We thank both reviewers for their positive comments and valuable suggestions on this work. We structure the point-by-point response as (1) the comments from referees in grey; (2) author’s responses in black and (3) author’s changes in manuscript, in which the line numbers refer to the marked-up manuscript attached below.

Response to Referee #1

Referee’s comment:
This study uses a data driven model, VPRM, to forecast biosphere CO2 fluxes in a few days (5 days) in the future. With the forecasting shortwave radiation and temperature from a meteorological model, and the processed MODIS NRT EVI and LSWI, they forecasted the biosphere CO2 fluxes over Europe in 2014 and try to assess both the “model uncertainty” and “forecast uncertainty”. They concluded that the forecasting error is less than the VPRM model error. The largest forecast error source comes from the meteorological data rather than MODIS inputs. The study is interesting and important for understanding the contribution of model uncertainty, especially the forecast uncertainty, for such data driven model. The research questions are clearly stated, and the figures are of excellent quality. However, some of the analysis seem to be not robust enough to support the conclusions. I have several major comments on this study:

Response: Thank you for your positive feedbacks and valuable suggestions. With the following response, we hope that we have addressed all the concerns in the major and minor comments.

Referee’s comment:
(1). In this study, the “model error” of VPRM is estimated as the difference between the estimation from control simulation with perfect inputs and observed NEE flux in this study. However, this “model error” not only includes the error introduced by the VPRM model (input data, model parameters, and model structure), but also the error caused by the inconsistency of EC tower footprints (100-2000m, Baldocchi et al. 2001) and the spatial resolution of their simulation (10 x 10 km). Thus, the estimated result of “model error” in this study and their statement that “the error of the forecasting system is less than the VPRM model error” could be misleading. The authors at least need to show the landscape homogeneity in the 10 x 10 km surrounding of each EC tower sites used in this study, or to show the uncertainty caused by the GPP simulation at different spatial resolutions to the tower derived GPP.

Response: Thank you for pointing this out. We agree that the statement might be misleading, due to the missing information in the manuscript. We would like to briefly clarify this issue here, and we revised the manuscript accordingly to improve its clarity.

In line 188-190 of the original manuscript, we mentioned that the evaluation and comparison was done at two spatial levels: at the flux observation site level and at the European domain level with 10 km x 10 km resolution. The evaluation at
the observation site level uses a VPRM-point model in which the same formula for GPP and R apply, yet, the model does not run with 10x10 km resolution grids. It uses site-measured meteorological variables and the site-labeled vegetation type as input to simulate NEE at the exact location of the EC tower.

Regarding the flux observation, we agree that the footprint would vary due to meteorological conditions, thus the measurement may represent NEE of different areas. Hollinger and Richardson (2005) attribute the random error in flux measurement to three reasons: The error associated with measurement system, the error associated with turbulent transport and the statistical error relating to footprint heterogeneity. They establish a method for flux measurement error estimation and analyze it on a half-hourly time scale. Chevallier et al. (2012) calculate the flux measurement uncertainty on a daily time scale based on hourly uncertainty estimation from Lasslop et al. (2008), and conclude that the daily uncertainty is small compared to the daily NEE magnitude. A similar approach is used in Broquet et al. (2013), where the uncertainty of daily flux measurement is ignored in observation-model comparison. Therefore in our study, all the comparisons are done at a daily timescale to minimize the flux measurement uncertainty.

Since the flux measurement uncertainty is small (according to the above discussion), we define the ‘model error’ as the mismatch between the flux measurement and the reference simulation. This ‘model error’ includes the error associated with misrepresentation of the vegetation processes, as well as the spatial representation error. The spatial representation error is also attributed as ‘model error’, because it is the model that is not capable enough to represent the flux over the (varied) footprint. The precise conclusion in the manuscript should be that ‘the error of the forecasting system is less than the VPRM model error when comparing at site level’.

When discussing the other level of comparison over the European domain, we agree that more spatial representation error is introduced by the spatial averaging of each variable. It is an important error component and has to be mentioned in the manuscript. However at this level of aggregation we did not compare directly between the model and the observation.

The consideration behind our ‘forecasting-control’ and ‘control-observation’ comparison is as follows: we aim to find a criterion to evaluate the ‘forecasting error’, and the ‘model error’ is chosen here as this criterion. With the conclusion that ‘the error of the forecasting system is less than the VPRM model error when comparing at site level’, we indicate that the error added by the forecasting system is small compared to the inherent error in VPRM itself. Similar to the model error, the spatial representation error is also inherent to the error in the VPRM simulation. Quantifying this error would be possible, but is beyond the scientific scope of the current study.

Changes in the manuscript:
We added a more detailed discussion in section 2.2 (line 195-228) about the errors in the model. We modified lines 229-240 to better describe the how we compare the ‘forecast error’ against the ‘model error’.

Referee’s comment:

(2). When accounting for the error attribution from the meteorological variables, air temperature and downward shortwave radiation, they simply listed one site as an example and concluded that “it is the errors in shortwave radiation that mainly contribute to the meteorological data” (Figure 4). It would be more convincing if they can have a figure to show the distribution of GPPbias due to the bias of shortwave radiation (SWbias) and respiration (Rbias) accounting for all the sites.

Response: Thank you for the suggestion. To better isolate the error caused by the forecast error in shortwave radiation, we added two further experiments, b.1 and b.2. In b.1 only the shortwave radiation uses the 5-day forecast, while all other variables are from the control simulation. b.2 is similar to b.1 but testing for the affect of temperature. The following figure shows the bias distribution of the two experiments, the vertical spread of bias in (a) is slightly larger than (b). The overall normalized MAE of using forecast SW only is 0.053 while the normalized MAE of using forecast temperature only is 0.042. Therefore, we reside the conclusion as follows: ‘Among the two variables from meteorological forecast, the error caused by the shortwave radiation is slightly larger than the error caused by temperature.’

![Bias distribution figures](image)

Changes in the manuscript:
We added the above figure as figure 4 in the manuscript and modified the corresponding discussion (line 318-326).

Referee’s comment:

(3). There are already some studies to assess the uncertainty of the VPRM, for example, Lin et al. 2011, what are the similar or different conclusions between this study and Lin’s? I suggest more discussion should be added in this paper.
Response: We mentioned the work of Lin et al. (2011) in line 104-106 in the original manuscript, but we agree that a more detailed discussion should be added since Lin’s work is very important for the methodology of error attribution and for understanding the uncertainty of the VPRM model. In brief, Lin et al. (2011) established a general framework to attribute error to different uncertainty sources (driving data, model parameters, observations and model misrepresentation). In their work the model’s sensitivity to each uncertainty sources is calculated. With an estimation of errors in each variable (input data, parameter etc.), one can then attribute the total error to those uncertainty sources by multiplying the error in the source with the model’s sensitivity.

Back to this study, our target is to investigate the feasibility of using such a data-driven model to predict near-future carbon fluxes. Given the uncertainties in meteorological forecasts, the near-real-time MODIS product, and all the necessary extrapolations, it was not clear if such a model could still predict realistic carbon fluxes. Furthermore it was unclear what impact different extrapolation techniques might have for the short-term forecast of the MODIS indices in such an application. This study focused on these questions in particular, and was able to quantify the uncertainty arising from each of these factors when using VPRM for the prediction of near-future carbon fluxes.

Changes in the manuscript: We have added the above discussion in the introduction (line 108-120).

Referee’s comment:
Minor comments: Line 30-31 Do you mean “carbon exchange between the surface and the atmosphere”?
Response: Has been corrected to ‘atmosphere’.

Referee’s comment:
Line 207 What are those experimental simulations a to f? You need to refer to “Table 2” here and describe those simulations.
Response: We have revised the sentence (line 254-255) to clarify this.

Referee’s comment:
Line 244-245 How do you calculate the “bias-GPP” and “bias-R”?
Response: The VPRM has output of GPP and R for each experiment. Here bias-GPP is the difference between the GPP from simulation b to GPP from the control simulation, normalized by the range of annual NEE at each site; while Bias-R is the difference between the respiration from simulation b to respiration from the control simulation, also normalized by the range of annual NEE at each site. They use the same normalization scalar so that they are additive and comparable to Bias_{NEE}:

\[Bias_{NEE} = Bias_{GPP} + Bias_R \]

\[Bias_{GPP} \] and \[Bias_R \] represent the fractional bias of photosynthetic and non-photosynthetic part in NEE.
Changes in manuscript: We have added the definition of Bias_{GPP} and Bias_{R} in section 2.2 (line 282-290) to improve the clarity.

Referee’s comment:
Line 275 “an” should be “a”
Response: Thank you, we have corrected the mistake.

Referee’s comment:
Page 17 The caption should appear above the table, and all the separators for “Latitude” and “Longitude” should be full stops rather than commas.
Response: We have corrected the tables.

Response to Referee #2

Referee’s comment:
The authors have analyzed the uncertainties on the vegetation photosynthesis and respiration model aimed for forecasting the 5 days biogenic CO2 uptake in conjunction with ECWMF weather forecast and MODIS satellite data. The comparison with eddy tower NEE flux at 31 sites over Europe is well organized and describes that meteorological data error has a largest contribution to producing error in NEE and no clear bias over land cover types. I really enjoyed much on reading this paper.
Response: Thank you for your positive feedback.

Referee’s comment:
Minor Comments: Page 4, Line 138-140: Generally, the respiration responds exponentially to temperature. But the authors use the liner function here. I guess that this would affect especially on the diurnal variation in respiration, though the error could be cancelled between daytime and nighttime.
Response: Yes, we agree that the temperature dependence of respiration is usually exponential, and a linear function would cause error in respiration estimation. Thus the capability of flux prediction for the VPRM model can potentially be improved. However in this study, we aim to test the current version of VPRM, a widely-used flux model in atmospheric CO2 simulation and inversion, for its capability to do flux forecasting. Therefore, we prefer and need to use the original version of the model from Mahadevan et al. (2008), so that other VPRM users can refer the results of this study.

Referee’s comment:
Also “vegetation respiration” should be “ecosystem respiration”.
Response: Thank you. We have replaced “vegetation respiration” with “ecosystem respiration”.

Referee’s comment:
Page 4, Line 145: Write the long name for “alpha”
Response: Done.

Referee’s comment:
Page 5, Line 179: I like to know the difference between analysis and forecast. Are analysis for past, and forecast for future, though both are anyway estimated by same ECWMF model?
Response: The ECMWF uses their numerical weather prediction model IFS model for weather forecasting. The ‘forecast’ in this study refers to the operational forecast archive of ECMWF, which is the archive of the pure output of the IFS model at the corresponding time. On the other hand, due to the nonlinear characteristics of the atmosphere, the error in weather forecasting significantly increases as the model predicts longer into the future. Therefore the operational center always needs to optimize or constrain the model with meteorological observations from all over the world. Such optimization or so-called data assimilation can reduce the accumulated error in weather prediction, and constrains the model state closer to the real atmosphere conditions. The term ‘analysis’ in meteorology refers to this optimized model output.
Changes in manuscript: We have added a more detailed description for each error source in section 2.2 (line 219-228).

Page 6, Line 215: “the other simulations”
Response: Thank you, we have corrected the mistake.

Page 6, Line 217: not “save”, but “same”
Response: Thank you, we have corrected the mistake.

Figure 4: Title of top panel y-axis should be “s”hortwave radiation.
Response: Thank you. As suggested by referee #1, we replace this figure to a new one that can better show the error contributions from shortwave radiation and temperature.

Tables 3: MAE table for which item? “NEE” Clarify it.
Response: Thank you, we have corrected the table.

References
Short-term forecasting of regional biospheric CO₂ fluxes in Europe using a light-use-efficiency model (VPRM, MPI-BGC version 1.2)

Jinxuan Chen¹, Christoph Gerbig¹, Julia Marshall¹, and Kai Uwe Totsche²

¹Department Biogeochemical Systems, Max Plank Institute for Biogeochemistry, Jena, 07745, Germany
²Friedrich Schiller University, Jena, 07743, Germany

Correspondence to: Jinxuan Chen (jichen@bgc-jena.mpg.de)

Abstract. Forecasting atmospheric CO₂ concentrations on synoptic time scales (~days) can benefit the planning of field campaigns by better predicting the location of important gradients. One aspect of this, accurately predicting the day-to-day variation in biospheric fluxes, poses a major challenge. This research study aims to investigate the feasibility of using a diagnostic light-use-efficiency model, the Vegetation Photosynthesis Respiration Model (VPRM), to forecast biospheric CO₂ fluxes on the time scale of a few days. As input the VPRM model requires downward shortwave radiation, 2 m temperature, and Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI), both of which are calculated from MODIS reflectance measurements. Flux forecasts were performed by extrapolating the model input into the future, i.e. using downward shortwave radiation and temperature from a numerical weather prediction (NWP) model, as well as extrapolating the MODIS indices to calculate future biospheric CO₂ fluxes with VPRM. A hindcast for biospheric CO₂ fluxes in Europe in 2014 has been done and compared to eddy covariance flux measurements to assess the uncertainty from different aspects of the forecasting system. In total the range-normalized mean absolute error (normalized) of the 5-day flux forecast at daily timescales is 7.1%, while the error for the model itself is 15.9%. The largest forecast error source comes from the meteorological data, in which error from shortwave radiation contributes slightly more than the error from air temperature fail to accurately predict cloud cover, leading to overestimated shortwave radiation in the model. The error contribution from all error sources is similar at each flux observation site, and is not significantly dependent on vegetation type.

1 Introduction

Human activities have significantly influenced the carbon cycle of the earth system since industrialization, with the accumulation of greenhouse gases in the atmosphere leading to radiative forcing and climate change (IPCC, 2014). The carbon exchange between the surface and the atmosphere still remains largely uncertain due to the complexity of processes and a lack of observations (Le Quéré et al., 2009). Therefore more measurements are needed, especially over emission hotspots and regions lacking observations. Field campaigns to measure greenhouse gases, such as research flights and measurements in remote areas, can fill the observation gap in the
troposphere and over regions not covered by existing networks, but they are often time-limited. To make the best use of these limited measurements, field campaigns require careful planning. An atmospheric CO\textsubscript{2} forecast on synoptic time scales (~days) can be helpful in such cases, for it provides an estimate of what signals are expected during the experiment and a physical explanation of the observations.

The research campaign CoMet (Carbon dioxide and Methane Mission), organized by the Deutsches Zentrum für Luft- und Raumfahrt (DLR), made a series of airborne and ground-based measurements of greenhouse gases in Europe. The campaign took place from May 15th to June 12th 2018, during which three–four aircraft participated, including the High Altitude and LOnge Range Research Aircraft (HALO) and three light aircraft. During the campaign, the HALO was equipped with an Integrated Path Differential Absorption (IPDA) Lidar (CHARM-F) (Amediek et al., 2017), and carried out nine flights with a total of 65 flight hours. Continuous online in situ CO\textsubscript{2}, CO, CH\textsubscript{4} and water vapor measurements were also made onboard with the Jena Instrument for Greenhouse gas measurements (JIG) and air samples were collected with the Jena Air Sampler (JAS). The campaign performed measurements over different surfaces from northern Europe to North Africa to assess and validate the new remote sensing instrument CHARM-F. Special attention was paid to two areas: Berlin (and nearby power plants) and the Upper Silesian basin, which are significant European point sources of CO\textsubscript{2} and CH\textsubscript{4} respectively. Ground-based and light aircraft measurements were also made in the two regions with the remote sensing instrument Methane Airborne Mapper (MAMAP) (Gerilowski et al., 2011) and portable ground-based Fourier Transform Infrared Spectrometers (FTIR) (Butz et al., 2017).

During the planning of the campaign, a CO\textsubscript{2} and CH\textsubscript{4} forecasting system was developed to support the mission; this paper focuses on the biogenic fluxes for the CO\textsubscript{2} component. The forecast provided 5 day CO\textsubscript{2} forecast fields at a fine spatial resolution (2 km x 2 km) within the observing area, and a coarser resolution over the European domain (10 km x 10 km). The forecast product is not only helpful in terms of planning observations, offering meteorology and GHG fields to capture CO\textsubscript{2}/CH\textsubscript{4} plumes, but can also provide a priori vertical information for the retrieval of remote sensing observations.

There are several existing models that can simulate atmospheric CO\textsubscript{2} on an appropriate scale, including Eulerian mesoscale models such as WRF-GHG (Beck et al., 2011; Pillai et al., 2016) and CHIMERE (Aulagnier et al., 2010). These models consist of an atmospheric tracer transport model coupled to fluxes representing the source and sink processes of CO\textsubscript{2}. By providing meteorological forecast fields and future fluxes of CO\textsubscript{2} to the model, the forecast CO\textsubscript{2} concentration fields can be obtained. The challenge of CO\textsubscript{2} forecasting comes with the provision of accurate CO\textsubscript{2} flux variations on sub-daily time scales. A global atmospheric CO\textsubscript{2} forecast system has been developed as part of the Monitoring of Atmospheric Composition and Climate – Interim Implementation (MACC-II) service (Agusti-Panareda et al., 2014; Agusti-Panareda et al., 2016). These studies have shown that although transport plays a first order role in synoptic CO\textsubscript{2} variability, the day-to-day variability of NEE also plays an important role. Therefore it is crucial for CO\textsubscript{2} forecasts to capture the day-to-day NEE variability in real-time, instead of using climatological values.

There are many models that can simulate biospheric CO\textsubscript{2} NEE on hourly time scales (Boussetta et al., 2013; Mahadevan et al., 2008). These models can be briefly grouped into two types: process-based
models and light-use-efficiency (LUE) models. Process-based models use meteorological data as input and simulate the physiological processes of vegetation, for example BIOME-BGC (Running and Hunt Jr, 1993), TEM (Zhuang et al., 2003) or the Carbon Exchange in the Vegetation-Soil-Atmosphere model (CEVSA) (Woodward et al., 1995). Such models usually need a number of parameters to describe the complex vegetation processes responding to meteorological drivers. The second type, LUE models, regard ecosystem gross primary production (GPP) as the product of photosynthetically active radiation (PAR), the fraction of photosynthetically active radiation absorbed by the photosynthetically active portion of the vegetation (FAPAR), and the radiation use efficiency (\(\varepsilon\)). Such models include the Vegetation Photosynthesis and Respiration Model (VPRM) (Xiao et al., 2004; Mahadevan et al., 2008), the MODIS Daily Photosynthesis Model (Running et al., 2000) and the Carnegie-Ames-Stanford Approach (CASA) (Potter et al., 1993).

The CO\(_2\) forecast in MACC-II uses the process-based model CTESSEL to compute biospheric CO\(_2\) fluxes and evapotranspiration online (Boussetta et al., 2013; Agusti-Panareda et al., 2016), which makes the two variables consistent in the forecast system. However the challenge of providing accurate CO\(_2\) fluxes is due to the complexity of vegetation processes and the lack of near-real-time (NRT) observations on vegetation state. Therefore, using a LUE model for CO\(_2\) flux forecasting, which is a data-driven approach having less parameters compared to process-based models, is a possible way to improve the quality of CO\(_2\) fluxes in forecasting. It should be note that unlike the Copernicus Atmosphere Monitoring Service (CAMS) CO\(_2\) forecasting which is operational and global, we target to build a regional CO\(_2\) forecast system and only operate the forecast within a shorter period (e.g. several months). Therefore the issue of CO\(_2\) budget conservation is less important comparing to a operational global forecast model.

In our case, we predict CO\(_2\) fluxes based on the LUE model VPRM, which is driven by the Enhanced Vegetation Index (EVI) and the Land Surface Water Index (LSWI) as well as the meteorological variables 2 m air temperature and downward shortwave radiation. The EVI and LSWI are derived from Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data, in which the MOD09A1N product provides NRT surface reflectance data, thus the NRT observations on vegetation state can be used in flux forecasting. VPRM has a strong predictive ability for NEE while maintaining simplicity in having only four parameters for each of the seven vegetation types, which makes it suitable for our case. The flux forecast is then made by predicting the input of VPRM, for which different prediction methods were tested.

The model VPRM is one of the commonly used surface flux models in atmospheric CO\(_2\) simulations and inversions (e.g. Ahmadov et al. (2007), Pillai et al. (2016), Wu et al. (2018)). The uncertainty of the flux model is an essential question in inverse modeling Lasslop et al. (2008), and the uncertainty of 3-hourly, monthly, as well as annually integrated NEE simulated by VPRM has been well assessed by Lin et al. (2011). They established a general framework to attribute error to different sources of uncertainty (driving data, model parameter, observation and model misrepresentation). In their work the model’s sensitivity to each source of uncertainty is calculated. With an estimation of errors in each variable (input data, parameter etc.), one can then attribute the total error to those uncertainty sources by multiplying the error in source with the model’s sensitivity.
Back to this study, our aim is to investigate the feasibility of using such a data-driven model to predict near-future carbon fluxes. Given the uncertainties in meteorological forecasts, the near-real-time MODIS product, and all the necessary extrapolations, it is not clear if such a model can still predict realistic carbon fluxes.

Although the uncertainties in VPRM have been well assessed by previous research (Lin et al., 2011), it is still unknown how does such LUE model perform regarding of flux forecasting in synoptic time scale.

This study describes the development and assessment of a biospheric CO₂ flux forecast based on the LUE model VPRM, with the goal of providing accurate hourly 5-day flux forecasts. By using a hindcast and comparing the results to flux tower sites across Europe the error in the prediction is evaluated quantified, and the predictive ability of the CO₂ flux forecasts is assessed.

2 Methodology

The CO₂ flux forecast consists of two steps as shown in Figure 1. Model inputs are first predicted 5 days into the future, then NEE is estimated based on the standard VPRM model, using parameters optimized in previous studies (Kountouris et al., 2018). Each input which must be forecast results in corresponding errors. We systematically evaluate the flux forecasting error associated with each of these predictands.

This section describes the framework of the VPRM forecasting model for biospheric CO₂ fluxes, as well as the method used to evaluate the error introduced by each element of the forecast.

For the meteorological input data, we use hourly ECMWF 5 day forecasts of temperature and short wave radiation. The EVI and LSWI indices are derived from MODIS surface reflectance data. These provide the indices for an average of the past eight days, and we forecast these indices for the next five days based on linear extrapolation or persistence. We then use these predicted input data to generate NEE using VPRM.

2.1 VPRM data processing

2.1.1 Standard processing for past periods

The flux estimation is based on VPRM, a light use efficiency (LUE) model that calculates GPP with remote sensing data and meteorological data as inputs. The equation of GPP estimation is as follow:

\[
GPP = \varepsilon \times FAPAR_{PAV} \times \frac{1}{1+PAR/PAR_0} \times PAR
\]

(1)

The light use efficiency \(\varepsilon \) can be decomposed as:

\[
\varepsilon = \lambda \times T_{scalar} \times W_{scalar} \times P_{scalar}
\]

(2)

Where \(T_{scalar} \), \(W_{scalar} \) and \(P_{scalar} \) represent the temperature sensitivity of photosynthesis, the water stress effect, and the effects of leaf age on canopy photosynthesis, respectively, while \(\lambda \) is an adjustable parameter in the model. Among them, \(T_{scalar} \) is estimated from air temperature, and \(W_{scalar} \) and \(P_{scalar} \) are estimated from LSWI. See details in Mahadevan et al. 2008. The \(FAPAR_{PAV} \) in the model is estimated as a linear function of EVI, and PAR is closely correlated with downward shortwave radiation. Therefore the complete expression for GPP in VPRM is:
\[\text{GPP} = (\lambda \times T_{\text{scalar}} \times W_{\text{scalar}} \times P_{\text{scalar}}) \times \text{EVI} \times \frac{1}{P_{\text{PAR}_0}} \times \text{PAR} \]

(3)

While the vegetation-ecosystem respiration (R) is estimated by a simple linear model:

\[R = \alpha \times T_{\text{air}} + \beta \]

(4)

Where \(T_{\text{air}} \) is the air temperature and \(\alpha \) and \(\beta \) are vegetation-class-specific parameters.

The input of VPRM can be categorized into two groups: remote sensing data and meteorological data. The remote sensing data consist of EVI and LSWI at 10 km spatial resolution (the same resolution as the atmospheric transport model), where the EVI and LSWI are aggregated from MODIS surface reflectance 8-day L3 Global 500m (MOD09A1) version 6 data. It should be noted that in the forecasting model, the MODIS NRT surface reflectance data (MOD09A1N) would be used. A locally weighted least squares (LOESS) filter (\(\alpha_{\text{alpha}} = 0.17 \)) is then applied to reduce the noise. The vegetation classification map that is used (SYNMAP) (Jung et al., 2006) is also a product originally derived from remote sensing. The meteorological data include air temperature at 2m and downward shortwave radiation at the surface, which are obtained from a numerical weather prediction (NWP) model product, in our case the operational forecast archive from the European Centre for Medium-Range Weather Forecasts (ECMWF). In VPRM, there are four parameters (\(\lambda, P_{\text{PAR}_0}, \alpha, \beta \)) for each vegetation type. Model calibration for these parameters has been done using flux measurements in Europe in 2007 (Kountouris et al., 2018).

2.1.2 Processing for flux prediction

To use this diagnostic model in a predictive mode, we need to forecast all VPRM input variables five days into the future. Remote sensing data and meteorological data are predicted in different ways.

For the meteorological data, forecasts from a numerical weather prediction (NWP) model are needed. In this study, in order to assess the errors brought in by the meteorological forecasting, 5-day forecasts of 2-m temperature and downward shortwave radiation at the surface for each day of the year were used. The meteorological forecast is from the ECMWF operational forecast archive, with class “od” and type “fc”.

As for the remote sensing data, three sources of error had to be considered: the error induced by using the NRT version of the MODIS reflectances rather than the final product, the error of estimating the value of the indices into the future, and the effect of the LOESS filter on the end value of the dataset.

We begin by describing the LOESS filter. This filter is usually applied to a full year of data, and when smoothing a truncated dataset there is an edge effect, meaning that when new data are added to the time series and the smoothing is repeated, the output at the former edge point will change slightly. In the following section we define the error caused by such an edge effect as “error due to data truncation”.

Following the filtering, the smoothed data are extrapolated five days into the future, either by linear extrapolation or by assuming persistence. The optimal extrapolation method was selected after testing the error contribution of each method.

The last error source comes from the difference between MODIS NRT and the standard product. The standard product is processed with the best available ancillary, calibration, and geolocation information while changes have been made in the NRT processing to expedite the data availability (See
2.2 Uncertainty analysis

There are uncertainties in the model, in the forecast data as well as in the eddy covariance measurement, and each of these uncertainties has different impact on the final product of the flux forecast. Therefore before getting into the error quantification and model evaluation, we will briefly discuss their roles in this study.

The uncertainty in the flux measurement has to be considered before being used as the ‘truth’ in the model-data comparison. The uncertainty of flux measurement from eddy covariance tower and its impact on modeling has been well investigated by previous studies. Hollinger and Richardson (2005) attribute the random error in flux measurement to three reasons: The error associated with measurement system, the error associated with turbulence transport and the statistical error relating to footprint heterogeneity. They establish the method for flux measurement error estimation and analyze it on half-hourly time scale. Chevallier et al. (2012) calculate the flux measurement uncertainty on daily time scale based on hourly uncertainty estimation from (Lasslop et al., 2008), and conclude that the daily uncertainty is small comparing to the daily NEE magnitude. A similar approach is used in Broquet et al. (2013), where the uncertainty of daily flux measurement is ignored in observation-model comparison. Therefore in this study, where all comparisons are concerned with daily time scales, uncertainty from flux measurements can be neglected.

Estimating carbon fluxes with the data-driven model VPRM will result in additional uncertainties. These uncertainties are associated with uncertainties in the driving data, the misrepresentation of the LUE approach for vegetation processes, as well as the spatial representation. We treat these uncertainties as an inherent part of the model, since they will exist despite whatever ‘good’ data we are using to drive the model. We define these uncertainties as the VPRM ‘model error’, which can be quantified by comparing the flux estimation with best driving data available for VPRM to the flux measurement. This ‘model error’, as an inherent error in VPRM, is then chosen as a criterion for the evaluation of the forecasting result.

Lastly the error added by the flux forecasting need to be considered. As described in 2.1.2, the flux forecast is made by predicting the driving data. Such prediction has different impact on different variables, thus introducing different uncertainties. For meteorological data, they are from the Integrated Forecasting System (IFS) model of ECMWF, which will contain model error and representation error as any NWP model (Simmons et al., 1995; Simmons and Hollingsworth, 2002). Furthermore, the model error accumulates in weather forecasting, which means the further we predict into the future, the larger the error will be. As for the MODIS data, the use of NRT data and the extrapolation we apply will surely introduce uncertainties. In addition, VPRM applies LOESS filter in the MODIS data processing to reduce noise, which means the data are constrained by the neighboring information. However, when forecasting, the data can only be constrained by the past, leading to another potential error source.

Altogether, the potential error sources of this flux forecasting system are as follows: (1) the VPRM ‘model error’ itself, (2) using analyzed meteorological model data rather than site-level meteorological
data, (3) using ECMWF 5-day forecast meteorology, which accumulates extra error to its initial field, (4) using NRT MODIS data, (5) using LOESS filtering to smooth the MODIS data, and (6) the prediction of MODIS data. The eError (6) contains two parts: (6a) EVI prediction and (6b) LSWI prediction. In the following discussion we use the numbering (1) to (6) to denote these error sources.

The ‘model error’ (1) defined above is regarded as a criterion for the forecast evaluation. We define (1) as the “model error”. We define (2) to (6) as the “forecast errors”, since they are introduced by the flux forecasting. The model error has been well described in previous research, and in general VPRM shows a good predictive ability (Mahadevan et al., 2008). In this study, we aim to quantify the forecast error, and the error contribution from each of the error sources, then evaluate the sum of forecast errors against the ‘model error’.

In order to evaluate quantify both the model error and the forecast error, a hindcast using the CO$_2$ flux forecast model has been done for the year 2014 for Europe. The evaluation and comparison was done at two spatial levels: at the flux observation site level, and at the European domain level (1/8° longitude × 1/12° latitude). The comparison at site level aims to evaluate both the model error and the forecast error at locations with different vegetation types, while over the European domain, the aim is to investigate the spatial pattern of each forecast error term.

The surface CO$_2$ flux observation data comes from eddy covariance tower measurements from the FLUXNET2015 tier one (open data) dataset (Baldocchi et al., 2001). Thirty-three European observation sites for which both MODIS data and flux measurements for 2014 are available were selected for data-model comparison. The selected sites’ ID, location, vegetation type, and their data DOI are listed in table 1.

To test the error contribution of the model and the 5 day flux forecast, the following experiments using the VPRM forecast model were carried out to evaluate the error contribution from different sources separately, as shown in Table 2. A control simulation and six experimental simulations (simulations a to f) were conducted. Although the CO$_2$ flux forecast targets hourly flux prediction for the next 5 days, model error and forecast error were analyzed on a daily time scale, as this scale is more relevant for synoptic CO$_2$ variability in the atmosphere.

The control simulation uses standard VPRM as a reference model with “perfect” input, meaning the MODIS EVI and LSWI standard products as well as shortwave radiation and temperature observed at the flux site. By comparing the modeled NEE to flux measurements, we can estimate the VPRM model error (1).

The experimental simulations a to f then included the error sources (2) to (6) in the VPRM model input data separately, and these are compared to the reference simulation in order to isolate these individual error contributions. The experiments aim to estimate the upper limit of forecast error, therefore in simulations b and f, 96 h to 120 h meteorological forecasts, i.e. the last day (5th) of a 5-day forecast, were used for each day of the year. For simulations d and f, since the MODIS EVI and LSWI products has an 8-day period, MODIS data were first linearly interpolated to a daily scale. Then for each day of the year, MODIS data on the nth day were predicted from data on the n-5th day.

There is a challenge in simulation e in that there are no archived NRT data for 2014, thus it is impossible to have a comparison on the same basis with the other simulations. Instead we look into
The model’s sensitivity of NEE to EVI and LSWI bias, and also compare the NRT EVI and LSWI, which we archived from February to June in 2018 for 120 days, to the standard MODIS product over the same period. In this way we were able to estimate the magnitude of the NRT indices’ error and its impact on the model’s output NEE.

In order to make the 33 different site results comparable, the simulation output NEE was first aggregated to daily averages, and then normalized by the range (i.e. the difference between maximum and minimum) of annual NEE at each site. The bias_{NEE} represents a fractional bias compared to the range of annual variation. (For example a normalized bias_{NEE} of 0.1 means that the magnitude of the bias equals 10% of the annual variation.) Similar to bias_{NEE}, bias_{GPP} and bias_{R} are also calculated as a measure for error in simulated GPP and R. bias_{GPP} (or bias_{R}) is the difference of GPP (or R) in experimental and reference simulation, normalized by the annual range of observed NEE at each site (note that the sign of GPP is reversed). bias_{GPP} and bias_{R} use the same normalization scalar so that they are additive and comparable to bias_{NEE}. Based on these definitions, we have:

$$\text{Bias}_{\text{NEE}} = \text{Bias}_{\text{GPP}} + \text{Bias}_{\text{R}}$$

Thus the metrics Bias_{GPP} and Bias_{R} represent the fractional bias of photosynthetic and non-photosynthetic part in NEE. The mean of the absolute bias_{NEE} will be the mean absolute error (MAE), which is also used as a measure for error in this research. An example of such normalization is shown for the station BE-Bra in Figure 2.

3 Results and Discussion

3.1 Error attribution on site level

By comparing the NEE output from each experimental simulation, the impact of each error source on flux forecasting can be isolated and evaluated. The normalized mean absolute error (MAE) of NEE at all 33 sites is presented in Table 3. The MAE of the total forecast error is 0.071, which is smaller than the VPRM model error of 0.159. This indicates that the forecast model is reasonably capable of predicting fluxes on diurnal time scales.

3.1.1 Meteorological error

Among all forecast errors, the meteorological error accounts for the largest contribution. The meteorological error can be decomposed into (2) analysis error and (3) meteorological forecast error. The former corresponds to using meteorological analysis rather than observational data, while the latter comes from the numerical meteorological forecasting, and can be estimated by comparing simulations b and a. The analysis error and meteorological forecast error are of the same order of magnitude, namely 0.046 and 0.065 respectively.

The meteorological error is then analyzed further by dividing it into the photosynthetic part (bias_{NEE})...
For MODIS data extrapolation, future MODIS data is filtered. This error source is evaluated to reduce the noise. LOESS performs a local regression on the time series, because the point at the end of the time series lacks a constraint from future data, it results in an error when the data are truncated. This error source is evaluated in simulation c, where for each 8 day value, only data before this time are filtered. Thus the only difference between simulation c and the reference simulation is whether each MODIS-derived index is constrained by all local data or only constrained by preceding data. Comparing simulation c and the reference simulation finds that the error due to lack of constraint from future MODIS data introduces an MAE of 0.015.

For MODIS data extrapolation, different methods were tested in an attempt to minimize forecast error.
Climatological values of EVI and LSWI were considered, but they lack the advantage of a data-driven approach for realistic estimation. After testing various alternatives, two simple methods were considered: linear extrapolation based on the last three data points and persistence (assuming the indices stay the same for the next five days). Figure 5 shows the NEE bias distribution by using linear extrapolation or persistence to predict EVI and LSWI. For both indices, the assumption of persistence results in a smaller error. The biases for the two extrapolation methods have similar distributions, but there are more outliers for linear extrapolation. This is due to the fact that linear extrapolation results in larger errors when the data are fluctuating.

Finally, the difference between using MODIS NRT data and standard data has to be considered. This includes the effect of using different attitude and ephemeris data in processing, as well as using different ancillary data products for the Level 2 processing. For L2 Land Surface Reflectance data, National Oceanic and Atmospheric Administration Global Forecast System (GFS) ancillary product are used instead of the Global Data Assimilation System (GDAS) products used in the standard processing (This is described at NASA’s Land, Atmosphere Near real-time Capability for EOS (LANCE) website https://earthdata.nasa.gov/earth-observation-data/near-real-time/near-real-time-versus-standard-products).

This presented a challenge, as no MODIS NRT data were archived for the test year 2014. Thus it was impossible to carry out a similar error evaluation as was done for other error sources. Therefore we first use NRT EVI and LSWI that we archived for 120 days from February to June 2018 to calculate the MAE of the two indices to standard products at all flux sites. The MAE of NRT EVI and LSWI for all sites are 0.018 and 0.026 respectively. Considering the mean EVI and LSWI, which are 0.21 and 0.11 during this period, the magnitude of NRT EVI error is less than 10% of EVI’s magnitude while the number is 24% for the magnitude of NRT LSWI error.

The impact of the errors in these NRT indices on the model is determined by the model’s sensitivity to EVI and LSWI. To investigate this sensitivity, we use the result from simulation d and the reference simulation, and look into at the difference in input EVI and LSWI, and the corresponding difference in output NEE. The model’s sensitivity is different during the growing and the non-growing seasons, as in the non-growing season there would be no vegetation production anyway from a slight change of EVI and LSWI.

Therefore the model sensitivity is analyzed for each season separately, as shown in table 4. Difference in indices and the corresponding difference in daily NEE are applied with linear regression, and the rate of the linear function is regarded as model sensitivity. The maximum sensitivity for both EVI and LSWI both is in summer, with -9.11 [µmol m² s⁻¹ EVI⁻¹] and -6.29 [µmol m² s⁻¹ LSWI⁻¹] respectively. By assuming that the 120 days of archived NRT data is representative for MODIS NRT error, we can estimate the upper limit of forecasting error (4), as it is shown in Figure 6. The normalized NEE error in figure 6 is calculated by using MODIS NRT error times the model sensitivity, and then normalized by the same scalar used in previous analysis at each site. Therefore the error here is comparable to the MAE in table 3 if we assume the MODIS NRT data in the year 2014 and 2018 have similar error structure. The NEE error for all sites due to NRT-EVI and NRT-LSWI are 0.024 and 0.025 respectively, which is still small less important compared to the meteorology error in table 3.
3.1.3 VPRM model error

Unlike the forecast error discussed above, the $B_{bias,NEE}$ of (1) model error (reference model minus observation) distribution of the VPRM model error is asymmetric, as shown in Figure 7. The model bias shows a negative correlation, which means a weaker uptake during the growing season and a weaker respiration during the non-growing season. Data with negative normalized NEE also correspond to a larger bias, which refers to larger model uncertainty during the growing season. The MAE of the model error is 0.166.

3.1.4 Errors at each flux observation site

The MAE is also calculated at each flux measurement site and clustered according to vegetation types, shown in Figure 8. Generally the VPRM model error (grey) is larger or similar to the forecast error (blue), consistent with Table 3. Moreover the forecast error does not differ significantly over different vegetation types. Figure 9 shows the error contribution from each source, the meteorological error (error 2) in dark blue and error (3) in light blue are the dominant contributor, and has a similar contribution for different vegetation types. The data truncation error (4) has a stronger influence on some grass sites, because EVI at these sites is highly variable, possibly due to mowing and re-growing during the growing season. Overall, except for the data truncation error, all forecast error sources have a similar impact on each flux observation site. This shows that the forecast ability does not vary over different vegetation types.

3.2 Spatial pattern of forecast error

The forecast errors are also tested on the European domain from March to June (the season over which the CoMet campaign took place) in 2014, to analyze its spatial patterns. Three experiments have been done to represent the meteorological error (including analysis error and meteorological forecast error), the MODIS error (including extrapolation error and data truncation error) and the total forecast error (a combination of meteorological error and MODIS error). Figure 10 shows the mean VPRM NEE during the period and the corresponding spatial distribution of each error (in MAE). By comparing Figures 10(a) and 10(b), it can be seen that the MAE of the total forecast error has a strong spatial relationship with the mean NEE, which indicates that the forecast error has a similar impact in all places. On a spatial level, the meteorological component still dominates compared to the MODIS error.

In the context of atmospheric CO₂ forecasting, the forecast CO₂ concentrations that are influenced by fluxes from larger MAE areas (northern France, Germany and the Balkans) may have a larger bias due to poorer flux prediction in these areas. The flux budget over the European domain was also calculated and is shown in Figure 11. The carbon budget of the flux forecast model (in dark blue) is close to the original VPRM model (in grey), thus we are able to confidently use this flux forecast model in the atmospheric GHG concentration forecasting system and predict reasonable CO₂ concentrations on synoptic time scales.

As mentioned in the introduction, we are aiming for not only a flux forecast, but finally an atmospheric GHG concentration forecasting system. While this study has quantified how each error source affects
the predicted biospheric fluxes, the next step is to use such predicted fluxes in an atmospheric transport model run in forecast mode, and to assess the prediction error from each source in concentration space.

4 Conclusions

Based on the VPRM model, we developed a forecasting model that can predict biospheric NEE for the next five days, and assess the error contribution from each aspect of forecasting. This CO₂ flux forecast model is a crucial component in an atmospheric CO₂ forecasting system, in which hourly to day-to-day CO₂ flux variability plays an important role. The forecast model inputs are MODIS near-real-time EVI and LSWI, as well as shortwave radiation and temperature from a meteorological forecast model. The error attribution shows that the dominant error is related to the meteorological data. We further attribute this error to the uncertainties in forecast shortwave radiation and temperature, and found that the forecast shortwave radiation contributes slightly more to the meteorological error, due to poor prediction of clouds and thus an overestimation of shortwave radiation in the meteorological model. Error from MODIS inputs are less important, and using a persistence assumption to predict MODIS indices resulted in smaller errors than a linear extrapolation. Overall the forecasting system error has a MAE of 0.071, which makes the model capable of forecasting CO₂ fluxes on the target time scale. The error contribution is insensitive to vegetation type and consistent over the whole EU domain. The error of the forecasting system is less than the VPRM model error at flux observation site level, which means that the system performs sufficiently well for its predictive task. From the spatial distribution of the error, the absolute flux errors are larger in northern France, Germany and the Balkans, which will lead to larger bias in atmospheric CO₂ forecasting system. The assessment of these (and other) errors in concentration space, using measurements from the CoMet mission as reference data, is foreseen as a follow-up study.

Code and data availability. The code for forecast VPRM model and the model outputs are available from http://dx.doi.org/10.17617/3.2d. The code used for model assessment and figure plotting in this paper is also included in the same repository. The flux measurement data can be acquired from FLUXNET2015 database (see DOI in table 1). The MODIS indices—reflectance data can be acquired from NASA’s Earth Science Data Systems (https://earthdata.nasa.gov/). The ECMWF meteorology data can be retrieved using ECMWF’s Meteorological Archival and Retrieval System (MARS, https://confluence.ecmwf.int/display/UDOC/MARS+user+documentation).

Author contribution. The experiments were planned by C. Gerbig, J. Marshall, K.U. Totsche and J. Chen. C. Gerbig prepared the standard VPRM model. J. Chen made the forecast model and performed the model simulation and assessment. J. Marshall extensively commented and revised the manuscript. J. Chen prepared the manuscript with contribution from all co-authors.

Competing interests. The authors declare no competing interests.
Acknowledgements. We acknowledge funding for the CoMet campaign by MPG (Max Planck society) and by BMBF (German Federal Ministry of Education and Research) through AIRSPACE (FK01LK1701C), and the PhD project funding from the International Max Planck Research School for Global Biogeochemical Cycles (IMPRS-gBGC). We acknowledge the use of data products from the Land, Atmosphere Near real-time Capability for EOS (LANCE) system operated by NASA’s Earth Science Data and Information System (ESDIS) with funding provided by NASA Headquarters. We acknowledge ECMWF for providing access to the ECMWF’s archived data. This work used eddy covariance data acquired and shared by the FLUXNET community, including these networks: AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux-TERN, TCOS-Siberia, and USCCC. The ERA-Interim reanalysis data are provided by ECMWF and processed by LSCE. The FLUXNET eddy covariance data processing and harmonization was carried out by the European Fluxes Database Cluster, AmeriFlux Management Project, and Fluxdata project of FLUXNET, with the support of CDIAC and ICOS Ecosystem Thematic Center, and the OzFlux, ChinaFlux and AsiaFlux offices.

References

Aulagnier, C., Rayner, P., Ciais, P., Vautard, R., Rivier, L., and Ramonet, M.: Is the recent build-up of atmospheric CO2 over Europe reproduced by models. Part 2:
an overview with the atmospheric mesoscale transport model CHIMERE, Tellus
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P.,
Bernhofer, C., Davis, K., and Evans, R.: FLUXNET: A new tool to study the
temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor,
and energy flux densities, Bulletin of the American Meteorological Society, 82,
Beck, V., Koch, T., Kretschmer, R., Marshall, J., Ahmadov, R., Gerbig, C., Pillai, D.,
No. 25, Max Planck Institute for Biogeochemistry, Jena, Germany, available at:
Bernhofer, C., Grünwald, T., Moderow, U., Hehn, M., Eichelmann, U., and Prasse,
H.: FLUXNET2015 DE-Spw Spreewald, 10.18140/FLX/1440220,
Bernhofer, C., Grünwald, T., Moderow, U., Hehn, M., Eichelmann, U., and Prasse,
H.: FLUXNET2015 DE-Obe Oberbärenburg, 10.18140/FLX/1440151
Bernhofer, C., Grünwald, T., Moderow, U., Hehn, M., Eichelmann, U., and Prasse,
H.: FLUXNET2015 DE-Akm Anklam, 10.18140/FLX/1440213
Boussetta, S., Balsamo, G., Beljaars, A., Panareda, A. A., Calvet, J. C., Jacobs, C.,
vanden Hurk, B., Viterbo, P., Lafont, S., Dutra, E., Jarlan, L., Balzarolo, M., Papale, D.,
and van der Werf, G.: Natural land carbon dioxide exchanges in the ECMWF
integrated forecasting system: Implementation and offline validation, J Geophys
Broquet, G., Chevallier, F., Bréon, F.-M., Kadygrov, N., Alemanno, M., Apadula, F.,
Hammer, S., Haszpra, L., Meinhardt, F., and Morguí, J.: Regional inversion of CO2
ecosystem fluxes from atmospheric measurements: reliability of the uncertainty
estimates, 2013.
Butz, A., Dinger, A. S., Bobrowski, N., Kostinek, J., Fieber, L., Fischerkeller, C.,
CO2, HF, HCl, SO2, and BrO in the downwind plume of Mt. Etna, Atmos Meas
Chevallier, F., Wang, T., Ciais, P., Maignan, F., Bocquet, M., Altaf Arain, M., Cescatti,
tell us about prior land flux errors in CO2 - flux inversion schemes, Global
Biogeochem Cy, 26, 2012.
Delpierre, N., Berveiller, D., Granda, E., and Dufrêne, E.: Wood phenology, not
carbon input, controls the interannual variability of wood growth in a temperate
Dietiker, D., Buchmann, N., and Eugster, W.: Testing the ability of the DNDC
model to predict CO2 and water vapour fluxes of a Swiss cropland site,
Agriculture, ecosystems & environment, 139, 396-401, 2010.
affects gross ecosystem production and gross radiation use efficiency in a sedge-
Etzold, S., Ruehr, N. K., Zweifel, R., Dobbertin, M., Zingg, A., Pluess, P., Häslter, R.,
Eugster, W., and Buchmann, N.: The carbon balance of two contrasting mountain
forest ecosystems in Switzerland: similar annual trends, but seasonal differences,
Ecosystems, 14, 1289-1309, 2011.
Fares, S., Savi, F., Muller, J., Matteucci, G., and Paoletti, E.: Simultaneous
measurements of above and below canopy ozone fluxes help partitioning ozone
deposition between its various sinks in a Mediterranean Oak Forest, Agricultural and forest meteorology, 198, 181-191, 2014.
Imer, D., Merbold, L., Eugster, W., and Buchmann, N.: Temporal and spatial variations of soil CO 2, CH 4 and N 2 O fluxes at three differently managed grasslands, Biogeosciences, 10, 5931-5945, 2013.
Janssens, I., Segers, J., Roland, M., and Arriga, N.: FLUXNET2015 BE-Bra Brasschaat, 10.18140/FLX/1440128

Zielis, S., Eztold, S., Zweifel, R., Eugster, W., Haeni, M., and Buchmann, N.: NEP of a Swiss subalpine forest is significantly driven not only by current but also by previous year's weather, Biogeosciences, 11, 1627-1635, 2014.
Figure 1: Diagram of the VPRM forecasting system. The top two levels show the drivers which are predicted into the future, while the bottom three boxes are based on the standard VPRM model (Mahadevan et al., 2008).

\[GPP = (\lambda T_{\text{scalar}} \times W_{\text{scalar}} \times P_{\text{scalar}}) \times FAPAR_{\text{PAR}} \times \frac{1}{1 + \frac{P_{\text{PAR}}}{P_{\text{PAR}}}} \times \text{PAR} \]

Respiration = \(\alpha T_{\text{air}} + \beta \)

\[NEE = -GPP + R \]
Table 1: The selected FLUXNET2015 sites used for data-model comparison in this research.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Vegetation types in VPRM</th>
<th>Data DOI</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE-Bra</td>
<td>51.3092</td>
<td>4.5206</td>
<td>Mixfirst</td>
<td>10.18140/FLX/1440128</td>
<td>(Janssens et al.)</td>
</tr>
<tr>
<td>BE-Lon</td>
<td>50.5516</td>
<td>4.7461</td>
<td>Crop</td>
<td>10.18140/FLX/1440129</td>
<td>(Moureaux et al., 2006)</td>
</tr>
<tr>
<td>BE-Vic</td>
<td>50.3051</td>
<td>5.9981</td>
<td>Mixfirst</td>
<td>10.18140/FLX/1440130</td>
<td>(Aubinet et al., 2001)</td>
</tr>
<tr>
<td>CH-Cha</td>
<td>47.2102</td>
<td>8.4104</td>
<td>Grass</td>
<td>10.18140/FLX/1440131</td>
<td>(Merbold et al., 2014)</td>
</tr>
<tr>
<td>CH-Dav</td>
<td>46.8153</td>
<td>9.8559</td>
<td>Evergreen</td>
<td>10.18140/FLX/1440132</td>
<td>(Zielis et al., 2014)</td>
</tr>
<tr>
<td>CH-Fru</td>
<td>47.1158</td>
<td>8.5378</td>
<td>Grass</td>
<td>10.18140/FLX/1440133</td>
<td>(Imer et al., 2013)</td>
</tr>
<tr>
<td>CH-Lae</td>
<td>47.4781</td>
<td>8.365</td>
<td>Mixfirst</td>
<td>10.18140/FLX/1440134</td>
<td>(Etzold et al., 2011)</td>
</tr>
<tr>
<td>CH-Oe2</td>
<td>47.2863</td>
<td>7.7343</td>
<td>Crop</td>
<td>10.18140/FLX/1440136</td>
<td>(Dietiker et al., 2010)</td>
</tr>
<tr>
<td>CZ-wet</td>
<td>49.0247</td>
<td>14.7704</td>
<td>Grass</td>
<td>10.18140/FLX/1440145</td>
<td>(Dušek et al., 2012)</td>
</tr>
<tr>
<td>DE-Akm</td>
<td>53.8662</td>
<td>13.6834</td>
<td>Grass</td>
<td>10.18140/FLX/1440213</td>
<td>(Bernhofer et al.)</td>
</tr>
<tr>
<td>DE-Gri</td>
<td>50.9495</td>
<td>13.5125</td>
<td>Grass</td>
<td>10.18140/FLX/1440147</td>
<td>(Prescher et al., 2010)</td>
</tr>
<tr>
<td>DE-Kli</td>
<td>50.8929</td>
<td>13.5225</td>
<td>Crop</td>
<td>10.18140/FLX/1440149</td>
<td>(Prescher et al., 2010)</td>
</tr>
<tr>
<td>DE-Obe</td>
<td>50.7836</td>
<td>13.7196</td>
<td>Evergreen</td>
<td>10.18140/FLX/1440151</td>
<td>(Bernhofer et al.)</td>
</tr>
<tr>
<td>DE-RuR</td>
<td>50.6219</td>
<td>6.3041</td>
<td>Grass</td>
<td>10.18140/FLX/1440215</td>
<td>(Post et al., 2015)</td>
</tr>
<tr>
<td>DE-RuS</td>
<td>50.8659</td>
<td>6.4472</td>
<td>Crop</td>
<td>10.18140/FLX/1440216</td>
<td>(Mauder et al., 2013)</td>
</tr>
<tr>
<td>DE-SN</td>
<td>47.8064</td>
<td>11.3275</td>
<td>Grass</td>
<td>10.18140/FLX/1440219</td>
<td>(Hömmeltenberg et al., 2014)</td>
</tr>
<tr>
<td>DE-Spv</td>
<td>51.8923</td>
<td>14.0337</td>
<td>Grass</td>
<td>10.18140/FLX/1440220</td>
<td>(Bernhofer et al.)</td>
</tr>
<tr>
<td>DE-Tha</td>
<td>50.9636</td>
<td>13.5669</td>
<td>Evergreen</td>
<td>10.18140/FLX/1440152</td>
<td>(GrüNwald and Bernhofer, 2007)</td>
</tr>
<tr>
<td>DK-Sor</td>
<td>55.4859</td>
<td>11.6446</td>
<td>Decid</td>
<td>10.18140/FLX/1440155</td>
<td>(Pilegaard et al., 2011)</td>
</tr>
<tr>
<td>FI-Hyy</td>
<td>61.8475</td>
<td>24.295</td>
<td>Evergreen</td>
<td>10.18140/FLX/1440158</td>
<td>(Suni et al., 2003)</td>
</tr>
<tr>
<td>FI-Sod</td>
<td>67.3619</td>
<td>26.6378</td>
<td>Evergreen</td>
<td>10.18140/FLX/1440160</td>
<td>(Thum et al., 2007)</td>
</tr>
<tr>
<td>FR-Fon</td>
<td>48.4764</td>
<td>2.7801</td>
<td>Decid</td>
<td>10.18140/FLX/1440161</td>
<td>(Delpierre et al., 2016)</td>
</tr>
<tr>
<td>FR-Pue</td>
<td>43.7414</td>
<td>3.5958</td>
<td>Evergreen</td>
<td>10.18140/FLX/1440164</td>
<td>(Rambal et al., 2004)</td>
</tr>
<tr>
<td>IT-BCi</td>
<td>40.5238</td>
<td>14.9574</td>
<td>Crop</td>
<td>10.18140/FLX/1440166</td>
<td>(Vitalé et al., 2016)</td>
</tr>
<tr>
<td>IT-CA1</td>
<td>42.3804</td>
<td>12.0266</td>
<td>Decid</td>
<td>10.18140/FLX/1440230</td>
<td>(Sabbatini et al., 2016)</td>
</tr>
<tr>
<td>IT-CA2</td>
<td>42.3772</td>
<td>12.026</td>
<td>Crop</td>
<td>10.18140/FLX/1440231</td>
<td>(Sabbatini et al., 2016)</td>
</tr>
<tr>
<td>IT-CA3</td>
<td>42.38</td>
<td>12.0222</td>
<td>Decid</td>
<td>10.18140/FLX/1440232</td>
<td>(Sabbatini et al., 2016)</td>
</tr>
<tr>
<td>IT-Col</td>
<td>41.8494</td>
<td>13.5881</td>
<td>Decid</td>
<td>10.18140/FLX/1440167</td>
<td>(Valentini et al., 1996)</td>
</tr>
<tr>
<td>IT-Cp2</td>
<td>41.7043</td>
<td>12.3573</td>
<td>Evergreen</td>
<td>10.18140/FLX/1440233</td>
<td>(Fares et al., 2014)</td>
</tr>
<tr>
<td>IT-Isp</td>
<td>45.8126</td>
<td>8.6336</td>
<td>Decid</td>
<td>10.18140/FLX/1440234</td>
<td>(Ferréa et al., 2012)</td>
</tr>
<tr>
<td>IT-Lav</td>
<td>45.9562</td>
<td>11.2813</td>
<td>Evergreen</td>
<td>10.18140/FLX/1440169</td>
<td>(Marcolla et al., 2003)</td>
</tr>
<tr>
<td>IT-Tor</td>
<td>45.8444</td>
<td>7.5781</td>
<td>Grass</td>
<td>10.18140/FLX/1440237</td>
<td>(Galvagno et al., 2013)</td>
</tr>
</tbody>
</table>

Table 1: The selected FLUXNET2015 sites used for data-model comparison in this research.
<table>
<thead>
<tr>
<th>Reference simulation</th>
<th>MODIS indices</th>
<th>Meteorology data</th>
<th>Error sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation a</td>
<td>Standard MODIS products</td>
<td>ECMWF 12h forecasting</td>
<td>(1)+(2)</td>
</tr>
<tr>
<td>Simulation b</td>
<td>Standard MODIS products</td>
<td>ECMWF 5th day forecasting</td>
<td>(1)+(2)+(3)</td>
</tr>
<tr>
<td>Simulation c</td>
<td>Truncated MODIS indices</td>
<td>Flux site observation</td>
<td>(1)+(5)</td>
</tr>
<tr>
<td>Simulation d</td>
<td>MODIS prediction based on fully filtered data</td>
<td>Flux site observation</td>
<td>(1)+(6)</td>
</tr>
<tr>
<td>Simulation e</td>
<td>NRT MODIS indices</td>
<td>Flux site observation</td>
<td>(1)+(4)</td>
</tr>
<tr>
<td>Simulation f</td>
<td>MODIS prediction based on truncated data</td>
<td>ECMWF 5th day forecasting</td>
<td>(1)+(2)+(3)+(5)+(6)</td>
</tr>
</tbody>
</table>

Table 2: The experiment setup and the error sources addressed in each simulation. The numbering in the last column corresponds to the error from (1) the VPRM model, (2) the meteorological analysis, (3) the meteorological forecast, (4) the MODIS NRT data, (5) data truncation and (6) the prediction of MODIS indices.

Figure 2: Example of the data normalization at station BE-Bra: (a) NEE output from simulation a, and the corresponding $Bias_{\text{NEE}}$. The dashed black lines show the range of annual NEE. (b) NEE and bias after normalization by the range, conserving the physical meaning (release and uptake) of the sign.
Normalized Mean Absolute Error (MAE) for each error source

<table>
<thead>
<tr>
<th>Compared objects</th>
<th>Error sources</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-ref.</td>
<td>(2) Meteorological analysis</td>
<td>0.046</td>
</tr>
<tr>
<td>b-a</td>
<td>(3) Meteorological forecast</td>
<td>0.040</td>
</tr>
<tr>
<td>b-ref.</td>
<td>(2)+(3) Meteorological error</td>
<td>0.065</td>
</tr>
<tr>
<td>c-ref.</td>
<td>(5) Data truncation</td>
<td>0.015</td>
</tr>
<tr>
<td>d-ref.</td>
<td>(6a-i) Linear EVI</td>
<td>0.016</td>
</tr>
<tr>
<td>d-ref.</td>
<td>(6a-ii) Persistence EVI</td>
<td>0.013</td>
</tr>
<tr>
<td>d-ref.</td>
<td>(6b-i) Linear LSWI</td>
<td>0.012</td>
</tr>
<tr>
<td>d-ref.</td>
<td>(6b-ii) Persistence LSWI</td>
<td>0.010</td>
</tr>
<tr>
<td>f-ref.</td>
<td>(2)+(3)+(5)+(6a-ii)+(6b-ii) Forecast error</td>
<td>0.071</td>
</tr>
<tr>
<td>ref.-obs.</td>
<td>(1) Model error</td>
<td>0.159</td>
</tr>
</tbody>
</table>

Table 3: Normalized Mean Absolute error (MAE) of NEE for each error source. The compared objects are simulation a to f, the reference simulation (ref.) and FLUXNET observation (obs.). Error sources (1) to (6) described in 2.2 can be isolated by calculating the MAE between different simulations.

Figure 3: (a) Distribution of normalized Bias_{NEE} due to meteorological error. The x-axis refers to the normalized NEE, and the y-axis refers to the corresponding Bias_{NEE} defined in section 2.2. Panels (b) and (c) share the same x-axis with (a), but have Bias_{GPP} and Bias_{R} in y-axis instead. The three biases combine as $\text{Bias}_{\text{NEE}} = \text{Bias}_{\text{GPP}} + \text{Bias}_{\text{R}}$, suggesting larger contribution from photosynthetic part Bias_{GPP}, indicating that bias NEE is dominated by Bias_{GPP}, which is controlled by the radiation parameter rather than temperature.
Figure 4: The Bias$_{\text{NEE}}$ distribution of experiment b.1 (left) and b.2 (right). In experiment b.1 only SW is from 5-day forecast while other variables are the same with the reference simulation; while in experiment b.2 it is air temperature that only comes from 5-day forecast. The MAEs to the reference experiment are 0.053 and 0.042 respectively.

Figure 4: (a) Downward shortwave radiation from site-level measurement and from 5-day forecasts at station BE-Bra. (b) bias$_{\text{NEE}}$, bias$_{\text{GPP}}$ and bias$_{R}$ at station BE-Bra. As the biases are combined as bias$_{\text{NEE}}$ = bias$_{\text{GPP}}$ + bias$_{R}$, this figure confirms that the large negative bias$_{\text{NEE}}$ is due to bias$_{\text{GPP}}$, and the reason is that NWP overestimate SW for cloudy days in summer.
Figure 5: Bias\textsubscript{NEE} distribution of using linear extrapolation or persistence to predict EVI and LSWI. The persistence prediction introduces less bias than linear extrapolation for both EVI and LSWI. Therefore persistence is used in the final forecast.

<table>
<thead>
<tr>
<th>Seasons</th>
<th>Sensitivity [µmole m-2 s-1 EVI-1]</th>
<th>R2</th>
<th>Seasons</th>
<th>Sensitivity [µmole m-2 s-1 LSWI-1]</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec - Feb</td>
<td>-0.90</td>
<td>0.27</td>
<td>Dec - Feb</td>
<td>-0.57</td>
<td>0.28</td>
</tr>
<tr>
<td>Mar - May</td>
<td>-7.96</td>
<td>0.64</td>
<td>Mar - May</td>
<td>-3.41</td>
<td>0.51</td>
</tr>
<tr>
<td>Jun - Aug</td>
<td>-9.11</td>
<td>0.74</td>
<td>Jun - Aug</td>
<td>-6.29</td>
<td>0.58</td>
</tr>
<tr>
<td>Sep - Jan</td>
<td>-2.70</td>
<td>0.35</td>
<td>Sep - Jan</td>
<td>-1.16</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Table 4: The model’s sensitivity of NEE to EVI/LSWI for four seasons. The result of simulation d is used in the sensitivity calculation. Linear regression is applied to the change in EVI and the change in corresponding NEE, the maximum sensitivity appears in summer, with a slope of -10.73 [µmole m-2 s-1 EVI-1] for EVI and -6.29 [µmole m-2 s-1 LSWI-1] for LSWI respectively.
Figure 6: The normalized error of NEE as a result of MODIS NRT error at 33 sites. 120 days from February to June in the year 2018 of MODIS NRT data are used to first calculate the EVI/LSWI differences, then times the sensitivities in table 4 and normalized by the same scalar in the previous research. The flux sites in x-axis are sorted by vegetation type and FLUXNET site-ID (from left to right: CH-Cha, CH-Fru, CZ-wet, DE-Akm, DE-Gri, DE-RuR, DE-SfN, DE-Spw, IT-Tor, CH-Dav, DE-Obe, DE-Tha, FI-Hyy, FI-Sod, FR-Pue, IT-Cp2, IT-Lav, DK-Sor, FR-Fon, IT-CA1, IT-CA3, IT-Col, IT-Isp, BE-Bra, BE-Vie, CH-Lac, BE-Lon, CH-Oe2, DE-Geb, DE-Kli, DE-Rus, IT-BCi, IT-CA2).
Figure 7: The Bias_{NEE} distribution of the VPRM model error.
Figure 8: Mean absolute error of the forecast error compared to the VPRM model error at each flux observation site. The model error (1) is generally larger than the total forecast error (2) to (6), and the forecast error does not differ significantly across vegetation types. The order of the flux site is the same as in figure 6.

Figure 9: Mean absolute error for different error sources at each flux observation site. The meteorological error ((2) meteorological model + (3) meteorological forecast) is the dominant contributor at each site, and has a similar contribution for different vegetation types. The data truncation error (4) has a stronger influence on some grass sites, likely due to the highly EVI variability resulting from mowing and regrowth during the growing season. The order of the flux site is the same as in figure 6.
Figure 10: (a) Mean VPRM NEE, during March to June 2014; (b) Spatial distribution of MAE for forecast error; (c) spatial distribution of MAE for meteorological error; (d) spatial distribution of MAE for MODIS error. The MAE of total forecast error in (b) has strong spatial relationship with the VPRM mean flux in (a), which indicates that the forecast error has a similar impact in all places. Panels (c) and (d) are consistent with table 3, in that the forecast error is larger than the error from MODIS prediction.
Figure 11: Monthly carbon budget from March to June for original and forecast model for the European domain. The overall forecast flux budget is close to the original model, indicating the forecast flux model is appropriate for use in the GHG concentration forecasting system.