution: spatial disaggregation of the national scale estimates to provide such gridded 444 

estimates causes a significant increase in the uncertainty for CO [Super et al., 2020]. For the 445 

inversion of CO emissions, the error standard deviations assigned to the prior CO emissions 446 

at 7-day and 0.5° resolution are 100%. For this CO illustration, the covariance matrix B of the 447 

prior errors is defined as diagonal (i.e. only variances in the individual control variables listed 448 

in 4.2.1 are taken into account). With such a set-up, in theory, we could obtained negative 449 

posterior emissions since the inversion system does not impose a constraint of positivity in the 450 
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results. Nevertheless, even 100% of uncertainty lead to a prior distribution mostly (>80%) on 451 

the positive side. The assimilation of data showing an increase above the background (at the 452 

edges of the domain; not shown) further drive the inversion towards positive emissions for 453 

both CO and NOx inversions. In practice, our inversion does not lead to negative posterior 454 

emissions (Figure 7b). Spatial and temporal correlations in B would further limit the 455 

probability to get negative emissions locally by smoothing the posterior emissions at a spatial 456 

scale at which the “aggregated” prior uncertainty is smaller than 100%. However, a positivity 457 

constraint should be implemented in future versions of the system.  458 

 459 

Based on the sensitivity test in Figure 5, the errors assigned to the CO lateral boundary 460 

conditions and to their initial conditions are set at 15%. As these relative errors are 461 

significantly lower than those for the emissions and as variations in the CO surface 462 

concentrations are mainly drivenby emissions (Figure 4), we assume a small relative influence 463 

of the correction of initial and boundary conditions on our results. The variance of the 464 

individual observation errors in R is defined as the quadratic sum of the measurement error reported 465 

in the MOPITT and the OMI data sets, and of the CTM errors (including chemistry and transport 466 

errors and representativity errors) set at 20% of the retrieval values. The representativity errors 467 

could have been reduced with the choice of a finer CTM resolution (e.g., with a resolution closer to 468 

the size of the satellite pixel). Error correlations between the super-observations are neglected, so 469 

that the covariance matrix R of the observation errors is diagonal.  470 

 471 

4.2.3 Inversion of CO emissions 

 472 
Ten iterations are needed to reduce the norm of the gradient of J by 90% with the 473 

minimization algorithm M1QN3 and obtain the increments, i.e. the corrections provided by the 474 

inversion. The prior CO emissions over Europe for the first week of March 2015 and their 475 

increments are shown in Figure 7. As expected from the large differences between the prior 476 

surface concentrations (Figure 6a) and the MOPITT observations (Figure 6b), local 477 

increments can reach more than +50% (Figure 8b). CO emissions are increased over Central 478 

and Eastern Europe, except in the south of Poland. On the contrary, CO emissions are 479 

decreased over Spain and Portugal.The analyzed concentrations are the concentrations simulated 480 

by CHIMERE with the posterior fluxes: as expected, the optimization of the fluxes improves the fit 481 

of the simulated concentrations to the observations (Figure 6c), particularly over Central and 482 

Eastern Europe. Over this area (see the grey box in Figure 6), the mean bias between the 483 
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simulation and the observations has been reduced by about 27% when using the posterior 484 

emissions (mean bias of 11.6 ppbv) instead of the prior emissions (mean bias of 15.9 ppbv). 485 

486 
Figure 8. a) TNO-GHGco-v1 CO anthropogenic prior emissions, in ktCO/grid-cell and b) 487 

increments provided by the inversion with constraints from MOPITTv8-NIR-TIR from the 1stto  the 488 

7th, March 2015, in %.  489 

 490 

4.2.4. Inversion of NOx emissions 

The prior NOx emissions are shown in Figure 9a. Three iterations are needed to reduce the 491 

norm of the gradient of J by 90% with the minimization algorithm M1QN3 and obtain the 492 

increments shown in Figure 9b. As expected from the underestimation of the prior tropospheric 493 

columns in Figure 7, local increments may be large, for example over industrial areas (e.g., over the 494 

Po Valley) and over the Netherlands, with increments of more than +30% (Figure 9b).The 495 

analyzed NO2 tropospheric columns in Figure 7c are the columns simulated by CHIMERE 496 

with the NO2 posterior fluxes: as expected, the optimization of the fluxes improves the fit of 497 

the simulated concentrations to the observations, particularly over the Netherlands. Over this 498 

area (see the grey box in Figure 7), the mean bias between the simulation and the observations 499 

has been reduced by about 24% when using the posterior emissions (mean bias of 1.4e+15 500 

molec.cm-2) instead of the prior emissions (mean bias of 1.8e+15 molec.cm-2). The posterior 501 

emissions and their uncertainties will have to be evaluated and may bring hints to the cause of the 502 

discrepancies. 503 
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 504 
Figure 9. a) TNO-GHGco-v1 NOx anthropogenic prior emissions, in ktNO2/grid-cell and b) 505 

increments provided by the inversion with constraints from OMI the 19th, February 2015, in %.  506 

 

5. Conclusion/Discussion 507 
This paper presents the Bayesian variational inverse system PYVAR-CHIMERE, which has been 508 

adapted to the inversion of reactive species such as CO and NOx, taking advantage of the previous 509 

developments for long-lived species such as CO2 [Broquet et al., 2011] and CH4 [Pison et al., 510 

2018]. We show the potential of PYVAR-CHIMERE, with inversions for CO and NOx illustrated 511 

over Europe. PYVAR-CHIMERE will now be used to infer CO and NOx emissions over long 512 

periods, e.g. first for a whole season or year and then for the recent decade 2005-2015 in the 513 

framework of the H2020 VERIFY project over Europe, and in the framework of the ANR 514 

PolEASIA over China, to quantify their trend and their spatio-temporal variability.  515 

 516 

The PYVAR-CHIMERE system can handle any large number of both control parameters and 517 

observations. It will be able to cope with the dramatic increase in the number of data in the near 518 

future with, for example, the high-resolution imaging (pixel of 7x3.5 km2) of the new Sentinel-519 

5P/TROPOMI program, launched in October 2017. These new space missions with high-resolution 520 

imaging have indeed the ambition to monitor atmospheric chemical composition for the 521 

quantification of anthropogenic emissions. Moreover, a step forward in the joint assimilation of co-522 

emitted pollutants will soon be possible with the PYVAR-CHIMERE system and the availability of 523 

TROPOMI co-localized images of CO and NO2. This should improve the consistency of the 524 

inversion results and can be used to inform inventory compilers, and subsequently improve 525 



21 
 

emission inventories. Moreover, this development will help in further understanding  air quality 526 

problems and  addressing air quality related emissions at the national to subnational scales. 527 
 528 
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