
Dear referee#1,

Thank you for taking the time to review our manuscript. We are especially
happy that you agree that the core objective of the paper is clear and highly
relevant for the community. Thank you also for the suggested minor revisions
and following is a point by point response to each question/suggestion:
Dear referee#2,

Thank you for taking the time to review our paper for your overall support-
ive comments and useful suggestions about how to improve the article, and in
particular, so that it may be more useful as a reference paper for the simulator.
Following is a point by point response to each question/suggestion:

General comments

Reviewer 2: Given that this paper will become the main documentation ref-
erence for this simulator, we think it would benefit from some discussion and
results on the impact of the different methods (mainly #1 vs #3) on other
variables listed in Table 1, not only cloud fraction.

Answer: We agree that, since this will be the reference paper for the CLARA-
A2 simulator, we should also describe all the simulated variables and not just
the cloud fraction. We have expanded the section describing the simulator to
also describe every variable in more detail, and decided that this is sufficient for
the sake of a reference paper. In this paper, we want to focus on cloud fraction
since it is absolutely central to this simulator.

Reviewer 2: The message regarding benefits of method #3 with respect to previ-
ous analyses needs to be more specific (e.g. in L385-390). The largest differences
between methods occur in the polar regions, with much smaller differences in the
rest of the globe. In some places, the paper gives the impression that previous
studies where flawed, when in reality many of them did not use data polewards
of 60 deg latitude to avoid large uncertainties.

Answer: Granted that, in this introductory paragraph in the conclusion section,
we did not highlight the regionally variable impact of choosing a POD-approach
(method 3) compared to using a static global optical depth threshold -approach
(method 1). We have expanded this paragraph to share the overall regional
impacts, rather than just a global assessment as we do now.
We agree that the wording of this paragraph also gave the impression that
there are many incorrect studies out there that have assessed simulated clouds
in regions where it is inappropriate. This impression is not intentional, and we
have rewritten this paragraph to make sure that we are not implying this. We
want to send the message that our approach can avoid sizable uncertainties.
We now mention that as long as model evaluations are carried out between +/-
60 degrees, and they usually are, the negative impact of using method one is
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not very large. However, we also stress that by using a simulator that employs
method 3, users need not limit their evaluation to +/- 60, especially not during
the polar summer.
See the first paragraph of the conclusion in the marked-up version of the paper
to see our reformulation

Reviewer 2: Section 4.2. The observational pattern of trends is regionally inho-
mogeneous, and therefore Figure 9 is not very informative. Does EC-Earth show
smaller trends due to compensation of regional patterns? It would be interesting
to show the regional patterns from EC-Earth, perhaps replacing Figure 9 by a
figure like Figure 8 but for EC-Earth.

Answer: The EC-Earth pattern of trends is also regionally inhomogeneous.
There is some cancellation between the regions but the main reasons for the
smaller EC-Earth trend in Figure 9 is due to EC-Earth trends being smaller
than observed, especially for the interior Arctic. We have now included the
cloud trends for the climate model as we have for CLARA-A2. The results are,
however, difficult to interpret. We describe in the text that we only have access
to one realization of the model, and therefore no access to the model spread,
which would be essential to assess cloud trends correctly here. We decided to
keep Figure 9 in order to still raise the point that the choice of simulator does
not seem to impact the cloudiness trend in the model.
Most of Sect 4.2 has changed to reflect this

Specific comments

Reviewer 1: Line 7, “compared to the simulators in CFMIP”. It should probably
read “comparable to the simulators in CFMIP”. It took me a few more lines
until I understood what the usual approach was. Please clarify.
Answer: We have now reworded this sentence to:
The first method, comparable to the simulators in COSP, relies on a single τc-
threshold applied globally to delineate cloudy and cloud-free conditions.

Reviewer 1: Line 15, “Method three ...”: Isn’t this sentence just rewording the
statement of the sentence before?
Answer: We agree. We changed: “such as over the Arctic region during the
polar night. Method three has the added advantage that it indirectly takes into
account that cloud retrievals in some areas are more likely than others to miss
some clouds. This situation is common in cold regions where even thick clouds
may be inseparable from cold, snow-covered surfaces and also in areas” to
such as in cold regions at night, where thick clouds may be inseparable from
cold, snow-covered surfaces, as well as in areas

Reviewer 1: Line 23, “the simulated cloud mask of CLARA-A2”: Please add
“based on EC-Earth” for clarity.
Answer: OK
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Reviewer 1: Line 30: In the abstract I’m missing the information how the
location-illumination dependent POD is found/ how the method is calibrated.
Please add this information.
Answer: We have now added this sentence earlier on:
The gridded POD values are from the CLARA-A2 validation study by Karlsson
and H̊akansson (2018)

Reviewer 2: L36-41. This sentence is hard to read, please rewrite.
Answer: We have split this super long sentence into several instead:
Currently, there are only a few CDRs derived from imaging sensors that span
more than 30 years. The ISCCP CDR (Young et al., 2018) was the first such
dataset and mainly based geostationary satellite data, complemented with data
from polar orbiting satellites at high latitudes. The three other CDRs are
based on data from the polar-orbiting meteorological satellites from the Na-
tional Oceanic and Atmospheric Administration (NOAA) and Meteorological
Operational Satellite (METOP) series. They are the Pathfinder Atmospheres-
Extended (PATMOS-x) (Heidinger et al., 2014), the Cloud cci (Stengel et al.,
2017), and the CLARA-A2 CDR.

Reviewer 1: Lines 94/95: Should read “trends are inverstigated”, “Summary
and conclusion are given”.
Answer: Fixed

Reviewer 1: Line 104, “five pixels from the first scan line and none from the
next two scan lines are used to create the GAC measurement.”: Please explain
why, with another sentence.
Answer: OK. We have added this sentence to clarify the situation:
Saving the data on a GAC pixel resolution was a compromise to drastically
reduce the data, a necessity due to limited bandwidth.

Reviewer 1: Line 105: Here you cite Figure 1 OF Karlsson and Hakansson 2018
and not Figure 1 IN THIS manuscript, right? Maybe “(Fig. 1 in Karlsson and
Hakansson, 2018) “ might be clearer.
Answer: Yes, I understand how this was confusing. Fixed

Reviewer 1: Line 127 and 141: The use of the acronym “SNO” seems unnec-
essary. You just mention it twice and, at least for me, it’s not a very common
acronym and thus not easy to read.
Answer: I have remove them

Reviewer 1: Line 140: The same again. Better write “(Fig. 9 in ...”.
Answer: Fixed

Reviewer 2: L141-142. What’s the difference between gridbox size and area?
Answer: The Fibonacci grid is points spread approximately evenly over the
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globe, with the pixels matched to the closest point. The form is not quite
round, nor is it a lat/long grid. To avoid confusion, we removed the word ’size’
and call it:
a nearly equal-area grid.

Reviewer 2: L148-150. This statement is slightly optimistic. Only subtropical
deserts show PODs below 0.4 like most of the Arctic region. Most of the con-
tinental regions show larger PODs than the Arctic, and comparable or larger
than the Antarctic region.
Answer: We agree that the statement was too broad here. PODs in the polar
regions are improving considerably during the polar summer (day), but they
are still not reaching values representative of most continental land surfaces.
However, a strong point for the situation in the polar summer is that if plotting
a somewhat higher COT interval than shown here (e.g., 0.5-0.6), the differences
decrease significantly between polar regions and most continental surfaces. This
decrease is because of the higher skill in detecting liquid water clouds in the po-
lar summer. The reason why this is not reflected in the current figure is that
the very thin clouds in the COT interval 0.20-0.25 mostly consist of thin ice
clouds, which are still difficult to detect over ice and snow surfaces in the polar
summer. We changed and expanded our statement to:
Another significant result in Fig. 1 is the high POD in the Arctic and Antarctic
during the summer months. CLARA-A2 has nearly comparable skill in detect-
ing clouds in these regions during the sunlit months as it has over non-polar
land regions. Additionally, in the polar summer, for a somewhat higher COT
interval than shown here (e.g., 0.5-0.6), the POD in polar regions increases more
than most continental surfaces. This is due to a high skill in detecting liquid
water clouds in the polar summer. The POD shown in Fig. 1 is somewhat lower
here since clouds in the τc interval 0.20-0.25 mostly consist of thin ice clouds
which are still difficult to detect over ice and snow surfaces. Overall though,
this...

Reviewer 1: Line 150: Can you please comment on the lowest tau detected by
CALIOP and its impact on a comparison with the model clouds.
Answer: OK. I added this sentence:
By comparison, the reference dataset, CALIOP can detect clouds with τc > 0.01
(Winker et. al., 2009) and is generally stable across any surface.

Reviewer 1: Line 157: Why “IR” instead of a wavelength? Are they differ-
ent? Then please give a wavelength range. Line 165 and again in line 327,
“198307–201506” Please change the date format to something more readable:
E.g. “July, 1983 – June 2015”
Answer: I have included 11 micron and updated the date format
IR

infrared (11 µm)
198307–201506
July 1983 to June 2015
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Reviewer 1: Line 167, Section 3: On the first half page, I would expect a general
layout of the simulator method. As I understood, the CLARA-A2 simulator is
first presented in this manuscript and this will be the main reference for later
use of it. You state that apart from cloud detection, cloud top height, tau c,
re, WP are produced by the simulator. The remaining section lays its focus
on cloud detection only. Can you please extend the explanation a bit for the
other parameters and how they are averaged? Starting from overlap assumption,
subcolumns, and optical properties, the next step for a full simulator would be
a radiative transfer forward step? Do you use this step to simulated satellite
measured reflectivities? This could be the lookup table you mention, but it
stays unclear. Where do you get r e from? It can not be correctly derived by
just averaging model columns (or subcolumns) vertically and horizontally in a
simple way? Please extend description.
Answer: Yes, this is clearly missing. This subsection is now rewritten to describe
all the simulated variables (Section 3). Note, we choose to only shortly explain
the simulation for the effective radius as this is described in detail in Pincus et.
al., (2012). We reference also as such.

Reviewer 2: Caption Table 1. Please can you clarify why the average cloud
water phase is not a relevant quantity?
Answer: It may not be that the average cloud phase is irrelevant, but we have
decided not to include this quantity. We have removed this confusing sentence.
In future versions of the CLARA simulator, we may decide to include it

Reviewer 2: - L174. its’ → its.
Answer: OK

Reviewer 2: - L187-183. There is no need to give details of the methods here,
all that information is given in the subsections below.
Answer: OK, we removed the numbered list

Reviewer 2: - L200-205. It would be worth to point out that the COSP simu-
lators only do the retrievals in sunlit conditions.
Answer: Thanks, we now point this out as well as pointing out the added ad-
vantage of this new simulator approach. That is, we added that the CLARA
simulator can simulate cloud fraction and cloud top products all times of the
year. We also point out that the CLARA simulator does not produce COT,
water path, or 2D CTP-COT histogram products during night time conditions

Reviewer 1: Fig. 2 and Fig. 3, 4 and Tab.2 are all results from earlier publica-
tions, aren’t they (or at least based on them). This could be made more clear.
Answer: Yes, the underlying results that are base for these figures and table
where created for the Karlsson et.al., (2018) paper. I can add this information
in the captions of the figures and see that it is clear in the text.
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Reviewer 2: - Figure 2. The colour scale is very confusing, I would suggest a
monotonic colour scale.
Answer: To us, the color scale is OK. However, we changed the top color from
violet to dark brown as a compromise, and hopefully, it will be less confusing

Reviewer 1: Line 272: It’s only these last 6 lines of the section 3.1.3 which are
not part of the summary based on Karlsson and Hakansson 2018, right? Think
about pushing these lines into the next section as they clearly belong to the new
retrieval simulator. They are somewhat hidden here.
Answer: I see your point, that this paragraph seems out of place. I think it may
fit better at the beginning of this subsection before we go into detail about the
τc intervals, illumination etc.

Reviewer 2: - Section 3.2. The POD maps used in method 3 depend on the
distribution of clouds in the real world. These maps won’t be optimal for models
with cloud distributions that differ substantially from reality. It would be good
to add a sentence mentioning this, and a brief discussion about the possibility
of developing PODs that are not linked geographic positions.
Answer: We have to admit that we probably do not understand this ques-
tion clearly. The CLARA-A2 simulator is a tool that should be used to fa-
cilitate model-to-satellite inter-comparisons and in this particular case, inter-
comparisons with the results from the CLARA-A2 climate data record. So we
are discussing clouds in the real world and not the cloud situation in a par-
ticular future or another scenario. If modeled clouds (channeled through the
simulator) deviate from CLARA-A2 observations, it should be an indication of
a model problem. This is the main goal for the simulator development.
However, the reviewer is possibly asking how to interpret cases where mod-
els systematically place clouds incorrectly in space and then being subject to
(potentially) other PODs than what they should have been in the CLARA-A2
simulator. The consequences here should not be large except for the extreme
cases when a model place clouds over ice- and snow-covered areas in the po-
lar night (with very low PODs) instead of over adjacent ice-free ocean areas
(with very high PODs). Knowing about the unique problems over snow- and
ice-covered regions (especially for the polar night) it will be hard to cover this
situation adequately knowing about the specific cloud detection issues occurring
over snow and ice during night conditions for AVHRR observations.
So, yes, under these particular circumstances, this might be a problem, and
perhaps other observational datasets (e.g., from active sensors) would be more
suitable to use here. However, for more normal situations, we do not believe this
to be a big problem. Geographical mismatches between modeled and observed
clouds should be possible to detect as long as the POD variability in the area
of interest is not extreme.
We added a brief discussion on this at the end of section 3.2. We plan on leaving
the purely lat/long approach in future releases and preferably base the PODs
on something like climate zones or surface conditions.
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Reviewer 2: - Figure 5 and 6. The labelling of the subplots is unusual. The top
subplot should also have a label/letter so that it can be properly referenced.
Answer: Yes, the top subplot should be named (a). Also, subplot (d), soon to
be (e), should be labeled “EC Earth (#1) - EC Earth (#3)” for clarity. The
figures have now been updated.

Reviewer 1: Line 323, “simulated ISCCP-H”. Please give a reference again.
Answer: I changed the order of the sentences so that I can reference ISCCP-H
again as well as the ISCCP simulator

Reviewer 1: Line 327, “All three datasets ...”: You just show two, don’t you?
Answer: By three datasets, I am referring to CLARA-A2, ISCCP-H, and EC
Earth. For clarity we wrote:
The two satellite datasets and the climate model are limited to ...

Reviewer 1: Line 327, hardly readable date format, as before
Answer: Fixed

Reviewer 1: Line 331, “underpredicts cloudiness . . . by 20% to 30%”: Can not
be judged from the absolute images shown. Think about showing it in a similar
way as in Fig 6
Answer: This is a good point. We swapped out the simulated datasets showing
absolute cloudiness to showing absolute difference compared to the observations.
After reexamining the data, we updated the stated biases since they seemed
exaggerated. However, the message stayed the same

Reviewer 1: Lines 335-341: This is basically all repetition, I think. Could be
shortened in my opinion. Typos/Language:

Answer: It appears to me that especially lines 333-335 more or else repeat what
is said in the information from lines 331-333. I removed the second duplicate
and moved the sentence about ISCCP-H underestimating cloudiness to the ear-
lier paragraph, and now I think it reads much better. Otherwise, to me, I think
the latter information from lines 336-341 is necessary to explain why the IS-
CCP simulator produces more clouds in the Arctic summer that the CLARA
simulator as seen in Fig. 7

Reviewer 2: L352. The trends calculated in this section are not decadal trends.
I believe that what you are trying to say is that they are trends over the entire
record, expressed in units of %/decade

Answer: Well, yes, this is what we are saying. We are using the wrong notation
here and have fixed the unit and description

Reviewer 2: - L354. Please use the correct units (%/decade). Same for figures
8 and 9. I would even suggest to change the units to 1/decade, as changes in %
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can lead to confusion in its interpretation (absolute percent change vs relative
change).

Answer: We have fixed the units, but instead of changing the unit to 1/decade,
we decided to keep (%/decade) and describe clearly in the text that the trends
are trends in an absolute sense.

Reviewer 2: - L366. is run → run is
Answer: OK
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Abstract.

This paper describes a new satellite simulator for the Satellite Application Facility on Climate Monitoring (CM SAF) cLoud,

Albedo and RAdiation dataset (CLARA), Advanced Very High Resolution Radiometer (AVHRR)-based, version 2 (CLARA-

A2) Climate Data Record (CDR). This simulator takes into account the variable skill in cloud detection in the CLARA-A2

CDR by using a different approach to other similar satellite simulators to emulate the ability to detect clouds.5

In particular, the paper describes three methods to filter out clouds from climate models undetectable by observations. The

first method is comparable to the current simulators in Cloud Feedback Model Intercomparison Project (CFMIP) Observation

Simulator Package (COSP), since it relies on a single visible cloud optical depth at 550nm (τc) threshold applied globally to

delineate cloudy and cloud-free conditions. Method two and three apply long/lat -gridded values separated by day and nighttime

conditions. Method two uses gridded varying τc as opposed to method one that uses just a τc threshold, and method three uses a10

cloud Probability of Detection (POD) depending on the model τc. The gridded POD values are from the CLARA-A2 validation

study by Karlsson and Håkansson (2018)

Method two and three replicate the relative ease or difficulty for cloud retrievals depending on the region and illumination.

They increase by increasing the cloud sensitivity where the cloud retrievals are relatively straightforward, such as over mid-

latitude oceans, and by decreasingdecrease the sensitivity where cloud retrievals are notoriously tricky. This is the situation15

for cold regions, especially at night, where , such as over the Arctic region during the polar night. Method three has the added

advantage that it indirectly takes into account that cloud retrievals in some areas are more likely than others to miss some

clouds. This situation is common in cold regions where evenin cold regions at night, where thick clouds may be inseparable

from cold, snow-covered surfaces and also, as well as in areas with an abundance of broken and small scale cumulus clouds

such as the atmospheric subsidence regions over the ocean.20

The simulator, together with the International Satellite Cloud Climatology Project (ISCCP) simulator of COSP, is used to

assess Arctic clouds in the EC-Earth climate model compared to the CLARA-A2 and ISCCP-H CDRs. Compared to CLARA-

A2, EC-Earth is shown to generally underestimate cloudiness in the Arctic. However, compared to ISCCP and its simulator,

the opposite conclusion is reached. Previous studies have found that the CLARA-A2 CDR performs well in the Arctic during

the summer months. Based on EC-Earth, this paper shows that the simulated cloud mask of CLARA-A2 using method three is25

more representative of the CDR than method one which is used for the ISCCP simulator using a global τc threshold to simulate

clouds.
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The simulator substantially improves the simulation of the CLARA-A2 detected clouds, especially in the polar regions, by

accounting for the variable cloud detection skill over the year. The approach to cloud simulation based on the POD of clouds

depending on their τc, location, and illumination is the preferred one as it reduces cloudiness over a range of cloud optical30

depths. Climate model comparisons with satellite-derived information can be significantly improved by this approach, mainly

by reducing the risk of misinterpreting problems with satellite retrievals as cloudiness features. Since previous studies found

that the CLARA-A2 CDR performs well in the Arctic during the summer months, and the method three is more representative

than method one, the conclusion is that EC-Earth likely underestimates clouds in the Arctic summer.

1 Introduction35

Clouds constitute one of the most significant sources of uncertainties for projecting the future climate (IPCC, 2014). Therefore,

countless studies have been made testing and improving the skill of climate models in this regard over the years (e.g., Waliser

et al., 2009). As more and more information on cloud climatologies from satellite sensors are available in CDRs, climate models

have been able to improve their representation of clouds continuously, and hence their description of the climate system itself.

To dateCurrently, there are only a few CDRs derived from imaging sensors that span more than 30 years. The ISCCP CDR40

(Young et al., 2018) was the first such dataset and mainly based geostationary satellite data, complemented with data from polar

orbiting satellites at high latitudes. The three other CDRs are based on data from the polar-orbiting meteorological satellites

from the National Oceanic and Atmospheric Administration (NOAA) and Meteorological Operational Satellite (METOP)

series. They are the Pathfinder Atmospheres- Extended (PATMOS-x) (Heidinger et al., 2014), the Cloud_cci (Stengel et al.,

2017), and the CLARA-A2 (Karlsson et al., 2017) CDRs. The long length of these CDRs make them ideal for assessing the45

cloud climatologies of climate models.

However, to directly compare model clouds to cloud observations from satellites is akin to comparing "apples to oranges" as

is explained in Waliser et al. (2009); Eliasson et al. (2011), and many others. Two of the primary considerations to make when

comparing climate models to satellite observations is their very different horizontal and vertical scales, and the observations’

finite sensitivity to clouds. Therefore, nowadays, in order to utilize the CDRs from satellite data, the CDRs usually need to be50

simulated from the model atmosphere with these attributes/limitations in mind.

In general, satellite simulators create cloud products or brightness temperatures that would have been made from satellite

measurements if the model atmosphere was the real atmosphere. The simulators’ objective is to emulate the inherent limitations,

sensitivity, and geometry of the real retrievals. One of the main tasks for these simulators, among others, is to filter out model

clouds that would not be detected by the instrument behind the cloud CDR. These simulated satellite products can then be55

compared directly to the observations.

Satellite simulators are primarily used to validate Earth System Models (ESMs)earth system models such as climate models.

Although satellite simulators bridge the gap between models and observations by significantly reducing the comparison uncer-

tainties, they do not eliminate them, and this should be taken into account when comparing satellite product simulations to the
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observations (Pincus et al., 2012). This paper introduces the CLARA-A2 satellite simulator v1.0, for use in model validations60

compared to the CLARA-A2 CDR.

The COSP (Bodas-Salcedo et al., 2011; Swales et al., 2018) was developed to gather and provide a suite of satellite simu-

lators. These simulators provide column-integrated cloud retrievals, just as the datasets they represent, and therefore they need

the cloud averages on the coarse grid of climate models to be translated into many smaller subcolumns for each model long/lat-

grid box (Jakob and Klein, 1999; Pincus et al., 2006). The number of subcolumns per grid depends on the host models’ reso-65

lution, and typically number around 100×the model resolution in degrees. Therefore, if a model has a resolution of 0.7°, the

simulator will generate 70 subcolumns per horizontal grid. As described in Jakob and Klein (1999), the subcolumns in a grid

produce a horizontal cloud distribution, and each subcolumn has a cloud vertical structure determined according to the cloud

overlap assumptions of the host model. The cloud retrieval simulations are further carried out on each of these subcolumns.

The ISCCP (Jakob and Klein, 1999), the MODerate resolution Imaging Spectroradiometer (MODIS) (Pincus et al., 2012),70

and the Multi-angle Imaging SpectroRadiometer (MISR) simulators are the visible/infrared (VIS/IR) satellite dataset simulators

in COSP. The CLARA-A2 cloud products are also retrieved using an instrument that measures in this frequency range, and

hence the CLARA-A2 simulator has many similarities with these. Other VIS/IR satellite simulators not included in COSP to

date are the Spinning Enhanced Visible Infrared Imager (SEVIRI) (Bugliaro et al., 2011) and the Cloud_cci (Eliasson et al.,

2019) simulators.75

All satellite datasets based on VIS/IR data have regionally varying skill in detecting clouds, and all retrievals suffer when

clouds are too tenuous to detect, or obscured. The removal of would-be undetectable clouds from the model is an essential

feature of satellite simulators and to date is being carried out by comparing the τc of a subcolumn to some threshold value. To

date, the simulators in COSP and the Cloud_cci simulator rely on a global static τc value to reclassify subcolumns, with an op-

tical depth less than this threshold, as cloud free. It is well established that all cloud masks based on the AVHRR channels have80

a variable skill, mainly depending on the underlying surface and the illumination conditions (e.g., Karlsson and Håkansson,

2018). Karlsson and Håkansson (2018) studied the performance of the CLARA-A2 cloud mask against Cloud-Aerosol Lidar

with Orthogonal Polarisation (CALIOP) measurements in detail and produced global statistics for different τc thresholds, the

probability of cloud detection, and the rate of falsely detected clouds (false alarm rate), on a global and regional basis. For

instance, they showed that the general likelihood of detecting clouds is much higher over warm ocean surfaces than over per-85

petually ice-covered regions and likewise that in some regions, e.g., deserts and other dry surfaces, retrievals there are relatively

susceptible to producing false clouds.

It is clear that the use of a fixed τc threshold, applied globally to modeled cloud fields in order to simulate satellite-based

cloud detection limitations, is a substantial simplification of the actual observation conditions. Therefore a completely new

approach is introduced in this paper describing a simulator for the CLARA-A2 CDR applying spatially and temporally varying90

cloud detection thresholds. Employing this novel approach to simulating observed cloud cover, should put the confidence

in cloud cover comparisons between the climate models and the CLARA-A2 CDR on a stronger footing. The CLARA-A2

simulator also incorporates a method of model temporal sampling in order to reduce errors potentially introduced by not taking
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the different and changing equatorial overpass times of the satellites used in the CLARA-A2 CDR, into account. This approach

is also used in the Cloud_cci simulator and is motivated and described in Eliasson et al. (2019).95

The article structure is as follows: Sect. 2.1, Sect. 2.2, and Sect. 2.3 describe the CLARA-A2 CDR, ISCCP-H series (ISCCP-

H) CDR, and the EC-Earth climate model (Hazeleger et al., 2010) respectively. Section 3 describes the CLARA-A2 simulator

and the simulated variables and Sect. 3.1 offers a description and demonstration of the simulated cloud masks. The CLARA-A2

simulator approach is demonstrated and tested over the Arctic region where trends in polar summer cloudiness are investigated

using simulations from the EC-Earth climate model in Sect. 4. A summary and conclusion are given in Sect. 5.100

2 Data

2.1 The CLARA-A2 climate data record

The CLARA-A2 CDR (Karlsson et al., 2017) is based on long term measurements from the AVHRR instrument operated

onboard polar orbiting NOAA satellites as well as onboard the MetOp polar orbiters operated by European Organisation for

the Exploitation of Meteorological Satellites (EUMETSAT) since 2006. AVHRR measures in five spectral channels (two visible105

and three infrared channels) with an original horizontal field of view (FOV) resolution at the nadir of 1.1 km. However, the

data used in CLARA-A2 is a reduced resolution (5 km) resampled version of these measurements, called global area coverage

(GAC), where three consecutive scanlines made up of 3x5 original FOVs make one GAC pixel. Saving the data on a GAC pixel

resolution was a compromise to drastically reduce the data amount, a necessity due to limited bandwidth and onboard storage

capacity.110

Specifically, the average radiance from four out of five pixels from the first scan line and none from the next two scan

lines are used to create the GAC measurement. Thus, only about 27% of the nominal GAC FOV is actually used (see Fig. 1

in Karlsson and Håkansson (2018)). Only GAC data is available globally (i.e., being archived) over the full period since the

introduction of the AVHRR sensor in space.

The visible radiances were inter-calibrated and homogenized, using MODIS data as a reference before applying the multiple115

parameter retrievals. The inter-calibration uses the method introduced by Heidinger et al. (2010), which is now updated using

MODIS Collection 6 as well extended by six years. The calibration of infrared AVHRR channels is based on the standard

NOAA calibration methodology utilizing an onboard blackbody reference (Rao et al., 1993). CLARA-A2 is an improved and

extended follow-up of the first version, CLARA, AVHRR-based, version 1 (CLARA-A1) of the record (Karlsson et al., 2013)

and is extended to cover 34 years (1982–2015).120

CLARA-A2 features a range of cloud products: cloud mask (cloud amount), cloud top temperature/pressure/height, cloud

thermodynamic phase, and for liquid and ice clouds separately, cloud optical thickness, particle effective radius, and cloud water

path. Cloud products are available as monthly and daily averages in a 0.25° latitude-longitude grid and also as daily resampled

global products (Level 2b) on a 0.05° grid for individual satellites. The CDR also includes multi-parameter distributions (i.e.,

joint frequency histograms of cloud optical thickness, cloud top pressure, and cloud phase) for daytime conditions. Besides125
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cloud products, CLARA-A2 also includes surface radiation budget and surface albedo products. Examples of CLARA-A2

products can be found in Karlsson et al. (2017).

In this study, we focus exclusively on the AVHRR GAC cloud mask because of its central importance for the quality

of all other CLARA-A2 products. Validation results for other CLARA-A2 products can be found in Karlsson et al. (2017)

and CMSAF1 (2017). The method for generating the CLARA-A2 cloud mask originates from Dybbroe et al. (2005), but130

significant improvements and adaptations since then were made to enable reliable processing of the historic AVHRR GAC

record (CMSAF2, 2017).

2.1.1 The skill of the CLARA-A2 CDR

As mentioned earlier, Karlsson and Håkansson (2018) performed an extensive validation of the CLARA-A2 cloud mask against

SNOsimultaneous nadir observations of CALIOP retrievals, and following is a recap of their main results. The goal was to find135

out at which optical depth thin clouds were thick enough to have a 50% probability of being detected. They investigated the

global performance of the CLARA-A2 cloud mask on a global equal-area grid with a 300 km resolution, covering different

surface types, and separately for daytime and nighttime conditions. This detection level can be considered the baseline for any

cloud mask; i.e., the smallest τc threshold where the cloud mask detects more clouds than it misses. They found that the global

mean minimum cloud optical thickness was τc = 0.225. However, importantly, their results showed that the global mean is far140

from being representative of all local conditions. For instance, a τc threshold value of 0.07 is a better approximation over ice-

free oceanic regions at mid-latitudes, whereas a τc threshold value as high as 4.5 is suitable for some ice-capped regions such

as over Greenland and Antarctica. By comparison, the reference dataset, CALIOP can detect clouds with τc> 0.01 (Winker

et al., 2009) and is generally stable across any surface.

However, the capability of the cloud mask in CLARA-A2 is better described by the POD of clouds rather than a τc threshold.145

Karlsson and Håkansson (2018) showed that even if all thin clouds with a τc less than 0.225 are removed from the comparison,

i.e., by reclassifying such CALIOP reference clouds as cloud-free, the POD varies considerably per region. Additionally, they

showed that for most regions in the world, the probability of detecting clouds with a τc near the average of 0.225 is higher than

50% (see Fig. 9 in Karlsson and Håkansson (2018)).

Through their validation studies, POD was calculated for τc-intervals (or bins) based on these SNOsimultaneous nadir150

observation validations on an equal-area Fibonacci grid with about a 300 km radius. A Fibonacci grid is a type of grid where

each grid box is nearly equal in size and area (see Karlsson and Håkansson (2018) and references therein for more information).

Figure 1 shows the different POD for clouds that have an optical depth that falls in the optical depth interval centered around

0.225 (0.2<τc<0.25) for daytime, nighttime and all conditions. The figure shows that the POD of clouds in this optical depth

range is dependent on whether clouds are sunlit1 or not, especially in the polar regions. The global average POD in this interval,155

but also all POD-intervals (not shown), is somewhat skewed towards lower values due to the poor performance in the Polar

regions during night time. Another significant result in Fig. 1 is the exceptionally good POD resultshigh POD in the Arctic and

Antarctic during the summer months. CLARA-A2 has equalnearly comparable skill in detecting clouds in these regions during

1Sunlit refers to when the solar zenith angle is less than 80◦84°.
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Figure 1. Probability of detection of clouds having an optical depth between 0.2≤τc< 0.25. The τc in the center of this interval, 0.225, is the

global average of the smallest τc threshold where the CLARA-A2 cloud mask detects more clouds than it misses according to CALIOP.(see

text)

the sunlit months as it has over non-polar land regions. Additionally, in the polar summer, for a somewhat higher COT interval

than shown here (e.g., 0.5-0.6), the POD in polar regions increases more than most continental surfaces. This is due to a high160

skill in detecting liquid water clouds in the polar summer. The POD shown in Fig. 1 is somewhat lower here since clouds in

the τc interval 0.20-0.25 mostly consist of thin ice clouds which are still difficult to detect over ice and snow surfaces. Overall

though, this result further establishes the CLARA-A2 CDR as very suitable for cloud studies in the polar summer.

2.2 ISCCP-H

The ISCCP-H CDR (Young et al., 2018) is a recently released high resolution version of the ISCCP CDR (Rossow and165

Schiffer, 1999) that starts in July 1983 and ends in June 2015 due to data availability at the time of this study. The ISCCP CDR

comprises of geostationary and polar-orbiting satellites, where data from the geostationary satellites have precedence at low
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Table 1. The cloud variables produced by the simulator. The middle column specifies the separate categories available for each variable, and

the third column indicates under which illumination conditions the variables are available.

Cloud variable Categories day/night

Cloud fraction total, ice, liquid, low, mid and high day and night

Cloud top height, temperature, pressure day and night

τc liquid, ice day only

cloud particle effective radius (re) liquid, ice day only

cloud water path (CWP) liquid, ice day only

cloud top pressure (CTP)-τc 2D histograms liquid, ice day only

and mid-latitudes (absolute latitude < 55°). The main improvement of ISCCP-H CDR is that it is on a higher resolution spatial

grid compared to its predecessor and covers a longer period. Otherwise the ISCCP-H CDR is quite similar to previous ISCCP

versions. The CDR uses bi-spectral radiances, with one channel in the visible (0.6 µm) and one in the IRinfrared (11 µm). This170

CDR is described at more length in Karlsson and Devasthale (2018) and Tzallas et al. (2019).

2.3 The EC-Earth model

The EC-Earth climate model (Hazeleger et al., 2010, 2012) is an ESM with its atmospheric component based on the Integrated

Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The version used for this

study is 3.3, based on IFS cycle 36r4 is on a horizontal resolution of T255 with 91 vertical layers. The variant used in this175

study is the EC-Earth-Veg3 Atmospheric Model Inter-comparison Project (AMIP) simulation with prescribed monthly sea

surface temperatures and sea ice conditions to enable comparisons with atmospheric observations. The temporal range used to

demonstrate the simulator covers 1982–to 2015 when compared only to the CLARA-A2 CDR and covers 198307–201506July

1983 to June 2015 when ISCCP-H is involved in the comparison. EC-Earth simulated ISCCP clouds are produced at run time

through the COSP. In terms of cloudiness, EC Earth has no lower or upper limit to cloud optical thickness aside from numerical180

precision. Therefore any satellite simulator, shouldwill always produce less cloudiness than the direct model output.

3 Description of the CLARA-A2 simulator

Tab. 1 lists the variables simulated by the CLARA simulator, and this section provides an overview of them. As briefly described

in the introduction and detailed in Bodas-Salcedo et al. (2011) and Jakob and Klein (1999), the CLARA-A2 simulator relies on

subcolumns within the climate model grid, as all COSP simulators do, to simulate the observational datasets’ cloud variables.185

The subcolumns created in each model grid together produce the horizontal and vertical cloud structure that preserves the
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internal cloud overlap assumption of the host model. Each subcolumn has the same number of layers as the model, and each

layer in a subcolumn is either completely cloudy or clear.

The next stage in the simulation is to map the average model layer in-cloud 2 optical depth, water content, and effective

radius, both liquid and ice phase, to the cloudy layers of each subcolumn. Every subcolumn is determined to be either cloud-free190

or cloudy, and the simulator performs cloud retrievals on each ’cloudy’ subcolumn, and these represent the column-integrated

retrievals of CLARA-A2. Finally, the simulated cloud parameters are averaged to the climate model grid so that they are ready

to be directly compared to observations. Table 1 provides an overview of the simulated variables included in this simulator. The

CLARA-A2 satellite simulator can currently only be run in an "offline"-mode, meaning that it relies on access to pre-processed

model output files. Following is a short description of the simulated cloud retrieval simulation:195

Cloud microphysics

The cloud microphysical retrievals τc, re, Water Path (WP), and cloud phase are simulated using the same method described

in Eliasson et al. (2019), which very closely resembles the method described in Pincus et al. (2012). The dominant cloud

water phase of the top optical depth of the cloud determines the simulated cloud water phase. The simulation of the effective

radius re is calculated by comparing the top of the atmosphere reflectance, calculated by the adding–doubling technique, to200

lookup tables of reflectance versus cloud effective radius. The lookup tables for the effective radius simulation rely on the

same microphysical model as the CLARA-A2 CDR (see details in Karlsson et al. (2017)). The simulated optical depth and

cloud water path is the sum in the column. For consistency with observations, if a cloud parameter requires sunlight for its’its

retrieval, it will only be simulated if the calculated solar zenith angle is less then 80◦84°. These include the cloud microphysical

retrievals τc, re, WP, and the CTP-τc histograms.205

Cloud top

The simulated CTP, cloud top height (CTH), and cloud top temperature (CTT) are calculated by two methods depending on

if the clouds are optically thick or not. If a subcolumn has a simulated cloud optical depth, τc≥ 5, it is considered opaque,

and finding the cloud top is achieved by matching a calculated brightness temperature to the model temperature profile, i.e.,

precisely the same approach to simulate cloud top as used by the ISCCP simulator (Jakob and Klein, 1999).210

However, acknowledging that optically thinner, i.e., semi-transparent clouds, are more difficult to accurately determine the

cloud top (Håkansson et al., 2018), the CLARA simulator has a different method for simulating thin clouds. First, the simulator

finds the CTH that is one optical depth down from the physical top of the model cloud. This is the same manner as the MODIS

simulator (Pincus et al., 2012) and Cloud_cci simulator Eliasson et al. (2019) finds the retrieved cloud top. The CLARA

simulator then offsets this height using the median error in CTH for semi-transparent clouds in the CLARA CDR (Table 13215

in NWCSAF, 2018). This approach emulates the real world performance of the CLARA cloud top retrievals more closely

for semi-transparent clouds than treating all clouds as opaque. The offsets used are 257m, −145m, and −3336m for low

(CTP≥680 hPa), middle (440 hPa≤CTP>680 hPa), and high clouds (CTP<440 hPa) respectively.

2The climate model provides the combined cloud free and cloudy component average for cloud variables. The simulator needs the in-cloud amounts, i.e.,

average/cloud fraction
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3.1 Simulating CLARA-A2 cloud masks

As mentioned in Sect. 1, the main feature of the CLARA-A2 simulator is a more sophisticated simulation of the observational220

datasets’ cloud mask. It is possible to choose between one of the three methods of cloud mask simulation described below:

1) To use a global static τc, and treat all subcolumns with a τc less than 0.225 as cloud free. This method is used for the

equivalent simulators in COSP, except that they use a slightly higher τc threshold of 0.3.

2) To use gridded optical depth thresholds separately for day and night conditions.

3) Make use of the gridded POD for cloud retrievals separately for day and night conditions.225

Following is a short description of these three approaches.

3.1.1 A globally static optical depth threshold

Method one is to simulate the cloud mask by using one global minimum cloud optical depth value. This is the classical approach

used by the ISCCP, MODIS, MISR, and the Cloud_cci simulators. For the ISCCP, MODIS, and MISR simulators, this global

limit is set to τc = 0.3 (Pincus et al., 2012), and for the Cloud_cci simulator (Eliasson et al., 2019), to 0.2. As mentioned earlier,230

the global average τc threshold for the CLARA-A2 CDR is 0.225, and thus the threshold value used in method one of the

CLARA-A2 simulator.

By the approach used in this method, 100% of the cloudy subcolumns with an optical thickness less than the global average

τc limit are treated as being cloud-free and 100% of the subcolumns above this threshold are treated as cloudy. Since the

threshold is a global average, this method does not consider the illumination conditions or the geographical location of the235

retrieval. The advantage of this approach is its robustness and simplicity. However, as mentioned in Sect. 2.1, this approach

can lead to very misrepresentative cloud mask simulations in some geographical regions.

The cloud retrieval simulations in COSP are only carried out during sunlit conditions. However, the next two approaches

described below also simulate the cloud amount and the cloud top retrievals also during night time conditions. This doesn’t

apply to re, τc, WP, or the CTP–τc 2D histograms.240

3.1.2 Gridded optical depth thresholds

The second method uses varying gridded optical depth thresholds. This method also relies on the robust and straightforward

approach of reclassifying subcolumns with a small optical depth as cloud-free, while keeping those above this threshold cloudy.

However, this method is designed to also take into account that the τc-threshold, or cloud detection limit, varies geographically

and depends on the solar illumination. This method relies on the gridded data that are used in Fig. 12 in Karlsson and Håkansson245

(2018) that shows the smallest τc threshold where the CLARA-A2 cloud mask detects more clouds than it misses (see Sect. 2.1).

Figure 2 shows the detection limits used in the simulator according to this method. As shown by the figure, the τc threshold

varies quite strongly regionally and also depends on if the CLARA-A2 cloud mask can make use of solar channels or not. The
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Figure 2. The gridded cloud detection limit, i.e., the smallest τc threshold where the CLARA-A2 cloud mask detects more clouds than it

misses according to CALIOP for sunlit (top) and nighttime (bottom) conditions. For reference, the global average τc -threshold = 0.225 is

shown as contour lines. These results are based on the results from the Karlsson and Håkansson (2018) study.
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global average τc-threshold, included for reference in the figure, clearly shows that during sunlit conditions, the cloud mask is

much more sensitive to thin clouds than a global average value of τc = 0.225 suggests.250

During sunlit conditions, the regions with the least cloud sensitivity are over the Arctic and the desert regions of the Sahara

and Arabia, as well as a large patch in the central Pacific. During nighttime conditions, especially over the oceans, the cloud

mask is generally less sensitive and is particularly degraded in the ice-covered regions. However, there is an improvement

in cloud sensitivity in some regions during nighttime conditions. For instance, in the desert regions of Northern Africa and

the Arabian Peninsula, and the worst performing areas in the central Pacific, the cloud mask is somewhat surprisingly better255

than when these regions are sunlit. A more in-depth validation study on CLARA-A2 is provided in Karlsson et al. (2017) and

Karlsson and Håkansson (2018).

Their results demonstrate that using two sets of gridded detection-limits gives a more realistic cloud mask, one for sunlit and

one for nighttime conditions. Method two is more realistic than the global static minimum optical depth approach of method

one (Sect. 3.1.1). However, the authors of this paper advocate the further improved simulated cloud mask based on the use of260

PODs described in the next section that also emulates some of the expected variability in cloud detection over a range of cloud

optical depths.

3.1.3 Probability of cloud detection

The third method is an approach to simulate the CLARA-A2 cloud mask using the POD, provided on a roughly 300 km grid,

as a function of the cloud’s optical thickness. These POD, discussed in Sect. 2.1, are treated as the likelihood that the cloud265

mask would detect the model cloud given its optical thickness, geographical location, and whether or not it is sunlit.

inserted here: The simulator uses computer-generated random numbers for comparison to the gridded POD value found in a

lookup table, where one set of optical depth dependent- PODs is for sunlit, and one is for nighttime conditions. The simulator

assigns a random number between 0–1 to each subcolumn at the initiation. After the simulated τc is computed, the column

integrated τc, latitude, and longitude are used to find the POD value from the lookup table for comparison. A subcolumn is270

cloudy, only if its assigned random number is less than the POD. Therefore, if the probability of detection of a cloud with a

specific optical depth is 0.05, even though it is very transparent, there is still a 5% chance the subcolumn will be considered

cloudy. Conversely, regardless of how optically thick a cloud is in a subcolumn, there is a non-zero chance this subcolumn will

not be flagged as cloudy, and hence not included in any further cloud simulations.

The look up table of gridded POD used by the simulator contains separate values for each of the is reported separately for275

the set of τc- intervals listed in Tab. 2. The main purpose of Tab. 2 is to list all of the POD intervals used to simulate the cloud

mask, but it also provides a summary of average POD separated into Global, Ocean, Land outside the polar regions, and the

Polar regions during sunlit conditions (nighttime in braces). As is completely intuitive, the POD increases for optically thicker

clouds for all regions, and in general, the cloud mask is more sensitive to clouds over ice-free oceans. Additionally, nowhere,

and not even for the thickest clouds, does the POD reach 1. The reasons for this seeming paradox are discussed at length in280

Karlsson and Håkansson (2018), and here is a summary:

11



1. Thick clouds are likely undetectable if they have the same temperature as the underlying surface during nighttime con-

ditions when solar reflectivity measurements are not available.

2. Collocation errors between CALIOP and AVHRR can cause a mismatch between the datasets. Some collocation error

is unavoidable due to the maximum time difference of 3 minutes, and that sometimes the geo-location data for AVHRR285

itself may not be sufficiently accurate.

3. Even if the data is ideally collocated, the FOVs of the measurements most likely differ somewhat due to how the GAC

footprint is made (see Fig. 1 in Karlsson and Håkansson (2018) and Sect. 2.1 here).

In fairness, only the first point directly has to do with the skill of the CLARA-A2 cloud mask and thus should be simulated.

The next two bullets have to do with imperfections in the validation process, and therefore should not be simulated. Unfortu-290

nately, at this moment, the POD is reduced by all three points, and in the future, it could make sense to estimate and take into

account the impact of all three of these considerations in the simulator.

On the other hand, results from Tab. 2 indicate that the impact of points two and three may not be that strong after all. Over

global oceans during the daytime, where highest POD values are found, the detection rate for the most optically thick clouds

is 98% indicating, on average, that the combined error from points two and three is probably less than 2%. However, in some295

oceanic regions where relatively thick inhomogeneous clouds are prevalent, such as the stratocumulus-dominated regions off

the west coast of South America and southern Africa, POD values are slightly below 0.9, hence the impact of points two and

three may not be negligible in these regions.

To illustrate the global distribution of POD, Fig. 3 contrasts two τc-intervals used by the simulator. Clouds that fall in the

interval centered at τc = 0.125, which are translucent clouds at only half the global average τc -limit (see Sect. 3.1.1), generally300

have a low POD. The POD is particularly low in this interval over land and during nighttime conditions. However, take notice

that especially over ocean areas and especially during sunlit hours there is at least a 50% POD despite the clouds being so thin.

For clouds centered at τc = 0.55, which is about twice the global average detection limit, the PODs are predictably quite

high in general. However, again, this is not true globally. Even though the clouds are relatively thick, in areas such as Northern

Africa, the Arabian peninsula, and the Polar regions, the POD is only around 50%. Another striking feature is that for these305

semi-transparent clouds, the POD over nearly all regions, except the poles, are higher for cloud retrievals made during nighttime

conditions. This result is demonstrated further in Fig. 4. Outside the polar regions, clouds in the τc-intervals from 0.2 to 0.6

have a higher POD during nighttime conditions overall (especially in the Tropics), whereas for clouds thinner or thicker than

this interval, the daytime cloud masks have better success.

That this slightly improved detectability at night for clouds in the τc range 0.5-1.0 is a robust feature is supported by310

intercomparisons made between CLARA-A2 and other AVHRR-based datasets (e.g., Karlsson et al., 2017; Karlsson and

Devasthale, 2018). They found (although not explicitly reported in the papers) the same behavior for results from PATMOS-x

and Cloud-cci compared to CALIOP observations. Whether to interpret this as an indeed improved nighttime detectability for

AVHRR-based methods or something caused by the CALIOP observation reference (e.g., enhanced daytime problems due to
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Figure 3. The probability of detection at two τc-intervals centered at 0.125 and 0.55 for day and night conditions. These results are based on

the results from the Karlsson and Håkansson (2018) study.
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Table 2. The probability of cloud detection for the CLARA-A2 cloud mask separated by intervals of CALIOP cloud optical thickness. This

table shows the regional averages based on the POD values used in the simulator of large geographical regions. Note that the simulator makes

use of gridded POD values on a 300 km equal-area grid (see Fig. 3) and not the POD regional averages provided here for reference. The

Polar region here refers to latitude > 75° N/S. The values apply to daytime (nighttime) conditions. These results are based on the results from

the Karlsson and Håkansson (2018) study.

τc-centers τc-range Global Ocean Land Polar

0.025 0.00<τc≤0.05 0.31 (0.23) 0.34 (0.32) 0.30 (0.14) 0.22 (0.08)

0.075 0.05<τc≤0.10 0.44 (0.29) 0.49 (0.38) 0.40 (0.22) 0.33 (0.11)

0.125 0.10<τc≤0.15 0.49 (0.36) 0.56 (0.47) 0.43 (0.30) 0.38 (0.13)

0.175 0.15<τc≤0.20 0.55 (0.43) 0.62 (0.55) 0.48 (0.38) 0.43 (0.17)

0.225 0.20<τc≤0.25 0.59 (0.50) 0.67 (0.63) 0.51 (0.46) 0.46 (0.20)

0.275 0.25<τc≤0.30 0.62 (0.56) 0.70 (0.70) 0.54 (0.52) 0.49 (0.23)

0.325 0.30<τc≤0.35 0.64 (0.60) 0.73 (0.75) 0.57 (0.57) 0.51 (0.25)

0.375 0.35<τc≤0.40 0.67 (0.64) 0.75 (0.78) 0.59 (0.61) 0.53 (0.28)

0.425 0.40<τc≤0.45 0.69 (0.66) 0.78 (0.81) 0.62 (0.64) 0.55 (0.30)

0.475 0.45<τc≤0.50 0.72 (0.68) 0.80 (0.82) 0.65 (0.66) 0.58 (0.32)

0.550 0.50<τc≤0.60 0.74 (0.70) 0.83 (0.84) 0.68 (0.68) 0.60 (0.34)

0.650 0.60<τc≤0.70 0.77 (0.72) 0.85 (0.85) 0.71 (0.70) 0.62 (0.37)

0.750 0.70<τc≤0.80 0.79 (0.73) 0.87 (0.85) 0.74 (0.72) 0.65 (0.39)

0.850 0.80<τc≤0.90 0.82 (0.74) 0.89 (0.86) 0.77 (0.74) 0.67 (0.42)

0.950 0.90<τc≤1.00 0.84 (0.76) 0.90 (0.86) 0.80 (0.76) 0.71 (0.47)

1.500 1.00<τc≤2.00 0.87 (0.78) 0.92 (0.87) 0.83 (0.79) 0.76 (0.53)

2.500 2.00<τc≤3.00 0.90 (0.81) 0.94 (0.89) 0.87 (0.82) 0.82 (0.59)

3.500 3.00<τc≤4.00 0.94 (0.84) 0.97 (0.91) 0.93 (0.86) 0.88 (0.66)

4.500 4.00<τc≤5.00 0.97 (0.88) 0.98 (0.93) 0.96 (0.90) 0.92 (0.70)

lower signal-to-noise ratios) is currently unclear. However, this feature is not critical to the CLARA-A2 simulator but merits a315

more in-depth investigation in the future.

The simulator uses computer-generated random numbers for comparison to the gridded POD value found in a lookup table,

where one set of optical depth dependent-PODs is for sunlit, and one is for nighttime conditions. The simulator assigns a

random number between 0–1 to each subcolumn at the initiation. After the simulated τc is computed, the column integrated τc,

latitude, and longitude are used to find the POD value from the lookup table for comparison. A subcolumn is cloudy, only if its320

assigned random number is less than the POD. Therefore, if the probability of detection of a cloud with a specific optical depth

is 0.05, even though it is very transparent, there is still a 5% chance the subcolumn will be considered cloudy. Conversely, as

mentioned earlier, regardless of how optically thick a cloud is in a subcolumn, there is a non-zero chance this subcolumn will

not be flagged as cloudy, and hence not included in any further cloud simulations.moved up
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Figure 4. The difference in the POD of the cloud mask during sunlit and nighttime conditions for selected cloud optical depth intervals.

These results are based on the results from the Karlsson and Håkansson (2018) study.

3.2 The choice of simulated cloud mask325

In this section we refer to figures 5 and 6 to illustrate how the choice of cloud mask simulation method affects the comparison

of cloud cover of EC-Earth to CLARA-A2. The results are separated into seasons here since it is essential to understand the

seasonal impact of choosing one method over another. The top figure in Fig. 5 a and Fig. 6 a show the cloud cover according

to CLARA-A2 for 1982–2015 during Southern Hemisphere summers and the Northern Hemisphere summers respectively.

EC-Earth minus CLARA-A2 based on the first method (Sect. 3.1.1) is subplot (a)(b), based on the second method (Sect. 3.1.2)330

is subplot (b)(c), and based on the third method (Sect. 3.1.3) is subplot (c)(c). Subplot (d)(e) shows the difference between

the simulated cloud mask based on method one, a global static τc threshold, and method three, based on POD thresholds (first

method minus the third method).
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Figure 5. Total cloud cover during the DJF- seasons of 1982–2015. This figure shows a comparison of EC-Earth to CLARA-A2 using three

different methods of cloud mask simulation. The reference figure at the top (a) is the cloud fraction from CLARA-A2. Subfigure (a)(b)

shows the simulated observations using method one, based on a global static τc-limit, minus CLARA-A2. Subfigure (b)(c) shows the same

comparison using method two, based on gridded τc-limits, and (c)(d) shows the same using method three, based on POD. Sub-figure (d)(e))

shows the difference between the simulated CF based on method one minus method three. See Sect. 3.2 for a wider description of the figure.
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Figure 6. Total cloud cover during the JJA -seasons of 1982–2015. See the description in Fig. 5 for a description of the layout in this figure
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Globally, the overall impression is that EC-Earth underestimates cloud fraction. In most regions of the world, within a few

percent, this is the conclusion one would reach regardless of which of the three methods was used to simulate the CLARA-A2335

cloud mask. However, as described in Sect. 2.1, the CLARA-A2 CDR is systematically and substantially less skillful under

certain conditions than on average.

As discussed in Sect. 2.1.1, CLARA-A2 is skillful at detecting clouds in the polar regions during sunlit conditions, but not

so during the polar winter. This is why the apparent overestimation of clouds in these regions by EC-Earth (Fig. 5,6a)(Fig. 5 b

and Fig. 6 b) is likely strongly exaggerated. Without prior knowledge of the retrieval difficulties in cold dark locations, i.e.,340

when only passive infrared channels are available, if method one is used to simulate clouds, one could erroneously conclude

that EC-Earth places too many clouds in polar regions. This problem is especially salient during winter months, but it also has

a considerable impact on cumulative averages over these regions. Therefore cloud mask simulations based on method one are

notably unsuitable in the Polar regions and, to lesser extent, desert areas.

However, and what is the main point of this innovation, if one uses the second or third method to simulate clouds, the345

apparent bias in cloudiness in these regions is mostly removed in the problematic regions. The second and third methods do a

much better job at reproducing the limitations of cloud datasets than the first method, and the size of the difference between

method three and one is substantial and seasonally dependent in the problematic regions (Fig. 5,6d)(Fig. 5 e and Fig. 6 e).

Notice also from (Fig. 5,6 b)(Fig. 5 c and Fig. 6 c) and (Fig. 5,6 c)(Fig. 5 d and Fig. 6 d) that the second and third methods

produce similar results, and hence both do well in this regard. However, there are some subtle differences. One is that during350

the northern hemisphere summer months a model validation based on the second method leads to the conclusion that EC-Earth

overestimates clouds in the Arctic, yet if the comparison were made based on the third method, one would conclude only a

slight overestimation here.

The third method gives the most accurate description of the cloud detection limitations since it describes the likelihood of

detecting/missing clouds over the full range of cloud optical thicknesses for day and night conditions. Also, method three can355

emulate the non-zero probability that even thick clouds might be undetectable under certain conditions. This approach better

describes the skill of the cloud retrievals of a satellite dataset than using gridded static values of τmin in method two, and

especially instead of using a single global τmin value used by method one. Overall, therefore, the recommendation is to choose

method three to simulate the cloud mask.

However, the advantage of tying statistics to geographical regions, may also be a weakness in some situations. If a models’360

cloud distribution is systematically misplaced, the model clouds may be subject to (potentially) other PODs than what they

should have been in the CLARA-A2 simulator. The consequences here should not be large, except for the extreme cases when a

model places clouds over ice- and snow-covered areas in the polar night (with very low PODs) instead of over adjacent ice-free

ocean areas (with very high PODs). Additionally, the underlying statistics used in method two and three are, as mentioned in

Sect. 2.1.1, derived from collocations that cover the time period between 2006–2015. Therefore in some regions, such as in the365

marginal ice regions, the conditions for cloud detection may have changed appreciably from those during the validation period,

for instance, due to a changing climate, rendering the statics less representative than in more climatically stable regions.
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4 Application of the simulator to Arctic case studies

4.1 Average cloudiness during summer months

Karlsson et al. (2017) asserted, and the POD maps shown in Fig. 4 suggest, that the CLARA-A2 CDR is reasonablyparticu-370

larly skillful at detecting clouds in the Arctic during sunlit conditions. Therefore, to demonstrate the utility of the CLARA-A2

simulator, we assessed the cloud cover in these conditions over the full length of the datasets. We added the ISCCP-H CDR

(Young et al., 2018) to the comparison since it is an equivalent CDR with a well-established satellite simulator used in many

previous model studies (e.g., Webb et al., 2001; Norris et al., 2016; Terai et al., 2016; Tan et al., 2017). However, Karlsson and

Devasthale (2018) found the cloud cover of ISCCP-H too low in the polar summer and early autumn.375

The cloudiness from ISCCP-H should be compared to the simulated cloudiness using the ISCCP simulator (Jakob and Klein,

1999), and the cloudiness, according to CLARA-A2, is compared to the CLARA-A2 simulator. Figure 7 shows the average

cloudiness in Arctic summer months according to CLARA-A2 (Fig. 7a) and ISCCP-H (Fig. 7b). EC-Earth’s representation of

overall cloudiness during Arctic summer is tested using the simulated CLARA-A2 and simulated ISCCP-H, shown in Fig. 7c

and Fig. 7d respectively. The cloudiness from ISCCP-H should be compared to the simulated cloudiness using the ISCCP sim-380

ulator, and the cloudiness, according to CLARA-A2, is compared to the CLARA-A2 simulator. As mentioned in Sect. 3.1.1,

the simulated cloud mask for ISCCP-H uses a global τc threshold (τc= 0.3) for the simulated cloud mask (method one, different

threshold), and the CLARA-A2 simulator uses the POD-based approach for the simulated cloud mask (method three). The two

satellite datasets and the climate model are limited to July 1983 to June 2015 to match the availability of the ISCCP-H period

to date.385

Fig. 7 demonstrates that using simulators that do not take the variable skill of the cloud mask into account, such as the ISCCP

simulator, could easily lead to false conclusions about EC-Earth cloud cover in the Arctic summer. Compared to the ISCCP-H

observations, the simulated ISCCP-H observations indicate that EC-Earth has a strong positive cloud bias in the Arctic of about

40-50%more than 30%. However, CLARA-A2, shown to have a high skill in the polar summer (see Fig. 5b in Karlsson et al.

(2017)), indicates that EC-Earth under-predicts the cloudiness in large parts of this region by 20-30%more than 10%. Simi-390

larly, Karlsson et.al, (2019) found the cloud cover of ISCCP-H too low in the polar summer and early autumn. The CLARA-A2

simulator shows that rather than EC-Earth massively overestimating cloudiness, especially over the central Arctic regions, EC-

Earth has a similar amount of clouds in the Arctic, and rather tends to under-represent clouds in the sunlit Arctic conditions.

These large differences between the simulated ISCCP-H and CLARA-A2 are mainly due to the ISCCP simulator being too

sensitive to thin clouds here. As shown in Fig. 2, during daytime conditions in the Arctic, a more appropriate daytime τc-limit395

would be around 0.5 or more, which is higher than the global average of 0.3 assumed by the ISCCP simulator. Therefore in the

Arctic summer, the ISCCP simulator retrieves clouds in between these cloud optical thicknesses that the CLARA-A2 simulator,

and most likely the observations, do not. As a consequence, anyone assessing cloudiness in the Arctic will reach the opposite

conclusion using the CLARA-A2 CDR and simulator compared to the ISCCP-H counterpart.

Overall, based on CLARA-A2 as the reference, EC-Earth has a smaller average cloud fraction over most of the region400

between 50N–90N during the summer months. The difference is more substantial over ocean areas than over land, with the
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Figure 7. The Total Cloud Fraction (TCF) in the Arctic summer. The top row contains the observations from two equivalent CDRs, CLARA-

A2 (a) and ISCCP-H (b). The bottom row contains the difference between the simulated CDRs based on the model atmosphere of EC-Earth,

simulated CLARA-A2 (c) and simulated ISCCP (d)CDR minus the CDR for CLARA-A2 (c) and ISCCP-H (d). The period is July 1983 to

June 2015.
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largest under-representation of cloudiness at these latitudes is over the North Atlantic and following the Gulf Stream north of

Norway. However, globally, the most considerable negative cloud biases between the model and observations are in the Tropics

and subtropics (see Fig. 6).

4.2 Trends in cloudiness405

This section assesses trends in cloudiness during the Arctic sunlit months, according to CLARA-A2, and EC-Earth. The

CLARA-A2 CDR is particularly suitable for cloud trend analysis in the Arctic summer due to its length andsince it is long

enough to make statements about cloud trends and is reported to have high cloud detection skills there (Karlsson and Dev-

asthale, 2018). Here is an assessment of the cloud trends from the months that have enough sunlight, i.e., where the solar zenith

angle is less than 80◦84° in the Arctic above 70°N for CLARA-A2 and EC-Earth. These trends are decadal and based on the410

linear regression of cloudiness from all data in 1982–2015 and expressed here as absolute change in cloudiness [ %
decade ].

Fig. 8 shows the distribution of cloudiness trends, according to CLARA-A2. From this figure, some clear patterns emerge;

in the spring months, there is an increase in cloudiness by more than 5% in large parts of the Arctic and upwards of 10% north

of Novaja Zemlya, and in the summer to Autumn months the Arctic is dominated by a decrease in cloudiness. The increase in

cloudiness reaffirms observations previously reported in Kapsch et al. (2013) and Kapsch et al. (2019). Kapsch et al. (2013)415

asserted that the increase in cloudiness is likely due to an increased intrusion of water vapor into these regions during the spring

months. The largest decrease in cloudiness seen in July and August is in the Beaufort, and especially the Lincoln Seas, north

of the Canadian archipelago and Greenland. However, it is outside the scope of this study, whose main purpose is to describe

the CLARA-A2 simulator, to further assess the possible reasons for the changing cloudiness seen in these observations.

Fig. 9 shows the average change in cloudiness of EC Earth over the same time period as in Fig. 8, using method three to420

simulate the cloud mask. The cloud trends in the model clearly differ from the observations. In particular, the size of the trends

are in general much smaller than the observations indicate, but also the pattern of cloud trend is not in agreement (except in

May). However, there are some important limiting factors to consider for this model evaluation.average cloudiness trends for

the same conditions, aside from excluding land areas, as in Fig 8., for CLARA-A2, the three methods of simulated CLARA-A2

cloud mask from the EC-Earth atmosphere, and the total cloudiness directly from EC-Earth without any simulator. The reason425

for the simplified analysis in Fig9 is to avoid over-emphasizing differences in the model cloudiness trends.

EC-Earth is represented here by only one model run, and although it employs prescribed sea surface temperatures and sea

ice extent, the model atmosphere is free to meander. The implication is that a perfectly valid atmospheric state based on one

model run is hard to fairly compare to observations. In order to assess if the model cloud trends agree with the observations,

ideally, several ensemble model runs are required to find a general trend and to assess whether or not the natural variability430

produced by the model is accurate (Koenigk et al., 2019).

Fig. 10 illustrates how the choice of cloud mask simulation effectsaffects model cloud trend. Fig. 10 shows the average

cloudiness trends for the same conditions, aside from excluding land areas, as in Fig. 8, for CLARA-A2, the three methods

of simulated CLARA-A2 cloud mask from the EC-Earth atmosphere, and the total cloudiness directly from EC-Earth without

21



AprilApril MayMay

JuneJune

JulyJuly AugustAugust

−10 −8 −6 −4 −2 0 2 4 6 8 10

%/decade

Figure 8. The average trend in cloudiness over the entire record [ %
decade

] decadal cloudiness trend in the Arctic from the illuminated months

of April to August according to CLARA-A2. Negative trends correspond to an average decrease in cloudiness over time. The trends are from

all months in the period 1982–2015.
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Figure 9. As for Fig. 8, but for the EC Earth climate model.
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Figure 10. The average decadal cloudiness trend in the Arctic from the illuminated months of April to August only over the ocean (ice-free

or ice-covered). The figure shows the reference dataset, CLARA-A2, the CLARA-A2 simulator, one line for each method, and the Total

Cloud Cover (TCC) from the EC-Earth model without using any simulator. The trends are from all months in the period 1982–2015.

any simulator.The reason for the simplified analysis in Fig9 is to avoid over-emphasizing differences in the model cloudiness435

trends

However, Fig. 10 illustrates that regardless of which method is used to simulate cloudiness, or even using no simulator at

all, does not alter the average cloud trends in the Arcticthe simulators do not appear to alter the cloud trends in the Arctic

summer. These results may indicate that the clouds in the model are not changing the average range and distribution of optical

thicknesses over time, even if the actual cloud amounts may change.440

In summaryHowever, no definitive conclusions on model cloud trends in the Arctic can be drawn here for the reasons listed

above, and a more thorough examination of whether or not EC-Earth reproduces realistic cloud trends is also outside the scope

of this study. Although the choice of method does not appear at first glance to impact the model cloudiness trends, it still makes

sense, in this case, to use method three to simulate clouds, since it more closely reflects the skill of the CLARA-A2 dataset.

24



5 Conclusions445

This article describes a satellite simulator designed to enable comparisons between climate models and the CLARA-A2 CDR.

Typically, satellite simulators simulate the satellite retrieved cloud fraction using one global cloud optical depth threshold,

called method one in this paper, to remove thin model clouds that are presumed undetectable by the instruments used to

generate the CDR. There are more factors to consider that influence the ability to retrieve thin clouds. These include

– The optical thickness of the cloud450

– How illuminated the clouds are

– The underlying surface properties and

– The temperature difference between the cloud and the surface

In this paper, we show that using one optical depth valuethreshold for all conditions to emulate cloud sensitivity (method one)

is inappropriate since the cloud detection skill of satellite retrievals may vary considerably. This is the method used in some of455

the COSP simulators, which many previous studies have relied on. Therefore, to avoid the largest uncertainties, many previous

studies are limited to between ±60 ◦ latitude. , may have negatively impacted some model cloudiness analyses. There is a

need for a more realistic simulated cloud mask that better reflects the actual cloud detection ability of the CDR. We therefore

propose two other methods that are both based on validations of the CLARA-A2 CDR using collocated cloud retrievals from

CALIOP by Karlsson and Håkansson (2018).460

Method two uses two maps of cloud detection thresholds on a 300 km grid, one for day and one for night conditions.

These thresholds refer to the smallest cloud optical depth where there is a 50% success rate in detecting clouds. The main

improvement by this method is that in areas where the cloud retrievals are relatively straightforward, such as over mid-latitude

oceans, the cloud sensitivity is generally increased, i.e., a lower cloud optical threshold. Conversely, in areas and conditions

where cloud retrievals are notoriously difficult, a much higher optical depth threshold is suitable.465

Method three, the recommended approach to simulating the cloud mask, is based on the POD of clouds depending on their

τc. Instead of using a τc threshold to determine whether or not a model cloud would have been detected, with this approach, any

model cloud could potentially be detected or missed. Maps of POD valid for separate optical depth ranges (see Tab. 2) are used

together with a random number generated at run time for every model subcolumnsubgrid column to determine cloudiness.

These are also provided on a 300 km grid and separated by day and night. The main improvement of this method is that it470

indirectly takes into account that retrievals in some regions are more likely than others to miss thick clouds. This situation is

common in cold regions where thick clouds may be inseparable from cold snow-covered surfaces and also in regions with an

abundance of broken and small scale cumulus clouds such as the atmospheric subsidence regions over the ocean.

Compared to method one, methods two and three allow for analyses to be carried out at high latitudes and during nighttime

conditions. Although the largest improvements are at high latitudes, these new methods also account for the modestly improved475

cloud detection of CLARA-A2 over the global oceans compared to, especially, desert areas. Therefore, with these methods,

model studies may also be improved for regions outside the polar regions.
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This paper illustrates that these new approaches to cloud mask simulation bring the model and observations much closer to

each other compared to using a fixed optical depth threshold globally to filter out clouds. They allow for a more realistic model

to satellite comparison, and thus reduces the likelihood that incorrect conclusions from model assessments are reached simply480

due to cloud simulations not correctly representing the cloud retrievals of the CDR. Although methods two and three both

significantly improve cloud mask simulations, method three, using the POD approach, is better since it realistically mimics the

performance of the cloud mask of the CLARA-A2 CDR over the full range of cloud optical thicknesses.

The overall cloudiness in the Arctic during summer months from 1984–2014 is used to demonstrate the usefulness of

the simulator and the new approach to cloud mask simulation. The ISCCP-H CDR here complemented the comparison as a485

second independent satellite dataset. Therefore, EC-Earth was assessed using both the ISCCP and CLARA-A2 simulators and

compared to the CDRs they should simulate. This comparison shows that EC-Earth seems to produce too few clouds in and

around the Arctic compared to CLARA-A2. However, despite the ISCCP-H CDR having more clouds than CLARA-A2 in

the Arctic summer months, compared to ISCCP-H and using the ISCCP simulator, the assessment on EC-Earth cloudiness

would lead to quite the opposite conclusion in some regions in the Arctic. The simulated ISCCP cloudiness is substantially490

higher than the ISCCP observations. This overrepresentation of clouds is mostly due to the ISCCP simulator using a global

optical depth threshold that, in the Arctic is too generous. This example demonstrates the advantage of using the CLARA-A2

approach to cloud mask simulation compared to the traditional approach used by the ISCCP simulator and others. Although

only demonstrated in the Arctic summer in this paper, the POD approach, method 3, is also the most appropriate globally.

In terms of trends in overall cloudiness in the Arctic for all months with sunlit conditions from 1982–2015, the observations495

from CLARA-A2 show a sharp increase in cloudiness over the years, especially in the ocean areas north of western Russia, in

the spring months of April and May. In the summer and early autumn months, there is a large area of decreasing cloudiness

in the seas just north of Canada and Greenland. Although only based on one model run, and therefore clear statements about

cloud trends in the model cannot be made, one can deduce that the average cloudiness trends from the model are very similar

using any simulator method, or no simulator at all.500

In summary, the authors advocate an approach to cloud mask simulation based on the probability of detection of clouds

depending on their optical depth, location, and illumination. This study suggests that evaluations of climate model simulations

of cloudiness parameters would benefit substantially from using more advanced satellite simulators, which in a better way than

today, accounts for weaknesses and strengths of satellite retrievals.
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