
A simulator for the CLARA-A2 cloud climate data record and its
application to assess EC-Earth polar cloudiness
Salomon Eliasson1, Karl-Göran Karlsson1, and Ulrika Willén1

1Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, 601 76 Norrköping, Sweden

Correspondence: Salomon Eliassson (salomon.eliasson@smhi.se)

Abstract.

This paper describes a new satellite simulator for the Satellite Application Facility on Climate Monitoring (CM SAF) cLoud,

Albedo and RAdiation dataset (CLARA), Advanced Very High Resolution Radiometer (AVHRR)-based, version 2 (CLARA-

A2) Climate Data Record (CDR). This simulator takes into account the variable skill in cloud detection in the CLARA-A2

CDR by using a different approach to other similar satellite simulators to emulate the ability to detect clouds.5

In particular, the paper describes three methods to filter out clouds from climate models undetectable by observations. The

first method is comparable to the current simulators in Cloud Feedback Model Intercomparison Project (CFMIP) Observation

Simulator Package (COSP), since it relies on a single visible cloud optical depth at 550nm (τc) threshold applied globally to

delineate cloudy and cloud-free conditions. Method two and three apply long/lat -gridded values separated by day and nighttime

conditions. Method two uses gridded varying τc as opposed to method one that uses just a τc threshold, and method three uses a10

cloud Probability of Detection (POD) depending on the model τc. The gridded POD values are from the CLARA-A2 validation

study by Karlsson and Håkansson (2018)

Method two and three replicate the relative ease or difficulty for cloud retrievals depending on the region and illumination.

They increase the cloud sensitivity where the cloud retrievals are relatively straightforward, such as over mid-latitude oceans,

and decrease the sensitivity where cloud retrievals are notoriously tricky. This is the situation for cold regions, especially at15

night, where thick clouds may be inseparable from cold, snow-covered surfaces, as well as in areas with an abundance of

broken and small scale cumulus clouds such as the atmospheric subsidence regions over the ocean.

The simulator, together with the International Satellite Cloud Climatology Project (ISCCP) simulator of COSP, is used to

assess Arctic clouds in the EC-Earth climate model compared to the CLARA-A2 and ISCCP-H CDRs. Compared to CLARA-

A2, EC-Earth is shown to generally underestimate cloudiness in the Arctic. However, compared to ISCCP and its simulator,20

the opposite conclusion is reached. Based on EC-Earth, this paper shows that the simulated cloud mask of CLARA-A2 using

method three is more representative of the CDR than method one which is used for the ISCCP simulator.

The simulator substantially improves the simulation of the CLARA-A2 detected clouds, especially in the polar regions, by

accounting for the variable cloud detection skill over the year. The approach to cloud simulation based on the POD of clouds

depending on their τc, location, and illumination is the preferred one as it reduces cloudiness over a range of cloud optical25

depths. Climate model comparisons with satellite-derived information can be significantly improved by this approach, mainly

by reducing the risk of misinterpreting problems with satellite retrievals as cloudiness features. Since previous studies found
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that the CLARA-A2 CDR performs well in the Arctic during the summer months, and the method three is more representative

than method one, the conclusion is that EC-Earth likely underestimates clouds in the Arctic summer.

1 Introduction30

Clouds constitute one of the most significant sources of uncertainties for projecting the future climate (IPCC, 2014). Therefore,

countless studies have been made testing and improving the skill of climate models in this regard over the years (e.g., Waliser

et al., 2009). As more and more information on cloud climatologies from satellite sensors are available in CDRs, climate models

have been able to improve their representation of clouds continuously, and hence their description of the climate system itself.

Currently, there are only a few CDRs derived from imaging sensors that span more than 30 years. The ISCCP CDR (Young35

et al., 2018) was the first such dataset and mainly based geostationary satellite data, complemented with data from polar

orbiting satellites at high latitudes. The three other CDRs are based on data from the polar-orbiting meteorological satellites

from the National Oceanic and Atmospheric Administration (NOAA) and Meteorological Operational Satellite (METOP)

series. They are the Pathfinder Atmospheres- Extended (PATMOS-x) (Heidinger et al., 2014), the Cloud_cci (Stengel et al.,

2017), and the CLARA-A2 (Karlsson et al., 2017) CDRs. The long length of these CDRs make them ideal for assessing the40

cloud climatologies of climate models.

However, to directly compare model clouds to cloud observations from satellites is akin to comparing "apples to oranges" as

is explained in Waliser et al. (2009); Eliasson et al. (2011), and many others. Two of the primary considerations to make when

comparing climate models to satellite observations is their very different horizontal and vertical scales, and the observations’

finite sensitivity to clouds. Therefore, nowadays, in order to utilize the CDRs from satellite data, the CDRs usually need to be45

simulated from the model atmosphere with these attributes/limitations in mind.

In general, satellite simulators create cloud products or brightness temperatures that would have been made from satellite

measurements if the model atmosphere was the real atmosphere. The simulators’ objective is to emulate the inherent limitations,

sensitivity, and geometry of the real retrievals. One of the main tasks for these simulators, among others, is to filter out model

clouds that would not be detected by the instrument behind the cloud CDR. These simulated satellite products can then be50

compared directly to the observations.

Satellite simulators are primarily used to validate Earth System Models (ESMs) such as climate models. Although satellite

simulators bridge the gap between models and observations by significantly reducing the comparison uncertainties, they do

not eliminate them, and this should be taken into account when comparing satellite product simulations to the observations

(Pincus et al., 2012). This paper introduces the CLARA-A2 satellite simulator v1.0, for use in model validations compared to55

the CLARA-A2 CDR.

The COSP (Bodas-Salcedo et al., 2011; Swales et al., 2018) was developed to gather and provide a suite of satellite simu-

lators. These simulators provide column-integrated cloud retrievals, just as the datasets they represent, and therefore they need

the cloud averages on the coarse grid of climate models to be translated into many smaller subcolumns for each model long/lat-

grid box (Jakob and Klein, 1999; Pincus et al., 2006). The number of subcolumns per grid depends on the host models’ reso-60
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lution, and typically number around 100×the model resolution in degrees. Therefore, if a model has a resolution of 0.7°, the

simulator will generate 70 subcolumns per horizontal grid. The cloud retrieval simulations are further carried out on each of

these subcolumns.

The ISCCP (Jakob and Klein, 1999), the MODerate resolution Imaging Spectroradiometer (MODIS) (Pincus et al., 2012),

and the Multi-angle Imaging SpectroRadiometer (MISR) simulators are the visible/infrared (VIS/IR) satellite dataset simulators65

in COSP. The CLARA-A2 cloud products are also retrieved using an instrument that measures in this frequency range, and

hence the CLARA-A2 simulator has many similarities with these. Other VIS/IR satellite simulators not included in COSP to

date are the Spinning Enhanced Visible Infrared Imager (SEVIRI) (Bugliaro et al., 2011) and the Cloud_cci (Eliasson et al.,

2019) simulators.

All satellite datasets based on VIS/IR data have regionally varying skill in detecting clouds, and all retrievals suffer when70

clouds are too tenuous to detect, or obscured. The removal of would-be undetectable clouds from the model is an essential

feature of satellite simulators and to date is being carried out by comparing the τc of a subcolumn to some threshold value. To

date, the simulators in COSP and the Cloud_cci simulator rely on a global static τc value to reclassify subcolumns, with an op-

tical depth less than this threshold, as cloud free. It is well established that all cloud masks based on the AVHRR channels have

a variable skill, mainly depending on the underlying surface and the illumination conditions (e.g., Karlsson and Håkansson,75

2018). Karlsson and Håkansson (2018) studied the performance of the CLARA-A2 cloud mask against Cloud-Aerosol Lidar

with Orthogonal Polarisation (CALIOP) measurements in detail and produced global statistics for different τc thresholds, the

probability of cloud detection, and the rate of falsely detected clouds (false alarm rate), on a global and regional basis. For

instance, they showed that the general likelihood of detecting clouds is much higher over warm ocean surfaces than over per-

petually ice-covered regions and likewise that in some regions, e.g., deserts and other dry surfaces, retrievals there are relatively80

susceptible to producing false clouds.

It is clear that the use of a fixed τc threshold, applied globally to modeled cloud fields in order to simulate satellite-based

cloud detection limitations, is a substantial simplification of the actual observation conditions. Therefore a completely new

approach is introduced in this paper describing a simulator for the CLARA-A2 CDR applying spatially and temporally varying

cloud detection thresholds. Employing this novel approach to simulating observed cloud cover, should put the confidence85

in cloud cover comparisons between the climate models and the CLARA-A2 CDR on a stronger footing. The CLARA-A2

simulator also incorporates a method of model temporal sampling in order to reduce errors potentially introduced by not taking

the different and changing equatorial overpass times of the satellites used in the CLARA-A2 CDR, into account. This approach

is also used in the Cloud_cci simulator and is motivated and described in Eliasson et al. (2019).

The article structure is as follows: Sect. 2.1, Sect. 2.2, and Sect. 2.3 describe the CLARA-A2 CDR, ISCCP-H series (ISCCP-90

H) CDR, and the EC-Earth climate model (Hazeleger et al., 2010) respectively. Section 3 describes the CLARA-A2 simulator

and the simulated variables and Sect. 3.1 offers a description and demonstration of the simulated cloud masks. The CLARA-A2

simulator approach is demonstrated and tested over the Arctic region where trends in polar summer cloudiness are investigated

using simulations from the EC-Earth climate model in Sect. 4. A summary and conclusion are given in Sect. 5.
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2 Data95

2.1 The CLARA-A2 climate data record

The CLARA-A2 CDR (Karlsson et al., 2017) is based on long term measurements from the AVHRR instrument operated

onboard polar orbiting NOAA satellites as well as onboard the MetOp polar orbiters operated by European Organisation for

the Exploitation of Meteorological Satellites (EUMETSAT) since 2006. AVHRR measures in five spectral channels (two visible

and three infrared channels) with an original horizontal field of view (FOV) resolution at the nadir of 1.1 km. However, the100

data used in CLARA-A2 is a reduced resolution (5 km) resampled version of these measurements, called global area coverage

(GAC), where three consecutive scanlines made up of 3x5 original FOVs make one GAC pixel. Saving the data on a GAC pixel

resolution was a compromise to drastically reduce the data amount, a necessity due to limited bandwidth and onboard storage

capacity.

Specifically, the average radiance from four out of five pixels from the first scan line and none from the next two scan105

lines are used to create the GAC measurement. Thus, only about 27% of the nominal GAC FOV is actually used (see Fig. 1

in Karlsson and Håkansson (2018)). Only GAC data is available globally (i.e., being archived) over the full period since the

introduction of the AVHRR sensor in space.

The visible radiances were inter-calibrated and homogenized, using MODIS data as a reference before applying the multiple

parameter retrievals. The inter-calibration uses the method introduced by Heidinger et al. (2010), which is now updated using110

MODIS Collection 6 as well extended by six years. The calibration of infrared AVHRR channels is based on the standard

NOAA calibration methodology utilizing an onboard blackbody reference (Rao et al., 1993). CLARA-A2 is an improved and

extended follow-up of the first version, CLARA, AVHRR-based, version 1 (CLARA-A1) of the record (Karlsson et al., 2013)

and is extended to cover 34 years (1982–2015).

CLARA-A2 features a range of cloud products: cloud mask (cloud amount), cloud top temperature/pressure/height, cloud115

thermodynamic phase, and for liquid and ice clouds separately, cloud optical thickness, particle effective radius, and cloud water

path. Cloud products are available as monthly and daily averages in a 0.25° latitude-longitude grid and also as daily resampled

global products (Level 2b) on a 0.05° grid for individual satellites. The CDR also includes multi-parameter distributions (i.e.,

joint frequency histograms of cloud optical thickness, cloud top pressure, and cloud phase) for daytime conditions. Besides

cloud products, CLARA-A2 also includes surface radiation budget and surface albedo products. Examples of CLARA-A2120

products can be found in Karlsson et al. (2017).

In this study, we focus exclusively on the AVHRR GAC cloud mask because of its central importance for the quality

of all other CLARA-A2 products. Validation results for other CLARA-A2 products can be found in Karlsson et al. (2017)

and CMSAF1 (2017). The method for generating the CLARA-A2 cloud mask originates from Dybbroe et al. (2005), but

significant improvements and adaptations since then were made to enable reliable processing of the historic AVHRR GAC125

record (CMSAF2, 2017).
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2.1.1 The skill of the CLARA-A2 CDR

As mentioned earlier, Karlsson and Håkansson (2018) performed an extensive validation of the CLARA-A2 cloud mask against

simultaneous nadir observations of CALIOP retrievals, and following is a recap of their main results. The goal was to find out

at which optical depth thin clouds were thick enough to have a 50% probability of being detected. They investigated the global130

performance of the CLARA-A2 cloud mask on a global equal-area grid with a 300 km resolution, covering different surface

types, and separately for daytime and nighttime conditions. This detection level can be considered the baseline for any cloud

mask; i.e., the smallest τc threshold where the cloud mask detects more clouds than it misses. They found that the global mean

minimum cloud optical thickness was τc = 0.225. However, importantly, their results showed that the global mean is far from

being representative of all local conditions. For instance, a τc threshold value of 0.07 is a better approximation over ice-free135

oceanic regions at mid-latitudes, whereas a τc threshold value as high as 4.5 is suitable for some ice-capped regions such as

over Greenland and Antarctica. By comparison, the reference dataset, CALIOP can detect clouds with τc> 0.01 (Winker et al.,

2009) and is generally stable across any surface.

However, the capability of the cloud mask in CLARA-A2 is better described by the POD of clouds rather than a τc threshold.

Karlsson and Håkansson (2018) showed that even if all thin clouds with a τc less than 0.225 are removed from the comparison,140

i.e., by reclassifying such CALIOP reference clouds as cloud-free, the POD varies considerably per region. Additionally, they

showed that for most regions in the world, the probability of detecting clouds with a τc near the average of 0.225 is higher than

50% (see Fig. 9 in Karlsson and Håkansson (2018)).

Through their validation studies, POD was calculated for τc-intervals (or bins) based on these simultaneous nadir observation

validations on an equal-area Fibonacci grid with about a 300 km radius. A Fibonacci grid is a type of grid where each grid145

box is nearly equal area (see Karlsson and Håkansson (2018) and references therein for more information). Figure 1 shows the

different POD for clouds that have an optical depth that falls in the optical depth interval centered around 0.225 (0.2<τc<0.25)

for daytime, nighttime and all conditions. The figure shows that the POD of clouds in this optical depth range is dependent on

whether clouds are sunlit1 or not, especially in the polar regions. The global average POD in this interval, but also all POD-

intervals (not shown), is somewhat skewed towards lower values due to the poor performance in the Polar regions during night150

time.

Another significant result in Fig. 1 is the high POD in the Arctic and Antarctic during the summer months. CLARA-A2

has nearly comparable skill in detecting clouds in these regions during the sunlit months as it has over non-polar land regions.

Additionally, in the polar summer, for a somewhat higher COT interval than shown here (e.g., 0.5-0.6), the POD in polar regions

increases more than most continental surfaces. This is due to a high skill in detecting liquid water clouds in the polar summer.155

The POD shown in Fig. 1 is somewhat lower here since clouds in the τc interval 0.20-0.25 mostly consist of thin ice clouds

which are still difficult to detect over ice and snow surfaces. Overall though, this result further establishes the CLARA-A2

CDR as very suitable for cloud studies in the polar summer.

1Sunlit refers to when the solar zenith angle is less than 84°.
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Figure 1. Probability of detection of clouds having an optical depth between 0.2≤τc< 0.25. The τc in the center of this interval, 0.225, is the

global average of the smallest τc threshold where the CLARA-A2 cloud mask detects more clouds than it misses according to CALIOP.(see

text)

2.2 ISCCP-H

The ISCCP-H CDR (Young et al., 2018) is a recently released high resolution version of the ISCCP CDR (Rossow and160

Schiffer, 1999) that starts in July 1983 and ends in June 2015 due to data availability at the time of this study. The ISCCP CDR

comprises of geostationary and polar-orbiting satellites, where data from the geostationary satellites have precedence at low

and mid-latitudes (absolute latitude < 55°). The main improvement of ISCCP-H CDR is that it is on a higher resolution spatial

grid compared to its predecessor and covers a longer period. Otherwise the ISCCP-H CDR is quite similar to previous ISCCP

versions. The CDR uses bi-spectral radiances, with one channel in the visible (0.6 µm) and one in the infrared (11 µm). This165

CDR is described at more length in Karlsson and Devasthale (2018) and Tzallas et al. (2019).
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Table 1. The cloud variables produced by the simulator. The middle column specifies the separate categories available for each variable, and

the third column indicates under which illumination conditions the variables are available.

Cloud variable Categories day/night

Cloud fraction total, ice, liquid, low, mid and high day and night

Cloud top height, temperature, pressure day and night

τc liquid, ice day only

cloud particle effective radius (re) liquid, ice day only

cloud water path (CWP) liquid, ice day only

cloud top pressure (CTP)-τc 2D histograms liquid, ice day only

2.3 The EC-Earth model

The EC-Earth climate model (Hazeleger et al., 2010, 2012) is an ESM with its atmospheric component based on the Integrated

Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The version used for this

study is 3.3, based on IFS cycle 36r4 is on a horizontal resolution of T255 with 91 vertical layers. The variant used in this170

study is the EC-Earth-Veg3 Atmospheric Model Inter-comparison Project (AMIP) simulation with prescribed monthly sea

surface temperatures and sea ice conditions to enable comparisons with atmospheric observations. The temporal range used to

demonstrate the simulator covers 1982 to 2015 when compared only to the CLARA-A2 CDR and covers July 1983 to June

2015 when ISCCP-H is involved in the comparison. EC-Earth simulated ISCCP clouds are produced at run time through the

COSP. In terms of cloudiness, EC Earth has no lower or upper limit to cloud optical thickness aside from numerical precision.175

Therefore any satellite simulator, should always produce less cloudiness than the direct model output.

3 Description of the CLARA-A2 simulator

Tab. 1 lists the variables simulated by the CLARA simulator, and this section provides an overview of them. As briefly described

in the introduction and detailed in Bodas-Salcedo et al. (2011) and Jakob and Klein (1999), the CLARA-A2 simulator relies on

subcolumns within the climate model grid, as all COSP simulators do, to simulate the observational datasets’ cloud variables.180

The subcolumns created in each model grid together produce the horizontal and vertical cloud structure that preserves the

internal cloud overlap assumption of the host model. Each subcolumn has the same number of layers as the model, and each

layer in a subcolumn is either completely cloudy or clear.

The next stage in the simulation is to map the average model layer in-cloud 2 optical depth, water content, and effective

radius, both liquid and ice phase, to the cloudy layers of each subcolumn. Every subcolumn is determined to be either cloud-free185

2The climate model provides the combined cloud free and cloudy component average for cloud variables. The simulator needs the in-cloud amounts, i.e.,

average/cloud fraction
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or cloudy, and the simulator performs cloud retrievals on each ’cloudy’ subcolumn, and these represent the column-integrated

retrievals of CLARA-A2. Finally, the simulated cloud parameters are averaged to the climate model grid so that they are ready

to be directly compared to observations. Table 1 provides an overview of the simulated variables included in this simulator. The

CLARA-A2 satellite simulator can currently only be run in an "offline"-mode, meaning that it relies on access to pre-processed

model output files. Following is a short description of the simulated cloud retrieval simulation:190

Cloud microphysics

The cloud microphysical retrievals τc, re, Water Path (WP), and cloud phase are simulated using the same method described

in Eliasson et al. (2019), which very closely resembles the method described in Pincus et al. (2012). The dominant cloud

water phase of the top optical depth of the cloud determines the simulated cloud water phase. The simulation of the effective

radius re is calculated by comparing the top of the atmosphere reflectance, calculated by the adding–doubling technique, to195

lookup tables of reflectance versus cloud effective radius. The lookup tables for the effective radius simulation rely on the same

microphysical model as the CLARA-A2 CDR (see details in Karlsson et al. (2017)). The simulated optical depth and cloud

water path is the sum in the column. For consistency with observations, if a cloud parameter requires sunlight for its retrieval,

it will only be simulated if the calculated solar zenith angle is less then 84°. These include the cloud microphysical retrievals

τc, re, WP, and the CTP-τc histograms.200

Cloud top

The simulated CTP, cloud top height (CTH), and cloud top temperature (CTT) are calculated by two methods depending on

if the clouds are optically thick or not. If a subcolumn has a simulated cloud optical depth, τc≥ 5, it is considered opaque,

and finding the cloud top is achieved by matching a calculated brightness temperature to the model temperature profile, i.e.,

precisely the same approach to simulate cloud top as used by the ISCCP simulator (Jakob and Klein, 1999).205

However, acknowledging that optically thinner, i.e., semi-transparent clouds, are more difficult to accurately determine the

cloud top (Håkansson et al., 2018), the CLARA simulator has a different method for simulating thin clouds. First, the simulator

finds the CTH that is one optical depth down from the physical top of the model cloud. This is the same manner as the MODIS

simulator (Pincus et al., 2012) and Cloud_cci simulator Eliasson et al. (2019) finds the retrieved cloud top. The CLARA

simulator then offsets this height using the median error in CTH for semi-transparent clouds in the CLARA CDR (Table 13210

in NWCSAF, 2018). This approach emulates the real world performance of the CLARA cloud top retrievals more closely

for semi-transparent clouds than treating all clouds as opaque. The offsets used are 257m, −145m, and −3336m for low

(CTP≥680 hPa), middle (440 hPa≤CTP>680 hPa), and high clouds (CTP<440 hPa) respectively.

3.1 Simulating CLARA-A2 cloud masks

As mentioned in Sect. 1, the main feature of the CLARA-A2 simulator is a more sophisticated simulation of the observational215

datasets’ cloud mask. It is possible to choose between one of the three methods of cloud mask simulation described below:
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3.1.1 A globally static optical depth threshold

Method one is to simulate the cloud mask by using one global minimum cloud optical depth value. This is the classical approach

used by the ISCCP, MODIS, MISR, and the Cloud_cci simulators. For the ISCCP, MODIS, and MISR simulators, this global

limit is set to τc = 0.3 (Pincus et al., 2012), and for the Cloud_cci simulator (Eliasson et al., 2019), to 0.2. As mentioned earlier,220

the global average τc threshold for the CLARA-A2 CDR is 0.225, and thus the threshold value used in method one of the

CLARA-A2 simulator.

By the approach used in this method, 100% of the cloudy subcolumns with an optical thickness less than the global average

τc limit are treated as being cloud-free and 100% of the subcolumns above this threshold are treated as cloudy. Since the

threshold is a global average, this method does not consider the illumination conditions or the geographical location of the225

retrieval. The advantage of this approach is its robustness and simplicity. However, as mentioned in Sect. 2.1, this approach

can lead to very misrepresentative cloud mask simulations in some geographical regions.

The cloud retrieval simulations in COSP are only carried out during sunlit conditions. However, the next two approaches

described below also simulate the cloud amount and the cloud top retrievals also during night time conditions. This doesn’t

apply to re, τc, WP, or the CTP–τc 2D histograms.230

3.1.2 Gridded optical depth thresholds

The second method uses varying gridded optical depth thresholds. This method also relies on the robust and straightforward

approach of reclassifying subcolumns with a small optical depth as cloud-free, while keeping those above this threshold cloudy.

However, this method is designed to also take into account that the τc-threshold, or cloud detection limit, varies geographically

and depends on the solar illumination. This method relies on the gridded data that are used in Fig. 12 in Karlsson and Håkansson235

(2018) that shows the smallest τc threshold where the CLARA-A2 cloud mask detects more clouds than it misses (see Sect. 2.1).

Figure 2 shows the detection limits used in the simulator according to this method. As shown by the figure, the τc threshold

varies quite strongly regionally and also depends on if the CLARA-A2 cloud mask can make use of solar channels or not. The

global average τc-threshold, included for reference in the figure, clearly shows that during sunlit conditions, the cloud mask is

much more sensitive to thin clouds than a global average value of τc = 0.225 suggests.240

During sunlit conditions, the regions with the least cloud sensitivity are over the Arctic and the desert regions of the Sahara

and Arabia, as well as a large patch in the central Pacific. During nighttime conditions, especially over the oceans, the cloud

mask is generally less sensitive and is particularly degraded in the ice-covered regions. However, there is an improvement

in cloud sensitivity in some regions during nighttime conditions. For instance, in the desert regions of Northern Africa and

the Arabian Peninsula, and the worst performing areas in the central Pacific, the cloud mask is somewhat surprisingly better245

than when these regions are sunlit. A more in-depth validation study on CLARA-A2 is provided in Karlsson et al. (2017) and

Karlsson and Håkansson (2018).

Their results demonstrate that using two sets of gridded detection-limits gives a more realistic cloud mask, one for sunlit and

one for nighttime conditions. Method two is more realistic than the global static minimum optical depth approach of method
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Figure 2. The gridded cloud detection limit, i.e., the smallest τc threshold where the CLARA-A2 cloud mask detects more clouds than it

misses according to CALIOP for sunlit (top) and nighttime (bottom) conditions. For reference, the global average τc -threshold = 0.225 is

shown as contour lines. These results are based on the results from the Karlsson and Håkansson (2018) study.
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one (Sect. 3.1.1). However, the authors of this paper advocate the further improved simulated cloud mask based on the use of250

PODs described in the next section that also emulates some of the expected variability in cloud detection over a range of cloud

optical depths.

3.1.3 Probability of cloud detection

The third method is an approach to simulate the CLARA-A2 cloud mask using the POD, provided on a roughly 300 km grid,

as a function of the cloud’s optical thickness. These POD, discussed in Sect. 2.1, are treated as the likelihood that the cloud255

mask would detect the model cloud given its optical thickness, geographical location, and whether or not it is sunlit.

The simulator uses computer-generated random numbers for comparison to the gridded POD value found in a lookup table,

where one set of optical depth dependent- PODs is for sunlit, and one is for nighttime conditions. The simulator assigns a

random number between 0–1 to each subcolumn at the initiation. After the simulated τc is computed, the column integrated τc,

latitude, and longitude are used to find the POD value from the lookup table for comparison. A subcolumn is cloudy, only if its260

assigned random number is less than the POD. Therefore, if the probability of detection of a cloud with a specific optical depth

is 0.05, even though it is very transparent, there is still a 5% chance the subcolumn will be considered cloudy. Conversely,

regardless of how optically thick a cloud is in a subcolumn, there is a non-zero chance this subcolumn will not be flagged as

cloudy, and hence not included in any further cloud simulations.

The look up table of gridded POD used by the simulator contains separate values for each of the τc- intervals listed in Tab. 2.265

The main purpose of Tab. 2 is to list all of the POD intervals used to simulate the cloud mask, but it also provides a summary

of average POD separated into Global, Ocean, Land outside the polar regions, and the Polar regions during sunlit conditions

(nighttime in braces). As is completely intuitive, the POD increases for optically thicker clouds for all regions, and in general,

the cloud mask is more sensitive to clouds over ice-free oceans. Additionally, nowhere, and not even for the thickest clouds,

does the POD reach 1. The reasons for this seeming paradox are discussed at length in Karlsson and Håkansson (2018), and270

here is a summary:

1. Thick clouds are likely undetectable if they have the same temperature as the underlying surface during nighttime con-

ditions when solar reflectivity measurements are not available.

2. Collocation errors between CALIOP and AVHRR can cause a mismatch between the datasets. Some collocation error

is unavoidable due to the maximum time difference of 3 minutes, and that sometimes the geo-location data for AVHRR275

itself may not be sufficiently accurate.

3. Even if the data is ideally collocated, the FOVs of the measurements most likely differ somewhat due to how the GAC

footprint is made (see Fig. 1 in Karlsson and Håkansson (2018) and Sect. 2.1 here).

In fairness, only the first point directly has to do with the skill of the CLARA-A2 cloud mask and thus should be simulated.

The next two bullets have to do with imperfections in the validation process, and therefore should not be simulated. Unfortu-280
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Table 2. The probability of cloud detection for the CLARA-A2 cloud mask separated by intervals of CALIOP cloud optical thickness. This

table shows the regional averages based on the POD values used in the simulator of large geographical regions. Note that the simulator makes

use of gridded POD values on a 300 km equal-area grid (see Fig. 3) and not the POD regional averages provided here for reference. The

Polar region here refers to latitude > 75° N/S. The values apply to daytime (nighttime) conditions. These results are based on the results from

the Karlsson and Håkansson (2018) study.

τc-centers τc-range Global Ocean Land Polar

0.025 0.00<τc≤0.05 0.31 (0.23) 0.34 (0.32) 0.30 (0.14) 0.22 (0.08)

0.075 0.05<τc≤0.10 0.44 (0.29) 0.49 (0.38) 0.40 (0.22) 0.33 (0.11)

0.125 0.10<τc≤0.15 0.49 (0.36) 0.56 (0.47) 0.43 (0.30) 0.38 (0.13)

0.175 0.15<τc≤0.20 0.55 (0.43) 0.62 (0.55) 0.48 (0.38) 0.43 (0.17)

0.225 0.20<τc≤0.25 0.59 (0.50) 0.67 (0.63) 0.51 (0.46) 0.46 (0.20)

0.275 0.25<τc≤0.30 0.62 (0.56) 0.70 (0.70) 0.54 (0.52) 0.49 (0.23)

0.325 0.30<τc≤0.35 0.64 (0.60) 0.73 (0.75) 0.57 (0.57) 0.51 (0.25)

0.375 0.35<τc≤0.40 0.67 (0.64) 0.75 (0.78) 0.59 (0.61) 0.53 (0.28)

0.425 0.40<τc≤0.45 0.69 (0.66) 0.78 (0.81) 0.62 (0.64) 0.55 (0.30)

0.475 0.45<τc≤0.50 0.72 (0.68) 0.80 (0.82) 0.65 (0.66) 0.58 (0.32)

0.550 0.50<τc≤0.60 0.74 (0.70) 0.83 (0.84) 0.68 (0.68) 0.60 (0.34)

0.650 0.60<τc≤0.70 0.77 (0.72) 0.85 (0.85) 0.71 (0.70) 0.62 (0.37)

0.750 0.70<τc≤0.80 0.79 (0.73) 0.87 (0.85) 0.74 (0.72) 0.65 (0.39)

0.850 0.80<τc≤0.90 0.82 (0.74) 0.89 (0.86) 0.77 (0.74) 0.67 (0.42)

0.950 0.90<τc≤1.00 0.84 (0.76) 0.90 (0.86) 0.80 (0.76) 0.71 (0.47)

1.500 1.00<τc≤2.00 0.87 (0.78) 0.92 (0.87) 0.83 (0.79) 0.76 (0.53)

2.500 2.00<τc≤3.00 0.90 (0.81) 0.94 (0.89) 0.87 (0.82) 0.82 (0.59)

3.500 3.00<τc≤4.00 0.94 (0.84) 0.97 (0.91) 0.93 (0.86) 0.88 (0.66)

4.500 4.00<τc≤5.00 0.97 (0.88) 0.98 (0.93) 0.96 (0.90) 0.92 (0.70)

nately, at this moment, the POD is reduced by all three points, and in the future, it could make sense to estimate and take into

account the impact of all three of these considerations in the simulator.

On the other hand, results from Tab. 2 indicate that the impact of points two and three may not be that strong after all. Over

global oceans during the daytime, where highest POD values are found, the detection rate for the most optically thick clouds

is 98% indicating, on average, that the combined error from points two and three is probably less than 2%. However, in some285

oceanic regions where relatively thick inhomogeneous clouds are prevalent, such as the stratocumulus-dominated regions off

the west coast of South America and southern Africa, POD values are slightly below 0.9, hence the impact of points two and

three may not be negligible in these regions.

To illustrate the global distribution of POD, Fig. 3 contrasts two τc-intervals used by the simulator. Clouds that fall in the

interval centered at τc = 0.125, which are translucent clouds at only half the global average τc -limit (see Sect. 3.1.1), generally290
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Day
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Night
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Figure 3. The probability of detection at two τc-intervals centered at 0.125 and 0.55 for day and night conditions. These results are based on

the results from the Karlsson and Håkansson (2018) study.
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have a low POD. The POD is particularly low in this interval over land and during nighttime conditions. However, take notice

that especially over ocean areas and especially during sunlit hours there is at least a 50% POD despite the clouds being so thin.

For clouds centered at τc = 0.55, which is about twice the global average detection limit, the PODs are predictably quite

high in general. However, again, this is not true globally. Even though the clouds are relatively thick, in areas such as Northern

Africa, the Arabian peninsula, and the Polar regions, the POD is only around 50%. Another striking feature is that for these295

semi-transparent clouds, the POD over nearly all regions, except the poles, are higher for cloud retrievals made during nighttime

conditions. This result is demonstrated further in Fig. 4. Outside the polar regions, clouds in the τc-intervals from 0.2 to 0.6

have a higher POD during nighttime conditions overall (especially in the Tropics), whereas for clouds thinner or thicker than

this interval, the daytime cloud masks have better success.

That this slightly improved detectability at night for clouds in the τc range 0.5-1.0 is a robust feature is supported by300

intercomparisons made between CLARA-A2 and other AVHRR-based datasets (e.g., Karlsson et al., 2017; Karlsson and

Devasthale, 2018). They found (although not explicitly reported in the papers) the same behavior for results from PATMOS-x

and Cloud-cci compared to CALIOP observations. Whether to interpret this as an indeed improved nighttime detectability for

AVHRR-based methods or something caused by the CALIOP observation reference (e.g., enhanced daytime problems due to

lower signal-to-noise ratios) is currently unclear. However, this feature is not critical to the CLARA-A2 simulator but merits a305

more in-depth investigation in the future.

3.2 The choice of simulated cloud mask

In this section we refer to figures 5 and 6 to illustrate how the choice of cloud mask simulation method affects the comparison

of cloud cover of EC-Earth to CLARA-A2. The results are separated into seasons here since it is essential to understand the

seasonal impact of choosing one method over another. Fig. 5(a) and Fig. 6(a) show the cloud cover according to CLARA-A2310

for 1982–2015 during Southern Hemisphere summers and the Northern Hemisphere summers respectively. EC-Earth minus

CLARA-A2 based on the first method (Sect. 3.1.1) is subplot (b), based on the second method (Sect. 3.1.2) is subplot (c), and

based on the third method (Sect. 3.1.3) is subplot (d). Subplot (e) shows the difference between the simulated cloud mask based

on method one, a global static τc threshold, and method three, based on POD thresholds (first method minus the third method).

Globally, the overall impression is that EC-Earth underestimates cloud fraction. In most regions of the world, within a few315

percent, this is the conclusion one would reach regardless of which of the three methods was used to simulate the CLARA-A2

cloud mask. However, as described in Sect. 2.1, the CLARA-A2 CDR is systematically and substantially less skillful under

certain conditions than on average.

As discussed in Sect. 2.1.1, CLARA-A2 is skillful at detecting clouds in the polar regions during sunlit conditions, but not

so during the polar winter. This is why the apparent overestimation of clouds in these regions by EC-Earth (Fig. 5(b) and320

Fig. 6(b) ) is likely strongly exaggerated. Without prior knowledge of the retrieval difficulties in cold dark locations, i.e., when

only passive infrared channels are available, if method one is used to simulate clouds, one could erroneously conclude that

EC-Earth places too many clouds in polar regions. This problem is especially salient during winter months, but it also has a
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Figure 4. The difference in the POD of the cloud mask during sunlit and nighttime conditions for selected cloud optical depth intervals.

These results are based on the results from the Karlsson and Håkansson (2018) study.

considerable impact on cumulative averages over these regions. Therefore cloud mask simulations based on method one are

notably unsuitable in the Polar regions and, to lesser extent, desert areas.325

However, and what is the main point of this innovation, if one uses the second or third method to simulate clouds, the

apparent bias in cloudiness in these regions is mostly removed in the problematic regions. The second and third methods do a

much better job at reproducing the limitations of cloud datasets than the first method, and the size of the difference between

method three and one is substantial and seasonally dependent in the problematic regions (Fig. 5(e) and Fig. 6(e) ).

Notice also from (Fig. 5(c) and Fig. 6(c) ) and (Fig. 5(d) and Fig. 6(d) ) that the second and third methods produce similar330

results, and hence both do well in this regard. However, there are some subtle differences. One is that during the northern

hemisphere summer months a model validation based on the second method leads to the conclusion that EC-Earth overesti-
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Figure 5. Total cloud cover during the DJF- seasons of 1982–2015. This figure shows a comparison of EC-Earth to CLARA-A2 using

three different methods of cloud mask simulation. The reference figure at the top (a) is the cloud fraction from CLARA-A2. Subfigure (b)

shows the simulated observations using method one, based on a global static τc-limit, minus CLARA-A2. Subfigure (c) shows the same

comparison using method two, based on gridded τc-limits, and (d) shows the same using method three, based on POD. Sub-figure (e)) shows

the difference between the simulated CF based on method one minus method three. See Sect. 3.2 for a wider description of the figure.
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Figure 6. Total cloud cover during the JJA -seasons of 1982–2015. See the description in Fig. 5 for a description of the layout in this figure
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mates clouds in the Arctic, yet if the comparison were made based on the third method, one would conclude only a slight

overestimation here.

The third method gives the most accurate description of the cloud detection limitations since it describes the likelihood of335

detecting/missing clouds over the full range of cloud optical thicknesses for day and night conditions. Also, method three can

emulate the non-zero probability that even thick clouds might be undetectable under certain conditions. This approach better

describes the skill of the cloud retrievals of a satellite dataset than using gridded static values of τmin in method two, and

especially instead of using a single global τmin value used by method one. Overall, therefore, the recommendation is to choose

method three to simulate the cloud mask.340

However, the advantage of tying statistics to geographical regions, may also be a weakness in some situations. If a models’

cloud distribution is systematically misplaced, the model clouds may be subject to (potentially) other PODs than what they

should have been in the CLARA-A2 simulator. The consequences here should not be large, except for the extreme cases when a

model places clouds over ice- and snow-covered areas in the polar night (with very low PODs) instead of over adjacent ice-free

ocean areas (with very high PODs). Additionally, the underlying statistics used in method two and three are, as mentioned in345

Sect. 2.1.1, derived from collocations that cover the time period between 2006–2015. Therefore in some regions, such as in the

marginal ice regions, the conditions for cloud detection may have changed appreciably from those during the validation period,

for instance, due to a changing climate, rendering the statics less representative than in more climatically stable regions.

4 Application of the simulator to Arctic case studies

4.1 Average cloudiness during summer months350

Karlsson et al. (2017) asserted, and the POD maps shown in Fig. 4 suggest, that the CLARA-A2 CDR is reasonably skillful at

detecting clouds in the Arctic during sunlit conditions. Therefore, to demonstrate the utility of the CLARA-A2 simulator, we

assessed the cloud cover in these conditions over the full length of the datasets. We added the ISCCP-H CDR (Young et al.,

2018) to the comparison since it is an equivalent CDR with a well-established satellite simulator used in many previous model

studies (e.g., Webb et al., 2001; Norris et al., 2016; Terai et al., 2016; Tan et al., 2017). However, Karlsson and Devasthale355

(2018) found the cloud cover of ISCCP-H too low in the polar summer and early autumn.

The cloudiness from ISCCP-H should be compared to the simulated cloudiness using the ISCCP simulator (Jakob and Klein,

1999), and the cloudiness, according to CLARA-A2, is compared to the CLARA-A2 simulator. Figure 7 shows the average

cloudiness in Arctic summer months according to CLARA-A2 (Fig. 7a) and ISCCP-H (Fig. 7b). EC-Earth’s representation of

overall cloudiness during Arctic summer is tested using the simulated CLARA-A2 and simulated ISCCP-H, shown in Fig. 7c360

and Fig. 7d respectively. As mentioned in Sect. 3.1.1, the simulated cloud mask for ISCCP-H uses a global τc threshold

(τc= 0.3) for the simulated cloud mask (method one, different threshold), and the CLARA-A2 simulator uses the POD-based

approach for the simulated cloud mask (method three). The two satellite datasets and the climate model are limited to July

1983 to June 2015 to match the availability of the ISCCP-H period to date.
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Figure 7. The Total Cloud Fraction (TCF) in the Arctic summer. The top row contains the observations from two equivalent CDRs, CLARA-

A2 (a) and ISCCP-H (b). The bottom row contains the difference between the simulated CDR minus the CDR for CLARA-A2 (c) and

ISCCP-H (d). The period is July 1983 to June 2015.
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Fig. 7 demonstrates that using simulators that do not take the variable skill of the cloud mask into account, such as the365

ISCCP simulator, could easily lead to false conclusions about EC-Earth cloud cover in the Arctic summer. Compared to the

ISCCP-H observations, the simulated ISCCP-H observations indicate that EC-Earth has a strong positive cloud bias in the

Arctic of more than 30%. However, CLARA-A2, shown to have a high skill in the polar summer (see Fig. 5b in Karlsson et al.

(2017)), indicates that EC-Earth under-predicts the cloudiness in large parts of this region by more than 10%.

These large differences between the simulated ISCCP-H and CLARA-A2 are mainly due to the ISCCP simulator being too370

sensitive to thin clouds here. As shown in Fig. 2, during daytime conditions in the Arctic, a more appropriate daytime τc-limit

would be around 0.5 or more, which is higher than the global average of 0.3 assumed by the ISCCP simulator. Therefore in the

Arctic summer, the ISCCP simulator retrieves clouds in between these cloud optical thicknesses that the CLARA-A2 simulator,

and most likely the observations, do not. As a consequence, anyone assessing cloudiness in the Arctic will reach the opposite

conclusion using the CLARA-A2 CDR and simulator compared to the ISCCP-H counterpart.375

Overall, based on CLARA-A2 as the reference, EC-Earth has a smaller average cloud fraction over most of the region

between 50N–90N during the summer months. The difference is more substantial over ocean areas than over land, with the

largest under-representation of cloudiness at these latitudes is over the North Atlantic and following the Gulf Stream north of

Norway. However, globally, the most considerable negative cloud biases between the model and observations are in the Tropics

and subtropics (see Fig. 6).380

4.2 Trends in cloudiness

The CLARA-A2 CDR is particularly suitable for cloud trend analysis in the Arctic summer due to its length and high cloud

detection skills there (Karlsson and Devasthale, 2018). Here is an assessment of the cloud trends from the months that have

enough sunlight, i.e., where the solar zenith angle is less than 84° in the Arctic above 70°N for CLARA-A2 and EC-Earth.

These trends are based on the linear regression of cloudiness from all data in 1982–2015 and expressed here as absolute change385

in cloudiness [ %
decade ].

Fig. 8 shows the distribution of cloudiness trends, according to CLARA-A2. From this figure, some clear patterns emerge;

in the spring months, there is an increase in cloudiness by more than 5% in large parts of the Arctic and upwards of 10% north

of Novaja Zemlya, and in the summer to Autumn months the Arctic is dominated by a decrease in cloudiness. The increase in

cloudiness reaffirms observations previously reported in Kapsch et al. (2013) and Kapsch et al. (2019). Kapsch et al. (2013)390

asserted that the increase in cloudiness is likely due to an increased intrusion of water vapor into these regions during the spring

months. The largest decrease in cloudiness seen in July and August is in the Beaufort, and especially the Lincoln Seas, north

of the Canadian archipelago and Greenland. However, it is outside the scope of this study, whose main purpose is to describe

the CLARA-A2 simulator, to further assess the possible reasons for the changing cloudiness seen in these observations.

Fig. 9 shows the average change in cloudiness of EC Earth over the same time period as in Fig. 8, using method three to395

simulate the cloud mask. The cloud trends in the model clearly differ from the observations. In particular, the size of the trends

are in general much smaller than the observations indicate, but also the pattern of cloud trend is not in agreement (except in

May). However, there are some important limiting factors to consider for this model evaluation.
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Figure 8. The average trend in cloudiness over the entire record [ %
decade

] in the Arctic from the illuminated months of April to August

according to CLARA-A2. Negative trends correspond to an average decrease in cloudiness over time. The trends are from all months in the

period 1982–2015.
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Figure 9. As for Fig. 8, but for the EC Earth climate model.
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Figure 10. The average decadal cloudiness trend in the Arctic from the illuminated months of April to August only over the ocean (ice-free

or ice-covered). The figure shows the reference dataset, CLARA-A2, the CLARA-A2 simulator, one line for each method, and the Total

Cloud Cover (TCC) from the EC-Earth model without using any simulator. The trends are from all months in the period 1982–2015.

EC-Earth is represented here by only one model run, and although it employs prescribed sea surface temperatures and sea

ice extent, the model atmosphere is free to meander. In order to assess if the model cloud trends agree with the observations,400

ideally, several ensemble model runs are required to find a general trend to assess whether or not the natural variability produced

by the model is accurate (Koenigk et al., 2019).

Fig. 10 illustrates how the choice of cloud mask simulation affects model cloud trend. Fig. 10 shows the average cloudiness

trends for the same conditions, aside from excluding land areas, as in Fig. 8, for CLARA-A2, the three methods of simulated

CLARA-A2 cloud mask from the EC-Earth atmosphere, and the total cloudiness directly from EC-Earth without any simulator.405

Fig. 10 illustrates that regardless of which method is used to simulate cloudiness, or even using no simulator at all, the

simulators do not appear to alter the cloud trends in the Arctic summer. These results may indicate that the clouds in the model

are not changing the average range and distribution of optical thicknesses over time, even if the actual cloud amounts may

change.

In summary, no definitive conclusions on model cloud trends in the Arctic can be drawn here for the reasons listed above,410

and a more thorough examination of whether or not EC-Earth reproduces realistic cloud trends is also outside the scope of this
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study. Although the choice of method does not appear at first glance to impact the model cloudiness trends, it still makes sense,

in this case, to use method three to simulate clouds, since it more closely reflects the skill of the CLARA-A2 dataset.

5 Conclusions

This article describes a satellite simulator designed to enable comparisons between climate models and the CLARA-A2 CDR.415

Typically, satellite simulators simulate the satellite retrieved cloud fraction using one global cloud optical depth threshold to

remove thin model clouds that are presumed undetectable by the instruments used to generate the CDR. There are more factors

to consider that influence the ability to retrieve thin clouds. These include

– The optical thickness of the cloud

– How illuminated the clouds are420

– The underlying surface properties and

– The temperature difference between the cloud and the surface

In this paper, we show that using one optical depth threshold for all conditions to emulate cloud sensitivity (method one) is

inappropriate since the cloud detection skill of satellite retrievals may vary considerably. This is the method used in the COSP

simulators, which many previous studies have relied on. Therefore, to avoid the largest uncertainties, many previous studies are425

limited to between ±60 ◦ latitude. There is a need for a more realistic simulated cloud mask that better reflects the actual cloud

detection ability of the CDR. We therefore propose two other methods that are both based on validations of the CLARA-A2

CDR using collocated cloud retrievals from CALIOP by Karlsson and Håkansson (2018).

Method two uses two maps of cloud detection thresholds on a 300 km grid, one for day and one for night conditions.

These thresholds refer to the smallest cloud optical depth where there is a 50% success rate in detecting clouds. The main430

improvement by this method is that in areas where the cloud retrievals are relatively straightforward, such as over mid-latitude

oceans, the cloud sensitivity is generally increased, i.e., a lower cloud optical threshold. Conversely, in areas and conditions

where cloud retrievals are notoriously difficult, a much higher optical depth threshold is suitable.

Method three, the recommended approach to simulating the cloud mask, is based on the POD of clouds depending on their

τc. Instead of using a τc threshold to determine whether or not a model cloud would have been detected, with this approach,435

any model cloud could potentially be detected or missed. Maps of POD valid for separate optical depth ranges (see Tab. 2)

are used together with a random number generated at run time for every model subcolumn to determine cloudiness. These are

also provided on a 300 km grid and separated by day and night. The main improvement of this method is that it indirectly

takes into account that retrievals in some regions are more likely than others to miss thick clouds. This situation is common in

cold regions where thick clouds may be inseparable from cold snow-covered surfaces and also in regions with an abundance440

of broken and small scale cumulus clouds such as the atmospheric subsidence regions over the ocean.
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Compared to method one, methods two and three allow for analyses to be carried out at high latitudes and during nighttime

conditions. Although the largest improvements are at high latitudes, these new methods also account for the modestly improved

cloud detection of CLARA-A2 over the global oceans compared to, especially, desert areas. Therefore, with these methods,

model studies may also be improved for regions outside the polar regions.445

This paper illustrates that these new approaches to cloud mask simulation bring the model and observations much closer to

each other compared to using a fixed optical depth threshold globally to filter out clouds. They allow for a more realistic model

to satellite comparison, and thus reduces the likelihood that incorrect conclusions from model assessments are reached simply

due to cloud simulations not correctly representing the cloud retrievals of the CDR. Although methods two and three both

significantly improve cloud mask simulations, method three, using the POD approach, is better since it realistically mimics the450

performance of the cloud mask of the CLARA-A2 CDR over the full range of cloud optical thicknesses.

The overall cloudiness in the Arctic during summer months from 1984–2014 is used to demonstrate the usefulness of

the simulator and the new approach to cloud mask simulation. The ISCCP-H CDR here complemented the comparison as a

second independent satellite dataset. Therefore, EC-Earth was assessed using both the ISCCP and CLARA-A2 simulators and

compared to the CDRs they should simulate. This comparison shows that EC-Earth seems to produce too few clouds in and455

around the Arctic compared to CLARA-A2. However, despite the ISCCP-H CDR having more clouds than CLARA-A2 in

the Arctic summer months, compared to ISCCP-H and using the ISCCP simulator, the assessment on EC-Earth cloudiness

would lead to quite the opposite conclusion in some regions in the Arctic. The simulated ISCCP cloudiness is substantially

higher than the ISCCP observations. This overrepresentation of clouds is mostly due to the ISCCP simulator using a global

optical depth threshold that, in the Arctic is too generous. This example demonstrates the advantage of using the CLARA-A2460

approach to cloud mask simulation compared to the traditional approach used by the ISCCP simulator and others. Although

only demonstrated in the Arctic summer in this paper, the POD approach, method 3, is also the most appropriate globally.

In terms of trends in overall cloudiness in the Arctic for all months with sunlit conditions from 1982–2015, the observations

from CLARA-A2 show a sharp increase in cloudiness over the years, especially in the ocean areas north of western Russia, in

the spring months of April and May. In the summer and early autumn months, there is a large area of decreasing cloudiness465

in the seas just north of Canada and Greenland. Although only based on one model run, and therefore clear statements about

cloud trends in the model cannot be made, one can deduce that the average cloudiness trends from the model are very similar

using any simulator method, or no simulator at all.

In summary, the authors advocate an approach to cloud mask simulation based on the probability of detection of clouds

depending on their optical depth, location, and illumination. This study suggests that evaluations of climate model simulations470

of cloudiness parameters would benefit substantially from using more advanced satellite simulators, which in a better way than

today, accounts for weaknesses and strengths of satellite retrievals.
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Appendix: Glossary

τc visible cloud optical depth at 550nm. 1, 3–15, 18, 24

re cloud particle effective radius. 7, 8

AMIP Atmospheric Model Inter-comparison Project. 6580

AVHRR Advanced Very High Resolution Radiometer. 1, 3, 4, 11, 13

CALIOP Cloud-Aerosol Lidar with Orthogonal Polarisation. 3–6, 10, 11, 13, 24

CDR Climate Data Record. 1–8, 17–20, 23–25

CFMIP Cloud Feedback Model Intercomparison Project. 1

CLARA CM SAF cLoud, Albedo and RAdiation dataset. 1, 4, 8585

CLARA-A1 CLARA, AVHRR-based, version 1. 4

CLARA-A2 CLARA, AVHRR-based, version 2. 1–11, 13–15, 17–21, 23–25

29

https://doi.org/10.1007/s00382-017-3806-7
https://doi.org/10.1007/s00382-017-3806-7
https://doi.org/10.1002/2016JD025233
http://dx.doi.org/10.1002/2016JD025233
https://doi.org/10.3390/rs11020212
http://www.mdpi.com/2072-4292/11/2/212
https://doi.org/10.1029/2008JD010015
https://doi.org/10.1007/s003820100157
https://doi.org/10.1175/2009JTECHA1281.1
https://doi.org/10.5194/essd-10-583-2018
https://www.earth-syst-sci-data.net/10/583/2018/
https://www.earth-syst-sci-data.net/10/583/2018/
https://www.earth-syst-sci-data.net/10/583/2018/


CM SAF Satellite Application Facility on Climate Monitoring. 1

COSP CFMIP Observation Simulator Package. 1–3, 6–8, 24

CTH cloud top height. 8590

CTP cloud top pressure. 7, 8

CTT cloud top temperature. 8

CWP cloud water path. 7

ESM Earth System Model. 2, 5

EUMETSAT European Organisation for the Exploitation of Meteorological Satellites. 3595

FOV field of view. 4, 11

GAC global area coverage. 4, 11

IFS Integrated Forecast System. 5

ISCCP International Satellite Cloud Climatology Project. 1–3, 5, 6, 8, 18, 24, 25

ISCCP-H ISCCP-H series. 3, 5, 6, 18, 19, 24600

METOP Meteorological Operational Satellite. 2

MISR Multi-angle Imaging SpectroRadiometer. 3, 8

MODIS MODerate resolution Imaging Spectroradiometer. 3, 4, 8

NOAA National Oceanic and Atmospheric Administration. 2, 3

PATMOS-x Pathfinder Atmospheres- Extended. 2, 13605

POD Probability of Detection. 1, 5, 9, 11, 13–15, 17, 18, 24, 25

SEVIRI Spinning Enhanced Visible Infrared Imager. 3

TCC Total Cloud Cover. 23

TCF Total Cloud Fraction. 19

VIS/IR visible/infrared. 3610

WP Water Path. 7, 8
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