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Abstract  
Future changes in the climate system could have significant impacts on the natural environment and human activities, which 

in turn affect changes in the climate system. In the interaction between natural and human systems under climate change 

conditions, land use is one of the elements that play an essential role. Future climate change will affect the availability of water 

and food, which may impact land-use change. On the other hand, human land-use change can affect the climate system through 25 

bio-geophysical and bio-geochemical effects. To investigate these interrelationships, we developed MIROC-INTEG1 (MIROC 

INTEGrated terrestrial model version 1), an integrated model that combines the global climate model MIROC (Model for 

Interdisciplinary Research on Climate) with water resources, crop production, land ecosystem, and land use models.  In this 

paper, we introduce the details and interconnections of the sub-models of MIROC-INTEG1, compare historical simulations 

with observations, and identify the various interactions between sub-models. MIROC-INTEG1 makes it possible to 30 

quantitatively evaluate the feedback processes or nexus between climate, water resources, crop production, land use, and 

ecosystem, and to assess the risks, trade-offs and co-benefits associated with future climate change and prospective mitigation 

and adaptation policies.  
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1 Introduction 

The problems associated with climate change are related to the various processes involved in natural and human systems, and 

their interconnections. Changes in the climate system are caused by greenhouse gas emissions and changes in land use resulting 

from human activity (Collins et al., 2013). At the same time, climate change impacts natural and human systems in a variety 

of ways (e.g., Arent et al., 2014; Porter et al., 2014; Jiménez-Cisneros et al., 2014; Romero-Lankao et al., 2014). According to 5 

research on the linkage of various risks caused by climate change (e.g., Yokohata et al., 2019), changes in the climate system 

affect the natural environment, leading to changes in the socio-economic system, and finally impacting human lives. 

  One of the factors that play an essential role in the interaction between the natural and human systems is land use (van Vuuren 

et al., 2012; Rounsvell et al., 2014; Lawrence et al., 2016). In general, changes in land use are driven by changes in various 

socio-economic factors, such as an increase in food demand (Foley et al., 2011; Weinzettel et al., 2013; Alexander et al., 2015). 10 

At the same time, changes in the climate system affect the water resources available to agriculture and the size of the food 

supply through changes in crop yield (Rosenzweig et al. 2014; Liu et al. 2016; Pugh et al., 2016), significantly affecting human 

land use (Parry et al., 2004; Howden et al., 2007). Furthermore, climate mitigation measures often include the use of biofuel 

crops, which can significantly influence human land use (Smith et al., 2013; Humpenöder et al., 2015; Popp et al., 2017). On 

the other hand, land-use change is known to have bio-geophysical and bio-geochemical effects on the earth system (Mahmood 15 

et al., 2014; Chen and Dirmeyer, 2016; Smith et al., 2016), as changes in land use bring about changes in surface heat and 

water budget, which, in turn, affects air temperature and precipitation (Feddma et al., 2005; Findell et al., 2017; Hirsch et al., 

2018). Changes in land use also affect the terrestrial carbon budget, thereby influencing the concentration of greenhouse gases 

(GHGs) in the atmosphere (Brovkin et al., 2013; Lawrence et al. 2016; Le Quéré et al., 2018). It seems clear, then, that climate 

change induces land-use change by affecting various human activities, and that human land-use change affects changes in the 20 

climate system (Hibbard et al., 2010; van Vuuren et al., 2012; Alexander et al., 2017; Calvin and Bond-Berry 2018, Robinson 

et al., 2018).  

Various numerical models have been developed to describe the interaction between natural and human systems in order to 

project future conditions as they relate to climate change (van Vuuren et al., 2012; Calvin and Bond-Berry 2018). Generally, 

in models dealing with the details of natural systems, elements related to human activity are simplified, and in models dealing 25 

with the details of human activities, elements related to natural systems tend to be likewise simplified (Muller- Hansen et al., 

2018; Robinson et al., 2018). An Earth System Model (ESM) describes in detail the physical and carbon cycle processes in a 

natural system. A number of ESMs take human activities into consideration (Calvin and Bond-Berry 2018). iESM (Collins et 

al., 2015) is based on a CESM (Community Earth System Model Project, 2019) that incorporates GCAM (Calvin, 2011; Wise 

et al., 2014), an integrated assessment model (IAM) that provides a comprehensive description of human economic activities. 30 

With iESM, it is possible to capture the various interactions between the natural environment and human economic activities 

(Collins et al., 2015), but the model used to indicate the impact of climate change on water resources and crops is rather 

simplified (Thornton et al., 2017; Robinson et al., 2018; Calvin and Bond-Berry 2018).  
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IAMs consider supply and demand equations across the entire range of economic transactions and calculate the changes in 

surface air temperture resulting from increased GHGs in the atmosphere (Moss et al., 2010). IAMs can also project future 

changes in human land use (Wise and Calvin, 2011, Letourneau et al., 2012, Hasegawa et al., 2017). In general, however, 

IAMs simplify processes related to the natural environment (water resources, the ecosystem, crop growth, etc.) (Robinson et 

al., 2018), and thus do not explore the interactions between the natural and human systems on a spatially disaggregated basis 5 

(Alexander et al., 2018). 

Many models for predicting changes in human land use have been developed (e.g., Hurrt et al., 2006; Lotze-Campen et al., 

2008; Havlik et al., 2011; Wise and Calvin 2011; Meiyappan et al., 2014; Dietrich et al., 2019). Among these, the LPJ-GUESS 

and PLUMv2 coupled model is able to consider spatially specific interactions between changes in vegetation, irrigation, crop 

growth, and land use (Warlind et al., 2014; Engström et al., 2016; Alexander et al., 2018). However, LPJ-GUESS (Olin et al., 10 

2015) is a dynamic vegetation model that is incapable of exploring interactions related to physical processes, such as bio-

geophysical effects or future changes in water resources. On the other hand, LPJ-mL is a well-established global dynamical 

vegetation, hydrology, and crop growth model that can also consider the nitrogen and carbon cycle (Rolinski et al., 2018; von 

Bloh et al., 2018). The output of LPJmL (Bondeau et al., 2007), such as crop yield, land/water constraints, and vegetation and 

soil carbon, is used in the land use model MAgPIE (Lotze-Campen et al., 2008; Popp et al., 2011; Dietrich et al., 2013; Kriegler 15 

and Lucht 2015; Dietrich et al., 2019). Although the gridded information of LPJmL is linked to MAgPIE (Alexander et al., 

2018), the land-use change calculated by MAgPIE is not communicated to LPJmL (one-way coupling), making interactive 

calculations using the dynamic vegetation, hydrology, crop growth, and land use models impossible.  

In this study, we develop a global model that can evaluate the spatially detailed interactions between physical and biological 

processes, human water use, crop production, and land use related to economic activities. The model is based on the global 20 

climate model MIROC (Model for Interdisciplinary Research on Climate version: Watanabe et al., 2010), into which we have 

incorporated water resources, land-ecosystem, crop growth, and land use models. In the integrated model, which we call 

MIROC-INTEG1 (MIROC INTGrated terrestrial model version 1), the budgets of energy, water, and carbon are determined 

by consistently considering the processes related to land surface physics, ecosystems, and human activities. By taking into 

account changes in the socio-economic scenario, it is possible to examine the impact of land-use change on the climate system 25 

while simultaneously investigating the impact of climate change on the water and food sector. MIROC-INTEG1 can 

quantitatively evaluate the interactions and feedback related to climate, water, crop, land use, and ecosystem. Such an 

evaluation is simply not possible with conventional integrated assessment and earth system models.  

Chapter 2 in this paper explains the overall structure of MIROC-INTEG1. The component models of MIROC-INTEG1 

(climate, land ecosystem, water resource, crop growth, and land use), here called "sub-models", are described in detail in 30 

Chapter 3. Special attention is given to the land use sub-model, as it was specifically developed for inclusion into MIROC-

INTEG and is expected to play a pivotal role. The other sub-models—the climate, water resources, crop growth, and land 

ecosystem models—are based on models developed in the course of previous research. Chapter 3 outlines how the sub-models 

used here differ from the original models. Chapter 4 explains the numerical procedure used to combine the sub-models in the 
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integrated model. Chapter 5 describes the data used for the various inputs and boundary conditions required to operate the 

integrated model. Chapter 6 verifies model reliability by comparing historical simulation results with various observational 

data. A summary of the results from simulations by MIROC-INTEG1 of future conditions and a discussion of the interactions 

between climate and water resources, crops, land use, and ecosystem are presented in Chapter 7. Finally, in Chapter 8, we 

discuss possible research themes regarding the interaction between natural and human systems that can be addressed using 5 

MIROC-INTEG1.  

2 Model structure of MIROC-INTEG1  

The most distinctive feature of MIROC-INTEG1 (Fig. 1) is that it couples natural ecosystem and human activity models to 

MIROC, a state-of-the-art global climate model (Watanabe et al., 2010). The MIROC series is a global atmosphere-land-ocean 

coupled global climate model that has been contributed to the Coupled Model Inter-comparison Project (CMIP). The first 10 

version of MIROC-INTEG performs its calculations over the global land area only. In this study, MIROC's land surface 

component, MATSIRO (Minimal Advanced Treatments of Surface Interaction and Runoff, Nitta et al., 2014), is executed, but 

neither the atmosphere nor ocean components of MIROC are calculated. A process-based terrestrial ecosystem model, VISIT 

(Vegetation Integrative SImulator for Trace gases, Ito and Inatomi 2012), is coupled with MATSIRO.  

Human activity models are included in MIROC-INTEG1: HiGWMAT (Pokhrel et al., 2012), a global land surface model 15 

with human water management modules, and PRYSBI2 (Sakurai et al., 2014), a global crop model. In HiGWMAT, models of 

human water regulation such as water withdrawals from rivers, dam operations, and irrigation (Hanasaki et al., 2006; 2008a; 

2008b, Pokhrel et al. 2012a; 2012b) are incorporated into MATSIRO, the above-mentioned global land surface model. In 

PRYSBI2, the growth and yield of four crops (wheat, maize, soybean, rice) are calculated. In addition, TeLMO (Terrestrial 

Land-use MOdel), a global land use model developed for the present study, calculates the grid ratio of cropland (food and bio-20 

energy crops), pasture, forest (managed and unmanaged) as well as their transition. The land-use transition matrix calculated 

by TeLMO is used in the terrestrial ecosystem model, VISIT.  

In MIROC-INTEG1, various socio-economic variables are given as the input data for future projections. For example, 

domestic and industrial water demand is used in HiGWMAT. The crop growth model PRYSBI2 uses future GDP projections 

in order to estimate the “technological factor” that represents crop yield increase due to technological improvement. The land 25 

use model TeLMO uses future demand for food, bio-energy, pasture, and round wood, as well as future GDP and population 

estimates. For future socio-economic projections, we use the scenarios associated with Shared Socio-economic Pathways (SSP, 

O’Neil et al. 2017) and Representative Concentration Pathways (RCP, van Vuuren et al. 2011). These are generated by an 

integrated assessment model, AIM/CGE (Asia-Pacific Integrated Model / Computable General Equilibrium, Fujimori et al., 

2012; 2017).  30 

Interactions of the natural environment and human activities are evaluated through the exchange of variables in MIROC-

INTEG1 (Figure 1). The calculations in HiGWMAT are based on atmospheric variables (e.g., surface air temperature, humidity, 
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wind, and precipitation) that serve as boundary conditions. The HiGWMAT model calculates the land surface and underground 

physical variables for three tiles (natural vegetation, rain-fed, and irrigated cropland) in each grid; a grid average is calculated 

by multiplying the areal weight of the three tiles. In HiGWMAT, water is taken from rivers or groundwater based on water 

demand (domestic, industrial, and agricultural). Agricultural demand is calculated endogenously in HiGWMAT, and 

withdrawn water is supplied to the irrigated cropland area, which modifies the soil moisture. The operation of dams and storage 5 

reservoirs also modifies the flow of the river. Using the soil moisture and temperature calculated in HiGWMAT, the crop 

model PRYSBI2 simulates crop growth and yield. PRYSBI2 also uses the same atmospheric variables that are used as input 

data in HiGWMAT.  

The land use model TeLMO uses the yield calculated by PRYSBI2. In TeLMO, the ratios of food and bio-energy crop, 

pasture, and forest in each grid are calculated based on socio-economic input variables such as the demand for food, bio-energy, 10 

pasture, and round wood, as well as crop yield and ground slope. TeLMO also calculates the transition matrix of land usage 

(e.g., forest to cropland, cropland to pasture), which is passed to the terrestrial ecosystem model VISIT to evaluate the carbon 

cycle. The land uses calculated by TeLMO are also used as the grid ratios of natural vegetation and cropland area (rainfed and 

irrigated) in HiGWMAT.  

3 Sub-models 15 

3.1 Global land surface model with human water management HiGWMAT 

The HiGWMAT model (Pokhrel et al., 2015) is a global land surface model (LSM) that simulates surface and sub-surface 

hydrologic processes considering both the natural and anthropogenic flow of water globally (1° in latitude and longitude). It 

incorporates human water management schemes (Pokhrel et al., 2012a; Pokhrel et al., 2012b), into the global LSM MATSIRO 

(Minimal Advanced Treatments of Surface Interaction and Runoff) (Takata et al., 2003). Since our previous publications 20 

provide a detailed description of the MATSIRO model (Takata et al., 2003), groundwater scheme (Koirala et al., 2014), and 

the human impact representations (Pokhrel et al., 2012a; Pokhrel et al., 2015; Pokhrel et al., 2012b), we include here only a 

brief overview of these models or schemes.   

3.1.1 MATSIRO land surface model 

MATSIRO (Takata et al., 2003, Nitta et al. 2014) was developed at the University of Tokyo and the National Institute for 25 

Environmental Studies in Japan as the land surface component of the MIROC (K-1 Model Developers 2004; Watanabe et al., 

2010) general circulation model (GCM) framework. MATSIRO estimates the exchange of energy, water vapor, and 

momentum between the land surface and the atmosphere on a physical basis. The effects of vegetation on the surface energy 

balance are calculated based on the multilayer canopy model of Watanabe (1994) and the photosynthesis-stomatal conductance 

model of Collatz et al., (1991) following the scheme in the SiB2 model (Sellers et al., 1996). The vertical movement of soil 30 

moisture is estimated by numerically solving the Richards equation (Richards, 1931) for soil layers in the unsaturated zone. 
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The original version of MATSIRO (Takata et al., 2003) did not include an explicit representation of water table dynamics. To 

represent surface and subsurface runoff processes, a simplified TOPMODEL (Beven and Kirkby 1979; Stieglitz et al., 1997) 

is used. The surface heat balances are solved by an implicit scheme at the ground and canopy surfaces in the snow-free and 

snow-covered portions (i.e., four different surfaces within a grid cell) to determine ground surface and canopy temperature. 

The temperature of snow is prognosticated by using a thermal conduction equation, and the snow water equivalent (SWE) is 5 

prognosticated by using the mass balance equation considering snowfall, snowmelt, and freeze. The number of snow layers in 

each grid cell is determined from SWE. The albedo of snow in the model is varied using an aging factor (Wiscombe and 

Warren 1980) and in accordance with the time since the last snowfall and snow temperature, considering the densification, 

metamorphism, and soilage of the snow. 

3.1.2 Human water management schemes  10 

The original MATSIRO was enhanced by Pokhrel et al., (2012a; 2012b) through the incorporation of a river routing model 

and human water management schemes (i.e., irrigation, reservoir operation, water withdrawal, and environmental flow 

requirement). The irrigation scheme is based on the soil moisture deficit in the top 1 m (i.e., the root zone) of the soil column; 

that is, irrigation demand is estimated as the difference between the target soil moisture set for each crop type and the actual 

simulated soil moisture (Pokhrel et al., 2012b). Irrigation water is added as sprinkler irrigation on top of vegetation, part of 15 

which is lost as evapotranspiration and the rest returns back to the soil column. Subgrid variability of vegetation is represented 

by partitioning each grid cell into three tiles: natural vegetation, and rain-fed and irrigated cropland. The crop growth module, 

based on the crop vegetation formulations and parameters of the Soil and Water Integrated Model (SWIM) (Krysanova et al., 

1998), estimates the cropping period necessary to obtain mature and optimal total plant biomass for 18 different crop types. 

Irrigation is activated during the entire growing season but only for the irrigated portion of a grid cell using a tile approach. 20 

Crop growth for the irrigation processes is simulated within the HiGWMAT model (i.e., independent of PRYSBI2).  

The reservoir operation and environmental flow requirement schemes are based on the H08 model (Hanasaki et al., 2008a, 

2008b). The reservoir operation scheme (Hanasaki et al., 2006) is integrated within the TRIP global river routing model (Oki 

and Sud, 1998) to simulate reservoir storage and release for grids cells that contain reservoirs. The reservoir database is taken 

from Lehner et al., (2011). Large reservoirs having a storage capacity greater than 1km3 are explicitly simulated; medium-25 

sized reservoirs with a storage capacity ranging from 3×106 to 1×109 m3 (Hanasaki et al., 2010) are considered as ponds holding 

water temporarily and releasing it entirely during the dry season. The withdrawal module extracts the total (domestic, industrial, 

and agricultural) water requirements, first from river channels and surface reservoirs and then from groundwater; the lower 

threshold of river discharge prescribed as the environmental flow requirement is considered when extracting water from river 

channels. While irrigation demand is simulated by the irrigation module, domestic and industrial water uses are prescribed 30 

based on the AQUASTAT database of the Food and Agricultural Organization (FAO; see Pokhrel et al., 2012b).   
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3.2 Global crop growth model PRYSBI2 

PRYSBI2 (Process-based Regional-scale crop Yield Simulator with Bayesian Inference 2) (version 2.2) is a semi-process-

based global-scale crop growth model in which daily biomass growth and resulting crop yield are calculated for  the same grid 

cell as HiGWMAT (1° in latitude and longitude) (Sakurai et al., 2014). The target crops are maize, soybeans, wheat, and rice. 

Daily biomass growth is calculated using daily meteorological data (precipitation, temperature, wind speed, humidity, solar 5 

radiation and atmospheric CO2 concentration) according to the photosynthetic rate calculated by a simple big leaf model 

(Monsi & Saeki 1953) and the enzyme kinetics model developed by Farquhar et al., (1980). To determine the water stress, the 

soil moisture calculated by HiGWMAT (Section 3.1) is used. Crop development is calculated according to the Total number 

of Heat Units (THU). When crops accumulate their THU up to the threshold values, crop yields for each year are calculated 

from the above-ground biomasses and harvest indexes.  10 

The process of fertilizer input is not included in this model. Rather, parameters relating to technological factors that include 

the effect of fertilizer are set and input into the model (Appendix A.7). We call this model a semi-process-based model because 

some of the parameters, including the parameters relevant to technological factors, are statistically estimated using historical 

crop yield data (Iizumi et al., 2014) for each grid cell by the DREAM (DiffeRential Evolution Adaptive Metropolis) algorithm 

(Vrugt et al., 2009). The parameters were estimated by Markov chain Monte Carlo methods (MCMC) with 20,000 steps for 15 

each grid cell (Sakurai et al., 2014). The parameter values of the technological factors in future scenarios are estimated as a 

linear function of the Gross Domestic Products (GDPs) of each Shared Socio-economic Pathway (SSP) for each country (see 

details in Appendix A.7). 

In the original photosynthesis model by Farquhar et al., (1980), the photosynthesis rate is directly stimulated by the increase 

of CO2 concentration, which is called the CO2 fertilization effect. However, it is also known that the CO2 fertilization effect is 20 

downregulated by environmental limitations such as sink-source balance and nitrogen supply (Ainthworth and Long 2005). In 

this model, the downregulation of the CO2 fertilization effect is described as a function of atmospheric CO2 concentration, in 

which the potential photosynthesis rate (maximum carboxylation rate of Rubisco and the potential rate of electron transport) 

gradually decreases according to the increase of CO2 concentration (see Appendix A.6). 

The crop model used in this study is an updated version (version 2.2) of the model described in Sakurai et al., (2014) 25 

(which gives a detailed description of PRYSBI2 version 2.0) and Müller et al., (2017) (which gives a brief description of 

version 2.1). The structure of the model is quite similar to versions 2.0 and 2.1. However, there are some parts of the version 

2.2 structure that are slightly different. In Appendix A, we present a summary of the model and identify the elements that 

differ from the earlier versions. 

3.3 Global land ecosystem model VISIT 30 

The functions of the natural land ecosystem and their environmental responses are simulated by the sub-model VISIT 

(Vegetation Integrative SImulator for Trace gases) (Ito 2010; Ito et al., 2018). VISIT is a process-based terrestrial 
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biogeochemical model that simulates the atmosphere-land surface exchange of greenhouse gases such as CO2 and CH4 and 

trace gases such as biogenic volatile organic compounds. Carbon, nitrogen, and associated water cycles are fully simulated in 

the model using ecophysiological relationships but in a simplified manner. The model operates at the global scale with a spatial 

resolution of 0.5° × 0.5°. The ecosystem carbon cycle is simulated using a box-flow scheme composed of three plant carbon 

pools (leaf, stem, and root) and two soil carbon pools (litter and humus). Photosynthetic carbon acquisition is a function of the 5 

leaf area index, light absorptance, and photosynthetic capacity, which respond to temperature, ambient CO2, and humidity. 

Soil carbon dynamics are simplified by the litter-humus scheme but works well to simulate microbial decomposition and 

carbon storage. The model has two layers, i.e., natural vegetation and cropland, at each grid that are weighted by a landcover 

fraction to obtain the total grid-based budget. Impacts of land-use change on the ecosystem carbon budget are taken into 

account using a simple scheme by McGuire et al., (2001) in which typical fractionation factors are applied to deforested 10 

biomass (e.g., immediate emission, 1-yr 10-yr and 100-yr pools). The difference in carbon emissions from primary and 

secondary forests is included by using a different biomass density; regrowth of abandoned croplands is also simulated as a 

recovery of mean biomass. For brevity, croplands are categorized into three types (rice paddy, other C3 crops such as wheat, 

and C4 crops such as maize); the crop calendar and management practices such as fertilizer input are simulated within the 

VISIT model (i.e., independent of PRYSBI2) in a conventional manner.  Planting and harvest dates are determined by monthly 15 

mean temperature; country-specific fertilizer inputs derived from the FAO country statistics (FAOSTAT, FAO 2019) are used. 

For simulating terrestrial ecosystem functions under a changing environment, the model has been applied and validated at 

various scales from flux measurement sites to the global scale (Ito et al., 2017).  

3.4 Land use model TeLMO 

In the course of developing the integrated terrestrial model MIROC-INTEG1, we developed the Terrestrial Land-use MOdel 20 

(TeLMO) for projecting global land use with a resolution of 0.5°×0.5°. TeLMO projects land use in each grid cell based on 

socio-economic data such as demand for food and biofuel crops obtained from the AIM/CGE (Fujimori et al., 2012, 2017). 

For long-term projections, TeLMO assumes that there is a preferential order to land use by humans (i.e., urban, food cropland, 

bio-energy cropland, pasture land, and managed forests). That is, it assumes that land is used in the order of highest to lowest 

value added per unit area. After allocating land use in this manner, TeLMO calculates a transition matrix for each grid in order 25 

to evaluate the impact of land-use change on terrestrial ecosystems. Details of the five models comprising TeLMO—(1) the 

food cropland model, (2) the bio-energy cropland model, (3) the pastureland model, (4) the managed forest model, and (5) the 

land-use transition matrix model—are explained in Appendix B. 

4 Numerical procedure of model coupling 

In MIROC-INTEG1, sub-models with different time-steps are executed simultaneously by exchanging variables as shown in 30 

Figure 1. The numerical procedure for exchanging variables between the sub-models is shown in Figure 2. Exchanging 

variables among sub-models is accomplished in one of two ways: on-line coupling or off-line coupling (Collins et al., 2015). 

https://doi.org/10.5194/gmd-2019-184
Preprint. Discussion started: 29 October 2019
c© Author(s) 2019. CC BY 4.0 License.



9 
 

In on-line coupling, the values calculated by a sub-model are exchanged with other sub-models via internal memory (i.e., the 

values calculated in one subroutine are passed directly to other subroutines). In off-line coupling, the output of a particular 

sub-model is written to a file; the other sub-models then read the file as needed. The far-right "Data" box in Figure 2 indicates 

the files used for saving sub-model output data. The arrows show the exchanges that are made. The arrows between one sub-

model box and another indicate on-line coupling; those between a sub-model box and the data box indicate off-line coupling. 5 

The flow of sub-model calculations is described below. 

(1) TeLMO 

The land use model TeLMO (Section 3.4) calculates the areal fraction of each land use within a grid (natural vegetation, 

cropland, pasture, etc.) and the transitions among them once a year, using the decadal average of crop yields calculated by 

PRYSBI2. The start year of TeLMO calculation is 2005. Since the exchange of variables is not so frequent, TeLMO is coupled 10 

to the other models via off-line coupling (as shown in Fig. 2). That is, the output of TeLMO (grid fraction of land uses and 

transitions) is written to files, and the other sub-models read the files as necessary. As shown in the figure, TeLMO reads the 

output files of PRYSBI2 (crop yields) for its calculations.  

(2) HiGWMAT + PRYSBI2 

HiGWMAT (Section 3.1), the global land surface model with human water management, calculates the physical and 15 

hydrological processes with an hourly to daily time step. The crop model PRYSBI2 (Section 3.2) calculates crop growth and 

yields with a daily time step using the soil moisture and temperature values generated by HiGWMAT. Since the exchange of 

variables between HiGWMAT and PRYSBI2 is very frequent (i.e., daily), these two sub-models are joined through on-line 

coupling.  

As shown in Figure 2, in the future simulations, the MIROC-INTEG1 calculations start with TeLMO (TeLMO is switched 20 

off before 2004). After the output of TeLMO is written to files, the online-coupled HiGWMAT and PRYSBI2 make their 

calculations using the land use grid ratio produced by TeLMO. Once the output of the HiGWMAT-PRYSBI2 combination is 

written to files,  TeLMO again starts it calculations for the next year using the 10-yr output. The exchange continues in this 

fashion. 

(3) VISIT  25 

As shown in Figure 2, VISIT (Section 3.3), the terrestrial ecosystem model, calculates the carbon and nitrogen cycles using 

the output of the land use model TeLMO. In MIROC-INTEG1, no variable exchange between HiGWMAT-PRYSBI2 and 

VISIT is performed at this stage since the structures of these two sub-models differ significantly.  

(4) Model coupling 
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The proper choice of coupling method depends on the specific features of the variable exchange between sub-models (Collins 

et al., 2015). One of the advantages of off-line coupling is that the structure of the original model (e.g., the relationships 

between the main program and the subroutines) can be preserved, at least to some extent, in the coupling. This is not the case 

for on-line coupling. For example, for on-line coupling, either the main program of the original model needs to be modified in 

order for it to serve as a subroutine, or a special program for connecting stand-alone models (i.e., a coupler) needs to be 5 

developed. In MIROC-INTEG, off-line coupling is suitable for coupling TeLMO since the model structure of TeLMO is 

different from the other sub-models (TeLMO solves equations with various spatial resolution: global 30 sec., 0.5 deg., and 17 

regions. See Appendix B for details) and data exchange occurs only once per year (so that the calculation cost for the 

input/output procedure can be minimized). On the other hand, on-line coupling is appropriate for connecting HiGWMAT and 

PRYSBI2, since the structure of the two sub-models is similar (spatial resolution with a global 1° grid), and the exchange of 10 

variables is frequent (daily). In MIROC-INTEG, some of the subroutines of the original PRYSBI2 models that calculate the 

crop growth processes are called from HiGWMAT.  

5 Experimental settings 

Since MIROC-INTEG1 is based on a global land surface model, atmospheric boundary data (hereafter “forcing” data) are 

required to operate the model. The global land surface model with human water management HiGWMAT uses atmospheric 15 

temperature, humidity, wind, and surface precipitation as the forcing data to calculate the physical processes. In this study, we 

use forcing data from the Inter-Sectoral Impact Model Inter-comparison Project (ISIMIP) fast track (Hempel et al., 2013). In 

ISIMIP fast track data, future climate predictions from five global climate models (GCMs) are used as the forcing data. (The 

five GCMs include GFDL-ES2M: Dunne et al., 2012, HadGEM2-ES: Jones et al., 2011, IPSL-CM5A-LR: Dufresne et al., 

2012, Nor-ESM: Bentsen et al., 2012, MIROC-ESM-CHEM: Watanabe et al., 2011). Uncertainties in the atmospheric 20 

predictions of the model can be considered by using the output data from the various GCMs. In ISIMIP data, correction for 

model bias is based on historical observations (Hempel et al., 2013). Thus we can expect that over- and underestimation errors 

are removed, at least to some extent.  

     Since the time interval in the original ISIMIP data is daily and the time step in the land surface model HiGWMAT is sub-

daily, we generated three-hourly data from the ISIMIP fast track daily data, based on the methods described in Debele et al., 25 

(2007) and Willet et al., (2007), where diurnal variations are generated based on the daily mean data.  

  In order to obtain a stable state of model variables, we performed spin-up simulations following the procedure defined in 

the ISIMIP fast track protocols. We first generated de-trended 20-year data using 1951-1970 forcing data. The 20-year dataset 

was then replicated and assembled back-to-back to obtain an extended dataset. The order of years was reversed in every other 

copy of the 20-year block in order to minimize potential discontinuities in low-frequency variability. The time duration of the 30 

spin-up simulations was 400 years for the land surface model HiGWMAT and the crop growth model PRYSBI2, and 3000 

years (repeated 100 times using the first 30-years de-trended climate) for the terrestrial ecosystem model VISIT. The spin-up 
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time of VISIT is longer than that of the other sub-models because it requires more time to reach a stable state, especially in the 

case of soil organic carbon. 

  After the spin-up simulations, we performed historical (1951-2005) and future (2006-2100) simulations based on the 

ISIMIP fast track protocols. For the future simulations, we used the forcing data of the five global climate models based on 

four RCPs (van Vuuren et al., 2011)—RCP2.6, 4.5, 6.0, and 8.5—corresponding to radiative forcings of 2.6, 4.5, 6.0, and 8.5 5 

Wm-2 in 2100, respectively.  

In the historical simulations of HiGWMAT, we used the land use data (grid ratio of natural vegetation, rainfed and irrigated 

cropland) provided by the Land Use Harmonized (LUH) project (LUHv2h, Lawrence et al., 2016): TeLMO was switched off. 

In the future simulations of HiGWMAT, the rainfed and irrigation cropland area is varied according to the output of TeLMO 

(Section 3.4). Since TeLMO projects the future total cropland area (irrigated plus rainfed), the future irrigated area is calculated 10 

by multiplying the grid irrigation ratio (irrigated / [rainfed + irrigated]) and the total cropland area calculated by TeLMO. The 

grid irrigation ratio is calculated by using the irrigated and rainfed cropland area determined by LUHv2h in 2005 and is fixed 

throughout the future simulation period. Although TeLMO also calculates the future bio-energy cropland area, we assume that 

bio-energy cropland is all rainfed.  

TeLMO starts its calculations in 2005. As input data for TeLMO, we use the output variables based on the Shared Socio-15 

economic Pathways (SSPs, O’Neil et al., 2017) calculated by an integrated assessment model, AIM/CGE (Fujimori et al., 

2017). TeLMO uses future projections of GDP per capita, demand for food and bio-energy crops, pasture, and round wood 

(Section 3.4, Appendix B). AIM/CGE calculates the aggregated transactions associated with the activities of economic actors; 

the energy system is represented in detail by dividing the globe into 17 regions (Fujimori et al., 2012).  

The terrestrial ecosystem model VISIT is forced by the same ISIMIP forcing data used in HiGWMAT (Hempel et al. 2013). 20 

In the historical simulations, VISIT uses the historical land use data from LUH2h2v (Lawrence et al., 2016), as described 

above. In the VISIT future simulations, the output variables calculated by TeLMO, such as land use (cropland, pasture, forest) 

and the transition matrix describing transitions from one use to another (see Section 3.4 for details) are used as the forcing 

data.  

6 Historical simulations and comparisons with observations 25 

6.1 HiGWMAT 

Offline simulations from the original MATSIRO and HiGWMAT models have been extensively validated with ground- and 

satellite-based observations of various hydrologic fluxes and forms of storage (e.g., river discharge, irrigation water use, water 

table depth, and terrestrial water storage (TWS)) at varying spatial domains and temporal scales in numerous global-scale 

studies (Felfelani et al., 2017; Pokhrel et al., 2016; Pokhrel et al., 2017; Pokhrel et al., 2012a; Pokhrel et al., 2015; Pokhrel et 30 

al., 2012b; Veldkamp et al., 2018; Zaherpour et al., 2018; Zhao et al., 2017). For completeness, we provide here a brief 

evaluation of TWS and irrigation simulations, since TWS is an indicator of overall water availability in a region and a primary 
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determinant of terrestrial water fluxes (e.g., ET and river discharge), and irrigation is an important component of the global 

freshwater systems that share the largest fraction of human water use globally (Hanasaki et al., 2008a; Pokhrel et al., 2016). 

Figure 3 plots the comparison of simulated TWS with observations by the Gravity Recovery and Climate Experiment 

(GRACE) satellite for the 2002-2005 period. The results shown are spatial averages over 18 major global river basins selected 

by considering a wide coverage of geographical and climate regions (Felfelani et al., 2017; Koirala et al., 2014). For GRACE 5 

data, we use the mean of mascon products from two processing centers: the Center for Space Research (CSR) at the University 

of Texas at Austin and the Jet Propulsion Laboratory (JPL) at the California Institute of Technology. It is evident from Figure 

3 that the model accurately captures the temporal variations as well as the seasonal cycle of TWS in most basins. Certain 

difference between model and GRACE can be seen in basins such as the Brahmaputra, Huanghe, and Volga river basins but 

such disagreements have been commonly reported in the literature owing to limitations in model parameterizations in 10 

simulating TWS components (e.g., the representation of snow physics and human activities) and inherent uncertainties in 

GRACE data (Felfelani et al., 2017; Scanlon et al., 2018; Chaudhari et al., 2019). 

Figure 4 compares the irrigation water demand simulated by MIROC-INTEG1 with the results from offline HIGWMAT 

simulation obtained from Pokhrel et al., (2015), which is forced by the observed climate data. It is evident from this comparison 

that the broad spatial patterns seen in the offline simulations are clearly captured by MIROC-INTEG1. Certain disagreements 15 

are, however, apparent. For example, MIROC-INTEG1 tends to overestimate irrigation demand over highly irrigated areas in 

the central United States, northwestern India, parts of Pakistan, and northern and eastern China, which is likely due to the drier 

and warmer climate simulated by the MIROC (Watanabe et al. 2010) in these regions. The total global irrigation demand 

simulated by MIROC-INTEG1 is 1,750 km3, which is greater than the 1,238 ± 67 km3 from the offline simulations but falls 

near the upper bound of estimates by various other global studies (see Table 1 in Pokhrel et al., 2015). The overestimation 20 

comes primarily from the highly irrigated regions noted above. Given that our meteorological forcing data are from GCM 

simulations, we consider our results for both TWS and irrigation demand to be acceptable. 

6.2 PRYSBI2 

Figure 5 shows historical simulation results for crop yield using ISIMIP forcing data as the baseline climate during the period 

from 1981 to 2005. The historical simulation results were compared with the gridded global data set of historical yield (Iizumi 25 

et al., 2017), which is a hybrid of satellite-derived vegetation index data and FAOSTAT (FAO 2019). The spatial aggregation 

to the country scale was conducted by using the harvested area (Monfreda et al., 2008). The area of wheat was separated into 

spring and winter wheat by using their production proportions (The United States Department of Agriculture, 1994).  

The results of the comparison in the crop yields show the simulated yields in most countries were underestimated to some 

degree (Fig. 5). Notably, using Watch Forcing Data as the reference data in the bias correction for the ISIMIP dataset tends to 30 

underestimate solar radiation compared to the observation data (Iizumi et al., 2014; Famien et al., 2018), which in turn causes 

an underestimation of crop yields. The uncertainty of the projected yields as measured by the differences in outcomes for the 

five climate forcings was relatively small. The reason for this is that ISIMIP climate forcing data were bias-corrected using 
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the same historical weather dataset and the same method. For all crops, most of the relationship between the simulated and 

reported data was distributed along the 1:1 line. These results indicate that the model is capable of capturing the relative spatial 

difference of long-term average crop yield across countries. 

6.3 VISIT 

The VISIT model captured the spatial and temporal patterns of terrestrial ecosystem productivity and carbon budget with 5 

satisfactory accuracy. Figure 6 shows the latitudinal distribution of gross primary production for the 2000-2010 period in 

comparison to up-scaled flux measurements (Beer et al., 2010) and satellite observation (Zhao et al., 2005). High productivity 

in the humid tropics and low productivity in the arid middle-latitudes and arid cold high-latitudes were effectively reproduced 

by the model simulation, although mean global total GPP was slightly higher than the observation (127.5 Pg C yr–1 by VISIT, 

114.0 Pg C yr–1 by flux upscaling, and 121.7 Pg C yr–1) by satellite. Global carbon stocks in vegetation and soil organic matter 10 

were estimated as 499 and 1308 Pg C, respectively, in 2010; this is comparable to the contemporary synthesis (Ciaes et al., 

2013). Because of historical atmospheric CO2 rise, climate change, and land-use change, substantial changes in terrestrial 

ecosystem properties were simulated (not shown). As demonstrated by model validation and inter-comparison studies, the 

VISIT model allows us to effectively capture the terrestrial ecosystem functions under changing environmental conditions. 

6.4 TeLMO 15 

In Figure 7, the cropland area simulated by TeLMO in MIROC-INTEG1 is compared with the cropland area reported in 

FAOSTAT (FAO 2019) and to the area simulated by AIM/CGE (Fujimori et al., 2017), whose output of food demand and 

GDP per capita is used as input in TeLMO. With the adjustment parameter 𝐶", the cropland area in TeLMO in 2005 is the 

same as that of LUH (Lawrence et al., 2016). As shown in Figure 7, MIROC-INTEG1 roughly reproduces the cropland area 

by country shown in FAOSTAT (FAO 2019). The differences in the five climate forcings given to MIROC-INTEG1 cause 20 

variance in crop yields, which in turn results in the variance in cropland area results shown in Figure 7.  

In Russia, Brazil, and Australia, the recorded cropland area (i.e., FAOSTAT) is within the range of the MIROC-INTEG1 

cropland area simulations using the different climate forcings. In Brazil and Russia, the variations in cropland area are mainly 

due to the difference in climate forcings. In the United States, the reported cropland area in FAOSTAT (FAO 2019) is closely 

reproduced by MIROC-INTEG1 until around 2010; however, the declining trend of cropland area in the second half is not 25 

effectively reproduced. The reason for the overestimation seen here may be related to the under-estimating of crop yield in 

PRYSBI2 (Section 6.3). The slight overestimation of the global cropland area trend (Figure 7h) may stem from the same cause. 

Also, in China, although there is a declining trend of cropland area in MIROC-INTEG1, in reality, the cropland area remained 

nearly constant until 2014 and increased slightly thereafter. The increase of cropland area in China is considered to be 

influenced by policy, which is not considered in TeLMO. In MIROC-INTEG1, TeLMO uses the food demand and GDP per 30 

capita calculated by AIM/CGE under the socio-economic scenario SSP2 (Fujimori et al., 2017). The cropland area of MIROC-

INTEG1 and AIM/CGE may be slightly different due to the differences in crop yield as well as the mechanism that determines 
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the use of agricultural land. Given that its reproducibility is similar to that of AIM/CGE, the TeLMO sub-model in MIROC-

INTEG1 can be considered usable for future land use prediction. 

7 Future simulations and interaction of sub-models 

In the MIROC-INTEG1 future simulations, the RCP2.6, 4.5, 6.0, and 8.5 scenarios provided by ISIMIP1 (Hempel et al. 2013) 

serve as the climate scenario, while the output of AIM/CGE (demand for food and bioenergy crops, pasture, wood, etc.) 5 

according to the four RCPs under SSP2 (Fujimori et al. 2017) serves as the socio-economic scenario. The results in this section 

provide an understanding of the interactions between climate, water resources, crops, ecosystems, and land use that MIROC-

INTEG1 accommodates.  

Figure 8 shows the various time series related to climate system change. Figure 8a depicts the change in surface air 

temperature used as forcing data in MIROC-INTEG1. It is displayed as the deviation from the average value of the 10-year 10 

period around the start year of the future simulations (2005). As shown in Figure 8a, the increase in average global land surface 

air temperature in 2100 is approximately 6 °C for RCP8.5, 3 °C for RCP6.0, 2.5 °C for RCP4.5, and 1 °C for RCP2.6. Figure 

2a shows the change in soil moisture calculated by MIROC-INTEG1. Although the annual variation of soil moisture is 

considerable, the global land average soil moisture content tends to decrease in the 21st century. The reduction in soil moisture 

is largest in the RCP8.5 scenario, where the rise in surface air temperature is substantial. Results for the irrigation water supply 15 

are shown in Figure 8c. As indicated in Section 3.1, water is supplied from rivers to the soil through irrigation until the ratio 

of soil moisture reaches a certain threshold. The irrigated area is calculated by multiplying the cropland area (as calculated by 

TeLMO) by the irrigation ratio, a fixed value corresponding to the ratio of irrigation cropland area to the total cropland area 

in 2005. Therefore, the changes in irrigation water supply in Figure 8c reflect the changes in the irrigation area and the irrigation 

water supplied from rivers to the soil to compensate for the decrease in soil moisture. Although the global average cropland 20 

area increases in the first half of the 21st century (Fig. 10), in regions with a high irrigation ratio (e.g., India, China), cropland 

area decreases by the end of the century (Fig. 11). As a consequence, the irrigation area in MIROC-INTEG1 decreases, and, 

accordingly, the irrigation water supply also decreases, as shown in Figure 8c.  

Changes in crop yield calculated for the various future scenarios are shown in Figure 9. The crop growth model PRYSBI2 

in MIROC-INTEG1 can calculate the yields [t / ha] of four crops (wheat, maize, soybean, rice), with a clear distinction between 25 

winter and spring wheat (meaning five crops in all). In Figure 9f, the global average of the grid maximum yield value among 

the crops, which is used in the TeLMO calculation, is also shown.  As described in Section 3.2, the future simulations by 

PRYSBI2 take into account the effects of climate change, as well as the CO2 fertilization effects due to rising greenhouse gas 

concentrations (Appendix A.6) and the increase in technical coefficients due to future technological improvement (Appendix 

A.7).  30 

As shown in Figures 9a-e, the yields of each of the crops rise over the first half of the 21st century. This is due to the CO2 

fertilization effect and technological improvement. In general, the increase in yield is more significant in the high-GHG 
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scenarios such as RCP8.5 than in the low-GHG scenarios such as RCP2.6. Such differences can be considered due to the 

fertilization effect and impact of climate change, since all the RCPs feature the same technological coefficient under the same 

SSP scenario (i.e., SSP2). On the other hand, in the latter half of the 21st century, the negative impact of climate change on 

crop yield is evident. In the RCP 8.5 scenario, in particular, crop yields decline sharply. PRYSBI2 results show that the crop 

type most sensitive to climate change is maize: in 2100, the yield of maize under RCP2.6 is highest, while the yield of maize 5 

under RCP8.5 is lowest. 

Figure 10a shows the change in the food cropland area calculated by TeLMO. As described in Section 3.4 and Appendix B, 

TeLMO uses the yield calculated by PRYSBI2 (grid maximum value as shown in Fig. 9f) and the food demand output of 

AIM/CGE. As shown in the Figure 10a, crop area increases to meet the increase in food demand in the first half of the 21st 

century. Compared to other RCP scenarios during this time period, the RCP2.6 scenario requires more food cropland area, 10 

since the increase in crop yield is smaller in the RCP2.6 scenario. In the second half of the 21st century, the food cropland area 

tends to decrease as crop yield increases more than food demand. The decrease is smallest under RCP2.6 and largest under 

RCP6.0, and RCP8.5 actually requires an increase in food cropland area, as in this scenario, crop yields decline late in the 

century. Although there are differences among the results using the five different climate model forcings (the thin lines in Fig. 

10a), using the average value lines (the thick lines in the figure) for comparison indicates that, by the end of the 21st century, 15 

the food cropland area is largest under RCP8.5. 

Figure 10b shows the time series of the sum of food and bioenergy cropland area calculated by TeLMO. As described in 

Section 3.4, TeLMO calculates the distribution of the global bioenergy cropland area needed to meet the bioenergy demand 

calculated by AIM/CGE. It is known that the future bioenergy cropland area will change substantially depending on crop yield, 

and it should be noted that the setting in which crop yield is calculated can significantly affect the bioenergy cropland area 20 

(Kato and Yamagata 2014). As shown in Figure 10b, the bioenergy cropland area is significantly increased under RCP2.6 and 

RCP4.5. These climate scenarios require large areas of bioenergy crops for future climate mitigation. Although the food 

cropland area tends to decrease in the late 21th century (except in the RCP8.5 scenario), if we consider both food cropland and 

bioenergy cropland, more cropland area will be needed. 

Figure 11 shows the global distribution of changes in food and bioenergy cropland areas, using the difference in 10-year 25 

averages around 2100 and 2005. As described in Figure 10a, RCP 2.6 tends to reduce the food cropland area in the latter half 

of the 21st century. Figure 11a and 11b show that the food cropland area decreases in Africa, India, and China. As is explained 

in Appendix B, TeLMO relies on the premise that the distribution of food cropland area is determined by changes in crop yield, 

food prices, wages (corresponding to changes in GDP per capita) and the demand for food. Thus the decreases in food cropland 

area shown in Figure 11a and 11b are due to the increase in yield (meaning demand can be met with less cropland area) and 30 

the increase in GDP per capita (which means the population engaged in agriculture decreases due to development) in the SSP2 

scenario. It should be noted that the change in cropland area at a particular grid is not determined solely by food production 

(the product of cropland area and crop yield) at that grid, as TeLMO considers the food trade among the 17 regions. As shown 

in Figure 10 and noted earlier, the food cropland area will increase in the late 21st century in the RCP8.5 scenario. Accordingly, 
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in comparison to the RCP 2.6 scenario, the food cropland area in South America and central Africa increases in the RCP8.5 

scenario. 

As shown in Figure 11, bioenergy cropland areas increase in various regions, especially in the RCP 2.6 scenario. As 

discussed in Appendix B, TeLMO assumes that biofuel cropland is allocated based on the Agricultural Suitability Index (Eq. 

B-14), which is a function of the yield and price of the bioenergy crop, GDP per capita, etc. At the same time, TeLMO also 5 

assumes that regions with high biodiversity are protected, and calculations are performed so as not to allocate biofuel cropland 

to the protected areas as shown in Figure B-2 (Wu et al., 2019). As a result, bioenergy cropland area is allocated to regions 

where the agricultural index is high—northwest and southern South America, central Africa, and Australia—but it cannot be 

allocated to protected areas such as the Amazon. 

Figures 12 and 13 show the effects of changes in food and bioenergy cropland area on the terrestrial ecosystem calculated 10 

by VISIT in MIROC-INTEG1. The impact of land-use change on terrestrial ecosystems is evaluated by comparing the 

calculation with and without considering the land-use change. The global time sequence (Figure 12) shows that the changes in 

food and bioenergy cropland area have a significant impact on terrestrial ecosystems, especially in RCP 2.6, where the above-

ground biomass will decrease by approximately 50 Pg C (about 10% of the present biomass stock) by 2100 due to deforestation 

for land use conversion. Soil carbon is less impacted by the land-use change compared to the above-ground biomass, likely 15 

because of the carbon supply from crops in the VISIT calculation. Consequently, this simulation implies that the impacts of 

land-use change occur heterogeneously and differ in their magnitude and direction between vegetation and soil. Figure 13 

shows the global distribution of the effect of land-use change on above-ground biomass and soil carbon. The impact on above-

ground biomass will be greater in northwest South America, central Africa, northeast North America, and Australia, where the 

bioenergy cropland area is expanding. In Asia, the decrease in food cropland area tends to increase the above-ground biomass 20 

in both the RCP2.6 and RCP8.5 scenarios. Accordingly, even under the mitigation-oriented scenario, considerable changes in 

ecosystem structure and functions would occur in certain regions, leading to serious deterioration in ecosystem services. As 

demonstrated here, an integrated model is necessary to untangle the complicated impacts of land-use change on terrestrial 

ecosystems, which in reality provide a variety of ecosystem services to the human society. 

8 Implications and future research 25 

With MIROC-INTEG1, it is possible to calculate the interaction between climate, water resources, crops, land use, and 

ecosystems. The discussion in Section 7.1 suggests the type of feedback processes that can occur. While this study showed 

only the results of the SSP2 scenario, in the SSP3 scenario, where the world is divided, the demand for food will be greater 

and more cropland area will be needed (O'Neill et al., 2017). Although in Section 7.1, simulations are performed by operating 

all of the sub-models interactively, it is possible to analyze the strength of the interactions and feedback quantitatively by 30 

comparing the calculation with and without interaction between sub-models. 
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In addition to analyzing interactions, it is crucial to analyze the impacts of climate change and the effectiveness of 

countermeasures using MIROC-INTEG1. The combined impacts of climate change on water resources, crops, land use, and 

ecosystems can be mitigated by enhancing various adaptation measures. For example, the use of water resources to control 

crop yield loss, changes in cropping calendars, and breeding can reduce the adverse effects of climate change on food and land 

use. With MIROC-INTEG1, it is possible to assess the efficiency of adaptation measures designed to address the impacts of 5 

climate change on water resources, crops, land use, and ecosystems (Alexander et al., 2018). MIROC-INTEG1 can also be 

used to evaluate the effectiveness of climate mitigation measures by quantitatively evaluating the cultivated land area of biofuel 

crops and the budget of greenhouse gases via the terrestrial ecosystem model, VISIT. With consistent consideration of climate 

change, water resources, and land use, the competition between water, food, and bioenergy use can be analyzed (e.g., Smith et 

al., 2010). The model also provides useful insights into the trade-offs of biodiversity loss from land-use change and the benefits 10 

of climate mitigation. 

MIROC-INTEG1 provides a way to integrate various human activity models based on the global climate model as shown 

in Section 4. This paper introduced illustrative simulation results produced by our application of MIROC-INTEG1 as a land 

surface model driven by meteorological forcing data. We plan to extend the model by enabling it to consider the physical 

processes and carbon/nitrogen cycle in the atmosphere and ocean. The MIROC community has developed MIROC-ES2L, an 15 

earth system model for CMIP6 (Hajima et al., in preparation). By incorporating the water resource model (HiGWMAT), the 

crop growth model (PRYSBI2), and the land use model (TeLMO) used in MIROC-INTEG1 into MIROC-ES2L, we are 

developing an integrated earth system model that we call MIROC-INTEG2. In MIROC-INTEG2, the interactions between the 

earth system and human activities are consistently considered. By using this integrated earth system model, the impact of land-

use changes on the climate system, including bio-geophysical and bio-geochemical effects (Lawrence et al., 2016), can be 20 

more consistently investigated.  

Appendix A: Description of crop model PRYSBI2 Version 2.2 

In the following description, we present a summary of the crop model used in MIROC-INTEG1 (PRYSBI2 Version 2.2) and 

identify the elements that differ from the earlier versions (Version 2.0: Sakurai et al., 2014, Version 2.1: Müller et al., 2017). 

A.1 Input data 25 

As input data, the PRYSBI2 Version 2.2 uses the planting date in each year, average daily temperature, maximum and 

minimum daily temperatures, total daily downward solar radiation, daily precipitation, and atmospheric CO2 concentration. 

The model also uses the input data required by the SWAT model. The required input data are the same as in the previous 

versions.  

A.2 Growing period, maturity and harvest 30 
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The time of seedling emergence after the planting date is determined by a parameter relevant to the average period between 

planting and emergence (lemerge). The period from emergence to maturity is determined by the total number of heat units 

(THU) (Neitsch et al., 2005). The crop is mature when THU is equal to a threshold value (thutotal), at which point it is 

harvested. Using the biomass values obtained at the time of crop maturity, the yield is calculated as follows: 

𝑌𝑖𝑒𝑙𝑑 = ℎ𝑖*+,- ∙ 𝐵𝐼𝑂+*23-(5+67896:) (A-1) 

where Yield is the crop yield (kg ha–1), hibase is the harvest index, and BIOabove(maturity) (kg ha–1) is the above-ground biomass at 5 

the time of crop maturity. Although the harvest index changes according to atmospheric CO2 concentration in version 2.0, in 

version 2.2, for simplicity, it is fixed. 

A.3 Photosynthesis 

The photosynthesis processes in version 2.2 are the same as in the previous versions. The photosynthesis rate is calculated 

according to the daily meteorological data. The instantaneous global radiation and temperature at time (t) of the day are 10 

estimated from the daily global radiation and daily maximum and minimum temperature on a given day (td) according to the 

method described by Goudriaan and van Laar (1994). The amount of photosynthetically active radiation, PARt,td (MJ m–2 s–1), 

intercepted by the leaf at time t on a given day td is calculated using Beer’s law (Monsi & Saeki 1953). We used the model 

described by Baldocchi (1994) to calculate the photosynthetic rate. 

A.4 Temperature stress 15 

The equations for the effects of temperature on the maximum carboxylation rate of Rubisco and dark respiration rate are 

changed from those in version 2.0. The influence of temperature on the maximum carboxylation rate of Rubisco and the 

potential rate of electron transport is given as follows (Kaschuk et al., 2012, Medlyn et al., 2002): 

𝐶3<5+=(>,>@) = exp[E𝑇𝑀>,>@ − 25K ∙
𝑒𝑝3<5+=

298 ∙ 𝑅 ∙ (273 + 𝑇𝑀>,>@)
 (A-2) 

𝐶S5+=(>,>@) = exp
𝐸S5+=E𝑇𝑀>,>@ − 25K

298 ∙ R ∙ E𝑇𝑀>,>@ + 273K
∙

1 + exp
298 ∙ 𝑆S5+= − 𝐻S5+=

298 ∙ R

1 + exp
E𝑇𝑀>,>@ + 273K ∙ 𝑆S5+= − 𝐻S5+=

E𝑇𝑀>,>@ + 273K ∙ R

 (A-3) 

where Cvcmax(t,td) and Cjmax(t,td) represent the effect of temperature on the maximum carboxylation rate of Rubisco and the 

potential rate of electron transport, respectively; TMt,td is the air temperature (°C) at time t on day td; epvcmax, Ejmax, Sjmax, and 20 

Hjmax are parameters that describe the shape of the curve (Kaschuk et al., 2012, Medlyn et al., 2002), and R is the universal 

gas constant (8.314 J mol–1 K–1). 

The influence of temperature on the dark respiration of leaves is given as 

𝐶@YZ[(>,>@) = exp[E𝑇𝑀>,>@ − 25K ∙
𝑒𝑝8\

298 ∙ R ∙ (273 + 𝑇𝑀>,>@)
 (A-4) 

where Cdark(t,td) represents the effect of temperature on dark respiration at time t on day td and eprd is the parameter that 
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describes the shape of the curve (Kaschuk et al., 2012). 

The maximum carboxylation rate of rubisco, the potential rate of electron transport, and the dark respiration rate are 

modified by temperature effects: 

𝑉<5+=(>,>@) = Θ ∙ ξ` ∙ 𝐶3<5+=(>,>@) ∙ 𝑣<5+= ∙ 𝑊,68-,,(>@) 
 

(A-5) 

𝐽5+=(>,>@) = Θ ∙ ξd ∙ 𝐶S5+=(>,>@) ∙ 𝑗5+= ∙ 𝑊,68-,,(>@) 
 

(A-6) 

where Vcmax(t,td) is the maximum carboxylation rate of Rubisco, Jmax(t, td) is the potential rate of electron transport, vcmax and 

jmax is the potential maximum carboxylation rate and the potential rate of electron transport, respectively. 𝑊,68-,,(>@) 5 

represents water stress. Θ is the compensation variable (0–1) that represents the discrepancy between the ideal 

photosynthetic potential and the actual one. ξV and ξJ are photosynthesis compensation variables that change according to 

CO2 concentration. These variables (Θ, ξV, and ξJ) are described in the following section. The dark respiration rate is 

calculated as follows: 

𝑅\(>,@>) = 𝑟𝑑 ∙ 𝐶\+8g(>,>@) ∙ 𝑣<5+= 
 

(A-7) 

where Rd(t,td) is the dark respiration rate (μmol m–2 s–1), and rd is the leaf respiration factor (Collatz et al., 1991, Sellers et al., 10 

1996a, b). For soybean, we considered cold stress in addition to the temperature stress explained above. The details are the 

same as in version 2.0. The maintenance respiration and growth respiration are also considered. The formulations of the 

respiration models are also the same as those of the previous versions. 

A.5 Soil water balance and water stress 

The soil water balance in version 2.2 is modeled using a method similar to that described by Neitsch et al., (2005), with two 15 

soil layers and no lateral flow. In this method, the water content in each soil layer is updated daily to account for rainfall, 

snowmelt, sublimation, transpiration, evaporation, and percolation. However, our model does not consider the nitrogen 

cycle. Moreover, we do not use the irrigation sub-model used in the SWAT model. Instead, we use a simple protocol in 

which irrigation water is supplied to the top layer of the soil if the crop experiences water stress. Irrigation water is supplied 

until its stock is exhausted. The size of the irrigation water stock is determined by the parameter Irrcapacity, which is estimated 20 

at each cell of the grid by MCMC. Water stress calculated by the SWAT model is used (Neitsch et al., 2005). 

A.6 Correction of parameters according to CO2 concentration 

The correction of parameters based on CO2 concentration is included in the model using the following equations: 

ξ` = 1 −
𝑟hi(𝑐+ − 𝑐*+,-) + 𝑟5+=i − kE𝑟hi(𝑐+ − 𝑐*+,-) + 𝑟5+=iK

l − 4𝑟n𝑟hi 𝑟5+=i(𝑐+ − 𝑐i)

2𝑟n
 

 

(A-8) 

ξd = 1 −
𝑟hl(𝑐+ − 𝑐*+,-) + 𝑟5+=l − kE𝑟hi(𝑐+ − 𝑐*+,-) + 𝑟5+=lK

l − 4𝑟n𝑟hi 𝑟5+=l(𝑐+ − 𝑐*+,-)

2𝑟n
 

 

(A-9) 
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𝑟hi =
𝑑𝑟3<5+=
𝑐*+,-

 

 

(A-10) 

𝑟hl =
𝑑𝑟S5+=
𝑐*+,-

 

 

(A-11) 

𝑟5+=i = 𝑑𝑟3<5+= o
600
𝑐*+,-

− 1r 
 

(A-12) 

𝑟5+=l = 𝑑𝑟S5+= o
600
𝑐*+,-

− 1r (A-13) 

where ξV and ξJ are photosynthesis compensation variables, drvcmax and drjmax describe the parameters, ca is atmospheric CO2 

concentration (mol mol–1), and cbase is the baseline atmospheric CO2 concentration (mol mol–1). In this model, if drvcmax and 

drjmax > 0, ξV and ξJ decrease linearly with increasing atmospheric CO2. If drvcmax and drjmax = 0, ξV and ξJ do not depend on 

atmospheric CO2. In these equations, 𝑟5+=i and 𝑟5+=l are the respective asymptotic lines. 𝑟n is the parameter that determines 

the curvature of the lines; we set 𝑟n = 0.99. The parameters drvcmax and drjmax are based on the results of Ainsworth and Long 5 

(2005). 

A.7 Time trend of the parameter relevant to agricultural management 

When using historical yield data to calibrate model parameters, we need to consider temporal trends in the effects of non-

climatic factors. Crop yield should improve from year to year because of agricultural factors, such as the decrease in harvest 

loss and the use of improved crop cultivars and pesticides. We, therefore, assumed the following linear trend in non-climatic 10 

effects when evaluating the long-term yield data: 

Θ = θ*+,- + θ68-u\(𝑌𝑒𝑎𝑟 − 𝑦*+,-) (A-14) 

where Θ is the compensation variable (0–1) that represents the discrepancy between the ideal photosynthetic potential and 

the actual one (used in equations 32 and 33); θbase is the value of Θ in year ybase and must be calibrated for each cell of the 

grid; θtrend is the annual increase in Θ due to non-climatic factors (which also must be calibrated for each cell of the grid); 

Year is the year; and ybase is the criterion year (2006). In this study, we analyzed the relationship between θ*+,- and GDP for 15 

each crop and used the estimated relationship for future prediction. 

Appendix B: Description of land-use model TeLMO 

B.1 Food Cropland Model 

For each grid, TeLMO first allocates the area for urban use; it then allocates the area for food cropland. For the allocation of 

the urban area, we use the Land Use Harmonization phase 2 future data that are used in Coupled Model Intercomparison 20 

Project Phase 6 (CMIP6) (LUH2f, Lawrence et al., 2016). It is generally expected that the food cropland area is determined 

by the balance between the supply and demand for food crops. The estimation of the supply potential of food crops requires 
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the spatial distribution of crop production, which is related to the natural environment. On the other hand, the balance between 

the supply and demand for food crops is influenced by socio-economic factors (e.g., populations, crop prices) related to 

international food trade. For this reason, TeLMO projects future land-use change by allowing the Food Cropland Down-scale 

Module (B.1.1), which projects the global cropland distribution at a resolution of 0.5° by considering environmental factors, 

to interact with the International Trade Module (B1.2), which describes food supply and demand based on the General 5 

Equilibrium Model by dividing the world into 17 countries/regions. The primary objective of using TeLMO is to describe the 

long-term trend in land-use change, not the detailed year-to-year variations in land-use change. Therefore, we use 10-year 

average values as input to the model. 

A major feature of TeLMO is that it does not project the local cropland distribution by unidirectionally downscaling the 

total cropland area for countries/regions obtained by integrated assessment models. This is because the total cropland area for 10 

each country/region depends on the local distribution of the cropland area. Therefore, TeLMO consistently treats the cropland 

distribution calculated by the Food Cropland Down-scale Module and the total cropland area for countries/regions obtained 

from the International Trade Module to project future land-use change. The Food Cropland Down-scale Module and 

International Trade Module are explained below. 

 15 

B.1.1 Food Cropland Down-scale Module 

The Food Cropland Down-scale Module divides the Earth into 0.5°×0.5° (latitude×longitude) grid cells (hereinafter "0.5° 

cells") and calculates the percentage of each cell occupied by cropland. The percentage of cropland is estimated by calculating 

the probability that each 30″×30″ grid cell (hereinafter "30″ cell") is used as cropland and averaging these probabilities over 

the entire 0.5° cell. A 30″ cell allocated to urban use is not used for cropland. The probability 𝑟x of a given 30″ cell being used 20 

as cropland is calculated as 

𝑟x =
1

1 + expE1.228 + 0.237𝜙x − 0.206𝑝[𝑦"/𝑤[K
𝐶" (B-1) 

where 𝜙 is the slope, 𝑦 is the yield per unit area [t/ha], 𝑝 is the price of food crops, 𝑤 is the wage, and 𝐶 is an adjustment 

parameter. The subscript 𝑖 identifies the 30″ cell, 𝑗 identifies the 0.5° cell containing the 𝑖-th grid cell, and 𝑘 identifies the 

country/region containing the 𝑖-th and 𝑗-th grid cell. The definition of countries/regions is the same as that used in AIM/CGE 

(Fujimori et al., 2012, 2017). Eq. (B-1) is formulated based on the fact that the cropland area is determined as a function of 25 

slope, crop price and yield, and the wages of farmers. The first term of Eq. (B-1) is defined as the Agricultural Suitability 

Index (ASI), which represents the relationship between cropland area and the explanatory variables. The adjustment 

parameter  𝐶"  is used to reproduce the cropland area of LUH (Lawrence et al., 2016) in the base year 2005 and to connect 

the future TeLMO projection with the historical simulation. 

The ASI is derived from a logistic regression analysis using past statistical data. We use the global 0.5° MODIS cropland 30 

area (Friedl et al., 2010) as the objective variable, and the Global 30 Arc-Second Elevation (GTOPO30, Verdin and Greenlee 

1996), the FAOSTAT food crop yield and price (FAO 2019), and GDP per capita as the explanatory variables. GDP per 
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capita rather than the wages of farmers is used for the reason indicated in the discussion of Eq. B-4 below. The logistic 

regression coefficient was derived from 23,000 data values that were randomly selected from the set of global 0.5° grids. A 

comparison of the MODIS cropland areas and the calculated ASI values is shown in Figure B-1. The 23,000 randomly 

selected cropland area values were sorted in descending order and divided into 10 categories and the average MODIS 

cropland area and the average ASI-based cropland area in each category were compared. As shown in Figure B-1, the values 5 

calculated by the logistic regression effectively reproduce the distribution of the MODIS cropland area data. 

In the MIROC-INTEG simulations, GTOPO30 (Verdin and Greenlee 1996) is used for the slope 𝜙x, and the food price 𝑝[ 

and wage 𝑤[ are obtained in the International Trade Module as explained in B.1.2. PRYSBI2 results (1.0° resolution, 

Section 3.2), converted to a resolution of 0.5°, are used for the yield 𝑦". Because TeLMO projects total food cropland, the 

maximum yield for each of the five kinds of cereal (winter and spring wheat, maize, soybean, and rice) projected by 10 

PRYSBI2 is used for 𝑦" in Eq. (B-1). As discussed above, TeLMO is a model that evaluates the long-term trend in land-use 

change. Therefore, the crop yield and wage  𝑤[  in Eq. (B-1) is the average value of 10 years (using the data from the one 

year to the ten years before the calculation year). 

The 0.5° cell cropland area (𝑅") is calculated by averaging the cropland probability in each of the 30” cells (𝑟x) as follows: 

𝑅" =}
𝑟x
𝐽x

~�

x

 (B-2) 

where 𝐽x is the number of 𝑖 cells (3600) in each 0.5° cell. The adjustment parameter 𝐶" in Eq. (B-1) is set so that the cropland 15 

area in the first year of calculation equals the data from LUH2f (Lawrence et al., 2016). 

As explained above, the cropland distribution 𝑅" projected at a spatial resolution of 0.5° by the Food Cropland Down-scale 

Module is used in calculations in the International Trade Module (B.1.2). 

 

B.1.2 International Trade Module 20 

Our model was developed by extending one of the simplest of the basic models, the Ricardian model. The Ricardian model 

is a one- production-factor (productivity per capita), 2-country/2-commodity (food and non-food) model that attempts to 

describe the essence of free trade behavior based on the theory of comparative advantage. Because of its simple structure, the 

Ricardian model can be extended to a multi-country and multi-commodity model (Ejiri 2008). In the International Trade 

Module, we extend the Ricardian model to be a multi-country (the entire world)/2-commodity (food and non-food) general 25 

equilibrium model. In addition, we account for decreasing returns in terms of production efficiency following the approach of 

Ejiri (2008). That is to say, we assume that agricultural production efficiency declines with increasing cropland area (and, 

conversely, that agricultural production efficiency increases as cropland area decreases). For this reason, industrial 

specialization, which has been pointed out as a problem of the Ricardian model, is unlikely to occur. 

In order to construct a multi-country/2-commodity model, the subscript 𝑘 was used to indicate country/region (the same 17 30 

countries/regions defined in AIM/CGE), and subscripts 1 and 2 were added to indicate agricultural and non-agricultural sectors, 

https://doi.org/10.5194/gmd-2019-184
Preprint. Discussion started: 29 October 2019
c© Author(s) 2019. CC BY 4.0 License.



23 
 

respectively. The prices and wages in Eq. (B-1) are those in the agricultural sector, which are represented by 𝑝i,[ and 𝑤i,[, 

respectively. 

First, wages in the agricultural sector, 𝑤i,[, are defined by using labor input and gross domestic production (GDP). In the 

International Trade Module, economic variables (e.g., food prices, wages, labor, and GDP) are described as the relative ratio 

to the base year (2005), the first year of calculation. Here, we assume that the total labor population ratio (relative to the base 5 

year) equals the total population ratio (relative to the base year). 

𝑙1,𝑘 + 𝑙2,𝑘 = 𝐿𝑘 (B-3) 

where 𝑙i,[, and 𝑙l,[ are the labor input of the agricultural and non-agricultural sectors, respectively, and 𝐿[ is the total labor 

population (Murakami and Yamagata 2016). GDP can then be described as total domestic income: 

𝐺𝐷𝑃𝑘 = 𝑤1,𝑘 ⋅ 𝑙1 + 𝑤2,𝑘 ⋅ 𝑙2  

where the value calculated by AIM/CGE is used for 𝐺𝐷𝑃[ (units: USD). If we assume that the wage (ratio relative to the base 

year) for the non-agricultural sector is the same as that of the agricultural sector, the agricultural worker wage 𝑤i,[ is calculated 10 

as: 

𝑤1,𝑘 =
𝐺𝐷𝑃𝑘

𝑙1,𝑘 + 𝑙2,𝑘
=
𝐺𝐷𝑃𝑘
𝐿𝑘

 
 

(B-4) 

In other words, it is assumed that the change in agricultural worker wage (relative to the base year) is equal to the change in 

per capita GDP. It is known that the employment rate have changed by a small percentage in the past. However, it is difficult 

to project the future changes in the employment rate, and thus the employment rate is assumed to be constant in the standard 

CGE models (e.g. Fujimori et al. 2012). Similarly, it is not easy to confirm the historical changes in wages for each country, 15 

nor to estimate their future change; thus, similar to that for employment rate, the future changes in wages are usually kept 

constant in the CGE models (e.g., Fujimori et al. 2012). It should be noted that a small increase in employment rate (compared 

to the base year) can slightly decrease the wages as indicated in Eq. (B-4), possibly leading to an increase in cropland area (Eq. 

B-1). 

Next, the price for agricultural sector 𝑝i,[ is calculated using the multi-country/2-commodity general equilibrium model. 20 

The prices for agricultural and non-agricultural sectors are calculated using Eqs. (B-5) and (B-6), respectively: 

𝑝1,𝑘 = 𝑤1,𝑘
𝑙1,𝑘
𝑥1,𝑘

 (B-5) 

𝑝2,𝑘 = 𝑤2,𝑘
𝑙2,𝑘
𝑥2,𝑘

 (B-6) 

where 𝑥i,[ and 𝑥l,[ are the production index in the agricultural and non-agricultural sectors, respectively. Here, the production 

index in the agricultural sector in region 𝑘 (𝑥i,[,) can be calculated as the sum of the products of 0.5° crop yield 𝑦" and cropland 

area 𝑅" using Eq. (7):  
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𝑥1,𝑘 =}𝑦𝑗

𝐾𝑗

𝑗

𝑅𝑗 (B-7) 

where 𝐾" indicates the number of 0.5° cells within the country/region 𝑘 (3600). As described above, the cropland distribution 

𝑅" generated by the Food Cropland Down-scale Module (B.1.1) is used in Eq. (B-7). The domestic price 𝑝 in Eqs. (B-6) and 

(B-7) is expressed in terms of the local currency unit (LCU). This is converted to the international price 𝑃 (USD) using the 

exchange rate	𝜋 (LCU/USD) in Eqs. (B-8) and (B-9): 

𝑝1,𝑘 = 𝜋𝑘 ⋅ 𝑃1,𝑘 (B-8) 

𝑝2,𝑘 = 𝜋𝑘 ⋅ 𝑃2,𝑘 (B-9) 

The price 𝑝 and production index 𝑥 can then be connected using a relational equation for the trade budget as follows. 5 

Imposing the condition that the international budget for any country is zero results in Eq. (B-10) for the international balance 

of payments: 

𝑝1,𝑘 ⋅ E𝑥1,𝑘 − 𝑋1,𝑘K + 𝑝2,𝑘 ⋅ E𝑥2,𝑘 − 𝑋2,𝑘K = 0 (B-10) 

where 𝑋i,[, and		𝑋l,[  are the demands for each good in each region. As described previously, the output generated by 

AIM/CGE based on the socio-economic scenario is used for food demand 𝑋i,[. The international balance of payments as shown 

in Eq. (B-10) consists of the current, capital and financial accounts. The imbalance in the international budget corresponds to 10 

foreign exchange reserve. The foreign exchange reserve changes over periods longer than 10 years, but it is not possible to 

predict its future variation, and thus it is not considered in the standard CGE models (e.g., Ejiri 2008). In the real world, if 

foreign exchange reserve increases, amount of import goods tends to be decreased because money is not used for them. 

Consequently, in food importing countries, food production tends to be increased, possibly leading to an increase in cropland 

area. 15 

In addition, the price 𝑝 and product index 𝑥 can be related through Eq. (B-11) by expressing economic growth in terms of 

GDP: 

𝐺𝐷𝑃𝑘 = 𝑃1,𝑘 ⋅ 𝑥1,𝑘 + 𝑃2,𝑘 ⋅ 𝑥2,𝑘 (B-11) 

In Eq. (B-3) and Eqs. (B-5) to (B-11) above, the eight unknown values are 𝑝i,[, 𝑝l,[, 𝑥i,[, 𝑥l,[, 𝑙i,[, 𝑙l,[, 𝜋[, and	𝑋l,[. 

Of these, because the reference for the international price 𝑃 is the United States (region index 𝑘 = 1), 𝑃i,i and 𝑃l,i (along with 

𝑝i,i, 𝑝l,i) cannot be set. For this reason, the condition is imposed that total global net exports and imports equal to zero: 20 

}E𝑥i,[ − 𝑋i,[K
����

[�i

= 0 (B-12) 

}E𝑥l,[ − 𝑋l,[K
����

[�i

= 0 (B-13) 
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As explained above, TeLMO uses 10-year averages as input to the model to represent long-term trends inland-use change 

(B.1.1). We assumed that the global total production is equal to consumption, i.e., the total global net exports and imports 

equal to zero. In reality, there are certainly stock changes in various goods but it would not be counterfactual to assume that 

they are net zero at longer time scale. The unknown values for 𝑝i,[, 𝑝l,[, 𝑥i,[, 𝑥l,[, 𝑙i,[, 𝑙l,[, 𝜋[, and	𝑋l,[ are calculated by 

simultaneously solving eight equations, Eq. (B-3) and Eqs. (B-5) to (B-11), for all 17 regions (𝑘 = 1 − 17) subject to the 5 

conditions imposed by Eqs. (B-12) and (B-13). The 𝑝i,[, and 𝑤i,[ values obtained from Eq. (B-4) are entered into Eq. (B-1). 

Finally, the share of cropland for each 0.5° cell 𝑅" can then be calculated using Eq. (B-2). 

 

B.2 Bio-energy Cropland Model 

The Bio-energy Cropland Model uses 30″ cells that are not assigned to urban use or food cropland use. Whereas adjustment 10 

parameter 𝐶" in the Food Cropland Model (Eq. B-1) could be set using observed cropland area for the first year of the TeLMO 

calculation (the base year 2005), there is no corresponding adjustment parameter in the case of bio-energy cropland because 

sufficient cropland devoted to biofuel crops did not exist in the base year. Accordingly, the Bio-energy Cropland Model 

allocates bio-energy cropland around the globe so that the global total biofuel crop production equals the global total biofuel 

crop demand obtained by AIM/CGE. The Bio-energy Cropland Model uses the same formularization to that in the Food 15 

Cropland Down-scale Module (B.1.1) to evaluate the probability of bio-energy cropland in 30″ cells using the following 

equation: 

𝑟𝑏𝑖𝑜,𝑖 =
𝐶𝑏𝑖𝑜

1 + exp �1.228 + 0.237𝜙𝑖 − 0.206𝑝𝑏𝑖𝑜,𝑘𝑦𝑏𝑖𝑜,𝑗/𝑤1,𝑘�
 (B-14) 

where 𝜙x is the slope in 30″ cell i, 𝑝�x�,[ is the biofuel crop price in region 𝑘, 𝑦�x�," is the yield [t/ha] of biofuel crops in 0.5° 

cells, and 𝑤i,[ is the agricultural sector wage in region 𝑘. For the biofuel crop price 𝑝�x�,[, the values generated by AIM/CGE 

are used. For the biofuel crop yield 𝑦�x�," , the yield for miscanthus or switchgrass, whichever is greater in a given cell, 20 

calculated for the entire globe by Kato and Yamagata (2014) is used. Our use of the same formularization for the Food Cropland 

Model and the Bio-energy Cropland Model is based on the assumption that the factors determining both cropland areas are 

similar. 

The adjustment parameter 𝐶�x� is set so that the global total biofuel crop production volume (product of yield and cropland 

area) equals the global total biofuel crop demand calculated by AIM/CGE: 25 

}𝑋𝑏𝑖𝑜,𝑘

𝐾𝑎𝑙𝑙

𝑘

=}𝑦𝑏𝑖𝑜,𝑗𝑅𝑏𝑖𝑜,𝑗

𝐽𝑎𝑙𝑙

𝑗

 (B-15) 

where 𝑋�x�,[ is the biofuel crop demand for region 𝑘 calculated by AIM/CGE, 𝐾Y�� and 𝐽Y�� are the total number of regions 

(17) and the total number of 0.5° cells (259,200), respectively. 𝑅�x�," is the average percentage of bio-energy cropland for all 

30″ cells in a given 0.5° cell, where the individual  30″ cell percentages are determined by Eq. (B-14). 
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If bio-energy cropland were allocated based on the principle described above, a massive development of bio-energy cropland 

would occur in regions with high ecosystem production such as the Amazon. For this reason, the model accounts for protected 

areas that cannot be allocated as bio-energy cropland as shown in Figure B-2. Two sources were used for protected areas (Wu 

et al., 2019): the World Database for Protected Areas (WDPA) (IUCN and UNEP-WCMC 2018) and the World Database of 

Key Biodiversity Areas (KBA) (BirdLife International 2017). As of 2018, the WDPA covered an area of 33.6 million km2, and 5 

the KBA covered an area of 19.9 million km2.  

 

B.3 Pastureland Model 

Whereas the Food Cropland Model uses statistical relationships between cropland area, yield, and economic variables, 

because reliable statistical data do not exist for pastureland, a simpler approach is taken to estimate pastureland. The probability 10 

of pastureland in each 30″ cell is determined based on net primary production (NPP) and slope, given by: 

𝑟𝑝𝑎𝑠𝑡,𝑖 =
𝐶𝑝𝑎𝑠𝑡,𝑗 	× 𝑁𝑃𝑃𝑗
�1 + 𝜙 20� �

 (B-16) 

The denominator in Eq. (B-16) reflects the fact that the use of land as pasture decreases with the angle of inclination, as is 

shown in the LUH2v data (Lawrence et al., 2016). The results of calculations using the Vegetation Integrative Simulator for 

Trace Gases (VISIT) (Ito and Inatomi 2012) assuming the entire world to be grassland are used here for 𝑁𝑃𝑃". 𝐶�Y�>," is the 

adjustment parameter for 0.5° cells. The value of 𝐶�Y�>,"	changes from year to year. The adjustment parameter for the base 15 

year, 𝐶�Y�>,"(𝑡 = 0) is set so that the pastureland distribution equals that of LUH2f (Lawrence et al., 2016) for the base year 

(2005). Adjustment parameters for years other than the base year, 𝐶�Y�>,"(𝑡), are set by applying a proportionality factor 𝛼(𝑡) 

to the base-year parameter: 

𝐶𝑝𝑎𝑠𝑡,𝑗(𝑡) = 𝛼(𝑡) × 𝐶𝑝𝑎𝑠𝑡,𝑗(𝑡 = 0) (B-17) 

where 𝛼(𝑡) is set so that regional total pastureland area equals the regional total pastureland demand calculated by AIM/CGE. 

In other words, 𝛼(𝑡) is set so that the condition 20 

𝑆𝑝𝑎𝑠𝑡,𝑘(𝑡) =}𝑅𝑝𝑎𝑠𝑡,𝑗(𝑡)
𝐽𝑘

𝑗

 (B-18) 

is met, where 𝑆�Y�>,[(𝑡)  is the pastureland demand calculated by AIM/CGE for region 𝑘 , 𝑅�Y�>,"(𝑡)  is the average of 

percentage of pastureland for all 30″ cells (from Eq. (B-16)) in a given 0.5° cell, and 𝐽[ is the total number of 0.5° cells in each 

region 𝑘.  

 

B.4 Managed Forest Model 25 
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In the Managed Forest Model, satellite data are used to determine forest area; the share of forest area where timber harvesting 

occurs is allocated as managed forest in the manner described below. The distribution of managed forests in 0.5° cells, 

𝑅 ¡Z,"(𝑡), is formularized in terms of the area of managed forests in the base year and the population density: 

𝑅𝑚𝑓𝑟,𝑗 = 𝐴𝑓𝑟,𝑗 ×
𝜌𝑗∗

𝐶𝑚𝑎𝑛𝑓𝑟,𝑘 + 𝜌𝑗∗
 (B-19) 

where 𝐴¡Z," is the area of managed forest in 0.5° cells in the base year (2005), 𝜌"∗ is the mean population density in the 5×5 

grid (2.5° cell) of cells centred on the 0.5° cell in question. Larger 2.5° cells were used instead of 0.5° cells based on the 5 

assumption that harvested timber is transported within an approximately 100-km radius and that the amount of harvested 

timber is determined by the population density in each 2.5° cell. The 100-km radius is estimated from the distance where the 

transportation cost of timber (~ 1 $/km/tons) is balanced with the price of timber (~ 100 $/tons). Here, the transportation cost 

and price of timber are estimated using the FAOSTAT data (FAO 2019). Moderate Resolution Imaging Spectroradiometer 

(MODIS) satellite data (Friedl et al., 2010) are used for the base-year forest area, and data from Murakami and Yamagata 10 

(2016) are used for the population density, 𝜌"∗. 𝐶 ¡Z,[ is an adjustment parameter that is set for each of the 17 regions (𝑘) so 

that the managed forest area conforms to the round-wood demand 𝑋 ¡Z,[ [kg/yr] calculated by AIM/CGE. In other words, 

𝐶 ¡Z,[ is set so that the total regional amount of harvested timber equals the regional total round-wood demand:  

𝑋𝑚𝑓𝑟,𝑘 =}𝑅𝑚𝑓𝑟,𝑗

	𝐽𝑘

𝑗

×
𝐵𝑗
𝐿𝑗
 (B-20) 

where 𝐵" is the distribution of forest biomass [kg/m2] in 0.5° cells, calculated by VISIT (Ito and Inatomi 2012) assuming the 

entire world to be forest, and 𝐽[ is the total number of 0.5° cells in each region 𝑘. 𝐿" is the harvesting period [yr], which is 15 

estimated as follows, based on the 𝑁𝑃𝑃" for 0.5° cells obtained from VISIT (Ito and Inatomi 2012): 

𝐿𝑗 = ¨
∞ 𝑁𝑃𝑃𝑗 < 4

500/𝑁𝑃𝑃𝑗 4 ≤ 𝑁𝑃𝑃𝑗 ≤ 25
20 25 < 𝑁𝑃𝑃𝑗

 (B-21) 

𝐿" reflects the fact that the harvesting period decreases with increases in net primary production, as is shown in the LUH2v 

data (Lawrence et al., 2016). The amount of forest harvested in a given year can also be calculated as 𝑅 ¡Z," ×
𝐵"
𝐿"¬  [kg/yr] 

based on the distribution of managed forests 𝑅 ¡Z,", forest biomass 𝐵", and the felling period 𝐿" for 0.5° cells.  

 20 

B.5 Formulation of Transition Matrix Model 

Evaluating the impact of land-use change on terrestrial ecosystems requires not only the spatial distribution of land use but 

also information on the land-use transition. For example, in areas where shifting cultivation is practiced, even though the 

overall cropland area within a cell does not change, a particular area may be cleared as cropland while another area is 
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abandoned. In such cases, there is a transition from cropland to secondary land, which impacts the above-ground biomass and 

carbon budget. Thus, matrix information regarding the transition from one land use to another land use is essential. 

For the landcover types used in the transition matrix, we use the five classes (urban, cropland, pasture, secondary/primary 

land) used in the VISIT terrestrial ecosystem model (Ito and Inatomi 2012). TeLMO forecasts eight landcover types, including 

the previously described urban, cropland (food and bio-energy), pasture, managed forest, and unmanaged forest classes as well 5 

as "grassland" (obtained from MODIS satellite data, Reference) and “other” landcover types that are not used by humans (for 

example, glaciers, lakes and marshes, as defined by MODIS satellite data, Friedl et al., 2010). The correspondence between 

the landcover types used in TeLMO and those used in the land-use transition matrix is presented in Table B-1. 

The primary/secondary land classes in the land-use Transition Matrix Model are defined as land that has never been used 

by humans or land that has been used at least once by humans, respectively. Here, unmanaged forest and grassland are classified 10 

as primary or secondary land based on data from LUH2f supplied by LUH2v (Lawrence et al., 2016). Unmanaged forest or 

grassland areas that are classified as secondary land in the base year (2005) remain classified as secondary land in subsequent 

years. In the case in which unmanaged forest or grassland areas are classified as primary land in the base year, if the area is 

converted to cropland or pasture and then later returned to being unmanaged forest or grassland, it is classified as secondary 

land. In TeLMO, land classified as "other" is considered the land that cannot be used by humans and is therefore not included 15 

in the land-use transition matrices. 

The method used to create the land-use transition matrices is shown in Figure B-3. As explained above, TeLMO assumes 

that land is used in order of highest to lowest value added per unit area (i.e., urban, food cropland, bio-energy cropland, 

pastureland, managed the forest, and unmanaged forest). Aligning these land-use classes with corresponding classes in the 

transition matrix (Table B-1), the preferential order of the latter becomes urban, cropland (food + bioenergy), pasture, 20 

secondary land, primary land. To calculate land-use transition matrices, the percent areas of the different landcover types in 

each 0.5° cell in a given year are first sorted in order of preference (“Pre” in Fig. B-3). In Figure B-3, the length of each colored 

bar represents the percent area of a given landcover type. The sum of the percent areas for all land-use classes is 100%. Next, 

the percent areas of different landcover types in each 0.5° cell in the following year are again sorted in order of preference 

("Post" in Fig. B-3). 25 

As shown in Figure B-3, the percent areas of transitioned land defined in transition matrices can be calculated by comparing 

the percent areas for each landcover type in a given year and the next year. For example, the area indicated in column "a" in 

Fig. B-3 corresponds to the percent area of land that transitioned from pasture to cropland. Similarly, the area indicated in 

column "b" in Fig. B-3 corresponds to the percent area of land that transitioned from secondary land to pasture. In this manner, 

it is possible to calculate the transition between landcover types by assuming a preferential order to land use.  30 

Shifting cultivation is taken into account when making the land-use transition matrices. We assume that the share of 

cultivated land does not change over time on the larger (i.e., 0.5° cell) scale. Data from Butler (1980) are used for the global 

allocation of shifting cultivation on this larger scale. Furthermore, in regions where shifting cultivation is practiced, we assume 

that cropland is used sequentially with a fixed rotation (Butler 1980). Under this assumption, in areas where shifting cultivation 
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is practiced, 1/15 of the cropland area is newly cultivated, and 1/15 of the cropland area is abandoned each year. Thus, 1/15 of 

the cropland area is transitioned from secondary land to cropland, and 1/15 of the cropland area is transitioned from cropland 

to secondary land. These transitions are added to the transition matrices for areas where shifting cultivation is practiced. 

Code and data availability 

The MIROC-INTEG source code for this study is available to those who conduct collaborative research with the model users 5 

under license from the copyright holders. For further information on how to obtain the code, please contact the corresponding 

author. The data from the model simulations and observations used in the analyses are available from the corresponding author 

upon request. 
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Figure 1: Exchange of variables in MIROC-INTEG. Components of the integrated model (sub-models), climate, water resource, 5 
crop growth, land use, and land ecosystem models, are shown as colored boxes. Input to the model is shown as boxes of climate and 
socio-economic scenarios. Solid arrows between the boxes indicate the variables exchange between the sub-models. Dashed arrows 
indicate the input variables to the sub-models. 
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Figure 2: The numerical simulation procedure in MIROC-INTEG1. The order of the numerical integration is (1) TeLMO, (2) 
HiGWMAT + PRYSIB2, (3) VISIT as described in Section 4. Boxes indicate the sub-models and data. For the sub-models, the 
name and time-step of the models are indicated in the boxes. In the data box, the name of the variable saved as a file and 
information regarding input data are indicated. Arrows between the boxes indicate the variables exchanged between sub-models 5 
or between sub-models and data files. 
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Figure 3: Comparison of historical terrestrial water storage (TWS) simulated by MIROC-INTEG1 with GRACE satellite data. 
For each river basin, the panel on the right shows the seasonal cycle. GRACE data shown are the mean of the mascon products 
from two processing centers: CSR and JPL. Model results are multi-model mean. Grey shading indicates uncertainty range 
indicated by one standard deviation from the multi-model mean. 5 
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Figure 4: Comparison of irrigation demands simulated by MIROC-INTEG1 with the results from offline simulations using 
HIGWMAT forced by observed climate forcing data (Pokhrel et al., 2015) for 1°×1° grids shown as the mean for the period 1998-
2002. 
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Figure 5: Comparison of model estimation with reference data on average yield during the period 1981-2005 for the top ten countries 
producing each crop. The Box plot shows the median and range of model results estimated from the five GCM outcomes. The main 
production countries were identified according to the country-based harvested area for each crop. 
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Figure 6: Comparison of latitudinal distribution of gross primary production in 2000–2010 with up-scaled flux measurements 
(Model-Tree Ensemble (MTE); Beer et al., 2010) and satellite observation (MODIS; Zhao et al., 2005). 
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Figure 7: Comparison of historical cropland area simulated by MIROC-INTEG (red), AIM/CGE (blue), and FAOSTAT (black), 
using the ratio of cropland area to total area. For MIROC-INTEG simulations, the cropland area results for the five different 
climate forcings are shown.  5 
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Figure 8: Time series of changes in the climate system based on the forcings of the five climate models. Results shown are for (a) 
surface air temperature [K], (b) soil moisture in the top 300 mm of the soil column [mm], shown as an anomaly from first 20-year 
average, (c) Irrigation water supply [km3/yr]. Thin curves indicate the global average of results for each of the five climate model 5 
forcings. Thick curves show the overall average of results based on the five forcings. The colors indicate RCP2.6 (blue), RCP4.5 
(green), RCP6.0 (orange), and RCP8.5 (red).  
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Figure 9: Time series of changes in crop yield [unit: tons/ha] based on the forcings of the five climate models. Results shown are 
for (a) winter wheat, (b) spring wheat, (c) maize, (d) soybean, (e) rice, and (f) grid maximum value for the five crop types. Thin 

curves indicate the global average of results for each of the five climate model forcings. Thick curves show the overall average of 5 
results based on the five forcings. The colors indicate RCP2.6 (blue), RCP4.5 (green), RCP6.0 (orange), and RCP8.5 (red).  
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Figure 10: Time series of changes in cropland area relative to land area based on the forcings of the five climate models. The 

results are for (a) food cropland area, and (b) food + bioenergy cropland area. Thin curves indicate the global average of results 

for each of the five climate model forcings. Thick curves show the overall average of results based on the five forcings. The colors 5 
indicate RCP2.6 (blue), RCP4.5 (green), RCP6.0 (orange), and RCP8.5 (red).  
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Figure 11: Spatial distribution of land-use change [units: a ratio of the grid box area]. The results are for (a, b) food 

cropland area, and (c, d) bioenergy cropland area. Average of the five climate projection-based simulations under (a, 
c) RCP2.6 and (b, d) RCP8.5 scenarios in the 2090s. 

 5 
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Figure 12: Temporal change in global carbon stock in (top) vegetation biomass and (bottom) soil organic carbon, (red) with and 

(green) without land-use change, under (left) RCP2.6 and (right) RCP8.5 scenarios. Thick lines show the median and light zones 

show the maximum–minimum range of the five climate projection-based simulations.  5 
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Figure 13: Spatial distribution of land-use-induced changes in terrestrial ecosystem carbon stock. Results are for (a, b) vegetation 
biomass and (c, d) soil carbon stock. Average of the five climate projection-based simulations under (a, c) RCP2.6 and (b, d) RCP8.5 

scenarios in the 2090s. 5 
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Figure B-1: Comparison of the global MODIS cropland area and the calculated area using the agricultural suitability index (ASI). 

Here, 23,000 randomly selected cropland area values are arranged in descending order and divided into 10 categories; the average 

value of MODIS (black) and ASI values calculated by TeLMO (red) in each category are compared. 5 
  

https://doi.org/10.5194/gmd-2019-184
Preprint. Discussion started: 29 October 2019
c© Author(s) 2019. CC BY 4.0 License.



55 
 

 
Figure B-2: Global distribution of areas protected from bioenergy production.  
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Figure  B-3  Schematic diagram of landcover transition. Details are explained in the main text.  
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Table B-1 Correspondence of landcover type in land-use model and transition matrix.  

Landcover type in land-use model Landcover type in transition matrix 

Urban Urban 

Cropland (food) 
Cropland 

Cropland (bio-crop) 

Pasture Pasture 

Managed forest Secondary land 

Unmanaged forest 
Primary land 

Secondary land 

Grassland 
Primary land 

Secondary land 

Other - 
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