
Anonymous Referee #1 

GENERAL COMMENTS 

In this manuscript, Yokohata et al. describe a model integration that brings together (mostly) 

process-based representations of land use decision-making, land surface, hydrology, vegetation, and 

agriculture. This is part of an important recent trend in making integrated models that actually 

account for the effects of changing climate and CO2 on agricultural productivity, and how that 

changing productivity will affect the future trajectory of land use. The manuscript is well-written, 

with a decent amount of technical detail, as one would hope for a paper in this journal. However, I 

have reservations about how the integrated model is framed at the beginning of the manuscript. For 

that reason, coupled with a number of clarifications that need to be made, I suggest that the paper 

be resubmitted with major revisions. 

 

SPECIFIC COMMENTS 

The beginning of the manuscript sets up a loftier goal than is actually achieved by the presented 

model. I got the impression that the climate system was included as a component, while in reality the 

demonstrated version uses offline climate forcings. This begins with the model name, which includes 

MIROC—a well-known climate model. This idea is reinforced in the Abstract at P1 L27–28, in the 

Introduction at P3 L20–22, and in Sect. 2 at P4 L8–10. In fact, it’s unclear why MIROC is included 

at all—its only relevance to the work presented here is that it’s the source of one of the five climate 

forcings used. It would make more sense to call the integrated model presented here INTEG1, and 

reserve "MIROC-INTEG1" for a future version that does actually include MIROC coupling. 

Thank you very much for your suggestions. The reason why the name of the model is MIROC-

INTEG is because the models of terrestrial ecosystem, water management, crop growth and land use 

are combined with the land surface model (MATSIRO) included in MIROC, and because this 

integrated model will also be combined with the Earth System Model (MIROC-ES2L, Hajima et al. 

2020) in the ongoing work. Various improvements have been made to the MIROC land surface 

model, MATSIRO (Takata et al. 2003, Nitta et al. 2014, Pokhrel et al. 2012). Unlike standard 

hydrological models, it is possible for MATSIRO to consistently solve complicated processes related 

to energy and water balances on land. One of the advantages of running the land surface model alone 

in MIROC is that it can be used for assessing the impacts of climate change on land, taking into 

account the uncertainty of future climate projections. HiGWMAT (Pokhrel et al. 2014), MATSIRO 

combined with a water resources model, has contributed to the Inter-Sector Impact Assessment 

Project (ISIMIP). On the other hand, since MIROC is the name of a well-known climate model, as 

the reviewers point out, the model name “MIROC-INTEG” can be misleading to the reader by 

implying that it involves air-land surface interactions. For this reason, we have re-named the model 

“MIROC-INTEG-LAND” in the revised manuscript. In addition, it is clearly described that MIROC-



INTEG-LAND couples the land surface model with various sub-models, and it does not include 

interaction with the atmosphere. Furthermore, important features of the land surface model in 

MIROC were described earlier in the paper, and the advantages of running only the land surface 

model in MIROC were described. 

 

The model title has been changed as follows. 

MIROC-INTEG-LAND version 1: A global bio-geochemical land surface model with human water 

management, crop growth, and land-use change 

 

Because of this modification, the model name in the original manuscript (MIROC-INTEG1) is 

changed to MIROC-INTEG-LAND in the revised manuscript. The abstract was modified as follows. 

 

To investigate these interrelationships, we developed MIROC-INTEG-LAND (MIROC INTEGrated 

LAND surface model version 1), an integrated model that combines the land surface component of 

global climate model MIROC (Model for Interdisciplinary Research on Climate) with water 

resources, crop production, land ecosystem, and land use models. 

 

The introduction was changed as follows.  

 

The model is based on the land surface component of global climate model MIROC (Model for 

Interdisciplinary Research on Climate version: Watanabe et al., 2010), into which we have 

incorporated water resources, land-ecosystem, crop growth, and land use models. 

 

The first paragraph of Section 2 is modified to explain that MIROC-INTEG is based on the land 

surface component of MIROC, MATSIRO. In addition, the advantages of MATSIRO and running 

the land surface model alone are also explained.  

 

The distinctive feature of MIROC-INTEG-LAND (Figure 1) is that it couples natural ecosystem and 

human activity models to the land surface component of MIROC, a state-of-the-art global climate 

model (Watanabe et al., 2010). The MIROC series is a global atmosphere-land-ocean coupled global 

climate model, one of the models contributing to the Coupled Model Inter-comparison Project 

(CMIP). MIROC's land surface component, MATSIRO (Minimal Advanced Treatments of Surface 

Interaction and Runoff, Takata et al. 2003, Nitta et al., 2014) can consider the energy and water 

budgets consistently on the land grid with a spatial resolution of 1 degree. MIROC-INTEG-LAND 

performs its calculations over the global land area only, and neither the atmosphere nor ocean 

components of MIROC are coupled. One of the advantages of running only the land surface model is 



that it can be used to assess the impacts of land on climate change, taking into account the 

uncertainties of future atmospheric projections. 

 

In addition to these specific instances of the authors claiming an integration that does not appear to 

exist, the text of the Introduction sets up MIROC-INTEG1 as being able to "examine the impact of 

land-use change on the climate system" (P3 L25) and "quantitatively evaluate the interactions and 

feedback related to climate, water, crop, land use, and ecosystem" (P3 L27). While the work here 

gets at a proxy variable—terrestrial carbon storage—that relates to the land-atmosphere carbon 

flux, actually directly assessing land-use impact on climate is impossible without coupling to a 

climate model. It is also unclear exactly what feedbacks the authors are referring to at P3 L27, 

considering that most of the sub-models do not seem to be connected in a two-way manner (see 

Robinson et al., 2018 Fig. 2). Coupling a climate model is clearly outside the scope of the present 

work, but I want to reiterate that the analyses presented ARE publication-worthy—they just need to 

be set up in a less misleading way. 

 

Thank you very much for your suggestions. In response to this comment, the two sentences below 

have been removed in the revised manuscript.  

 

P3 L25 in the original manuscript 

By taking into account changes in the socio-economic scenario, it is possible to examine the impact 

of land-use change on the climate system while simultaneously investigating the impact of climate 

change on the water and food sector. 

P3 L27: MIROC-INTEG1 can quantitatively evaluate the interactions and feedback related to 

climate, water, crop, land use, and ecosystem. Such an evaluation is simply not possible with 

conventional integrated assessment and earth system models. 

 

Instead, we added new section 2.2 to state the novelty of MIROC-INTEG-LAND more clearly. We 

also clearly stated that some of the interaction in MIROC-INTEG-LAND is one-way, but there are 

some advantages which were not treated in the conventional integrated assessment models (IAMs). 

 

I am also concerned by the relative lack of space spent evaluating TeLMO. Considering that it is the 

primary piece of model development introduced in this manuscript (as opposed to integration of 

existing models), the authors should evaluate more than just regional and global cropland area over 

12 years (Fig. 7, which by the way needs area units specified). At the very least, similar analyses 

need to be presented for pasture and forest area. 



Thank you very much for your suggestion. We evaluated the regional and global pasture and forest 

area over 12 years as in Figure 7. This is added in the revised manuscript and explained as follows. 

 

Figure 8 shows a comparison of TeLMO, AIM, and LUH data for pasture. Unlike cropland, pastures 

are compared with LUH data because there are no long-term global observation data. TeLMO 

calculates pasture lands such that the area matches that in the AIM for the AIM calculation domain 

(17 regions around the world). Because AIM treats China and the United States as one region, the 

results of TeLMO and AIM for China, the United States, and the globe are almost the same. On the 

other hand, in Australia, TeLMO is closer to LUH. Similarly, Figure 9 shows a comparison between 

TeLMO, AIM, and FAO data of forest area. TeLMO refers to MODIS data and calculates forest area 

taking into account deforestation and changes in crop area. Some difference between TeLMO and 

FAO can be seen, but the two are relatively close. Overall, TeLMO, AIM, and FAO closely agree at 

the regional scale. 

 

Captions for Figure 8 and 9 are added as follows.  

 

Figure 8: Same as Figure 7, but for the comparison of historical pasture area simulated by MIROC-

INTEG (red), AIM/CGE (blue), and LUH (black), using the ratio of cropland area to total area. 

 

Figure 9: Same as Figure 7, but for the historical forest area simulated by MIROC-INTEG (red), 

AIM/CGE (blue), and FAO (black), using the ratio of cropland area to total area.  

 

According to this modification, the numbering of figures is modified.  

 

I also have a number of other issues I would like the authors to address in a revised version. 

- Is livestock feed production included in crop demand? 

In this version, livestock feed production is not included in the crop demand. It is explained in the 

revised manuscript.  

 

In this study, livestock feed demand is not included in 𝑋 , . 

 

- Why do protected areas protect only from bioenergy and not food crops or pasture? 

In this study, we did not consider the protected area for the calculation of the food cropland and 

pasture, by assuming that food has a higher priority than ecosystem protection. This point has been 

explained in the revised manuscript as follows.  

 



In this study, we did not consider the protected area for the calculation of the food cropland and 

pasture, under the assumption that food has a higher priority than ecosystem protection. 

 

- Sect. A.5 (P19 L15–21): What is "irrigation water stock" and how does it relate to things 

calculated in HiGWMAT? It seems completely separate, since the controlling parameter 

Irr_capacity "is estimated at each cell of the grid by MCMC" (P19 L20–21). 

A part of the explanation in the original manuscript was not for MIROC-INTEG. The “irrigation 

water stock” and “Irr_capacity” were not calculated in PRYSBI2 of MIROC-INTEG. The soil water 

calculated in HiGWMAT by considering irrigation (Section 3.1) was passed to PRYSBI2, and then 

the water stress was calculated in PRYSBI2 by using the soil water. It is explained in the revised 

manuscript. The below explanation in the original manuscript is removed in the revised version.  

 

The soil water balance in version 2.2 is modeled using a method similar to that described by Neitsch 

et al., (2005), with two soil layers and no lateral flow. In this method, the water content in each soil 

layer is updated daily to account for rainfall, snowmelt, sublimation, transpiration, evaporation, and 

percolation. However, our model does not consider the nitrogen cycle. Moreover, we do not use the 

irrigation sub-model used in the SWAT model. Instead, we use a simple protocol in which irrigation 

water is supplied to the top layer of the soil if the crop experiences water stress. Irrigation water is 

supplied until its stock is exhausted. The size of the irrigation water stock is determined by the 

parameter Irrcapacity, which is estimated at each cell of the grid by MCMC. 

 

Instead, the method for the calculation of water stress is added in the revised manuscript as follows.  

 

In PRYSBI2, the calculation of water stress follows the SWAT (Neitsch et al., 2005) algorithm. In 

SWAT, the daily water stress is calculated according to soil water, soil characteristics (field capacity 

and water content at saturation), root depth and crop field evapotranspiration. PRYSBI2 uses the soil 

water calculated in HiGW-MAT as explained in Section 3.2. The crop field evapotranspiration is 

calculated in SWAT according to the leaf area index. 

 

- By using the Kato & Yamagata (2014) biofuel yields map, it seems that changes in biofuel yield are 

not considered. Could this be added by scaling based on changing yield of wheat and/or maize? 

In Kato and Yamagata (2014), the future changes in climate and fertilizer input are considered. It is 

explained in the revised manuscript as follows.  

 

For biofuel crop yield y_(bio,j), the yield for miscanthus or switchgrass, whichever is greater in a given 

cell, is calculated for the entire globe by using the biofuel crop model developed in Kato and Yamagata 



(2014). The biofuel crop model in Kato and Yamagata (2014) considers the future changes in climate 

based on the RCP scenarios. In this study, we also consider the future changes in fertilizer input based on 

the SSPs adopted in Mori et al. (2018). Because of the uncertainty in future fertilizer application for crop 

management, we set the high end of the N fertilizer input threshold according to Tilman et al. (2011). The 

nitrogen fertilizer application was set to increase from the current level according to the increasing rate of 

GDP in the SSP2 scenario up to 160 kg N ha-1 yr-1 if the fertilizer input at the country level was below 

160 kg N ha-1 yr-1 in the 2000s. Also, the phosphorus fertilizer input in each country was set to follow the 

same annual increase rate as the nitrogen fertilizer application. 

 

- Historical domestic and industrial water extractions are taken from FAOSTAT; how are projected 

extractions calculated? 

We also use the same data for the future projection. In the revised manuscript, we described this as 

follows.  

 

While irrigation demand is simulated by the irrigation module, domestic and industrial water uses 

are prescribed based on the AQUASTAT database of the Food and Agricultural Organization (FAO; 

see Pokhrel et al., 2012b). We use the same prescribed values for domestic and industrial water uses 

in both historical and future simulations, as future projections of water withdrawal are not available. 

 

- With regard to adjustment factors for matching LUH2 or AIM land use areas/demand: What is the 

justification for using a gridcell-level adjustment factor for cropland but region-level adjustment 

factors for others? 

As described in Eq. (B-16), the adjustment factor for pasture is formulated as grid-cell level (𝐶 , , 

where 𝑗 denotes index for the 0.5° cell), by using the LUH2 historical data. We use the region-level 

adjustment factors for managed forest (𝐶 , , where 𝑘 denotes index for the 17 regions defined 

in AIM) because the grid-level reference data is not available. This is explained in the revised 

manuscript.  

 

We use the region-level adjustment factors for managed forest (𝐶 , ) because the grid-level 

reference data is not available. 

 

- Fig. 2 should be revised to separate (a) input data coming from outside the model system and (b) 

data being moved between sub-models. Generally, using different kinds of boxes (rounded rectangles 

vs. circles, for instance) for models vs. data would be helpful. "Atmosphere" should be added to the 

arrow pointing to Land Ecosystem. 



According to the suggestion, Fig. 2 is revised. Input data is outside the model system. We use 

different kinds of boxes for models and data. We also added arrows pointing from "Atmosphere" to 

Land ecosystem. Data box cannot be moved between sub-models, but we use a similar format to that 

used in Robinson et al. 2018, Figs. 3-6, where the data box is placed at the right. The caption of 

Figure 2 is modified as follows.  

 

Boxes indicate the sub-models and data. For the sub-models, the name and time-step of the models 

are indicated in the boxes. In the “data” box, the name of the variable saved as a file is 5 indicated. 

In the “input data” box, information regarding the input data is indicated. 

 

- P3 L2: Misspelling: "temperture" 

- Throughout: "Chapters" should be referred to as "sections" 

- P6 L25: Unnecessary comma in "et al., (2011)" 

- P11 L21: "LUH2h2v" 

Thank you very much for the corrections. They are corrected in the revised manuscript. 

 

- P12 L6: What is "mascon"? 

We modified the manuscript as follows. We also added new citations (Save et al. 2016, Watkins et al. 

2015, Wiese et al. 2016).  

 

For the GRACE data, we use the mean of mass concentration (mascon) products from the Center for 

Space Research (CSR; Save et al., 2016) at the University of Texas at Austin and the Jet Propulsion 

Laboratory (JPL; Watkins et al., 2015; Wiese, Yuan, et al., 2016) at the California Institute of 

Technology. 

 

In the caption of figure 3, it is also described as follows.  

 

The GRACE data shown are the mean of the mass concentration products from two processing 

centers: CSR and JPL. 

 

- P13 L10: Closing parenthesis should come after "satellite" 

- P14 L1: "reproducibility" doesn’t seem like the right word. Perhaps "performance"?  

- P14 L13: 2a should be 8b 

- P14 L20: "global average" should be "global total" or just "total" 

Thank you very much again for the corrections. They are corrected in the revised manuscript. 

 



- P16 L15: I’m unclear as to what this explanation means: "Soil carbon is less impacted by the land-

use change compared to the above-ground biomass, likely because of the carbon supply from crops 

in the VISIT calculation." 

In the revised manuscript, the reason for “less impacted” is added as follows.  

 

The decrease in soil carbon after deforestation is much smaller than the decrease in above-ground 

biomass, as the carbon supply from crop residue compensates for the soil carbon loss. 

 

- P16 L20–22: It is unclear how increasing above-ground biomass would negatively affect ecosystem 

services.” In Asia, the decrease in food cropland area tends to increase the above-ground biomass 

in both the RCP2.6 and RCP8.5 scenarios. Accordingly, even under the mitigation-oriented 

scenario, considerable changes in ecosystem structure and functions would occur in certain regions, 

leading to serious deterioration in ecosystem services.” 

The description in the original manuscript was misleading, and thus we modified the manuscript as 

follows.  

 

The impact on above-ground biomass is projected to be greater in northwest South America, central 

Africa, northeast North America, and Australia, where the bioenergy cropland area is expanding. In 

these regions, even under the mitigation-oriented scenario, considerable declines in ecosystem 

structure and functions would occur, leading to deterioration, for example, of habitats for natural 

organisms, water holding capacity, and soil nutrients. Consequently, these functional degradations 

would degrade ecosystem services such as biodiversity, regulation, and provision. On the other hand, 

in Asia, the decrease in food cropland area tends to increase the above-ground biomass in both the 

RCP2.6 and RCP8.5 scenarios, possibly leading to leading to the enhancement of above-ground 

biomass, and thus ecosystem services. 

 

- P21 L9–10: This is unclear; please revise. 

This paragraph describes the differences between TeLMO and the integrated assessment model 

(IAMs). In general, the IAMs are not grid-based, but divides the world into dozens of regions and 

describes economic activity in these regions. Therefore, the IAMs 1) calculate the area of 

agricultural land by using the information of the yield averaged over these regions based on the 

balance between supply and demand, and 2) allocate the agricultural land by the down-scale method 

(e.g., Hasegawa et al. 2017). As pointed out by previous works (Alexander et al. 2017), the problem 

with this method is that it is not possible to explicitly consider spatiotemporal information such as 

crop yield and production cost when determining land use change in the procedure of 1). TeLMO 

solves this problem, making it possible to consistently consider the spatiotemporal information such 



as crop yields and the balance between supply and demand when allocating the agricultural land, by 

using the Food Cropland Down-scale Module and the International Trade Module. This is a very 

important point and was explained in a new section of the text, “2.2 Novelty of MIROC-INTEG-

LAND”. 

 

- P28 L6: Citation missing 

The citation is added to the revised manuscript (Friedl et al. 2010). 

 

- Fig. 4: Labels (a) and (b) should be referenced in caption.  

The caption is modified in the revised manuscript as follows.  

 

Figure 4: Comparison of irrigation demands simulated by MIROC-INTEG-LAND (a) with the 

results from offline simulations using HiGW-MAT (b) forced by observed climate forcing data 

(Pokhrel et al., 2015) for 1°×1° grids shown as the mean for 1998- 2002 period. 

 

- Fig. 10: Y-axis units? 

It is the cropland in that year as a fraction of total land area. The caption of Figure 12 (Figure 10 in 

the original manuscript) is modified in the revised manuscript as follows.  

 

Figure 12: Time series of changes in cropland area based on the forcings of the five climate models. 

The vertical axis is the cropland area as a fraction of total land area. 

 

- Fig. B-1: (1) Bin boundaries should be labeled in terms of real units. (2) What year(s) are being 

compared? At what resolution? (Include this info in caption, not just main text.) 

The information on (1)-(3) is included in the caption of Fig. B-1. The label in Fig. B-1 is also 

modified. The caption of Figure B-1 is modified as follows.  

 

Figure B-1: Comparison of the global MODIS cropland area and the calculated area using the 

agricultural suitability index (ASI). Here, 23,000 randomly selected cropland area values are 

arranged in descending order and divided into 10 categories; the average value of MODIS (black) 

and ASI values calculated by TeLMO (red) in each category are compared. The horizontal axis is the 

higher percentile of cropland area data that is randomly selected from the global 0.5 degree grids at 

year 2005. 

 

In the main text of Appendix B1.1, the sentence is modified as follows.  

 



The logistic regression coefficient was derived from 23,000 data values that were randomly selected 

from the set of global 0.5° grids at year 2005. 
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Anonymous Referee #2 

Summary 

The authors present a new land model that includes the effects of climate on land allocation by 

constraining irrigation due to water availability and by calculating yield based on current climate. 

The primary novelty here is that the land allocation scheme has been included in the land component 

of an earth system model. This enables land allocation to be determined by the changing state of the 

earth system in conjunction with estimates of demand for food and other land-based commodities. 

The model reproduces historical conditions well, and future projections show reasonable results. 

Future goals include full coupling with the atmosphere and ocean components to incorporate 

additional human-earth system feedbacks. 

 

Overall impression 

This is a big step toward full human-earth system coupling, with a couple of novel developments 

including the impacts of water scarcity on land allocation and the inclusion of land allocation in the 

land model. My main concern is that these developments presented in this paper are not highlighted 

as providing new information. The examples do not show the benefits of these developments over not 

having them, and as such their value is not made clear. The paper can be strengthened by some 

reframing that brings these novel improvements to forefront, along with more critical examination of 

their strengths and weaknesses. I recommend some considerable revisions, and please see the 

detailed comments that follow. 

 

1) There are two novel developments here: water availability effects on irrigation/land allocation, 

and the inclusion of land allocation in the land model. They each have unique contributions that 

should be highlighted. The inclusion of land allocation in the land model is unique and enables 

direct response of land use to changing conditions, including both the climate and the water 

availability as determined through the hydrological model. While there is not yet feedback with the 

atmosphere, the response of growth/yield to climate is more detailed than is otherwise considered in 

IAMs and some other land use models, and is also directly embedded in the full land model, which is 

a feat in itself. The water/irrigation linkage to land allocation is even more novel, as there have been 

only regional studies on this with loose coupling, I know of only one IAM that has just finally made 

this work but without connections to a full land model. The uniqueness of this new system should be 

more clearly defined such that your examples show the benefits of these developments. 

Thank you for suggesting a description of the novel developments in the paper. The novelty of the 

model is summarized in a new section (2.2 Novelty of MIROC-INTEG-LAND). The name of the 

model has been changed based on the suggestion of reviewer #1. In the revised manuscript, the title 

of Section 2 is “Overall feature of MIROC-INTEG-LAND”, and that of section 2.1 is “Model 



structure”. In the new section 2.2, we clearly emphasized the novelty of MIROC-INTEG-LAND as 

suggested. We also summarized the novelty of the model in Abstract.  

 

2) Provide examples that show the benefits of your novel developments. This will require additional 

simulations that shut off water scarcity effects on potential irrigation and alternatively shut off the 

climate effects on yield. As it is, your examples just show outputs that can be generated by a variety 

of other models. You want to highlight the value added of your developments. 

We again appreciate your suggestions. We agree that additional simulations that shut off the 

interactions between the sub-models should be helpful to show the benefits of our developments. 

Our response to these points is explained in the reply to your comments on page 16, lines 23-24 

below. 

 

3) Discuss how these developments relate to existing alternatives and what the limitations are. For 

example, IAMs and other land models can project land use/cover under changing climate and feed 

this information to a land model. Why not just do this in AIM and feed it to MIROC? What do you 

gain and lose with TeLMO inside MIROC? How is TeLMO different from AIM and when do you 

expect one to be more robust than the other? The same questions could be asked with respect to 

water. 

The difference between TeLMO and IAMs, and the advantages of coupling (running the sub-models 

together) are discussed in the second and third paragraphs in Section 2.2 “Novelty in MIROC-

INTEG-LAND” as follows.  

 

2.2 Novelty of MIROC-INTEG-LAND 

An important feature of MIROC-INTEG-LAND is that the land allocation model is coupled to the 

state-of-the-art land surface model, and that the impact of future climate and socio-economic 

changes on water resources and land use can be considered consistently. In general, future land-use 

changes are often assessed by using an IAM. However, as mentioned earlier, IAMs are not grid-

based, but rather they divide the world into dozens of regions and describes the entirety of economic 

activity in these regions. Therefore, IAMs has a simplified description of the processes related to 

water resources and crop growth. In contrast, MIROC-INTEG-LAND provides capabilities to 

calculate complex physical processes over the land, and considers the changes in water resources, 

taking into account human activities such as irrigation and reservoir operation. Furthermore, 

process-based crop models allow for an explicit and detailed consideration of growth process of five 

different crops. 

For the projection of future land use, IAMs usually 1) calculate the area of agricultural land by using 

yield information averaged over these regions based on the balance between supply and demand, and 



2) allocate the agricultural land by using a downscaling approach (e.g., Hasegawa et al. 2017). As 

pointed out in previous studies (Alexander et al. 2017), the problem with this method is that it is 

does not allow an explicit consideration of spatiotemporal information such as yield and production 

cost when determining land use change. The Food Cropland Model in TeLMO addresses this issue 

by making it is possible to consistently consider the spaciotemporal information such as crop yields 

and the balance between supply and demand when allocating the agricultural land, by using the Food 

Cropland Down-scale Module and the International Trade Module as explained in Appendix B. 

   As for the projection of future land use change, TeLMO enables the calculation of future land 

use change as an offline simulation, by using the crop yield data calculated in advance. On the other 

hand, crop yield depends on water resource availability that is affected by the changes in soil 

physical processes due to future climate change, as well as the changes in irrigated cropland area 

caused by the increases in future food demands. MIROC-INTEG-LAND couples the models of land-

physical processes, human water management, and crop growth processes with the land-use 

allocation model to consider these various interactions, as explained above. 

 

In Section 6.4, we also compared the performance of TeLMO and AIM for the area of food cropland, 

pasture, and forest (Figure 7-9). The figures for pasture and forest area are added according to 

suggestions by reviewer #1.  

 

4) One concern I have about the model itself is the inconsistency between the crop model for 

growth/yield and the biogeochemical / biophysical model for cropland. You may not be able to fix 

this right now, but it is a problem that there are two different crop growth models to represent 

different processes of the same land area. In particular, your yield model does not have explicit 

fertilizer, but your VISIT model does. For a variety of reasons, the growth values will not be the 

same between the two representations, but they should be because the growth determines the 

geochemical and physical characteristics of the cropland. In the end your yields are not consistent 

with how cropland affects the geochemical and physical processes in the land model that will 

eventually feedback to the atmosphere. This should be fixed before full coupling with the 

atmosphere. 

In the revised manuscript, we added an explanation of the inconsistency among the sub-models in 

the integrated model. This is explained in accordance with your comment, “It seems that there are 

two crop models: PRYSBI2 and also one in HiGWMAT. Please clarify how these are different and 

why they are separate.”, and “page 8 line 14-16” below.  

 



5) Some of the description is not very clear or complete for the reader to understand what has been 

done or how the components interact. See comments below for details on what needs clarification. In 

particular, it isn’t clear how the non-cropland is affected by climate in this model. 

Explanation of the details in the sub-models and the interactions between the components are 

modified according to the suggestions. It is explained according to your comments, “page 15, lines 

19-21”, “page 26, lines 8-24”, and “page 27, lines 14-19” below.  

 

Specific comments and suggestions  

Abstract 

The abstract is not clear about what is presented here or what the outcomes of evaluation are. While 

some interactions from climate to land allocation are included, feedbacks between the land system 

and climate are not because the atmospheric inputs are fixed. Be clear about the novelty here, and 

state how well the evaluation performs. 

Thank you very much for your suggestions. First, the abstract was modified to clarify the novelty of 

the model development as follows.  

 

To investigate these interrelationships, we developed MIROC-INTEG-LAND (MIROC INTEGrated 

LAND surface model version 1), an integrated model that combines the land surface component of 

global climate model MIROC (Model for Interdisciplinary Research on Climate) with water 

resources, crop production, land ecosystem, and land use models. The most significant feature of 

MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and 

water balance, human water management, and crop growth incorporates a land use decision-making 

model based on economic activities. In MIROC-INTEG, spatially detailed information regarding 

water resources and crop yields is reflected in the prediction of future land use change, which cannot 

be considered in the conventional integrated assessment models. 

 

In addition, we also state how well the evaluation performs and the outcomes of simulations. The 

final sentence of Abstract in the original manuscript as follows.  

 

By evaluating the historical simulation, we have confirmed that the model reproduces the observed 

states well. The future simulations indicate that the changes in climate has significant impacts on 

crop yields, and thus on land use change. The newly developed MIROC-INTE-LAND could be 

combined with atmospheric and ocean models to develop an integrated Earth system model to 

simulate the interactions among coupled natural-human Earth system components. 

 

Introduction 



page 2, line 21: Bond-Lamberty this reference is incorrect throughout 

The reference is modified in the main text.  

 

Model structure 

Sub models 

It seems that there are two crop models: PRYSBI2 and also one in HiGWMAT. Please clarify how 

these are different and why they are separate. 

The reason that different crop models are used for HiGWMAT and PRYSBI2 is that 1) HiGWMAT 

uses a crop model based on SWIM for the calculation of the irrigation process, and it has been 

validated that the water withdrawal of HiGWMAT in various regions is consistent with the statistical 

data, and 2) PRYSBI2 uses a crop model based on SWAT and crop yield in PRYSBI2 has been 

calibrated using the agricultural statistics. MIROC-INTEG-LAND uses different crop models to 

obtain realistic water withdrawal in HiGWMAT and to calculate realistic crop yields in PRYSBI2. 

The differences in the formulation between the crop models in PRYSBI2 and HiGWMAT are that 

the former uses more detailed crop modeling of the two-layer crop canopy, Farquhar photosynthetic 

CO2 assimilation, and the reported planting date of Sacks et al. (2010), while the latter employs the 

simpler crop modeling of the single-layer crop canopy, radiation-use efficiency type biomass 

accumulation, and the hypothetical planting date that gives the highest yield under the given weather 

conditions. As pointed out by the reviewer, it is an important future work to tune the model 

parameters to obtain the realistic water withdrawal and crop yields by using a single crop model. In 

Section 3.1.2, this is explained as follows. The new reference (Okada et al. 2015) is added in the 

reference list.  

 

The crop growth module is based on the H08 model (Hanasaki et al., 2008a, 2008b), where the crop 

vegetation formulations and parameters are adopted from the Soil and Water Integrated Model 

(SWIM) (Krysanova et al., 1998). The crop growth module in HiGWMAT estimates the cropping 

period necessary to obtain mature and optimal total plant biomass for 18 different crop types. 

Irrigation is activated during the entire growing season but only for the irrigated portion of a grid cell 

using a tile approach. Crop growth for the irrigation processes is simulated within the HiGWMAT 

model (i.e., independent of PRYSBI2). 

  The reason that different crop models are used for HiGWMAT and PRYSBI2 is that 1)  

HiGWMAT has been used a crop model based on SWIM, and it has been validated that the water 

withdrawal in various regions is consistent with the statistical data (Pokhrel et al. 2014), and 2) 

PRYSBI2 has been used a crop model based on SWAT, and crop yield in PRYSBI2 has been 

calibrated using the agricultural statistics (Sakurai et al. 2014). MIROC-INTEG-LAND uses 

different crop models to obtain realistic water withdrawal in HiGWMAT and to calculate realistic 



crop yields in PRYSBI2. The differences in the formulation between the crop models in PRYSBI2 

and HiGWMAT are that the former uses more detailed crop modeling of the two-layer crop canopy, 

Farquhar photosynthetic CO2 assimilation, and the use of the reported planting date of Sacks et al. 

(2010), while the latter employs the simpler crop modeling of the single-layer crop canopy, 

radiation-use efficiency type biomass accumulation, and the hypothetical planting date that gives the 

highest yield under the given weather conditions (Okada et al. 2015). 

 

VISIT 

page 8, lines 12-13: abandoned cropland recovers to mean biomass of what? and is always 

considered secondary, or can secondary land revert to primary? 

It is the natural vegetation in the same grid. This is explained in the revised manuscript as follows.  

 

regrowth of abandoned croplands is also simulated as the recovery of the mean biomass of the 

natural vegetation in the same grid. 

 

page 8, lines 14-16: these fertilizer and crop calendar inputs seem inconsistent with the crop model. 

if the crop model doesn’t use fertilizer inputs, then how are they used in VISIT? if crop growth is 

calculated with implicit fertilizer, then this specific nitrogen input doesn’t match. And why would 

VISIT be using a crop calendar and not the crop model? your biogeochemical fluxes are not going to 

correspond with your crop growth. 

As described in Section 3.2 and Appendix A.7, PRYSBI2 describes the effects of fertilizer by 

technological factors without considering the fertilizer input process. MIROC-INTEG-LAND 

adopted this method because crop yields have been calibrated by using technological factors in 

PRYSBI2. On the other hand, VISIT considers the fertilizer input processes in the manner described 

in Section 3.4, and it has been validated that the calculated carbon and nitrogen cycle is consistent 

with various observations (Ito et al. 2017). Therefore, the handling of fertilizer is different between 

PRYSBI2 and VISIT. As the reviewer pointed out, it is important to ensure that the fertilizer 

processes is consistent between these sub-models. The text in Section 3.3 has been modified as 

follows. 

 

In PRYSBI2, the effects of fertilizer are included in the technological factors, and crop yields are 

calibrated based on the technological factors, As described in Section 3.2 and Appendix A.7. On the 

other hand, VISIT has been applied and validated at various scales from flux measurement sites to 

the global scale (e.g., Ito et al., 2017) based on the treatment of fertilizer input, as described above. 

The consistent treatment of fertilizer processes in PRYSBI2 and VISIT should be important future 

work. 



 

Model coupling 

Experimental settings 

page 11, lines 3-19: which SSPs for which RCPs?  

In this study, we use outputs of the SSP2 scenario calculated by AIM/CGE (Fujimori et al. 2017). 

Since the RCP8.5 scenario is not available in SSP2, we use the output of the baseline scenario from 

AIM/CGE for the MIROC-INTEG-LAND calculation of RCP8.5. This is explained in the revised 

manuscript. 

 

Historical simulations 

page 13, lines 1-3: The results in figure 5 do not all line up along the 1:1 line. You have to adjust this 

statement. 

We modified the statement in the revised manuscript as follows:  

For all crops, most of the relationship between the simulated and reported data was distributed 

around the 1:1 line. 

 

page 14, lines 1-2: TeLMO crop area is not very similar to AIM, and it is more similar to FAO in 

most cases presented. Since AIM is a driver of TeLMO, more explanation is required here of why 

they are different. Furthermore, the similarity to FAO is more compelling as evidence for usability of 

TeLMO, than any similarity to AIM. 

Thank you very much for your suggestions. The difference between TeLMO and AIM/CGE is due to 

the difference in crop yield as well as the mechanism for the allocation of the agricultural land. As 

explained in Appendix B-1, TeLMO can consider the spatial distribution of crop yield when 

allocating the agricultural land. On the other hand, in integrated assessment models such as 

AIM/CGE, land use change is calculated by aggregating crop yield information in the regions 

(AIM/CGE divides the world into 17 regions). In large countries such as Australia, Brazil and 

Russia, the allocation method in TeLMO may show good performance. This is explained in the 

revised manuscript.  

 

In MIROC-INTEG-LAND, TeLMO uses the food demand and GDP per capita calculated by 

AIM/CGE under the socio-economic scenario SSP2 (Fujimori et al., 2017). Therefore, the difference 

between TeLMO and AIM/CGE is due to the difference in crop yield as well as the mechanism for 

the allocation of agricultural land. As explained in Appendix B.1, TeLMO can consider the spatial 

distribution of crop yield when allocating agricultural land. On the other hand, in AIM/CGE, land 

use change is calculated by aggregating crop yield information in the regions where the model 



calculation is performed (AIM/CGE divides the world into 17 regions). In large countries such as 

Australia, Brazil and Russia, the allocation method in TeLMO shows good performance. 

 

Future simulations 

page 15, line 8: why the maximum value? this would underestimate the land area because each crop 

may be grown in a cell, with varying yields. 

+Comments on Appendix B: 

page 22, lines 7-11: it isn’t clear why you are using the max yield, and it sounds like it is per crop 

here, while in the text it sounded like it was the max across crops. don’t you need to apply each crop 

yield to its own prices in the 30sec cells to get distinct ASI values for crops? maybe a crop with a 

lower yield has higher ASI due to higher price. so are you essentially just selecting one crop for the 

half-degree cell? this will underestimate cropland. 

In the TeLMO food cropland model, the cropland area is calculated using the maximum value of the 

five crops in each grid. This formulation is due to the simplification of the model structure as 

described below. As pointed out by the reviewer, using the maximum yield to determine the cropland 

area would underestimate the cropland area. However, TeLMO applies an adjustment parameter (𝐶  

in Eq. B-1) so that the cropland area of the base year can be close to the observed (LUH) data. For 

this reason, cropland area is not necessarily underestimated by the model. This is explained as below.  

 

If the cropland area predicted by TeLMO is 𝐴 , the actual cropland area is 𝐴 , the maximum 

yield is 𝑌 , the actual yield that determines the cropland area is 𝑌 , the food demand is 𝐷, and 

the adjustment parameter is 𝐶 , then  

𝐴 ~
𝐷

𝑌
𝐶  

𝐴 ~
𝐷

𝑌
 

At the base year (2005), 𝐴 ~𝐴  and thus 

𝐶 ~
𝑌
𝑌

 

Therefore, the ratio of 𝐴  and 𝐴  except the base year 𝑦 2005 is 

𝐴
𝐴

~

𝑌
𝑌

𝑌
𝑌

 

Namely, the ratio of 𝐴  and 𝐴  can be approximated as the ratio of 𝑌 𝑌  between the 

calculation and base years. Since the actual calculation of TeLMO considers the food trade and 



allocates the cropland area at the grid level, this is not entirely the case. However, the cropland area 

in TeLMO is not necessarily underestimated because of the adjustment parameter.  

  As the reviewers point out, it is possible to formulate the prices for different crops and allocate the 

cropland areas according to agricultural suitability indices. In that case, it is necessary to increase the 

number of sectors in the general equilibrium model in the International Trade Module, and solve the 

prices for each sector. In fact, in the course of the development of TeLMO, we tried to determine the 

price for each crop and allocate cropland area according to each agricultural suitability index. 

However, the results obtained in this formulation were roughly similar to those obtained by the 

current formulation. On the other hand, in some cases, the solution did not converge due to the 

complexity of the general equilibrium model (particularly when demand increased). For this reason, 

we decided to adopt the current formulation. However, as the reviewers point out, calculating 

cropland area for each crop is a very important future work. In the main text, it is described as 

follows. 

 

As described in Section 3.4 and Appendix B, TeLMO uses the yield calculated by PRYSBI2 (grid 

maximum value as shown in Figure 11f) and the food demand output of AIM/CGE. 

 

The description in Appendix B.1.1 is modified as follows.  

 

In TeLMO, total food cropland area is projected by using the maximum yield across the five cereal 

types (winter and spring wheat, maize, soybean, and rice). The reason for this formulation is 

explained in Section B.1.2. 𝑦  in Eq. (B-1) is calculated from the yields of the five cereals types by 

PRYSBI2. 

 

At the end of Appendix B1.2, it is explained as follows.  

 

As explained in Section B.1.1, TeLMO uses the maximum yield of five cereals types to project the 

total cropland area. Alternatively, it is possible to increase the number of agricultural sectors in Eqs. 

(B-3) to (B-12), solve the prices for each crops, and allocate the cropland area according to the ASIs 

for each crop. Although we attempted this formulation in the course of our development of TeLMO, 

it was found that the results were similar to those obtained from the current formulation. On the 

other hand, the solution of general equilibrium models did not converge in some cases because the 

number of sectors increases in the equations. For this reason, we decided to adopt the current 

formulation, while recognizing that  calculating cropland areas for each crop is an important future 

work. 

 



page 15, lines 19-21: what is the basis for your bioenergy crop calculations here? 

The method for the calculation of bioenergy crop yield is described in the revised manuscript as 

follows.  

 

For biofuel crop yield 𝑦 , , the yield for miscanthus or switchgrass, whichever is greater in a given 

cell, is calculated for the entire globe by using the biofuel crop model developed in Kato and 

Yamagata (2014). The biofuel crop model in Kato and Yamagata (2014) considers the future 

changes in climate based on the RCP scenarios. In this study, we also consider the future changes in 

fertilizer input based on the SSPs adopted in Mori et al. (2018). Because of the uncertainty in future 

fertilizer application for crop management, we set the high end of the N fertilizer input threshold 

according to Tilman et al. (2011). The nitrogen fertilizer application was set to increase from the 

current level according to the increasing rate of GDP in the SSP2 scenario up to 160 kg N ha-1 yr-1 if 

the fertilizer input at the country level was below 160 kg N ha-1 yr-1 in the 2000s. Also, the 

phosphorus fertilizer input in each country was set to follow the same annual increase rate as the 

nitrogen fertilizer application. 

 

page 16, lines 23-24: Not sure what you mean here. You haven’t untangled land use effects here, just 

showed results of land area changes and the biomass affected. Many ecosystem and earth and 

integrated assessment models do this. what is unique here? If you were to show how the land 

allocation and the biomass effects differed due to the climate effects on yields, then this would show 

the benefit of this model. To do this you have to do another set of runs where the yields are the base 

year yields plus the non-climate changes in yield, and compare these to the runs you have done. 

Alternatively, you could show how the inclusion of water availability in determining irrigation 

changes the crop area/production by turning off the irrigation dependence on the available water. 

Thank you very much for your very constructive suggestions. According to the reviewer’s 

comments, we performed additional simulations where climate effects on yield are switched off 

(new Figure 16) to shows the benefits of this model. We removed this sentence of the original 

manuscript, and added the new paragraphs at the end of Section 7. In fact, we are now preparing a 

paper using MIROC-INTEG-LAND to investigate the impacts of various natural and socio-

economic factors (climate, irrigation, fertilization effects, population, food demands, etc.) on land 

use and land ecosystems. Therefore, details of the analysis on interactions between sub-models will 

be presented in the next paper. In the revised manuscript, we added discussions as follows. 

 

Figure 16 shows the results of simulations to evaluate the effects of climate change on crop yield and 

land use. In Figure 16, the RCP8.5 simulations with climatic factors (temperature, water vapor, wind 

speed, soil moisture, soil temperature) and CO2 concentration fixed at 2006 (noCL+noFE), those 



with climatic factors fixed (noCL), and those with varying climate and CO2 concentration (CL+FE) 

are compared. The CL+FE simulations are the same as the RCP8.5 results shown in Figure 12. As 

shown in Figure 16a, in the noCL+noFE simulations, the crop yield was much lower than that in the 

CL+FE simulations. In the noCL+noF experiment, the crop yield is increased due to the 

technological development (Section 3.2 and Appendix A.7). The reason that the yield in the CL+FE 

experiment is higher than that in noCL+noFE experiments is that the crop yield increases due to the 

fertilization effect in the former. In the noCL+FE experiment (Figure 16), the crop yield is 

approximately 1.7 times as large as in the noCL+noFE experiment. Although there is a great deal of 

uncertainty in the treatment of fertilizer effects in crop models (Sakurai et al. 2014), the increase in 

crop yields is significant in the simulations by MIROC-INTEG-LAND.  

  As shown in Figure 16a, the crop yield is significantly smaller in the CL+FE than in the noCL+FE 

experiment. This result indicates that climate change can significantly reduce crop yields. One of the 

reasons for this reduction in crop yield is that the growing season is shortened due to a rise in surface 

air temperature, adversely affecting the growth of crops (Sakurai et al. 2014). The impact of climate 

change on crop growth increases with increasing temperature, and in 2100 crop yield in the CL+FE 

experiment is projected to decrease roughly 60% relative to the yields in the noCL+FE experiments.  

  Due to the changes in crop yields caused by the changes in climate and fertilization effects, future 

cropland area will also change significantly. As shown in Figure 16b, the noCL+noFE experiment 

requires more cropland area compared to the CL+FE experiments, due to the smaller increase in 

crop yields (Figure 16a). As explained in Figure 12, cropland area could expand in the first half of 

the 21st century to meet the increasing demand due to population growth, and then gradually 

decrease in the latter half of the 21st century. On the other hand, in the noCL+FE experiments, the 

increase in crop yield is larger than that in the CL+FE experiment, and thus the cropland area in 

2100 will be about 76% of that in 2005. In sum, it is found that the changes in climate and 

fertilization effects have large impacts on crop yields and land use change. 

 

Caption of Figure 16 is added as follows.  

 

Figure 16: Time series of changes in a) cropland yield (maximum across five crops at each grid, 

t/ha), and b) food cropland area (a fraction of total land area) based on the forcings of the five 

climate models under the RCP8.5 scenario. Simulations with climatic 5 factors and CO2 

concentration fixed at 2006 (light green, noCL+noFE), those with climatic factors fixed (cyan, 

noCL), and those with varying climate and CO2 concentration (red, CL+FE). 

 

Implications 

page 16, lines 30-31: this is where things get more interesting 



Thank you very much again for your suggestions. The analysis of the interactions and feedbacks is 

presented at the last few paragraphs of Section 7 in the revised manuscript. According to this 

modification, the first paragraph of Section 8 is revised as follows. 

 

With MIROC-INTEG-LAND, it is possible to calculate the interaction between climate, water 

resources, crops, land use, and ecosystems. The discussion in Section 7 suggests the type of 

feedback processes that can occur. While this study showed only the results of the SSP2 scenario, in 

the SSP3 scenario, where the world is divided, the demand for food will be greater and more 

cropland area will be needed (O'Neill et al., 2017). Investigating the impacts of various natural and 

socio-economic factors (climate, irrigation, fertilization effects, population, food demands, etc.) on 

land use change and land ecosystems is an important future research direction as an extension of the 

present study. 

 

page 17, lines 6-8: it seems like you have outputs in this paper that could be used for this 

In the original manuscript 

MIROC-INTEG1 can also be used to evaluate the effectiveness of climate mitigation measures by 

quantitatively evaluating the cultivated land area of biofuel crops and the budget of greenhouse 

gases via the terrestrial ecosystem model, VISIT. 

Thank you very much for your suggestion. This sentence is removed in the revised manuscript. 

 

Figures and tables 

Figure 3 What do you mean by multi-model mean? You are using only one model here. 

We modified the manuscript as follows.  

 

Simulated results are the average of five climate model simulations. Grey shading indicates the 

uncertainty range shown by one standard deviation from the mean. 

 

Figure 10 What is the vertical axis? Is it the annual change in cropland area as a fraction of total 

land area, or is it the cropland in that year as a fraction of total land area? 

It is the cropland in that year as a fraction of total land area. The Figure caption of Figure 12 (Figure 

10 in the original manuscript) is described in the revised manuscript.  

 

Figure 12: Time series of changes in cropland area relative to land area based on the forcings of the 

five climate models. The vertical axis is the cropland area in that year as a fraction of total land area. 

 

Appendix A 



page 17, line 28: what are these? can you give the types of data if not able to list them all here? 

We modified “A.1 Input data” in the revised manuscript as follows.  

 

As input data, the PRYSIB2 Version 2.2 uses the planting and harvesting date (Saccs et al. 2008), 

soil field capacity (Scholes et al. 2011), and atmospheric data (average, maximum and minimum 

daily temperature, daily shortwave and longwave radiation, daily humidity, and CO2 concentration). 

We use the same atmospheric data as HiGWMAT described in Section 5 (i.e., ISIMIP fast track data 

by Hempel et al. 2013).  

 

page 19, line 3: i think you mean water stress and shouldn’t this go into section A.5? 

As you pointed out, the water stress is explained in A5. It is described in the revised manuscript.  

 

page 19, line 11: so there is a cold stress factor applied on top of the temperature dependent 

equation? 

We removed the sentence in the original manuscript “For soybean, we considered cold stress in 

addition to the temperature stress explained above. The details are the same as in version 2.0.”. The 

cold stress was not considered in the MIROC-INTEG because of technical reasons. 

 

page 20, lines 7-16: it isn’t clear what this is or how it is applied. is it a fraction that is applied to a 

given yield and then added to that yield? what are equations 32 and 33? 

“equations 32 and 33” in the original manuscript were Eq. (A-5) and (A-6). The trend of the 

parameter relevant to agricultural management is expressed by substituting Θ obtained in Eq. (A-

14) into Eq. (A-5) and (A-6).  

 

Appendix B 

page 22, lines 7-11: it isn’t clear why you are using the max yield, and it sounds like it is per crop 

here, while in the text it sounded like it was the max across crops. don’t you need to apply each crop 

yield to its own prices in the 30sec cells to get distinct ASI values for crops? maybe a crop with a 

lower yield has higher ASI due to higher price. so are you essentially just selecting one crop for the 

half-degree cell? this will underestimate cropland. 

This is addressed in the above comments for page 15, line 8.  

 

page 25, lines 20-21: for bionenergy crops, does this mean that these are fixed values, or are they 

dependent on the atmospheric inputs? More info is needed here. 

We consider changes in climate and socio-economic factors for the calculation of bioenergy crops. 

The manuscript is modified as follows.  



 

For biofuel crop yield 𝑦 , , the yield for miscanthus or switchgrass, whichever is greater in a given cell, 

is calculated for the entire globe by using the biofuel crop model developed in Kato and Yamagata 

(2014). The biofuel crop model in Kato and Yamagata (2014) considers the future changes in climate 

based on the RCP scenarios. In this study, we also consider the future changes in fertilizer input based on 

the SSPs adopted in Mori et al. (2018). Because of the uncertainty in future fertilizer application for crop 

management, we set the high end of the N fertilizer input threshold according to Tilman et al. [2011]. The 

nitrogen fertilizer application was set to increase from the current level according to the increasing rate of 

GDP in the SSP2 scenario up to 160 kg N ha-1 yr-1 if the fertilizer input at the country level was below 

160 kg N ha-1 yr-1 in the 2000s. Also, the phosphorus fertilizer input in each country was set to follow the 

same annual increase rate as the nitrogen fertilizer application. 

 

page 26, lines 8-24: Is this NPP for pasture calculated beforehand, offline? Does it include matching 

climate drivers to the scenarios here? Or are these NPP numbers independent of the climate 

change? 

The NPP used in the pasture model was calculated in offline simulations in advance, with fixed 

boundary conditions at 2005. This is explained in the revised manuscript. 

 

The results of an off-line simulation by VISIT (Ito and Inatomi 2012) assuming the entire world to 

be grassland are used here for 𝑁𝑃𝑃 . The boundary condition of the VISIT off-line simulations is 

fixed at year 2005. 

 

page 27, line 10: where is the base-year managed forest area from?  

The base year of the managed forest is also 2005. It is added in the revised manuscript.  

 

Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data (Friedl et al., 2010) are 

used for the base-year forest area (2005) 

 

page 27, lines 14-19: also for forest, are these NPP values calculated beforehand, offline? and are 

there matching values corresponding with the scenarios here, or are they a single set of values for 

all sims? 

As in the case of the pasture model, the NPP in the Forest Model is calculated by offline simulations 

with fixed boundary conditions. This is explained in the revised manuscript. 

 

calculated by VISIT (Ito and Inatomi 2012) off-line simulations assuming the entire world to be 

forest with fixed boundary conditions (2005).  
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Abstract 

Future changes in the climate system could have significant impacts on the natural environment and human activities, which 

in turn affect changes in the climate system. In the interaction between natural and human systems under climate change 

conditions, land use is one of the elements that play an essential role. On the one hand, future climate change will affect the 

availability of water and food, which may impact land-use change. On the other hand, human-induced land-use change can 25 

affect the climate system through bio-geophysical and bio-geochemical effects. To investigate these interrelationships, we 

developed MIROC-INTEG-LAND (MIROC INTEGrated LAND surface model version 1), an integrated model that combines 

the land surface component of global climate model MIROC (Model for Interdisciplinary Research on Climate) with water 

resources, crop production, land ecosystem, and land use models. The most significant feature of MIROC-INTEG-LAND is 

that the land surface model that describes the processes of the energy and water balance, human water management, and crop 30 

growth incorporates a land use decision-making model based on economic activities. In MIROC-INTEG, spatially detailed 

information regarding water resources and crop yields is reflected in the prediction of future land use change, which cannot be 

considered in the conventional integrated assessment models. In this paper, we introduce the details and interconnections of 

the sub-models of MIROC-INTEG-LAND, compare historical simulations with observations, and identify various interactions 



2 
 

between the sub-models. By evaluating the historical simulation, we have confirmed that the model reproduces the observed 

states well. The future simulations indicate that the changes in climate has significant impacts on crop yields, and thus on land 

use change. The newly developed MIROC-INTE-LAND could be combined with atmospheric and ocean models to develop 

an integrated Earth system model to simulate the interactions among coupled natural-human Earth system components. 

1 Introduction 5 

The problems associated with climate change are related to the various processes involved in natural and human systems, and 

their interconnections. Changes in the climate system are caused by greenhouse gas emissions and changes in land use resulting 

from human activity (Collins et al., 2013). At the same time, climate change impacts natural and human systems in a variety 

of ways (e.g., Arent et al., 2014; Porter et al., 2014; Jiménez-Cisneros et al., 2014; Romero-Lankao et al., 2014). According to 

research on the linkage of various risks caused by climate change (e.g., Yokohata et al., 2019), changes in the climate system 10 

affect the natural environment, leading to changes in the socio-economic system, and finally impacting human lives. 

  One of the factors that play an essential role in the interaction between the natural and human systems is land use (van Vuuren 

et al., 2012; Rounsvell et al., 2014; Lawrence et al., 2016). In general, changes in land use are driven by changes in various 

socio-economic factors, such as an increase in food demand (Foley et al., 2011; Weinzettel et al., 2013; Alexander et al., 2015). 

At the same time, changes in the climate system affect the water resources available to agriculture and the size of the food 15 

supply through changes in crop yield (Rosenzweig et al. 2014; Liu et al. 2016; Pugh et al., 2016), significantly affecting human 

land use (Parry et al., 2004; Howden et al., 2007). Furthermore, climate mitigation measures often include the use of biofuel 

crops, which can significantly influence human land use (Smith et al., 2013; Humpenöder et al., 2015; Popp et al., 2017). On 

the other hand, land-use change is known to have bio-geophysical and bio-geochemical effects on the earth system (Mahmood 

et al., 2014; Chen and Dirmeyer, 2016; Smith et al., 2016), as changes in land use bring about changes in surface heat and 20 

water budget, which, in turn, affects air temperature and precipitation (Feddma et al., 2005; Findell et al., 2017; Hirsch et al., 

2018). Changes in land use also affect the terrestrial carbon budget, thereby influencing the concentration of greenhouse gases 

(GHGs) in the atmosphere (Brovkin et al., 2013; Lawrence et al. 2016; Le Quéré et al., 2018). It seems clear, then, that climate 

change induces land-use change by affecting various human activities, and that human land-use change affects changes in the 

climate system (Hibbard et al., 2010; van Vuuren et al., 2012; Alexander et al., 2017; Calvin and Bond-Lamberty 2018, 25 

Robinson et al., 2018).  

Various numerical models have been developed to describe the interaction between natural and human systems in order to 

project future conditions as they relate to climate change (van Vuuren et al., 2012; Calvin and Bond-Lamberty 2018). Generally, 

in models dealing with the details of natural systems, elements related to human activity are simplified, and in models dealing 

with the details of human activities, elements related to natural systems tend to be likewise simplified (Muller- Hansen et al., 30 

2018; Robinson et al., 2018). An Earth System Model (ESM) describes in detail the physical and carbon cycle processes in a 

natural system. A number of ESMs take human activities into consideration (Calvin and Bond-Lamberty 2018). iESM (Collins 
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et al., 2015) is based on a CESM (Community Earth System Model Project, 2019) that incorporates GCAM (Calvin, 2011; 

Wise et al., 2014), an integrated assessment model (IAM) that provides a comprehensive description of human economic 

activities. With iESM, it is possible to capture the various interactions between the natural environment and human economic 

activities (Collins et al., 2015), but the model used to indicate the impact of climate change on water resources and crops is 

rather simplified (Thornton et al., 2017; Robinson et al., 2018; Calvin and Bond-Lamberty 2018).  5 

IAMs consider supply and demand equations across the entire range of economic transactions and calculate the changes in 

surface air temperature resulting from increased GHGs in the atmosphere (Moss et al., 2010). IAMs can also project future 

changes in human land use (Wise and Calvin, 2011, Letourneau et al., 2012, Hasegawa et al., 2017). In general, however, 

IAMs simplify processes related to the natural environment (water resources, the ecosystem, crop growth, etc.) (Robinson et 

al., 2018), and thus do not explore the interactions between the natural and human systems on a spatially disaggregated basis 10 

(Alexander et al., 2018). 

Many models for predicting changes in human land use have been developed (e.g., Hurrt et al., 2006; Lotze-Campen et al., 

2008; Havlik et al., 2011; Wise and Calvin 2011; Meiyappan et al., 2014; Dietrich et al., 2019). Among these, the LPJ-GUESS 

and PLUMv2 coupled model is able to consider spatially specific interactions between changes in vegetation, irrigation, crop 

growth, and land use (Warlind et al., 2014; Engström et al., 2016; Alexander et al., 2018). However, LPJ-GUESS (Olin et al., 15 

2015) is a dynamic vegetation model that is incapable of exploring interactions related to physical processes, such as bio-

geophysical effects or future changes in water resources. On the other hand, LPJ-mL is a well-established global dynamical 

vegetation, hydrology, and crop growth model that can also consider the nitrogen and carbon cycle (Rolinski et al., 2018; von 

Bloh et al., 2018). The output of LPJmL (Bondeau et al., 2007), such as crop yield, land/water constraints, and vegetation and 

soil carbon, is used in the land use model MAgPIE (Lotze-Campen et al., 2008; Popp et al., 2011; Dietrich et al., 2013; Kriegler 20 

and Lucht 2015; Dietrich et al., 2019). Although the gridded information of LPJmL is linked to MAgPIE (Alexander et al., 

2018), the land-use change calculated by MAgPIE is not communicated to LPJmL (one-way coupling), making interactive 

calculations using the dynamic vegetation, hydrology, crop growth, and land use models impossible.  

In this study, we develop a global model that can evaluate the spatially detailed interactions between physical and biological 

processes, human water use, crop production, and land use related to economic activities. The model is based on the land 25 

surface component of global climate model MIROC (Model for Interdisciplinary Research on Climate version: Watanabe et 

al., 2010), into which we have incorporated water resources, land-ecosystem, crop growth, and land use models. In the 

integrated model, which we call MIROC-INTEG-LAND (MIROC INTGrated LAND surface model version 1), the budgets 

of energy, water, and carbon are determined by consistently considering the processes related to land surface physics, 

ecosystems, and human activities.  30 

Section 2 in this paper explains the overall structure of MIROC-INTEG-LAND. The component models of MIROC-INTEG-

LAND (climate, land ecosystem, water resource, crop growth, and land use), here called "sub-models", are described in detail 

in Section 3. Special attention is given to the land use sub-model, as it was specifically developed for inclusion into MIROC-

INTEG and is expected to play a pivotal role. The other sub-models—the climate, water resources, crop growth, and land 
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ecosystem models—are based on models developed in the course of previous research. Section 3 outlines how the sub-models 

used here differ from the original models. Section 4 explains the numerical procedure used to combine the sub-models in the 

integrated model. Section 5 describes the data used for the various inputs and boundary conditions required to operate the 

integrated model. Section 6 verifies model reliability by comparing historical simulation results with various observational 

data. A summary of the results from simulations by MIROC-INTEG-LAND of future conditions and a discussion of the 5 

interactions between climate and water resources, crops, land use, and ecosystem are presented in Section 7. Finally, in Section 

8, we discuss possible research themes regarding the interaction between natural and human systems that can be addressed 

using MIROC-INTEG-LAND.  

2 Overall feature of MIROC-INTEG-LAND 

2.1 Model structure 10 

The distinctive feature of MIROC-INTEG-LAND (Figure 1) is that it couples natural ecosystem and human activity models 

to the land surface component of MIROC, a state-of-the-art global climate model (Watanabe et al., 2010). The MIROC series 

is a global atmosphere-land-ocean coupled global climate model, one of the models contributing to the Coupled Model Inter-

comparison Project (CMIP). MIROC's land surface component, MATSIRO (Minimal Advanced Treatments of Surface 

Interaction and Runoff, Takata et al. 2003, Nitta et al., 2014) can consider the energy and water budgets consistently on the 15 

land grid with a spatial resolution of 1 degree. MIROC-INTEG-LAND performs its calculations over the global land area only, 

and neither the atmosphere nor ocean components of MIROC are coupled. One of the advantages of running only the land 

surface model is that it can be used to assess the impacts of land on climate change, taking into account the uncertainties of 

future atmospheric projections. A process-based terrestrial ecosystem model, VISIT (Vegetation Integrative SImulator for 

Trace gases, Ito and Inatomi 2012), is coupled with MATSIRO. 20 

Human activity models are included in MIROC-INTEG-LAND: HiGWMAT (Pokhrel et al., 2012), a global land surface 

model with human water management modules, and PRYSBI2 (Sakurai et al., 2014), a global crop model. In HiGWMAT, 

models of human water regulation such as water withdrawals from rivers, dam operations, and irrigation (Hanasaki et al., 

2006; 2008a; 2008b, Pokhrel et al. 2012a; 2012b) are incorporated into MATSIRO, the above-mentioned global land surface 

model. In PRYSBI2, the growth and yield of four crops (wheat, maize, soybean, rice) are calculated. In addition, TeLMO 25 

(Terrestrial Land-use MOdel), a global land use model developed for the present study, calculates the grid ratio of cropland 

(food and bio-energy crops), pasture, forest (managed and unmanaged) as well as their transition. The land-use transition 

matrix calculated by TeLMO is used in the terrestrial ecosystem model, VISIT.  

In MIROC-INTEG-LAND, various socio-economic variables are given as the input data for future projections. For example, 

domestic and industrial water demand is used in HiGWMAT. The crop growth model PRYSBI2 uses future GDP projections 30 

in order to estimate the “technological factor” that represents crop yield increase due to technological improvement. The land 

use model TeLMO uses future demand for food, bio-energy, pasture, and round wood, as well as future GDP and population 
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estimates. For future socio-economic projections, we use the scenarios associated with Shared Socio-economic Pathways (SSP, 

O’Neil et al. 2017) and Representative Concentration Pathways (RCP, van Vuuren et al., 2011). These are generated by an 

integrated assessment model, AIM/CGE (Asia-Pacific Integrated Model / Computable General Equilibrium, Fujimori et al., 

2012; 2017).  

Interactions of the natural environment and human activities are evaluated through the exchange of variables in MIROC-5 

INTEG-LAND (Figure 1). The calculations in HiGWMAT are based on atmospheric variables (e.g., surface air temperature, 

humidity, wind, and precipitation) that serve as boundary conditions. The HiGWMAT model calculates the land surface and 

underground physical variables for three tiles (natural vegetation, rain-fed, and irrigated cropland) in each grid; a grid average 

is calculated by multiplying the areal weight of the three tiles. In HiGWMAT, water is taken from rivers or groundwater based 

on water demand (domestic, industrial, and agricultural). Agricultural demand is calculated endogenously in HiGWMAT, and 10 

withdrawn water is supplied to the irrigated cropland area, which modifies the soil moisture. The operation of dams and storage 

reservoirs also modifies the flow of the river. Using the soil moisture and temperature calculated in HiGWMAT, the crop 

model PRYSBI2 simulates crop growth and yield. PRYSBI2 also uses the same atmospheric variables that are used as input 

data in HiGWMAT.  

The land use model TeLMO uses the yield calculated by PRYSBI2. In TeLMO, the ratios of food and bio-energy crop, 15 

pasture, and forest in each grid are calculated based on socio-economic input variables such as the demand for food, bio-energy, 

pasture, and round wood, as well as crop yield and ground slope. TeLMO also calculates the transition matrix of land usage 

(e.g., forest to cropland, cropland to pasture), which is passed to the terrestrial ecosystem model VISIT to evaluate the carbon 

cycle. The land uses calculated by TeLMO are also used as the grid ratios of natural vegetation and cropland area (rainfed and 

irrigated) in HiGWMAT.  20 

2.2 Novelty of MIROC-INTEG-LAND 

An important feature of MIROC-INTEG-LAND is that the land allocation model is coupled to the state-of-the-art land surface 

model, and that the impact of future climate and socio-economic changes on water resources and land use can be considered 

consistently. In general, future land-use changes are often assessed by using an IAM. However, as mentioned earlier, IAMs 

are not grid-based, but rather they divide the world into dozens of regions and describes the entirety of economic activity in 25 

these regions. Therefore, IAMs has a simplified description of the processes related to water resources and crop growth. In 

contrast, MIROC-INTEG-LAND provides capabilities to calculate complex physical processes over the land, and considers 

the changes in water resources, taking into account human activities such as irrigation and reservoir operation. Furthermore, 

process-based crop models allow for an explicit and detailed consideration of growth process of five different crops. 

For the projection of future land use, IAMs usually 1) calculate the area of agricultural land by using yield information 30 

averaged over these regions based on the balance between supply and demand, and 2) allocate the agricultural land by using a 

downscaling approach (e.g., Hasegawa et al. 2017). As pointed out in previous studies (Alexander et al. 2017), the problem 

with this method is that it is does not allow an explicit consideration of spatiotemporal information such as yield and production 
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cost when determining land use change. The Food Cropland Model in TeLMO addresses this issue by making it is possible to 

consistently consider the spaciotemporal information such as crop yields and the balance between supply and demand when 

allocating the agricultural land, by using the Food Cropland Down-scale Module and the International Trade Module as 

explained in Appendix B. 

   As for the projection of future land use change, TeLMO enables the calculation of future land use change as an offline 5 

simulation, by using the crop yield data calculated in advance. On the other hand, crop yield depends on water resource 

availability that is affected by the changes in soil physical processes due to future climate change, as well as the changes in 

irrigated cropland area caused by the increases in future food demands. MIROC-INTEG-LAND couples the models of land-

physical processes, human water management, and crop growth processes with the land-use allocation model to consider these 

various interactions, as explained above. 10 

3 Sub-models 

3.1 Global land surface model with human water management HiGWMAT 

The HiGWMAT model (Pokhrel et al., 2015) is a global land surface model (LSM) that simulates surface and sub-surface 

hydrologic processes considering both the natural and anthropogenic flow of water globally (1° in latitude and longitude). It 

incorporates human water management schemes (Pokhrel et al., 2012a; Pokhrel et al., 2012b), into the global LSM MATSIRO 15 

(Minimal Advanced Treatments of Surface Interaction and Runoff) (Takata et al., 2003). Since our previous publications 

provide a detailed description of the MATSIRO model (Takata et al., 2003), groundwater scheme (Koirala et al., 2014), and 

the human impact representations (Pokhrel et al., 2012a; Pokhrel et al., 2015; Pokhrel et al., 2012b), we include here only a 

brief overview of these models or schemes.   

3.1.1 MATSIRO land surface model 20 

MATSIRO (Takata et al., 2003, Nitta et al. 2014) was developed at the University of Tokyo and the National Institute for 

Environmental Studies in Japan as the land surface component of the MIROC (K-1 Model Developers 2004; Watanabe et al., 

2010) general circulation model (GCM) framework. MATSIRO estimates the exchange of energy, water vapor, and 

momentum between the land surface and the atmosphere on a physical basis. The effects of vegetation on the surface energy 

balance are calculated based on the multilayer canopy model of Watanabe (1994) and the photosynthesis-stomatal conductance 25 

model of Collatz et al., (1991) following the scheme in the SiB2 model (Sellers et al., 1996). The vertical movement of soil 

moisture is estimated by numerically solving the Richards equation (Richards, 1931) for soil layers in the unsaturated zone. 

The original version of MATSIRO (Takata et al., 2003) did not include an explicit representation of water table dynamics. To 

represent surface and subsurface runoff processes, a simplified TOPMODEL (Beven and Kirkby 1979; Stieglitz et al., 1997) 

is used. The surface heat balances are solved by an implicit scheme at the ground and canopy surfaces in the snow-free and 30 

snow-covered portions (i.e., four different surfaces within a grid cell) to determine ground surface and canopy temperature. 
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The temperature of snow is prognosticated by using a thermal conduction equation, and the snow water equivalent (SWE) is 

prognosticated by using the mass balance equation considering snowfall, snowmelt, and freeze. The number of snow layers in 

each grid cell is determined from SWE. The albedo of snow in the model is varied using an aging factor (Wiscombe and 

Warren 1980) and in accordance with the time since the last snowfall and snow temperature, considering the densification, 

metamorphism, and soilage of the snow. 5 

3.1.2 Human water management schemes  

The original MATSIRO was enhanced by Pokhrel et al., (2012a; 2012b) through the incorporation of a river routing model 

and human water management schemes (i.e., irrigation, reservoir operation, water withdrawal, and environmental flow 

requirement). The irrigation scheme is based on the soil moisture deficit in the top 1 m (i.e., the root zone) of the soil column; 

that is, irrigation demand is estimated as the difference between the target soil moisture set for each crop type and the actual 10 

simulated soil moisture (Pokhrel et al., 2012b). Irrigation water is added as sprinkler irrigation on top of vegetation, part of 

which is lost as evapotranspiration and the rest returns back to the soil column. Subgrid variability of vegetation is represented 

by partitioning each grid cell into three tiles: natural vegetation, and rain-fed and irrigated cropland. The crop growth module 

is based on the H08 model (Hanasaki et al., 2008a, 2008b), where the crop vegetation formulations and parameters are adopted 

from the Soil and Water Integrated Model (SWIM) (Krysanova et al., 1998). The crop growth module in HiGWMAT estimates 15 

the cropping period necessary to obtain mature and optimal total plant biomass for 18 different crop types. Irrigation is 

activated during the entire growing season but only for the irrigated portion of a grid cell using a tile approach. Crop growth 

for the irrigation processes is simulated within the HiGWMAT model (i.e., independent of PRYSBI2). 

  The reason that different crop models are used for HiGWMAT and PRYSBI2 is that 1)  HiGWMAT has been used a crop 

model based on SWIM, and it has been validated that the water withdrawal in various regions is consistent with the statistical 20 

data (Pokhrel et al. 2014), and 2) PRYSBI2 has been used a crop model based on SWAT, and crop yield in PRYSBI2 has been 

calibrated using the agricultural statistics (Sakurai et al. 2014). MIROC-INTEG-LAND uses different crop models to obtain 

realistic water withdrawal in HiGWMAT and to calculate realistic crop yields in PRYSBI2. The differences in the formulation 

between the crop models in PRYSBI2 and HiGWMAT are that the former uses more detailed crop modeling of the two-layer 

crop canopy, Farquhar photosynthetic CO2 assimilation, and the use of the reported planting date of Sacks et al. (2010), while 25 

the latter employs the simpler crop modeling of the single-layer crop canopy, radiation-use efficiency type biomass 

accumulation, and the hypothetical planting date that gives the highest yield under the given weather conditions (Okada et al. 

2015).  

The reservoir operation and environmental flow requirement schemes are based on the H08 model (Hanasaki et al., 2008a, 

2008b). The reservoir operation scheme (Hanasaki et al., 2006) is integrated within the TRIP global river routing model (Oki 30 

and Sud, 1998) to simulate reservoir storage and release for grids cells that contain reservoirs. The reservoir database is taken 

from Lehner et al. (2011). Large reservoirs having a storage capacity greater than 1km3 are explicitly simulated; medium-sized 

reservoirs with a storage capacity ranging from 3×106 to 1×109 m3 (Hanasaki et al., 2010) are considered as ponds holding 
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water temporarily and releasing it entirely during the dry season. The withdrawal module extracts the total (domestic, industrial, 

and agricultural) water requirements, first from river channels and surface reservoirs and then from groundwater; the lower 

threshold of river discharge prescribed as the environmental flow requirement is considered when extracting water from river 

channels. While irrigation demand is simulated by the irrigation module, domestic and industrial water uses are prescribed 

based on the AQUASTAT database of the Food and Agricultural Organization (FAO; see Pokhrel et al., 2012b). We use the 5 

same prescribed values for domestic and industrial water uses in both historical and future simulations, as future projections 

of water withdrawal are not available. 

3.2 Global crop growth model PRYSBI2 

PRYSBI2 (Process-based Regional-scale crop Yield Simulator with Bayesian Inference 2) (version 2.2) is a semi-process-

based global-scale crop growth model in which daily biomass growth and resulting crop yield are calculated for  the same grid 10 

cell as HiGWMAT (1° in latitude and longitude) (Sakurai et al., 2014). The target crops are maize, soybeans, wheat, and rice. 

Daily biomass growth is calculated using daily meteorological data (precipitation, temperature, wind speed, humidity, solar 

radiation and atmospheric CO2 concentration) according to the photosynthetic rate calculated by a simple big leaf model 

(Monsi & Saeki 1953) and the enzyme kinetics model developed by Farquhar et al., (1980). To determine the water stress, the 

soil moisture calculated by HiGWMAT (Section 3.1) is used. Crop development is calculated according to the Total number 15 

of Heat Units (THU). When crops accumulate their THU up to the threshold values, crop yields for each year are calculated 

from the above-ground biomasses and harvest indexes.  

The process of fertilizer input is not included in this model. Rather, parameters relating to technological factors that include 

the effect of fertilizer are set and input into the model (Appendix A.7). We call this model a semi-process-based model because 

some of the parameters, including the parameters relevant to technological factors, are statistically estimated using historical 20 

crop yield data (Iizumi et al., 2014) for each grid cell by the DREAM (DiffeRential Evolution Adaptive Metropolis) algorithm 

(Vrugt et al., 2009). The parameters were estimated by Markov chain Monte Carlo methods (MCMC) with 20,000 steps for 

each grid cell (Sakurai et al., 2014). The parameter values of the technological factors in future scenarios are estimated as a 

linear function of the Gross Domestic Products (GDPs) of each Shared Socio-economic Pathway (SSP) for each country (see 

details in Appendix A.7). 25 

In the original photosynthesis model by Farquhar et al., (1980), the photosynthesis rate is directly stimulated by the increase 

of CO2 concentration, which is called the CO2 fertilization effect. However, it is also known that the CO2 fertilization effect is 

downregulated by environmental limitations such as sink-source balance and nitrogen supply (Ainthworth and Long 2005). In 

this model, the downregulation of the CO2 fertilization effect is described as a function of atmospheric CO2 concentration, in 

which the potential photosynthesis rate (maximum carboxylation rate of Rubisco and the potential rate of electron transport) 30 

gradually decreases according to the increase of CO2 concentration (see Appendix A.6). 

The crop model used in this study is an updated version (version 2.2) of the model described in Sakurai et al., (2014) 

(which gives a detailed description of PRYSBI2 version 2.0) and Müller et al., (2017) (which gives a brief description of 
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version 2.1). The structure of the model is quite similar to versions 2.0 and 2.1. However, there are some parts of the version 

2.2 structure that are slightly different. In Appendix A, we present a summary of the model and identify the elements that 

differ from the earlier versions. 

3.3 Global land ecosystem model VISIT 

The functions of the natural land ecosystem and their environmental responses are simulated by the sub-model VISIT 5 

(Vegetation Integrative SImulator for Trace gases) (Ito 2010; Ito et al., 2018). VISIT is a process-based terrestrial 

biogeochemical model that simulates the atmosphere-land surface exchange of greenhouse gases such as CO2 and CH4 and 

trace gases such as biogenic volatile organic compounds. Carbon, nitrogen, and associated water cycles are fully simulated in 

the model using ecophysiological relationships but in a simplified manner. The model operates at the global scale with a spatial 

resolution of 0.5° × 0.5°. The ecosystem carbon cycle is simulated using a box-flow scheme composed of three plant carbon 10 

pools (leaf, stem, and root) and two soil carbon pools (litter and humus). Photosynthetic carbon acquisition is a function of the 

leaf area index, light absorptance, and photosynthetic capacity, which respond to temperature, ambient CO2, and humidity. 

Soil carbon dynamics are simplified by the litter-humus scheme but works well to simulate microbial decomposition and 

carbon storage. The model has two layers, i.e., natural vegetation and cropland, at each grid that are weighted by a landcover 

fraction to obtain the total grid-based budget. Impacts of land-use change on the ecosystem carbon budget are taken into 15 

account using a simple scheme by McGuire et al., (2001) in which typical fractionation factors are applied to deforested 

biomass (e.g., immediate emission, 1-yr 10-yr and 100-yr pools). The difference in carbon emissions from primary and 

secondary forests is included by using a different biomass density; regrowth of abandoned croplands is also simulated as the 

recovery of the mean biomass of the natural vegetation in the same grid. For brevity, croplands are categorized into three types 

(rice paddy, other C3 crops such as wheat, and C4 crops such as maize); the crop calendar and management practices such as 20 

fertilizer input are simulated within the VISIT model (i.e., independent of PRYSBI2) in a conventional manner.  Planting and 

harvest dates are determined by monthly mean temperature; country-specific fertilizer inputs derived from the FAO country 

statistics (FAOSTAT, FAO 2019) are used. In PRYSBI2, the effects of fertilizer are included in the technological factors, and 

crop yields are calibrated based on the technological factors, As described in Section 3.2 and Appendix A.7. On the other hand, 

VISIT has been applied and validated at various scales from flux measurement sites to the global scale (e.g., Ito et al., 2017) 25 

based on the treatment of fertilizer input, as described above. The consistent treatment of fertilizer processes in PRYSBI2 and 

VISIT should be important future work.  

3.4 Land use model TeLMO 

In the course of developing the integrated terrestrial model MIROC-INTEG-LAND, we developed the Terrestrial Land-use 

MOdel (TeLMO) for projecting global land use with a resolution of 0.5°×0.5°. TeLMO projects land use in each grid cell 30 

based on socio-economic data such as demand for food and biofuel crops obtained from the AIM/CGE (Fujimori et al., 2012, 
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2017). For long-term projections, TeLMO assumes that there is a preferential order to land use by humans (i.e., urban, food 

cropland, bio-energy cropland, pasture land, and managed forests). That is, it assumes that land is used in the order of highest 

to lowest value added per unit area. After allocating land use in this manner, TeLMO calculates a transition matrix for each 

grid in order to evaluate the impact of land-use change on terrestrial ecosystems. Details of the five models comprising 

TeLMO—(1) the food cropland model, (2) the bio-energy cropland model, (3) the pastureland model, (4) the managed forest 5 

model, and (5) the land-use transition matrix model—are explained in Appendix B. 

4 Numerical procedure of model coupling 

In MIROC-INTEG-LAND, sub-models with different time-steps are executed simultaneously by exchanging variables as 

shown in Figure 1. The numerical procedure for exchanging variables between the sub-models is shown in Figure 2. 

Exchanging variables among sub-models is accomplished in one of two ways: on-line coupling or off-line coupling (Collins 10 

et al., 2015). In on-line coupling, the values calculated by a sub-model are exchanged with other sub-models via internal 

memory (i.e., the values calculated in one subroutine are passed directly to other subroutines). In off-line coupling, the output 

of a particular sub-model is written to a file; the other sub-models then read the file as needed. The far-right "Data" box in 

Figure 2 indicates the files used for saving sub-model output data. The arrows show the exchanges that are made. The arrows 

between one sub-model box and another indicate on-line coupling; those between a sub-model box and the data box indicate 15 

off-line coupling. The flow of sub-model calculations is described below. 

(1) TeLMO 

The land use model TeLMO (Section 3.4) calculates the areal fraction of each land use within a grid (natural vegetation, 

cropland, pasture, etc.) and the transitions among them once a year, using the decadal average of crop yields calculated by 

PRYSBI2. The start year of TeLMO calculation is 2005. Since the exchange of variables is not so frequent, TeLMO is coupled 20 

to the other models via off-line coupling (as shown in Figure 2). That is, the output of TeLMO (grid fraction of land uses and 

transitions) is written to files, and the other sub-models read the files as necessary. As shown in the figure, TeLMO reads the 

output files of PRYSBI2 (crop yields) for its calculations.  

(2) HiGWMAT + PRYSBI2 

HiGWMAT (Section 3.1), the global land surface model with human water management, calculates the physical and 25 

hydrological processes with an hourly to daily time step. The crop model PRYSBI2 (Section 3.2) calculates crop growth and 

yields with a daily time step using the soil moisture and temperature values generated by HiGWMAT. Since the exchange of 

variables between HiGWMAT and PRYSBI2 is very frequent (i.e., daily), these two sub-models are joined through on-line 

coupling.  

As shown in Figure 2, in the future simulations, the MIROC-INTEG-LAND calculations start with TeLMO (TeLMO is 30 

switched off before 2004). After the output of TeLMO is written to files, the online-coupled HiGWMAT and PRYSBI2 make 
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their calculations using the land use grid ratio produced by TeLMO. Once the output of the HiGWMAT-PRYSBI2 combination 

is written to files,  TeLMO again starts it calculations for the next year using the 10-yr output. The exchange continues in this 

fashion. 

(3) VISIT  

As shown in Figure 2, VISIT (Section 3.3), the terrestrial ecosystem model, calculates the carbon and nitrogen cycles using 5 

the output of the land use model TeLMO. In MIROC-INTEG-LAND, no variable exchange between HiGWMAT-PRYSBI2 

and VISIT is performed at this stage since the structures of these two sub-models differ significantly.  

(4) Model coupling 

The proper choice of coupling method depends on the specific features of the variable exchange between sub-models (Collins 

et al., 2015). One of the advantages of off-line coupling is that the structure of the original model (e.g., the relationships 10 

between the main program and the subroutines) can be preserved, at least to some extent, in the coupling. This is not the case 

for on-line coupling. For example, for on-line coupling, either the main program of the original model needs to be modified in 

order for it to serve as a subroutine, or a special program for connecting stand-alone models (i.e., a coupler) needs to be 

developed. In MIROC-INTEG, off-line coupling is suitable for coupling TeLMO since the model structure of TeLMO is 

different from the other sub-models (TeLMO solves equations with various spatial resolution: global 30 sec., 0.5 deg., and 17 15 

regions. See Appendix B for details) and data exchange occurs only once per year (so that the calculation cost for the 

input/output procedure can be minimized). On the other hand, on-line coupling is appropriate for connecting HiGWMAT and 

PRYSBI2, since the structure of the two sub-models is similar (spatial resolution with a global 1° grid), and the exchange of 

variables is frequent (daily). In MIROC-INTEG, some of the subroutines of the original PRYSBI2 models that calculate the 

crop growth processes are called from HiGWMAT.  20 

5 Experimental settings 

Since MIROC-INTEG-LAND is based on a global land surface model, atmospheric boundary data (hereafter “forcing” data) 

are required to operate the model. The global land surface model with human water management HiGWMAT uses atmospheric 

temperature, humidity, wind, and surface precipitation as the forcing data to calculate the physical processes. In this study, we 

use forcing data from the Inter-Sectoral Impact Model Inter-comparison Project (ISIMIP) fast track (Hempel et al., 2013). In 25 

ISIMIP fast track data, future climate predictions from five global climate models (GCMs) are used as the forcing data. (The 

five GCMs include GFDL-ES2M: Dunne et al., 2012, HadGEM2-ES: Jones et al., 2011, IPSL-CM5A-LR: Dufresne et al., 

2012, Nor-ESM: Bentsen et al., 2012, MIROC-ESM-CHEM: Watanabe et al., 2011). Uncertainties in the atmospheric 

predictions of the model can be considered by using the output data from the various GCMs. In ISIMIP data, correction for 
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model bias is based on historical observations (Hempel et al., 2013). Thus we can expect that over- and underestimation errors 

are removed, at least to some extent.  

     Since the time interval in the original ISIMIP data is daily and the time step in the land surface model HiGWMAT is sub-

daily, we generated three-hourly data from the ISIMIP fast track daily data, based on the methods described in Debele et al., 

(2007) and Willet et al., (2007), where diurnal variations are generated based on the daily mean data.  5 

  In order to obtain a stable state of model variables, we performed spin-up simulations following the procedure defined in 

the ISIMIP fast track protocols. We first generated de-trended 20-year data using 1951-1970 forcing data. The 20-year dataset 

was then replicated and assembled back-to-back to obtain an extended dataset. The order of years was reversed in every other 

copy of the 20-year block in order to minimize potential discontinuities in low-frequency variability. The time duration of the 

spin-up simulations was 400 years for the land surface model HiGWMAT and the crop growth model PRYSBI2, and 3000 10 

years (repeated 100 times using the first 30-years de-trended climate) for the terrestrial ecosystem model VISIT. The spin-up 

time of VISIT is longer than that of the other sub-models because it requires more time to reach a stable state, especially in 

the case of soil organic carbon. 

  After the spin-up simulations, we performed historical (1951-2005) and future (2006-2100) simulations based on the 

ISIMIP fast track protocols. For the future simulations, we used the forcing data of the five global climate models based on 15 

four RCPs (van Vuuren et al., 2011)—RCP2.6, 4.5, 6.0, and 8.5—corresponding to radiative forcings of 2.6, 4.5, 6.0, and 8.5 

Wm-2 in 2100, respectively.  

In the historical simulations of HiGWMAT, we used the land use data (grid ratio of natural vegetation, rainfed and irrigated 

cropland) provided by the Land Use Harmonized (LUH) project (LUHv2h, Lawrence et al., 2016): TeLMO was switched off. 

In the future simulations of HiGWMAT, the rainfed and irrigation cropland area is varied according to the output of TeLMO 20 

(Section 3.4). Since TeLMO projects the future total cropland area (irrigated plus rainfed), the future irrigated area is calculated 

by multiplying the grid irrigation ratio (irrigated / [rainfed + irrigated]) and the total cropland area calculated by TeLMO. The 

grid irrigation ratio is calculated by using the irrigated and rainfed cropland area determined by LUHv2h in 2005 and is fixed 

throughout the future simulation period. Although TeLMO also calculates the future bio-energy cropland area, we assume that 

bio-energy cropland is all rainfed.  25 

TeLMO starts its calculations in 2005. As input data for TeLMO, we use the output variables based on the Shared Socio-

economic Pathways (SSPs, O’Neil et al., 2017) calculated by an integrated assessment model, AIM/CGE (Fujimori et al., 

2017). In this study, we use outputs of SSP2 scenario calculated by AIM/CGE (Fujimori et al. 2017). Since RCP8.5 scenario 

is not available in SSP2, we use the output of baseline scenario by AIM/CGE for the calculation of RCP8.5. TeLMO uses 

future projections of GDP per capita, demand for food and bio-energy crops, pasture, and round wood (Section 3.4, Appendix 30 

B). AIM/CGE calculates the aggregated transactions associated with the activities of economic actors; the energy system is 

represented in detail by dividing the globe into 17 regions (Fujimori et al., 2012).  

The terrestrial ecosystem model VISIT is forced by the same ISIMIP forcing data used in HiGWMAT (Hempel et al. 2013). 

In the historical simulations, VISIT uses the historical land use data from LUHv2h (Lawrence et al., 2016), as described above. 
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In the VISIT future simulations, the output variables calculated by TeLMO, such as land use (cropland, pasture, forest) and 

the transition matrix describing transitions from one use to another (see Section 3.4 for details) are used as the forcing data.  

6 Historical simulations and comparisons with observations 

6.1 HiGWMAT 

Offline simulations from the original MATSIRO and HiGWMAT models have been extensively validated with ground- and 5 

satellite-based observations of various hydrologic fluxes and forms of storage (e.g., river discharge, irrigation water use, water 

table depth, and terrestrial water storage (TWS)) at varying spatial domains and temporal scales in numerous global-scale 

studies (Felfelani et al., 2017; Pokhrel et al., 2016; Pokhrel et al., 2017; Pokhrel et al., 2012a; Pokhrel et al., 2015; Pokhrel et 

al., 2012b; Veldkamp et al., 2018; Zaherpour et al., 2018; Zhao et al., 2017). For completeness, we provide here a brief 

evaluation of TWS and irrigation simulations, since TWS is an indicator of overall water availability in a region and a primary 10 

determinant of terrestrial water fluxes (e.g., ET and river discharge), and irrigation is an important component of the global 

freshwater systems that share the largest fraction of human water use globally (Hanasaki et al., 2008a; Pokhrel et al., 2016). 

Figure 3 plots the comparison of simulated TWS with observations by the Gravity Recovery and Climate Experiment 

(GRACE) satellite for the 2002-2005 period. The results shown are spatial averages over 18 major global river basins selected 

by considering a wide coverage of geographical and climate regions (Felfelani et al., 2017; Koirala et al., 2014). For the 15 

GRACE data, we use the mean of mass concentration (mascon) products from the Center for Space Research (CSR; Save et 

al., 2016) at the University of Texas at Austin and the Jet Propulsion Laboratory (JPL; Watkins et al., 2015; Wiese, Yuan, et 

al., 2016) at the California Institute of Technology. It is evident from Figure 3 that the model accurately captures the temporal 

variations as well as the seasonal cycle of TWS in most basins. Certain difference between model and GRACE can be seen in 

basins such as the Brahmaputra, Huanghe, and Volga river basins but such disagreements have been commonly reported in 20 

the literature owing to limitations in model parameterizations in simulating TWS components (e.g., the representation of snow 

physics and human activities) and inherent uncertainties in GRACE data (Felfelani et al., 2017; Scanlon et al., 2018; Chaudhari 

et al., 2019). 

Figure 4 compares the irrigation water demand simulated by MIROC-INTEG-LAND with the results from offline 

HIGWMAT simulation obtained from Pokhrel et al., (2015), which is forced by the observed climate data. It is evident from 25 

this comparison that the broad spatial patterns seen in the offline simulations are clearly captured by MIROC-INTEG-LAND. 

Certain disagreements are, however, apparent. For example, MIROC-INTEG-LAND tends to overestimate irrigation demand 

over highly irrigated areas in the central United States, northwestern India, parts of Pakistan, and northern and eastern China, 

which is likely due to the drier and warmer climate simulated by the MIROC (Watanabe et al. 2010) in these regions. The total 

global irrigation demand simulated by MIROC-INTEG-LAND is 1,750 km3, which is greater than the 1,238 ± 67 km3 from 30 

the offline simulations but falls near the upper bound of estimates by various other global studies (see Table 1 in Pokhrel et 
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al., 2015). The overestimation comes primarily from the highly irrigated regions noted above. Given that our meteorological 

forcing data are from GCM simulations, we consider our results for both TWS and irrigation demand to be acceptable. 

6.2 PRYSBI2 

Figure 5 shows historical simulation results for crop yield using ISIMIP forcing data as the baseline climate during the period 

from 1981 to 2005. The historical simulation results were compared with the gridded global data set of historical yield (Iizumi 5 

et al., 2017), which is a hybrid of satellite-derived vegetation index data and FAOSTAT (FAO 2019). The spatial aggregation 

to the country scale was conducted by using the harvested area (Monfreda et al., 2008). The area of wheat was separated into 

spring and winter wheat by using their production proportions (The United States Department of Agriculture, 1994).  

The results of the comparison in the crop yields show the simulated yields in most countries were underestimated to some 

degree (Figure 5). Notably, using Watch Forcing Data as the reference data in the bias correction for the ISIMIP dataset tends 10 

to underestimate solar radiation compared to the observation data (Iizumi et al., 2014; Famien et al., 2018), which in turn 

causes an underestimation of crop yields. The uncertainty of the projected yields as measured by the differences in outcomes 

for the five climate forcings was relatively small. The reason for this is that ISIMIP climate forcing data were bias-corrected 

using the same historical weather dataset and the same method. For all crops, most of the relationship between the simulated 

and reported data was distributed along the 1:1 line. These results indicate that the model is capable of capturing the relative 15 

spatial difference of long-term average crop yield across countries. 

6.3 VISIT 

The VISIT model captured the spatial and temporal patterns of terrestrial ecosystem productivity and carbon budget with 

satisfactory accuracy. Figure 6 shows the latitudinal distribution of gross primary production for the 2000-2010 period in 

comparison to up-scaled flux measurements (Beer et al., 2010) and satellite observation (Zhao et al., 2005). High productivity 20 

in the humid tropics and low productivity in the arid middle-latitudes and arid cold high-latitudes were effectively reproduced 

by the model simulation, although mean global total GPP was slightly higher than the observation (127.5 Pg C yr–1 by VISIT, 

114.0 Pg C yr–1 by flux upscaling, and 121.7 Pg C yr–1 by satellite). Global carbon stocks in vegetation and soil organic matter 

were estimated as 499 and 1308 Pg C, respectively, in 2010; this is comparable to the contemporary synthesis (Ciaes et al., 

2013). Because of historical atmospheric CO2 rise, climate change, and land-use change, substantial changes in terrestrial 25 

ecosystem properties were simulated (not shown). As demonstrated by model validation and inter-comparison studies, the 

VISIT model allows us to effectively capture the terrestrial ecosystem functions under changing environmental conditions. 

6.4 TeLMO 

In Figure 7, the cropland area simulated by TeLMO in MIROC-INTEG-LAND is compared with the cropland area reported 

in FAOSTAT (FAO 2019) and to the area simulated by AIM/CGE (Fujimori et al., 2017), whose output of food demand and 30 
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GDP per capita is used as input in TeLMO. With the adjustment parameter 𝐶 , the cropland area in TeLMO in 2005 is the 

same as that of LUH (Lawrence et al., 2016). As shown in Figure 7, MIROC-INTEG-LAND roughly reproduces the cropland 

area by country shown in FAOSTAT (FAO 2019). The differences in the five climate forcings given to MIROC-INTEG-

LAND cause variance in crop yields, which in turn results in the variance in cropland area results shown in Figure 7.  

In Russia, Brazil, and Australia, the recorded cropland area (i.e., FAOSTAT) is within the range of the MIROC-INTEG-5 

LAND cropland area simulations using the different climate forcings. In Brazil and Russia, the variations in cropland area are 

mainly due to the difference in climate forcings. In the United States, the reported cropland area in FAOSTAT (FAO 2019) is 

closely reproduced by MIROC-INTEG-LAND until around 2010; however, the declining trend of cropland area in the second 

half is not effectively reproduced. The reason for the overestimation seen here may be related to the under-estimating of crop 

yield in PRYSBI2 (Section 6.3). The slight overestimation of the global cropland area trend (Figure 7h) may stem from the 10 

same cause. Also, in China, although there is a declining trend of cropland area in MIROC-INTEG-LAND, in reality, the 

cropland area remained nearly constant until 2014 and increased slightly thereafter. The increase of cropland area in China is 

considered to be influenced by policy, which is not considered in TeLMO.  

In MIROC-INTEG-LAND, TeLMO uses the food demand and GDP per capita calculated by AIM/CGE under the socio-

economic scenario SSP2 (Fujimori et al., 2017). Therefore, the difference between TeLMO and AIM/CGE is due to the 15 

difference in crop yield as well as the mechanism for the allocation of agricultural land. As explained in Appendix B.1, TeLMO 

can consider the spatial distribution of crop yield when allocating agricultural land. On the other hand, in AIM/CGE, land use 

change is calculated by aggregating crop yield information in the regions where the model calculation is performed (AIM/CGE 

divides the world into 17 regions). In large countries such as Australia, Brazil and Russia, the allocation method in TeLMO 

shows good performance.  20 

Figure 8 shows a comparison of TeLMO, AIM, and LUH data for pasture. Unlike cropland, pastures are compared with 

LUH data because there are no long-term global observation data. TeLMO calculates pasture lands such that the area matches 

that in the AIM for the AIM calculation domain (17 regions around the world). Because AIM treats China and the United 

States as one region, the results of TeLMO and AIM for China, the United States, and the globe are almost the same. On the 

other hand, in Australia, TeLMO is closer to LUH. Similarly, Figure 9 shows a comparison between TeLMO, AIM, and FAO 25 

data of forest area. TeLMO refers to MODIS data and calculates forest area taking into account deforestation and changes in 

crop area. Some difference between TeLMO and FAO can be seen, but the two are relatively close. Overall, TeLMO, AIM, 

and FAO closely agree at the regional scale. Given that its performance is similar to that of AIM/CGE, the TeLMO sub-model 

in MIROC-INTEG-LAND can be considered useful for future land use prediction. 

7 Future simulations and interaction of sub-models 30 

In the MIROC-INTEG-LAND future simulations, the RCP2.6, 4.5, 6.0, and 8.5 scenarios provided by ISIMIP1 (Hempel et al. 

2013) serve as the climate scenario, while the output of AIM/CGE (demand for food and bioenergy crops, pasture, wood, etc.) 
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according to the four RCPs under SSP2 (Fujimori et al. 2017) serves as the socio-economic scenario. The results in this section 

provide an understanding of the interactions between climate, water resources, crops, ecosystems, and land use that MIROC-

INTEG-LAND accommodates.  

Figure 8 shows the various time series related to climate system change. Figure 8a depicts the change in surface air 

temperature used as forcing data in MIROC-INTEG-LAND. It is displayed as the deviation from the average value of the 10-5 

year period around the start year of the future simulations (2005). As shown in Figure 8a, the increase in average global land 

surface air temperature in 2100 is approximately 6 °C for RCP8.5, 3 °C for RCP6.0, 2.5 °C for RCP4.5, and 1 °C for RCP2.6. 

Figure 8b shows the change in soil moisture calculated by MIROC-INTEG-LAND. Although the annual variation of soil 

moisture is considerable, the global land average soil moisture content tends to decrease in the 21st century. The reduction in 

soil moisture is largest in the RCP8.5 scenario, where the rise in surface air temperature is substantial. Results for the irrigation 10 

water supply are shown in Figure 8c. As indicated in Section 3.1, water is supplied from rivers to the soil through irrigation 

until the ratio of soil moisture reaches a certain threshold. The irrigated area is calculated by multiplying the cropland area (as 

calculated by TeLMO) by the irrigation ratio, a fixed value corresponding to the ratio of irrigation cropland area to the total 

cropland area in 2005. Therefore, the changes in irrigation water supply in Figure 8c reflect the changes in the irrigation area 

and the irrigation water supplied from rivers to the soil to compensate for the decrease in soil moisture. Although the global 15 

total cropland area increases in the first half of the 21st century (Figure 12), in regions with a high irrigation ratio (e.g., India, 

China), cropland area decreases by the end of the century (Figure 13). As a consequence, the irrigation area in MIROC-INTEG-

LAND decreases, and, accordingly, the irrigation water supply also decreases, as shown in Figure 8c.  

Changes in crop yield calculated for the various future scenarios are shown in Figure 11. The crop growth model PRYSBI2 

in MIROC-INTEG-LAND can calculate the yields [t / ha] of four crops (wheat, maize, soybean, rice), with a clear distinction 20 

between winter and spring wheat (meaning five crops in all). In Figure 11f, the global average of the grid maximum yield 

value among the crops, which is used in the TeLMO calculation, is also shown.  As described in Section 3.2, the future 

simulations by PRYSBI2 take into account the effects of climate change, as well as the CO2 fertilization effects due to rising 

greenhouse gas concentrations (Appendix A.6) and the increase in technical coefficients due to future technological 

improvement (Appendix A.7).  25 

As shown in Figure 9a-e, the yields of each of the crops rise over the first half of the 21st century. This is due to the CO2 

fertilization effect and technological improvement. In general, the increase in yield is more significant in the high-GHG 

scenarios such as RCP8.5 than in the low-GHG scenarios such as RCP2.6. Such differences can be considered due to the 

fertilization effect and impact of climate change, since all the RCPs feature the same technological coefficient under the same 

SSP scenario (i.e., SSP2). On the other hand, in the latter half of the 21st century, the negative impact of climate change on 30 

crop yield is evident. In the RCP 8.5 scenario, in particular, crop yields decline sharply. PRYSBI2 results show that the crop 

type most sensitive to climate change is maize: in 2100, the yield of maize under RCP2.6 is highest, while the yield of maize 

under RCP8.5 is lowest. 
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Figure 12a shows the change in the food cropland area calculated by TeLMO. As described in Section 3.4 and Appendix B, 

TeLMO uses the yield calculated by PRYSBI2 (grid maximum value as shown in Figure 11f) and the food demand output of 

AIM/CGE. As shown in the Figure 12a, crop area increases to meet the increase in food demand in the first half of the 21st 

century. Compared to other RCP scenarios during this time period, the RCP2.6 scenario requires more food cropland area, 

since the increase in crop yield is smaller in the RCP2.6 scenario. In the second half of the 21st century, the food cropland area 5 

tends to decrease as crop yield increases more than food demand. The decrease is smallest under RCP2.6 and largest under 

RCP6.0, and RCP8.5 actually requires an increase in food cropland area, as in this scenario, crop yields decline late in the 

century. Although there are differences among the results using the five different climate model forcings (the thin lines in 

Figure 12a), using the average value lines (the thick lines in the figure) for comparison indicates that, by the end of the 21st 

century, the food cropland area is largest under RCP8.5. 10 

Figure 12b shows the time series of the sum of food and bioenergy cropland area calculated by TeLMO. As described in 

Section 3.4, TeLMO calculates the distribution of the global bioenergy cropland area needed to meet the bioenergy demand 

calculated by AIM/CGE. It is known that the future bioenergy cropland area will change substantially depending on crop yield, 

and it should be noted that the setting in which crop yield is calculated can significantly affect the bioenergy cropland area 

(Kato and Yamagata 2014). As shown in Figure 12b, the bioenergy cropland area is significantly increased under RCP2.6 and 15 

RCP4.5. These climate scenarios require large areas of bioenergy crops for future climate mitigation. Although the food 

cropland area tends to decrease in the late 21th century (except in the RCP8.5 scenario), if we consider both food cropland and 

bioenergy cropland, more cropland area will be needed. 

Figure 13 shows the global distribution of changes in food and bioenergy cropland areas, using the difference in 10-year 

averages around 2100 and 2005. As described in Figure 12a, RCP 2.6 tends to reduce the food cropland area in the latter half 20 

of the 21st century. Figure 13a and 11b show that the food cropland area decreases in Africa, India, and China. As is explained 

in Appendix B, TeLMO relies on the premise that the distribution of food cropland area is determined by changes in crop yield, 

food prices, wages (corresponding to changes in GDP per capita) and the demand for food. Thus the decreases in food cropland 

area shown in Figure 13a and 11b are due to the increase in yield (meaning demand can be met with less cropland area) and 

the increase in GDP per capita (which means the population engaged in agriculture decreases due to development) in the SSP2 25 

scenario. It should be noted that the change in cropland area at a particular grid is not determined solely by food production 

(the product of cropland area and crop yield) at that grid, as TeLMO considers the food trade among the 17 regions. As shown 

in Figure 12 and noted earlier, the food cropland area will increase in the late 21st century in the RCP8.5 scenario. Accordingly, 

in comparison to the RCP 2.6 scenario, the food cropland area in South America and central Africa increases in the RCP8.5 

scenario. 30 

As shown in Figure 13, bioenergy cropland areas increase in various regions, especially in the RCP 2.6 scenario. As 

discussed in Appendix B, TeLMO assumes that biofuel cropland is allocated based on the Agricultural Suitability Index (Eq. 

B-14), which is a function of the yield and price of the bioenergy crop, GDP per capita, etc. At the same time, TeLMO also 

assumes that regions with high biodiversity are protected, and calculations are performed so as not to allocate biofuel cropland 



18 
 

to the protected areas as shown in Figure B-2 (Wu et al., 2019). As a result, bioenergy cropland area is allocated to regions 

where the agricultural index is high—northwest and southern South America, central Africa, and Australia—but it cannot be 

allocated to protected areas such as the Amazon. 

Figure 12 and 13 show the effects of changes in food and bioenergy cropland area on the terrestrial ecosystem calculated 

by VISIT in MIROC-INTEG-LAND. The impact of land-use change on terrestrial ecosystems is evaluated by comparing the 5 

calculation with and without considering the land-use change. The global time sequence (Figure 14) shows that the changes 

in food and bioenergy cropland area have a significant impact on terrestrial ecosystems, especially in RCP 2.6, where the 

above-ground biomass will decrease by approximately 50 Pg C (about 10% of the present biomass stock) by 2100 due to 

deforestation for land use conversion. The decrease in soil carbon after deforestation is much smaller than the decrease in 

above-ground biomass, as the carbon supply from crop residue compensates for the soil carbon loss. Consequently, this 10 

simulation implies that the impacts of land-use change occur heterogeneously and differ in their magnitude and direction 

between vegetation and soil. Figure 15 shows the global distribution of the effect of land-use change on above-ground biomass 

and soil carbon. The impact on above-ground biomass is projected to be greater in northwest South America, central Africa, 

northeast North America, and Australia, where the bioenergy cropland area is expanding. In these regions, even under the 

mitigation-oriented scenario, considerable declines in ecosystem structure and functions would occur, leading to deterioration, 15 

for example, of habitats for natural organisms, water holding capacity, and soil nutrients. Consequently, these functional 

degradations would degrade ecosystem services such as biodiversity, regulation, and provision. On the other hand, in Asia, 

the decrease in food cropland area tends to increase the above-ground biomass in both the RCP2.6 and RCP8.5 scenarios, 

possibly leading to leading to the enhancement of above-ground biomass, and thus ecosystem services.  

Figure 16 shows the results of simulations to evaluate the effects of climate change on crop yield and land use. In Figure 16, 20 

the RCP8.5 simulations with climatic factors (temperature, water vapor, wind speed, soil moisture, soil temperature) and CO2 

concentration fixed at 2006 (noCL+noFE), those with climatic factors fixed (noCL), and those with varying climate and CO2 

concentration (CL+FE) are compared. The CL+FE simulations are the same as the RCP8.5 results shown in Figure 12. As 

shown in Figure 16a, in the noCL+noFE simulations, the crop yield was much lower than that in the CL+FE simulations. In 

the noCL+noF experiment, the crop yield is increased due to the technological development (Section 3.2 and Appendix A.7). 25 

The reason that the yield in the CL+FE experiment is higher than that in noCL+noFE experiments is that the crop yield 

increases due to the fertilization effect in the former. In the noCL+FE experiment (Figure 16), the crop yield is approximately 

1.7 times as large as in the noCL+noFE experiment. Although there is a great deal of uncertainty in the treatment of fertilizer 

effects in crop models (Sakurai et al. 2014), the increase in crop yields is significant in the simulations by MIROC-INTEG-

LAND.  30 

  As shown in Figure 16a, the crop yield is significantly smaller in the CL+FE than in the noCL+FE experiment. This result 

indicates that climate change can significantly reduce crop yields. One of the reasons for this reduction in crop yield is that the 

growing season is shortened due to a rise in surface air temperature, adversely affecting the growth of crops (Sakurai et al. 
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2014). The impact of climate change on crop growth increases with increasing temperature, and in 2100 crop yield in the 

CL+FE experiment is projected to decrease roughly 60% relative to the yields in the noCL+FE experiments.  

  Due to the changes in crop yields caused by the changes in climate and fertilization effects, future cropland area will also 

change significantly. As shown in Figure 16b, the noCL+noFE experiment requires more cropland area compared to the 

CL+FE experiments, due to the smaller increase in crop yields (Figure 16a). As explained in Figure 12, cropland area could 5 

expand in the first half of the 21st century to meet the increasing demand due to population growth, and then gradually decrease 

in the latter half of the 21st century. On the other hand, in the noCL+FE experiments, the increase in crop yield is larger than 

that in the CL+FE experiment, and thus the cropland area in 2100 will be about 76% of that in 2005. In sum, it is found that 

the changes in climate and fertilization effects have large impacts on crop yields and land use change. 

8 Implications and future research 10 

With MIROC-INTEG-LAND, it is possible to calculate the interaction between climate, water resources, crops, land use, and 

ecosystems. The discussion in Section 7 suggests the type of feedback processes that can occur. While this study showed only 

the results of the SSP2 scenario, in the SSP3 scenario, where the world is divided, the demand for food will be greater and 

more cropland area will be needed (O'Neill et al., 2017). Investigating the impacts of various natural and socio-economic 

factors (climate, irrigation, fertilization effects, population, food demands, etc.) on land use change and land ecosystems is an 15 

important future research direction as an extension of the present study. 

In addition to analyzing interactions, it is crucial to analyze the impacts of climate change and the effectiveness of 

countermeasures using MIROC-INTEG-LAND. The combined impacts of climate change on water resources, crops, land use, 

and ecosystems can be mitigated by enhancing various adaptation measures. For example, the use of water resources to control 

crop yield loss, changes in cropping calendars, and breeding can reduce the adverse effects of climate change on food and land 20 

use. With MIROC-INTEG-LAND, it is possible to assess the efficiency of adaptation measures designed to address the impacts 

of climate change on water resources, crops, land use, and ecosystems (Alexander et al., 2018). With consistent consideration 

of climate change, water resources, and land use, the competition between water, food, and bioenergy use can be analyzed 

(e.g., Smith et al., 2010). The model also provides useful insights into the trade-offs of biodiversity loss from land-use change 

and the benefits of climate mitigation. 25 

MIROC-INTEG-LAND provides a way to integrate various human activity models based on the global climate model as 

shown in Section 4. This paper introduced illustrative simulation results produced by our application of MIROC-INTEG-

LAND as a land surface model driven by meteorological forcing data. We plan to extend the model by enabling it to consider 

the physical processes and carbon/nitrogen cycle in the atmosphere and ocean. The MIROC community has developed 

MIROC-ES2L, an earth system model for CMIP6 (Hajima et al., in preparation). By incorporating the water resource model 30 

(HiGWMAT), the crop growth model (PRYSBI2), and the land use model (TeLMO) used in MIROC-INTEG-LAND into 

MIROC-ES2L, we are developing an integrated earth system model that we call MIROC-INTEG2. In MIROC-INTEG2, the 



20 
 

interactions between the earth system and human activities are consistently considered. By using this integrated earth system 

model, the impact of land-use changes on the climate system, including bio-geophysical and bio-geochemical effects 

(Lawrence et al., 2016), can be more consistently investigated.  

Appendix A: Description of crop model PRYSBI2 Version 2.2 

In the following description, we present a summary of the crop model used in MIROC-INTEG-LAND (PRYSBI2 Version 5 

2.2) and identify the elements that differ from the earlier versions (Version 2.0: Sakurai et al., 2014, Version 2.1: Müller et 

al., 2017). 

A.1 Input data 

As input data, the PRYSIB2 Version 2.2 uses the planting and harvesting date (Saccs et al. 2008), soil field capacity 

(Scholes et al. 2011), and atmospheric data (average, maximum and minimum daily temperature, daily shortwave and 10 

longwave radiation, daily humidity, and CO2 concentration). We use the same atmospheric data as HiGWMAT described in 

Section 5 (i.e., ISIMIP fast track data by Hempel et al. 2013). 

 

A.2 Growing period, maturity and harvest 

The time of seedling emergence after the planting date is determined by a parameter relevant to the average period between 15 

planting and emergence (lemerge). The period from emergence to maturity is determined by the total number of heat units 

(THU) (Neitsch et al., 2005). The crop is mature when THU is equal to a threshold value (thutotal), at which point it is 

harvested. Using the biomass values obtained at the time of crop maturity, the yield is calculated as follows: 

𝑌𝑖𝑒𝑙𝑑 ℎ𝑖 ∙ 𝐵𝐼𝑂  (A-1) 

where Yield is the crop yield (kg ha–1), hibase is the harvest index, and BIOabove(maturity) (kg ha–1) is the above-ground biomass at 

the time of crop maturity. Although the harvest index changes according to atmospheric CO2 concentration in version 2.0, in 20 

version 2.2, for simplicity, it is fixed. 

A.3 Photosynthesis 

The photosynthesis processes in version 2.2 are the same as in the previous versions. The photosynthesis rate is calculated 

according to the daily meteorological data. The instantaneous global radiation and temperature at time (t) of the day are 

estimated from the daily global radiation and daily maximum and minimum temperature on a given day (td) according to the 25 

method described by Goudriaan and van Laar (1994). The amount of photosynthetically active radiation, PARt,td (MJ m–2 s–1), 

intercepted by the leaf at time t on a given day td is calculated using Beer’s law (Monsi & Saeki 1953). We used the model 

described by Baldocchi (1994) to calculate the photosynthetic rate. 
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A.4 Temperature stress 

The equations for the effects of temperature on the maximum carboxylation rate of Rubisco and dark respiration rate are 

changed from those in version 2.0. The influence of temperature on the maximum carboxylation rate of Rubisco and the 

potential rate of electron transport is given as follows (Kaschuk et al., 2012, Medlyn et al., 2002): 

𝐶 , exp 𝑇𝑀 , 25 ∙
𝑒𝑝

298 ∙ 𝑅 ∙ 273 𝑇𝑀 ,
 (A-2) 

𝐶 , exp
𝐸 𝑇𝑀 , 25

298 ∙ R ∙ 𝑇𝑀 , 273
∙

1 exp
298 ∙ 𝑆 𝐻

298 ∙ R

1 exp
𝑇𝑀 , 273 ∙ 𝑆 𝐻

𝑇𝑀 , 273 ∙ R

 (A-3) 

where Cvcmax(t,td) and Cjmax(t,td) represent the effect of temperature on the maximum carboxylation rate of Rubisco and the 5 

potential rate of electron transport, respectively; TMt,td is the air temperature (°C) at time t on day td; epvcmax, Ejmax, Sjmax, and 

Hjmax are parameters that describe the shape of the curve (Kaschuk et al., 2012, Medlyn et al., 2002), and R is the universal 

gas constant (8.314 J mol–1 K–1). 

The influence of temperature on the dark respiration of leaves is given as 

𝐶 , exp 𝑇𝑀 , 25 ∙
𝑒𝑝

298 ∙ R ∙ 273 𝑇𝑀 ,
 (A-4) 

where Cdark(t,td) represents the effect of temperature on dark respiration at time t on day td and eprd is the parameter that 10 

describes the shape of the curve (Kaschuk et al., 2012). 

The maximum carboxylation rate of rubisco, the potential rate of electron transport, and the dark respiration rate are 

modified by temperature effects: 

𝑉 , Θ ∙ ξ ∙ 𝐶 , ∙ 𝑣 ∙ 𝑊  
 

(A-5) 

𝐽 , Θ ∙ ξ ∙ 𝐶 , ∙ 𝑗 ∙ 𝑊  (A-6) 

where Vcmax(t,td) is the maximum carboxylation rate of Rubisco, Jmax(t, td) is the potential rate of electron transport, vcmax and 

jmax is the potential maximum carboxylation rate and the potential rate of electron transport, respectively. 𝑊  15 

represents water stress, which is explained in A5. Θ is the compensation variable (0–1) that represents the discrepancy 

between the ideal photosynthetic potential and the actual one. ξV and ξJ are photosynthesis compensation variables that 

change according to CO2 concentration. These variables (Θ, ξV, and ξJ) are described in the following section. The dark 

respiration rate is calculated as follows: 

𝑅 , 𝑟𝑑 ∙ 𝐶 , ∙ 𝑣  
 

(A-7) 

where Rd(t,td) is the dark respiration rate (μmol m–2 s–1), and rd is the leaf respiration factor (Collatz et al., 1991, Sellers et al., 20 

1996a, b). The maintenance respiration and growth respiration are also considered. The formulations of the respiration 

models are also the same as those of the previous versions. 
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A.5 Soil water balance and water stress 

In PRYSBI2, the calculation of water stress follows the SWAT (Neitsch et al., 2005) algorithm. In SWAT, the daily water 

stress is calculated according to soil water, soil characteristics (field capacity and water content at saturation), root depth and 

crop field evapotranspiration. PRYSBI2 uses the soil water calculated in HiGW-MAT as explained in Section 3.2. The crop 

field evapotranspiration is calculated in SWAT according to the leaf area index.  5 

A.6 Correction of parameters according to CO2 concentration 

The correction of parameters based on CO2 concentration is included in the model using the following equations: 

ξ 1
𝑟 𝑐 𝑐 𝑟 𝑟 𝑐 𝑐 𝑟 4𝑟 𝑟 𝑟 𝑐 𝑐

2𝑟
 

 

(A-8) 

ξ 1
𝑟 𝑐 𝑐 𝑟 𝑟 𝑐 𝑐 𝑟 4𝑟 𝑟 𝑟 𝑐 𝑐

2𝑟
 

 

(A-9) 

𝑟
𝑑𝑟
𝑐

 

 

(A-10) 

𝑟
𝑑𝑟

𝑐
 

 

(A-11) 

𝑟 𝑑𝑟
600
𝑐

1  

 

(A-12) 

𝑟 𝑑𝑟
600
𝑐

1  (A-13) 

where ξV and ξJ are photosynthesis compensation variables, drvcmax and drjmax describe the parameters, ca is atmospheric CO2 

concentration (mol mol–1), and cbase is the baseline atmospheric CO2 concentration (mol mol–1). In this model, if drvcmax and 

drjmax > 0, ξV and ξJ decrease linearly with increasing atmospheric CO2. If drvcmax and drjmax = 0, ξV and ξJ do not depend on 10 

atmospheric CO2. In these equations, 𝑟  and 𝑟  are the respective asymptotic lines. 𝑟  is the parameter that determines 

the curvature of the lines; we set 𝑟 0.99. The parameters drvcmax and drjmax are based on the results of Ainsworth and Long 

(2005). 

A.7 Time trend of the parameter relevant to agricultural management 

When using historical yield data to calibrate model parameters, we need to consider temporal trends in the effects of non-15 

climatic factors. Crop yield should improve from year to year because of agricultural factors, such as the decrease in harvest 

loss and the use of improved crop cultivars and pesticides. We, therefore, assumed the following linear trend in non-climatic 

effects when evaluating the long-term yield data: 
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Θ θ θ 𝑌𝑒𝑎𝑟 𝑦  (A-14) 

where Θ is the compensation variable (0–1) that represents the discrepancy between the ideal photosynthetic potential and 

the actual one, which is used in Eq. A-5 and A-6; θbase is the value of Θ in year ybase and must be calibrated for each cell of 

the grid; θtrend is the annual increase in Θ due to non-climatic factors (which also must be calibrated for each cell of the grid); 

Year is the year; and ybase is the criterion year (2006). In this study, we analyzed the relationship between θ  and GDP for 

each crop and used the estimated relationship for future prediction. 5 

Appendix B: Description of land-use model TeLMO 

B.1 Food Cropland Model 

For each grid, TeLMO first allocates the area for urban use; it then allocates the area for food cropland. For the allocation of 

the urban area, we use the Land Use Harmonization phase 2 future data that are used in Coupled Model Intercomparison 

Project Phase 6 (CMIP6) (LUH2f, Lawrence et al., 2016). It is generally expected that the food cropland area is determined 10 

by the balance between the supply and demand for food crops. The estimation of the supply potential of food crops requires 

the spatial distribution of crop production, which is related to the natural environment. On the other hand, the balance between 

the supply and demand for food crops is influenced by socio-economic factors (e.g., populations, crop prices) related to 

international food trade. For this reason, TeLMO projects future land-use change by allowing the Food Cropland Down-scale 

Module (B.1.1), which projects the global cropland distribution at a resolution of 0.5° by considering environmental factors, 15 

to interact with the International Trade Module (B1.2), which describes food supply and demand based on the General 

Equilibrium Model by dividing the world into 17 countries/regions. The primary objective of using TeLMO is to describe the 

long-term trend in land-use change, not the detailed year-to-year variations in land-use change. Therefore, we use 10-year 

average values as input to the model. 

A major feature of TeLMO is that it does not project the local cropland distribution by unidirectionally downscaling the 20 

total cropland area for countries/regions obtained by integrated assessment models. This is because the total cropland area for 

each country/region depends on the local distribution of the cropland area. Therefore, TeLMO consistently treats the cropland 

distribution calculated by the Food Cropland Down-scale Module and the total cropland area for countries/regions obtained 

from the International Trade Module to project future land-use change. The Food Cropland Down-scale Module and 

International Trade Module are explained below. 25 

 

B.1.1 Food Cropland Down-scale Module 

The Food Cropland Down-scale Module divides the Earth into 0.5°×0.5° (latitude×longitude) grid cells (hereinafter "0.5° 

cells") and calculates the percentage of each cell occupied by cropland. The percentage of cropland is estimated by calculating 

the probability that each 30″×30″ grid cell (hereinafter "30″ cell") is used as cropland and averaging these probabilities over 30 
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the entire 0.5° cell. A 30″ cell allocated to urban use is not used for cropland. The probability 𝑟  of a given 30″ cell being used 

as cropland is calculated as 

𝑟
1

1 exp 1.228 0.237𝜙 0.206𝑝 𝑦 /𝑤
𝐶  (B-1) 

where 𝜙 is the slope, 𝑦 is the yield per unit area [t/ha], 𝑝 is the price of food crops, 𝑤 is the wage, and 𝐶 is an adjustment 

parameter. The subscript 𝑖 identifies the 30″ cell, 𝑗 identifies the 0.5° cell containing the 𝑖-th grid cell, and 𝑘 identifies the 

country/region containing the 𝑖-th and 𝑗-th grid cell. The definition of countries/regions is the same as that used in AIM/CGE 5 

(Fujimori et al., 2012, 2017). Eq. (B-1) is formulated based on the fact that the cropland area is determined as a function of 

slope, crop price and yield, and the wages of farmers. The first term of Eq. (B-1) is defined as the Agricultural Suitability 

Index (ASI), which represents the relationship between cropland area and the explanatory variables. The adjustment 

parameter  𝐶   is used to reproduce the cropland area of LUH (Lawrence et al., 2016) in the base year 2005 and to connect 

the future TeLMO projection with the historical simulation. 10 

The ASI is derived from a logistic regression analysis using past statistical data. We use the global 0.5° MODIS cropland 

area (Friedl et al., 2010) as the objective variable, and the Global 30 Arc-Second Elevation (GTOPO30, Verdin and Greenlee 

1996), the FAOSTAT food crop yield and price (FAO 2019), and GDP per capita as the explanatory variables. GDP per 

capita rather than the wages of farmers is used for the reason indicated in the discussion of Eq. B-4 below. The logistic 

regression coefficient was derived from 23,000 data values that were randomly selected from the set of global 0.5° grids at 15 

year 2005. A comparison of the MODIS cropland areas and the calculated ASI values is shown in Figure B-1. The 23,000 

randomly selected cropland area values were sorted in descending order and divided into 10 categories and the average 

MODIS cropland area and the average ASI-based cropland area in each category were compared. As shown in Figure B-1, 

the values calculated by the logistic regression effectively reproduce the distribution of the MODIS cropland area data. 

In the MIROC-INTEG simulations, GTOPO30 (Verdin and Greenlee 1996) is used for the slope 𝜙 , and the food price 𝑝  20 

and wage 𝑤  are obtained in the International Trade Module as explained in B.1.2. PRYSBI2 results (1.0° resolution, 

Section 3.2), converted to a resolution of 0.5°, are used for the yield 𝑦 . In TeLMO, total food cropland area is projected by 

using the maximum yield across the five cereal types (winter and spring wheat, maize, soybean, and rice). The reason for 

this formulation is explained in Section B.1.2. 𝑦  in Eq. (B-1) is calculated from the yields of the five cereals types by 

PRYSBI2. As discussed above, TeLMO is a model that evaluates the long-term trend in land-use change. Therefore, the crop 25 

yield and wage  𝑤   in Eq. (B-1) is the average value of 10 years (using the data from the one year to the ten years before the 

calculation year). 

The 0.5° cell cropland area (𝑅  is calculated by averaging the cropland probability in each of the 30” cells (𝑟  as follows: 

𝑅
𝑟
𝐽
 (B-2) 
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where 𝐽  is the number of 𝑖 cells (3600) in each 0.5° cell. The adjustment parameter 𝐶  in Eq. (B-1) is set so that the cropland 

area in the first year of calculation equals the data from LUH2f (Lawrence et al., 2016). 

As explained above, the cropland distribution 𝑅  projected at a spatial resolution of 0.5° by the Food Cropland Down-scale 

Module is used in calculations in the International Trade Module (B.1.2). 

 5 

B.1.2 International Trade Module 

Our model was developed by extending one of the simplest of the basic models, the Ricardian model. The Ricardian model 

is a one- production-factor (productivity per capita), 2-country/2-commodity (food and non-food) model that attempts to 

describe the essence of free trade behavior based on the theory of comparative advantage. Because of its simple structure, the 

Ricardian model can be extended to a multi-country and multi-commodity model (Ejiri 2008). In the International Trade 10 

Module, we extend the Ricardian model to be a multi-country (the entire world)/2-commodity (food and non-food) general 

equilibrium model. In addition, we account for decreasing returns in terms of production efficiency following the approach of 

Ejiri (2008). That is to say, we assume that agricultural production efficiency declines with increasing cropland area (and, 

conversely, that agricultural production efficiency increases as cropland area decreases). For this reason, industrial 

specialization, which has been pointed out as a problem of the Ricardian model, is unlikely to occur. 15 

In order to construct a multi-country/2-commodity model, the subscript 𝑘 was used to indicate country/region (the same 17 

countries/regions defined in AIM/CGE), and subscripts 1 and 2 were added to indicate agricultural and non-agricultural sectors, 

respectively. The prices and wages in Eq. (B-1) are those in the agricultural sector, which are represented by 𝑝 ,  and 𝑤 , , 

respectively. 

First, wages in the agricultural sector, 𝑤 , , are defined by using labor input and gross domestic production (GDP). In the 20 

International Trade Module, economic variables (e.g., food prices, wages, labor, and GDP) are described as the relative ratio 

to the base year (2005), the first year of calculation. Here, we assume that the total labor population ratio (relative to the base 

year) equals the total population ratio (relative to the base year). 

𝑙1,𝑘 𝑙2,𝑘 𝐿𝑘 (B-3) 

where 𝑙 , , and 𝑙 ,  are the labor input of the agricultural and non-agricultural sectors, respectively, and 𝐿  is the total labor 

population (Murakami and Yamagata 2016). GDP can then be described as total domestic income: 25 

𝐺𝐷𝑃𝑘 𝑤1,𝑘 ⋅ 𝑙1 𝑤2,𝑘 ⋅ 𝑙2  

where the value calculated by AIM/CGE is used for 𝐺𝐷𝑃  (units: USD). If we assume that the wage (ratio relative to the base 

year) for the non-agricultural sector is the same as that of the agricultural sector, the agricultural worker wage 𝑤 ,  is calculated 

as: 

𝑤1,𝑘
𝐺𝐷𝑃𝑘

𝑙1,𝑘 𝑙2,𝑘

𝐺𝐷𝑃𝑘
𝐿𝑘

 

 

(B-4) 
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In other words, it is assumed that the change in agricultural worker wage (relative to the base year) is equal to the change in 

per capita GDP. It is known that the employment rate have changed by a small percentage in the past. However, it is difficult 

to project the future changes in the employment rate, and thus the employment rate is assumed to be constant in the standard 

CGE models (e.g. Fujimori et al. 2012). Similarly, it is not easy to confirm the historical changes in wages for each country, 

nor to estimate their future change; thus, similar to that for employment rate, the future changes in wages are usually kept 5 

constant in the CGE models (e.g., Fujimori et al. 2012). It should be noted that a small increase in employment rate (compared 

to the base year) can slightly decrease the wages as indicated in Eq. (B-4), possibly leading to an increase in cropland area (Eq. 

B-1). 

Next, the price for agricultural sector 𝑝 ,  is calculated using the multi-country/2-commodity general equilibrium model. 

The prices for agricultural and non-agricultural sectors are calculated using Eqs. (B-5) and (B-6), respectively: 10 

𝑝1,𝑘 𝑤1,𝑘
𝑙1,𝑘

𝑥1,𝑘
 (B-5) 

𝑝2,𝑘 𝑤2,𝑘
𝑙2,𝑘

𝑥2,𝑘
 (B-6) 

where 𝑥 ,  and 𝑥 ,  are the production index in the agricultural and non-agricultural sectors, respectively. Here, the production 

index in the agricultural sector in region 𝑘 (𝑥 , ,) can be calculated as the sum of the products of 0.5° crop yield 𝑦  and cropland 

area 𝑅  using Eq. (7):  

𝑥1,𝑘 𝑦𝑗

𝐾𝑗

𝑗

𝑅𝑗 (B-7) 

where 𝐾  indicates the number of 0.5° cells within the country/region 𝑘 (3600). As described above, the cropland distribution 

𝑅  generated by the Food Cropland Down-scale Module (B.1.1) is used in Eq. (B-7). The domestic price 𝑝 in Eqs. (B-6) and 15 

(B-7) is expressed in terms of the local currency unit (LCU). This is converted to the international price 𝑃 (USD) using the 

exchange rate 𝜋 (LCU/USD) in Eqs. (B-8) and (B-9): 

𝑝1,𝑘 𝜋𝑘 ⋅ 𝑃1,𝑘 (B-8) 

𝑝2,𝑘 𝜋𝑘 ⋅ 𝑃2,𝑘 (B-9) 

The price 𝑝 and production index 𝑥 can then be connected using a relational equation for the trade budget as follows. 

Imposing the condition that the international budget for any country is zero results in Eq. (B-10) for the international balance 

of payments: 20 

𝑝1,𝑘 ⋅ 𝑥1,𝑘 𝑋1,𝑘 𝑝2,𝑘 ⋅ 𝑥2,𝑘 𝑋2,𝑘 0 (B-10) 

where 𝑋 , , and  𝑋 ,  are the demands for each good in each region. As described previously, the output generated by 

AIM/CGE based on the socio-economic scenario is used for food demand 𝑋 , . In this study, livestock feed demand is not 

included in 𝑋 , . The international balance of payments as shown in Eq. (B-10) consists of the current, capital and financial 
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accounts. The imbalance in the international budget corresponds to foreign exchange reserve. The foreign exchange reserve 

changes over periods longer than 10 years, but it is not possible to predict its future variation, and thus it is not considered in 

the standard CGE models (e.g., Ejiri 2008). In the real world, if foreign exchange reserve increases, amount of import goods 

tends to be decreased because money is not used for them. Consequently, in food importing countries, food production tends 

to be increased, possibly leading to an increase in cropland area. 5 

In addition, the price 𝑝 and product index 𝑥 can be related through Eq. (B-11) by expressing economic growth in terms of 

GDP: 

𝐺𝐷𝑃𝑘 𝑃1,𝑘 ⋅ 𝑥1,𝑘 𝑃2,𝑘 ⋅ 𝑥2,𝑘 (B-11) 

In Eq. (B-3) and Eqs. (B-5) to (B-11) above, the eight unknown values are 𝑝 , , 𝑝 , , 𝑥 , , 𝑥 , , 𝑙 , , 𝑙 , , 𝜋 , and 𝑋 , . 

Of these, because the reference for the international price 𝑃 is the United States (region index 𝑘 1), 𝑃 ,  and 𝑃 ,  (along with 

𝑝 , ,𝑝 , ) cannot be set. For this reason, the condition is imposed that total global net exports and imports equal to zero: 10 

𝑥 , 𝑋 , 0 (B-12) 

𝑥 , 𝑋 , 0 (B-13) 

As explained above, TeLMO uses 10-year averages as input to the model to represent long-term trends inland-use change 

(B.1.1). We assumed that the global total production is equal to consumption, i.e., the total global net exports and imports 

equal to zero. In reality, there are certainly stock changes in various goods but it would not be counterfactual to assume that 

they are net zero at longer time scale. The unknown values for 𝑝 , , 𝑝 , , 𝑥 , , 𝑥 , , 𝑙 , , 𝑙 , , 𝜋 , and 𝑋 ,  are calculated by 

simultaneously solving eight equations, Eq. (B-3) and Eqs. (B-5) to (B-11), for all 17 regions (𝑘 1 17) subject to the 15 

conditions imposed by Eqs. (B-12) and (B-13). The 𝑝 , , and 𝑤 ,  values obtained from Eq. (B-4) are entered into Eq. (B-1). 

Finally, the share of cropland for each 0.5° cell 𝑅  can then be calculated using Eq. (B-2). 

  As explained in Section B.1.1, TeLMO uses the maximum yield of five cereals types to project the total cropland area. 

Alternatively, it is possible to increase the number of agricultural sectors in Eqs. (B-3) to (B-12), solve the prices for each 

crops, and allocate the cropland area according to the ASIs for each crop. Although we attempted this formulation in the 20 

course of our development of TeLMO, it was found that the results were similar to those obtained from the current 

formulation. On the other hand, the solution of general equilibrium models did not converge in some cases because the 

number of sectors increases in the equations. For this reason, we decided to adopt the current formulation, while recognizing 

that  calculating cropland areas for each crop is an important future work. 

 25 

B.2 Bio-energy Cropland Model 
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The Bio-energy Cropland Model uses 30″ cells that are not assigned to urban use or food cropland use. Whereas adjustment 

parameter 𝐶  in the Food Cropland Model (Eq. B-1) could be set using observed cropland area for the first year of the TeLMO 

calculation (the base year 2005), there is no corresponding adjustment parameter in the case of bio-energy cropland because 

sufficient cropland devoted to biofuel crops did not exist in the base year. Accordingly, the Bio-energy Cropland Model 

allocates bio-energy cropland around the globe so that the global total biofuel crop production equals the global total biofuel 5 

crop demand obtained by AIM/CGE. The Bio-energy Cropland Model uses the same formularization to that in the Food 

Cropland Down-scale Module (B.1.1) to evaluate the probability of bio-energy cropland in 30″ cells using the following 

equation: 

𝑟𝑏𝑖𝑜,𝑖
𝐶𝑏𝑖𝑜

1 exp 1.228 0.237𝜙𝑖 0.206𝑝𝑏𝑖𝑜,𝑘𝑦𝑏𝑖𝑜,𝑗/𝑤1,𝑘

 (B-14) 

where 𝜙  is the slope in 30″ cell i, 𝑝 ,  is the biofuel crop price in region 𝑘, 𝑦 ,  is the yield [t/ha] of biofuel crops in 0.5° 

cells, and 𝑤 ,  is the agricultural sector wage in region 𝑘. For the biofuel crop price 𝑝 , , the values generated by 10 

AIM/CGE are used. For biofuel crop yield 𝑦 , , the yield for miscanthus or switchgrass, whichever is greater in a given 

cell, is calculated for the entire globe by using the biofuel crop model developed in Kato and Yamagata (2014). The 

biofuel crop model in Kato and Yamagata (2014) considers the future changes in climate based on the RCP scenarios. 

In this study, we also consider the future changes in fertilizer input based on the SSPs adopted in Mori et al. (2018). 

Because of the uncertainty in future fertilizer application for crop management, we set the high end of the N fertilizer 15 

input threshold according to Tilman et al. (2011). The nitrogen fertilizer application was set to increase from the 

current level according to the increasing rate of GDP in the SSP2 scenario up to 160 kg N ha-1 yr-1 if the fertilizer input 

at the country level was below 160 kg N ha-1 yr-1 in the 2000s. Also, the phosphorus fertilizer input in each country 

was set to follow the same annual increase rate as the nitrogen fertilizer application. 

Our use of the same formularization for the Food Cropland Model and the Bio-energy Cropland Model is based on the 20 

assumption that the factors determining both cropland areas are similar. 

The adjustment parameter 𝐶  is set so that the global total biofuel crop production volume (product of yield and cropland 

area) equals the global total biofuel crop demand calculated by AIM/CGE: 

𝑋𝑏𝑖𝑜,𝑘

𝐾𝑎𝑙𝑙

𝑘

𝑦𝑏𝑖𝑜,𝑗𝑅𝑏𝑖𝑜,𝑗

𝐽𝑎𝑙𝑙

𝑗

 (B-15) 

where 𝑋 ,  is the biofuel crop demand for region 𝑘 calculated by AIM/CGE, 𝐾  and 𝐽  are the total number of regions 

(17) and the total number of 0.5° cells (259,200), respectively. 𝑅 ,  is the average percentage of bio-energy cropland for all 25 

30″ cells in a given 0.5° cell, where the individual  30″ cell percentages are determined by Eq. (B-14). 

If bio-energy cropland were allocated based on the principle described above, a massive development of bio-energy cropland 

would occur in regions with high ecosystem production such as the Amazon. For this reason, the model accounts for protected 
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areas that cannot be allocated as bio-energy cropland as shown in Figure B-2. Two sources were used for protected areas (Wu 

et al., 2019): the World Database for Protected Areas (WDPA) (IUCN and UNEP-WCMC 2018) and the World Database of 

Key Biodiversity Areas (KBA) (BirdLife International 2017). As of 2018, the WDPA covered an area of 33.6 million km2, and 

the KBA covered an area of 19.9 million km2. In this study, we did not consider the protected area for the calculation of the 

food cropland and pasture, under the assumption that food has a higher priority than ecosystem protection. 5 

 

B.3 Pastureland Model 

Whereas the Food Cropland Model uses statistical relationships between cropland area, yield, and economic variables, 

because reliable statistical data do not exist for pastureland, a simpler approach is taken to estimate pastureland. The probability 

of pastureland in each 30″ cell is determined based on net primary production (NPP) and slope, given by: 10 

𝑟𝑝𝑎𝑠𝑡,𝑖
𝐶𝑝𝑎𝑠𝑡,𝑗  𝑁𝑃𝑃𝑗

1 𝜙
20

 (B-16) 

The denominator in Eq. (B-16) reflects the fact that the use of land as pasture decreases with the angle of inclination, as is 

shown in the LUH2f data (Lawrence et al., 2016). The results of an off-line simulation by VISIT (Ito and Inatomi 2012) 

assuming the entire world to be grassland are used here for 𝑁𝑃𝑃 . The boundary condition of the VISIT off-line simulations 

is fixed at year 2005. 𝐶 ,  is the adjustment parameter for 0.5° cells. The value of 𝐶 ,  changes from year to year. The 

adjustment parameter for the base year, 𝐶 , 𝑡 0  is set so that the pastureland distribution equals that of LUH2f 15 

(Lawrence et al., 2016) for the base year (2005). Adjustment parameters for years other than the base year, 𝐶 , 𝑡 , are set 

by applying a proportionality factor 𝛼 𝑡  to the base-year parameter: 

𝐶𝑝𝑎𝑠𝑡,𝑗 𝑡 𝛼 𝑡 𝐶𝑝𝑎𝑠𝑡,𝑗 𝑡 0  (B-17) 

where 𝛼 𝑡  is set so that regional total pastureland area equals the regional total pastureland demand calculated by AIM/CGE. 

In other words, 𝛼 𝑡  is set so that the condition 

𝑆𝑝𝑎𝑠𝑡,𝑘 𝑡 𝑅𝑝𝑎𝑠𝑡,𝑗 𝑡

𝐽𝑘

𝑗

 (B-18) 

is met, where 𝑆 , 𝑡  is the pastureland demand calculated by AIM/CGE for region 𝑘 , 𝑅 , 𝑡  is the average of 20 

percentage of pastureland for all 30″ cells (from Eq. (B-16)) in a given 0.5° cell, and 𝐽  is the total number of 0.5° cells in each 

region 𝑘.  

 

B.4 Managed Forest Model 

In the Managed Forest Model, satellite data are used to determine forest area; the share of forest area where timber harvesting 25 

occurs is allocated as managed forest in the manner described below. The distribution of managed forests in 0.5° cells, 

𝑅 , 𝑡 , is formularized in terms of the area of managed forests in the base year and the population density: 
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𝑅𝑚𝑓𝑟,𝑗 𝐴𝑓𝑟,𝑗

𝜌𝑗∗
𝐶𝑚𝑎𝑛𝑓𝑟,𝑘 𝜌𝑗∗

 (B-19) 

where 𝐴 ,  is the area of managed forest in 0.5° cells in the base year (2005), 𝜌 ∗ is the mean population density in the 5×5 

grid (2.5° cell) of cells centred on the 0.5° cell in question. Larger 2.5° cells were used instead of 0.5° cells based on the 

assumption that harvested timber is transported within an approximately 100-km radius and that the amount of harvested 

timber is determined by the population density in each 2.5° cell. The 100-km radius is estimated from the distance where the 

transportation cost of timber (~ 1 $/km/tons) is balanced with the price of timber (~ 100 $/tons). Here, the transportation cost 5 

and price of timber are estimated using the FAOSTAT data (FAO 2019). Moderate Resolution Imaging Spectroradiometer 

(MODIS) satellite data (Friedl et al., 2010) are used for the base-year forest area (2005), and data from Murakami and 

Yamagata (2016) are used for the population density, 𝜌 ∗. 𝐶 ,  is an adjustment parameter that is set for each of the 17 

regions 𝑘  so that the managed forest area conforms to the round-wood demand 𝑋 ,  [kg/yr] calculated by AIM/CGE. We 

use the region-level adjustment factors for managed forest (𝐶 , ) because the grid-level reference data is not available. In 10 

other words, 𝐶 ,  is set so that the total regional amount of harvested timber equals the regional total round-wood demand:  

𝑋𝑚𝑓𝑟,𝑘 𝑅𝑚𝑓𝑟,𝑗

 𝐽𝑘

𝑗

𝐵𝑗
𝐿𝑗
 (B-20) 

where 𝐵  is the distribution of forest biomass [kg/m2] in 0.5° cells, calculated by VISIT (Ito and Inatomi 2012) off-line 

simulations assuming the entire world to be forest with the fixed boundary conditions (2005). 𝐽  is the total number of 0.5° 

cells in each region 𝑘. 𝐿  is the harvesting period [yr], which is estimated as follows, based on the 𝑁𝑃𝑃  for 0.5° cells obtained 

from VISIT (Ito and Inatomi 2012): 15 

𝐿𝑗

∞ 𝑁𝑃𝑃𝑗 4
500/𝑁𝑃𝑃𝑗 4 𝑁𝑃𝑃𝑗 25

20 25 𝑁𝑃𝑃𝑗
 (B-21) 

𝐿  reflects the fact that the harvesting period decreases with increases in net primary production, as is shown in the LUH2v 

data (Lawrence et al., 2016). The amount of forest harvested in a given year can also be calculated as 𝑅 ,
𝐵

𝐿  [kg/yr] 

based on the distribution of managed forests 𝑅 , , forest biomass 𝐵 , and the felling period 𝐿  for 0.5° cells.  

 

B.5 Formulation of Transition Matrix Model 20 

Evaluating the impact of land-use change on terrestrial ecosystems requires not only the spatial distribution of land use but 

also information on the land-use transition. For example, in areas where shifting cultivation is practiced, even though the 

overall cropland area within a cell does not change, a particular area may be cleared as cropland while another area is 

abandoned. In such cases, there is a transition from cropland to secondary land, which impacts the above-ground biomass and 

carbon budget. Thus, matrix information regarding the transition from one land use to another land use is essential. 25 
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For the landcover types used in the transition matrix, we use the five classes (urban, cropland, pasture, secondary/primary 

land) used in the VISIT terrestrial ecosystem model (Ito and Inatomi 2012). TeLMO forecasts eight landcover types, including 

the previously described urban, cropland (food and bio-energy), pasture, managed forest, and unmanaged forest classes as well 

as "grassland" (obtained from MODIS satellite data, Friedl et al., 2010) and “other” landcover types that are not used by 

humans (for example, glaciers, lakes and marshes, as defined by MODIS satellite data, Friedl et al., 2010). The correspondence 5 

between the landcover types used in TeLMO and those used in the land-use transition matrix is presented in Table B-1. 

The primary/secondary land classes in the land-use Transition Matrix Model are defined as land that has never been used 

by humans or land that has been used at least once by humans, respectively. Here, unmanaged forest and grassland are 

classified as primary or secondary land based on data from LUH2f supplied by LUH2v (Lawrence et al., 2016). Unmanaged 

forest or grassland areas that are classified as secondary land in the base year (2005) remain classified as secondary land in 10 

subsequent years. In the case in which unmanaged forest or grassland areas are classified as primary land in the base year, if 

the area is converted to cropland or pasture and then later returned to being unmanaged forest or grassland, it is classified as 

secondary land. In TeLMO, land classified as "other" is considered the land that cannot be used by humans and is therefore 

not included in the land-use transition matrices. 

The method used to create the land-use transition matrices is shown in Figure B-3. As explained above, TeLMO assumes 15 

that land is used in order of highest to lowest value added per unit area (i.e., urban, food cropland, bio-energy cropland, 

pastureland, managed the forest, and unmanaged forest). Aligning these land-use classes with corresponding classes in the 

transition matrix (Table B-1), the preferential order of the latter becomes urban, cropland (food + bioenergy), pasture, 

secondary land, primary land. To calculate land-use transition matrices, the percent areas of the different landcover types in 

each 0.5° cell in a given year are first sorted in order of preference (“Pre” in Figure B-3). In Figure B-3, the length of each 20 

colored bar represents the percent area of a given landcover type. The sum of the percent areas for all land-use classes is 100%. 

Next, the percent areas of different landcover types in each 0.5° cell in the following year are again sorted in order of preference 

("Post" in Figure B-3). 

As shown in Figure B-3, the percent areas of transitioned land defined in transition matrices can be calculated by comparing 

the percent areas for each landcover type in a given year and the next year. For example, the area indicated in column "a" in 25 

Figure B-3 corresponds to the percent area of land that transitioned from pasture to cropland. Similarly, the area indicated in 

column "b" in Figure B-3 corresponds to the percent area of land that transitioned from secondary land to pasture. In this 

manner, it is possible to calculate the transition between landcover types by assuming a preferential order to land use.  

Shifting cultivation is taken into account when making the land-use transition matrices. We assume that the share of 

cultivated land does not change over time on the larger (i.e., 0.5° cell) scale. Data from Butler (1980) are used for the global 30 

allocation of shifting cultivation on this larger scale. Furthermore, in regions where shifting cultivation is practiced, we assume 

that cropland is used sequentially with a fixed rotation (Butler 1980). Under this assumption, in areas where shifting cultivation 

is practiced, 1/15 of the cropland area is newly cultivated, and 1/15 of the cropland area is abandoned each year. Thus, 1/15 of 
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the cropland area is transitioned from secondary land to cropland, and 1/15 of the cropland area is transitioned from cropland 

to secondary land. These transitions are added to the transition matrices for areas where shifting cultivation is practiced. 

Code and data availability 

The MIROC-INTEG source code for this study is available to those who conduct collaborative research with the model users 

under license from the copyright holders. For further information on how to obtain the code, please contact the corresponding 5 

author. The data from the model simulations and observations used in the analyses are available from the corresponding author 

upon request. 
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Figure 1: Exchange of variables in MIROC-INTEG-LAND. Components of the integrated model (sub-models), climate, water 
resource, crop growth, land use, and land ecosystem models, are shown as colored boxes. Input to the model is shown as boxes of 5 
climate and socio-economic scenarios. Solid arrows between the boxes indicate the variables exchange between the sub-models. 
Dashed arrows indicate the input variables to the sub-models. 
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Figure 2: The numerical simulation procedure in MIROC-INTEG-LAND. The order of the numerical integration is (1) TeLMO, 
(2) HiGWMAT + PRYSIB2, (3) VISIT as described in Section 4. Boxes indicate the sub-models and data. For the sub-models, the 
name and time-step of the models are indicated in the boxes. In the “data” box, the name of the variable saved as a file is 
indicated. In the “input data” box, information regarding the input data is indicated. 5 
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Figure 3: Comparison of historical terrestrial water storage (TWS) simulated by MIROC-INTEG-LAND with GRACE satellite 
data. For each river basin, the panel on the right shows the seasonal cycle. The GRACE data shown are the mean of the mass 
concentration products from two processing centers: CSR and JPL. Simulated results are the average of five climate model 
simulations. Grey shading indicates the uncertainty range shown by one standard deviation from the mean. 5 
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Figure 4: Comparison of irrigation demands simulated by MIROC-INTEG-LAND (a) with the results from offline simulations 
using HiGW-MAT (b) forced by observed climate forcing data (Pokhrel et al., 2015) for 1°×1° grids shown as the mean for 1998-
2002 period.   
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Figure 5: Comparison of model estimation with reference data on average yield during the period 1981-2005 for the top ten countries 
producing each crop. The Box plot shows the median and range of model results estimated from the five GCM outcomes. The main 
production countries were identified according to the country-based harvested area for each crop. 

  5 
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Figure 6: Comparison of latitudinal distribution of gross primary production in 2000–2010 with up-scaled flux measurements 
(Model-Tree Ensemble (MTE); Beer et al., 2010) and satellite observation (MODIS; Zhao et al., 2005). 
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Figure 7: Comparison of historical cropland area simulated by MIROC-INTEG (red), AIM/CGE (blue), and FAOSTAT (black), 
using the ratio of cropland area to total area. For MIROC-INTEG simulations, the cropland area results for the five different 
climate forcings are shown.  5 
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Figure 8: Same as Figure 7, but for the comparison of historical pasture area simulated by MIROC-INTEG (red), AIM/CGE 
(blue), and LUH (black), using the ratio of cropland area to total area.  
 5 
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Figure 9: Same as Figure 7, but for the historical forest area simulated by MIROC-INTEG (red), AIM/CGE (blue), and FAO 
(black), using the ratio of cropland area to total area.  
 5 
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Figure 10: Time series of changes in the climate system based on the forcings of the five climate models. Results shown are for (a) 
surface air temperature [K], (b) soil moisture in the top 300 mm of the soil column [mm], shown as an anomaly from first 20-year 5 
average, (c) Irrigation water supply [km3/yr]. Thin curves indicate the global average of results for each of the five climate model 
forcings. Thick curves show the overall average of results based on the five forcings. The colors indicate RCP2.6 (blue), RCP4.5 
(green), RCP6.0 (orange), and RCP8.5 (red).  
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Figure 11: Time series of changes in crop yield [unit: tons/ha] based on the forcings of the five climate models. Results shown are 

for (a) winter wheat, (b) spring wheat, (c) maize, (d) soybean, (e) rice, and (f) grid maximum value for the five crop types. Thin 

curves indicate the global average of results for each of the five climate model forcings. Thick curves show the overall average of 5 

results based on the five forcings. The colors indicate RCP2.6 (blue), RCP4.5 (green), RCP6.0 (orange), and RCP8.5 (red).  
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Figure 12: Time series of changes in cropland area based on the forcings of the five climate models. The vertical axis is the 

cropland area as a fraction of total land area. The results are for (a) food cropland area, and (b) food + bioenergy cropland area. 

Thin curves indicate the global average of results for each of the five climate model forcings. Thick curves show the overall 5 

average of results based on the five forcings. The colors indicate RCP2.6 (blue), RCP4.5 (green), RCP6.0 (orange), and RCP8.5 

(red).  
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Figure 13: Spatial distribution of land-use change [units: a ratio of the grid box area]. The results are for (a, b) food 

cropland area, and (c, d) bioenergy cropland area. Average of the five climate projection-based simulations under (a, 

c) RCP2.6 and (b, d) RCP8.5 scenarios in the 2090s. 

 5 
 
  



58 
 

 

 

Figure 14: Temporal change in global carbon stock in (top) vegetation biomass and (bottom) soil organic carbon, (red) with and 

(green) without land-use change, under (left) RCP2.6 and (right) RCP8.5 scenarios. Thick lines show the median and light zones 

show the maximum–minimum range of the five climate projection-based simulations.  5 
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Figure 15: Spatial distribution of land-use-induced changes in terrestrial ecosystem carbon stock. Results are for (a, b) vegetation 

biomass and (c, d) soil carbon stock. Average of the five climate projection-based simulations under (a, c) RCP2.6 and (b, d) RCP8.5 

scenarios in the 2090s. 5 
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Figure 16: Time series of changes in a) cropland yield (maximum across five crops at each grid, t/ha), and b) food cropland area (a 
fraction of total land area) based on the forcings of the five climate models under the RCP8.5 scenario. Simulations with climatic 
factors and CO2 concentration fixed at 2006 (light green, noCL+noFE), those with climatic factors fixed (cyan, noCL), and those 5 
with varying climate and CO2 concentration (red, CL+FE).  
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Figure B-1: Comparison of the global MODIS cropland area and the calculated area using the agricultural suitability index (ASI). 

Here, 23,000 randomly selected cropland area values are arranged in descending order and divided into 10 categories; the average 5 

value of MODIS (black) and ASI values calculated by TeLMO (red) in each category are compared. The horizontal axis is the 

higher percentile of cropland area data that is randomly selected from the global 0.5 degree grids at year 2005. 
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Figure B-2: Global distribution of areas protected from bioenergy production.  
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Figure  B-3:  Schematic diagram of landcover transition. Details are explained in the main text.  
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Table B-1 Correspondence of landcover type in land-use model and transition matrix.  

Landcover type in land-use model Landcover type in transition matrix 

Urban Urban 

Cropland (food) 
Cropland 

Cropland (bio-crop) 

Pasture Pasture 

Managed forest Secondary land 

Unmanaged forest 
Primary land 

Secondary land 

Grassland 
Primary land 

Secondary land 

Other - 
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